
Underwriter Vault - Specification

Premia.Finance

April 6, 2023

1 Introduction

The purpose of the creation of the underwiter vault is to migrate users from
Premia V2 to Premia V3. The UnderwriterVault satisfies the ERC4626 vault
standard and is enables yearn compatibility.

1.1 General overview and functionality

The vault’s purpose is to cluster liquidity that will be used to underwrite options
at prices which are close to Deribit’s. The depositor’s liquidity will be used to
underwrite call and put options for a wide set of strikes and maturities.

1.2 User Stories

• As a depositor, I want to deposit collateral into the vault so that I can
receive shares that can later be redeemed for the premium and spread that
is made by selling options to buyers in addition to my original deposit.

• As a depositor, I want to be able to withdraw from a vault when there is
capital available so that I can recover my collateral and realize the pro-rata
P&L from the time spent in the vault.

• As a buyer, I want to receive a quote for an option purchase, so that I can
know in advance what the premium will be for purchasing the options so
that I can compare the cost with other outlets.

• As a buyer, I want to purchase options from the vault by paying a pre-
mium, so that I can receive long contracts.

• As a vault operator, I want to settle all options up until the current time,
so that I increase the vault’s liquidity / available assets, such that it will be
available for depositors to withdraw or for buyers to purchase new options.

1

2 Algorithmic description

In the following sections, we introduce the storage variables and their update
rules upon external calls that are necessary to maintain the vault.

2.1 ERC4626 state variables

Variable Name Notation Purpose
totalAssets A The total assets the vault holds is defined

as the aggregate of the assets deposited,
the premiums collected, the ask spreads

earned and the collateral locked into short
positions (totalLockedAssets). It is the
sum of the balanceOf of the vault’s ref-

erence asset and the totalLockedAssets.
totalSupply S ERC20 total supply of the vault’s shares.

The total circulating supply of shares. This
number can only increase upon a deposit

(mint) or decrease upon a withdrawal (burn).

Table 1: Vault-specific state variables stored on-chain.

2.1.1 Updating totalAssets and totalSupply: LP interactions

deposit() User deposits λ amount of assets.

An+1 ← An + λ

Sn+1 ← Sn + λp(t)−1

where p(t) is the pricePerShare() at the current time t defined in ??.

withdraw() User withdraws λ amount of assets.

An+1 ← An − λ
Sn+1 ← Sn − λp(t)−1

mint() User mints α amount of shares using αp(t) amount of assets.

An+1 ← An + αp(t)

Sn+1 ← Sn + α

redeem() User redeems α amount of shares and receives αp(t) amount of as-
sets.

An+1 ← An − αp(t)
Sn+1 ← Sn − α

2

2.2 Tracking existing option listings

The vault has to keep track of the short option positions, i.e. strike and maturity
combinations, it holds. For this purpose we introduce the following storage
variables in Table 2.

Variable Name Notation Purpose
maturities M DoublyLinkedList which tracks the

expired and unexpired maturities of
unsettled options held by the vault.

maturityToStrikes K Maps the maturity to
the set of listed strikes.

minMaturity Mmin The smallest (expired or unexpired)
maturity in the set of listed maturities.

By default 0 if no listings exist.
maxMaturity Mmax The largest maturity in the

set of maturities. By de-
fault 0 if no listings exist.

Table 2: State variables to keep track of expired and unexpired listings

Variables in Table 2 are updated whenever options are settled, in which case
the strike-maturity pairs are removed, or whenever a long position was sold for a
strike and maturity; in which case the strike and maturity is added to the storage
variables. The corresponding updates can be found in subsubsection 2.7.2 and
subsubsection 2.8.3.

2.3 Accounting of locked spreads

The price quoted by the vault consists of three components (1) the fair value of
the option, (2) the spread charged by the vault and (3) the minting fee paid to
the pool for minting the long and short optoins

quotedPrice = fairOptionPrice + spread + mintingFee .

Spreads collected from underwriting options can be regarded as profits in ex-
pectation1: the vault sells an option for a price higher than the fair value of the
option. Naturally, the collection of spreads would therefore lead to an increase
in the price per share. This in turn opens up arbitrage opportunities by front-
running trades: before a large incoming trade an LP could deposit collateral,
wait for the trade to be executed and then redeem his minted shares and collect
his pro-rata share of the earned spreads. To ensure a fair distribution of profits
and reward LPs for participating in the vault (and not only those at the time of
underwriting) the vault disperses spreads linearly over the lifetime of the option.

1In expectation the vault will earn the spread, however the maturity-specific PnL of the
vault’s short exposure is a random variable which is determined at the option’s maturity.

3

2023-01-01 2023-01-15 2023-02-01 2023-02-15 2023-03-01 2023-03-15
Date

0.00

0.02

0.04

0.06

0.08

0.10

0.12

sp
re

ad
Ra

te
 (p

er
 d

ay
)

spreadUnlockingRate
spreadUnlockingTick
totalLockedSpread

0

1

2

3

4

5

Figure 1: Adjustment of the spread unlocking rate

Example 1 (Dispersing the spread of a single option). For simplicity, assume
the minting fee is 0. Assume an option with a maturity of 10 days is worth 0.1
ETH and is sold for 0.11 ETH. In this case the spread of 0.01 ETH is linearly
dispersed at a rate of 0.01

10·86400 ETH per second.2

In the accounting system spread unlocking rates are stored in seconds. Fur-
thermore, ticks need to be stored to adjust the global spread dispersion rate
at which the spread is unlocked. If an option expires all spreads related to
that option were dispersed. Therefore the spread rate needs to be decremented
everytime by the spread rate specific to an option once it expires.

Example 2 (Adjusting the spread unlocking rate). For illustration and numer-
ical ease, it is assumed in this example that rates are quoted in days and not
seconds. Assume 0.28 ETH are linearly dispersed over 28 days, 1.56 over 52
days and 4.2 over 70 days. Then the aggregate spread unlocking rate is for the
first 28 days 0.1 ETH per day, 0.09 for the following 14 days and 0.06 for the
final 28 days. The corresponding rates are illustrated in Figure 1.

Table 3 lists the state variables required to enable linear spread dispersion.

2There are 86400 seconds in a day.

4

Variable Name Notation Purpose
lastSpreadUnlockUpdate τ Timestamp at which the

totalLockedSpread and
spreadUnlockingRate

were last updated.
totalLockedSpread ξ The total amount of locked

spread. To compute current
amount of total locked spread
the function updateState (see
algorithm 1) has to be called.

spreadUnlockingRate φ Defines the aggregate rate at
which the spreads are unlocked

per unit of time between the
lastSpreadUnlockUpdate (τ)

and the next unexpired maturity.
spreadUnlockingTicks φ(m) The amount of

spreadUnlockingRate

corresponding to options
expiring at maturity m.

Table 3: State variables tracked to process the accounting of total locked spread.

Computing the current totalLockedSpread and spreadUnlockingRate

Multiple maturities may have expired since last update of the spread state
variables. In this case expired options would still be contained in maturities

as they would not have been settled (calling settle() triggers an update of
the spread state variables). are still contained in the set of maturities when
those options have not been settled (explained in the next section). Algorithm
1 shows how to update the state variables relevant to spread dispersion.

In the while block starting at Line 4 we decrement φ by the spread unlocking
tick φ(m) defined at maturity m as long the block.timestamp has crossed the
maturity. To ensure that we have not crossed the last tick at maxMaturity,
which would result in next(M,m) mapping to

2.3.1 Constructive computation of the totalLockedSpread

It is worth noting that the spreadUnlockingRate can be computed construc-
tively using the spreadUnlockingTicks. The following relationship holds

ξn =
∑
m∈M

φ(m) max(min(t,m)− τ, 0)

φ =
∑
m∈M

φ(m)1{t≤m}

where M is the set of maturities (unexpired and expired) and t is the current
time.

5

Algorithm 1 Algorithm to compute current totalLockedSpread and
spreadUnlockingRate by crossing the spreadUnlockingTicks.

1: procedure updateState

2: m← minMaturity

3: t← block.timestamp

4: while m ≤ t ∧ m 6= 0 do
5: ξ ← ξ − φ · (m− τ)
6: φ← φ− φ(m) . “Tick crossing.”
7: τ ← m . Set τ to last crossed maturity.
8: m← next(M,m) . Set the next maturity.
9: end while

10: ξ ← ξ − φ · (t− τ) . Decrement totalLockeSpread by the amount of
unlocked spread since the last crossed maturity.

11: τ ← t
12: return {ξ, φ, τ}
13: end procedure

2.4 The fair value of the vault’s option book

We want the vault’s price per share not to be arbitrageable. For this reason we
need to evaluate the value of the vault’s short option positions. Options that
are listed may be expired and unsettled or may be settled. The implementation
therefore includes a function for expired and one for unexpired options.

getTotalLiabilitiesExpired() getTotalLiabilitiesExpired() computes
the exercise value of every option that has expired and was not settled by the
vault. The exercise value is the value that is owed to the option holder by the
vault. Note that the exercise value is quoted in terms of the underlying for calls
and in terms of the quote asset for the put.

Lexpired(t) =

{∑
m∈Mexpired

∑
k∈K(m) s(k,m) (1− k

Sm
)+ if call∑

m∈Mexpired

∑
k∈K(m) s(k,m) (k − Sm)+ if put

where

• s(k,m) is the amount of shorts with strike k maturing at m,

• Sm denotes the spot price at maturity m,

• Mexpired denotes the set of expired maturities, i.e.

Mexpired = {m ∈M : m ≤ t} .

getTotalLiabilitiesUnexpired() getTotalLiabilitiesUnexpired() com-
putes for all unexpired option listings the option’s fair value. “The fair value of
an option is the price or premium at which both the buyer and the writer of the

6

option should expect to break even, neglecting the effect of commissions and
other trading costs and after an adjustment for risk.” We compute an option’s
fair value by using the Black-Scholes formula which uses the implied volatility
derived from a parametric volatility surface.

Lunexpired(t) =

∑
m∈Munexpired

∑
k∈K(m) s(k,m)

BS(St, k, τ, r, σ(k, τ))

St
if call∑

m∈Munexpired

∑
k∈K(m) s(k,m) BS(St, τ, k, r, σ(k, τ)) if put

• r is the risk-free rate,

• t is the current time,

• τ is the time to maturity defined as τ = max(m− t, 0)3

• Munexpired is the set of unexpired maturities

Mexpired =M\Munexpired ,

• σ(k, τ) is the implied volatility with time to expiration τ and strike k
queried from the volatility oracle.

getTotalLiabilities() The vault’s total liabilities are then defined as the
sum of the expired and unexpired liabilities

L(t) = Lunexpired(t) + Lexpired(t)

getTotalFairValue() Above we defined the fair value of the options that
were sold to the option holders / counterparties. However, we are interested in
the fair value of the vault’s option book F(t), i.e. the short positions. A single
call / put option is secured by 1 unit of the underlying / k units of the quote
asset.

F(t) = −L(t) +

{∑
m∈M

∑
K∈K(m) s(k,m) if call∑

m∈M
∑
K∈K(m) s(k,m) · k if put

In subsection 2.7 it will become apparent that the fair value of the vault’s option
book can be defined as the difference between the total locked assets and the
liabtilities the vault holds.

F(t) = Ln − L(t)

3An option that is listed by the vault may have expired and not have been settled. In
this case the option’s fair value is defined as the exercise value at time of maturity. See
subsection 2.8 for further details.

7

2.5 Fee collection

tl;dr LPs are subject to management and performance fees. Management fees
are paid to the vault by LPs for managing the LPs assets. Performance fees
are payments made by LPs to the vault for generating positive returns. Fee
collection is triggered upon a transfer either between two users or a redemption
and is only paid on the transferred / redeemed amount. Thus, if a user redeems
/ transfers ∆ shares and the total fee burden in shares is x then ∆ + x shares
will be deducted from the user’s share balance. Fees are collected such that the
the vault’s price per share remains unaffected by burning the shares owed by
the user upon a transfer / redemption. This is equivalent to the vault realizing
fees at the current price per share, however, exposure in the corresponding asset
(base / quote) is still given.

Variable Name Notation Purpose
netUserDeposits (user 7→ dn) A mapping from user addresses

to the amount of collateral de-
posited at time of deposit. The

mapping is used to calculate
the average price per share at

which the user minted shares at.
timeOfDeposit (user 7→ tn) A mapping from user addresses to

the UTC timestamp (in seconds)
at which the user deposited. Used
to compute the correct amount of
management fees owed by a user.

managementFeeRate χ The per annum ad volarem
rate applied to compute
management fees owed.

performanceFeeRate γ The ad volarem rate applied
to compute performance fees;
if a user’s return was positive.

protocolFees Σ Tracks the total amount of fees
collected. Reset to zero whenever
fees are claimed by the deployer.

Table 4: Mappings / variables stored on-chain to compute / track management
and performance fees owed to the vault.

2.5.1 Management fees

The payment of management fees is triggered through a transfer or a redemption
and is only paid on the transferred / redeemed amount. Assume that the user’s
time of deposit is tn and wants to transfer / redeem s shares. Let t be the
current UTC timestamp in seconds. Then the management fee in shares that

8

is owed to the vault is defined as

ξuser(s) = (t− tn)ω−1χs

where ω denotes the number of seconds in a year.

Todo: not critical, but in the unlikely event that management fees are greater
than the actual balance we would catch an underflow.

2.5.2 Performance fees

Denote by µ the average price per share at which the user minted shares and let
s be the amount of shares the user wants to transfer / redeem. We can compute
the user’s return from buying vault shares as r = µ

p − 1 where p denotes the
current price per share. The user’s performance fee in shares owed to the vault
is then defined as

γuser(s) = 1{r>0}γrs .

Thus, if the user’s investment is in the money, i.e. has a positive return, then
the user has to burn γuser(s) in order to transfer / redeem s shares. If the user
is out of the money, i.e. has a negative return, the user does not have to burn
any shares.

2.5.3 Total fee burden

If the user transfers / redeems s shares his total fee burden is defined as the sum
of the user’s management and performance fees ξuser(s) + γuser(s). Note that
a user’s performance is independent of the management fees, i.e. the deduction
of management fees does not decrease the user’s performance.

2.5.4 The maximum of transferable shares

Any transaction of the ERC20 vault shares is subject to the payment of outstand-
ing fees. Therefore, the maximum of shares that are transferable in general (flash
transactions excluded) does not equal the balance of shares held by the user.
Let s denote the total balance of the user’s shares. Then then maximum amount
of transferable shares the user holds is defined as

Ξuser(s) = s− (ξuser(s) + γuser(s)) .

2.5.5 pricePerShare invariance upon fee collection

Fees are collected such that the pricePerShare remains unaffected. This is pe-
formed by burning the amount of shares that are due at the time of transfer and
deducting the share amount valued in assets from totalAssets. Furthermore,
protocolFees are incremented by the asset amount.

9

Example 3 (Transferring shares). Assume an LP deposited collateral to mint
10 vault shares 6 months ago. The LP’s performance is 125% (equivallently
25% in returns). The LP transfers 2 vault shares to another account. By doing
so the LP has to burn additionally 2 · 0.25 · γ in shares as performance fees and
6
12 · 2 ·m shares as management fees. The total shares deducted from the LP’s
balance is 2 · (1 + 0.25γ + 0.5χ).

The invariance is illustrated mathematically by showing that burning ∆ < S
shares and deducting shares valued in assets from total assets does not change
the price per share p(t) = A

S .

A−∆p(t)

S −∆
=
A−∆A

S

S −∆
=
A(S −∆)

S(S −∆)
= p(t)

Thus, we obtain the following update for totalAssets and totalSupply

An+1 ← An − p(t) · (ξuser(s) + γuser(s))

Sn+1 ← Sn − (ξuser(s) + γuser(s))

where totalSupply is decreased by calling the burn() method.

2.5.6 Updating timeOfDeposit

Minting / receiving shares A user’s time of deposit timestamp is only
updated when the user mints or receives shares through a transactoin. The
update is defined through a share weighted average4 of the time of deposit t0
and the current timestamp t1. Let x denote the user’s balance before receiving
y shares. Then the updated timestamp is defined as

tn+1 ←
xtn + yt∗
x+ y

.

Through this update the user will always owe the correct amount of management
fees, i.e. transferring shares does not increase nor decrease the management fees
owed to the vault. The following equation shows that management fees owed
at any time t (≥ tn+1 ≥ t∗ ≥ tn) past the last time of deposit update is equal
to the management fees owed at times t0 and t1 if the shares would have been
treated seperately.

ξuser(x+ y, tn+1) = ω−1χ · (t− tn+1)(x+ y)

= ω−1χ · (t · (x+ y)− (xtn + yt∗))

= ω−1χ · (x · (t− tn) + y · (t− t∗))
= ξuser(x, tn) + ξuser(y, t∗)

4Equivalent to a linear interpolation based on the share amounts.

10

Transferring / redeeming shares When a user transfers or redeems shares
the time of deposit does not need to be updated as the same timestamp can
be used to compute future managament fees. Note that if a user redeems all of
his shares and at a later point in time receives or mints new shares the share-
weighted average of the time of deposit will ensure that the new time of deposit
is the time at which the new shares were minted.

2.5.7 Updating netUserDeposit

Minting / receiving shares Let x be the share balance before receiving /
minting shares, y denote the received / minted amount, and p denote the price
per share at the time of mint / receival. Whenever a user mints or receives y
shares netUserDeposit is incremented by the asset amount ∆ = py used to
mint the new shares.

dn+1 ← dn + ∆ = dn + py

Let µn denote the user’s average price per share at time n and x the users. The
following equation verifies that the updated average price per share paid by the
user is the share-weighted average of past prices per share

µn+1 =
dn+1

x+ y
=
dn + ∆

x+ y
= µn

x

x+ y
+ p

y

x+ y
.

Transferring / redeeming shares Again assume the user’s initial balance
of vault shares is x. Whenver a user transfers or redeems y ≤ x shares the
netUserDeposit dn is decreased proportional to the amount of shares

dn+1 ← dn
x− y − (γuser(y) + ξuser(y))

x
.

Using this update rule the new average price per share µn+1 remains constant
as the net user deposit is reduced proportional amount by the same amount as
the balance

µn+1 =
dn+1

x− y − (γuser(y) + ξuser(y))
=
dn
x

= µn

Even more observe that the user is indifferent, i.e. paying performance fees
through multiple transactions / redemptions is equal to paying the performance
fee by having a single transaction / redemption of the max transferable shares.
Assume that the price per share is constant, and that the user first redeems y
shares and then x shares. Then the following relationship holds true

γuser(x+ y) = 1{r>0}γr · (x+ y)

= 1{r>0}γrx+ 1{r>0}γry

= γuser(x) + γuser(y)

where equality two is true since the average price per share before and after the
transaction / redemption are equal and we assumed the price per share to be
constant (the return r did not change).

11

2.5.8 Frequently asked questions

Why is there no functionality that collects the management fees from
all users? This functionality was originally implemented, but later on depre-
cated as deducting the management fee from all users would require reducing
the price per share. A decrease in the price per share comes with some side
effects. Assume user A wants to buy from user B ∆ shares at the current price
per share of p. The transfer of shares would trigger a collection of management
fees and thus a decrease in the price per share. Thus, user A would have paid
the management fees of user B. We therefore decided to collect management fees
at transfer / redemption instead of collecting them globally. Note that charging
management fees this way is beneficial to the vault: management fees charged
decay linearly5, not geometrically. Therefore, this method collects more fees.

Why are only fees paid on the the transferred amount and not the
full balance, i.e. maxTransferableShares, at time of transfer? When
fees are collected the vault collects the fees by burning the shares owed to the
vault and realizes the shares at the current price per share. Since we assume
that the vault has positive expected value due to the spread collection taking
place we are not interested in collecting the fees. An alternative design could
be not to burn the shares at all. In this case the vault would become and LP
itself and only redeem those shares when the vault operator is willing to do
so. Furthermore, if requested the current fee design can be changed such that
all management and performance fees are charged whenever a user transfers /
redeems.

2.6 pricePerShare: exchanging between collateral and vault
shares

At the core of the vault is the conversion from assets to shares and vice versa.
Different to other vaults we cannot directly compute the exchange rate as the
ratio of total assets against total shares as the vault is held liable to a potential
future payout. Furthermore, spreads are locked and dispersed over the lifetime
of the option. It’s therefore necessary account for those two positions when
computing the pricePerShare. Including these considerations we define the
price per share as

p(t) =
An − ξ(t)− L(t)

Sn

Observe that defining the price per share this way ensures that the price per
share stays constant whenever a trade is processed. This is shown for trades
(including the offset of premiums and spreads) in subsubsection 2.7.6.

5This is the reason why management fees in shares can be greater than the total balance
of a user.

12

2.7 trade: buying options from the vault

A user can buy call / put options for a single underlying from a call / put vault
given that a pool with the corresponding maturity, strike and option type exists.
A user can never sell optoins back to the vault.

Trades need to fulfill pass filters based on the option’s delta and the days to
expiry to be executed. Table 5 summarises the parameters stored on-chain that
define the filters.

Variable Name Notation Purpose
minDTE − The minimum days to expiration

that an option needs to have for
the sale / trade to be processed.

maxDTE − The maximum days to expira-
tion that an option can have for
the sale / trade to be processed.

minDelta − The minimum Black-Scholes delta
that an option needs to have for
the sale / trade to be processed.

maxDelta − The maximum Black-Scholes
delta that an option can have for
the sale / trade to be processed.

Table 5: Set of parameters that control the space of admissible trades.

To charge a spread the vault uses just as in the Premia v2 version the c-level
function. Table 6 summarises the variables that are used to parametrise the
spread adjustment.

13

Variable Name Notation Purpose
minCLevel cmin The minimum c-level. Default: 1.0.
maxCLevel cmax The maximum c-level. Default: 1.2.
alphaCLevel α

hourlyDecayDiscount λ Rate in seconds at
which the c-level decays.

lastTradeTimestamp t0 Timestamp in seconds that stores the
last time a trade was executed. Used
to compute the decay of the c-level.

totalLockedAssets L The amount of collateral locked
due to underwriting options used
to compute the vault’s utilisation

and available assets. E.g. if 2.3 put
options with $500 strike are under-

written then $1150 units of the quote
are locked in short put contracts.

Table 6: c-level parameters

2.7.1 c-level: adjustments to the fair option value to earn a spread

Depending on the vault’s utilisation and the last time a trade occured the spread
will be increased or decreased. The function c̃ : [0, 1]→ [cmin, cmax] defines the
intermediate c-level as a function of the vault’s utilisation x ∈ [0, 1]

c̃ (x) =
e−α(1−x)

(
βeα(1−x) + cmaxα− β

)
α

where β is defined as

β =
α (cmine

α − cmax)

eα − 1
.

To obtain the final c-level function c : [0, 1] → [cmin, cmax] the intermediate
c-level is decayed by

c(x) = max(c(x)− λ · (t− t0), cmin)

Assuming the minting fee is zero for simplicity, the quoted price q is then
defined as a function of utilisation x ∈ [0, 1], time to maturity τ ≥ 0, strike k
and the risk-free rate r

q(x, St, k, τ, r) = c(x) BS(St, k, τ, r, σ(k, τ))

Separating the quoted price into the fair option price and collected spread we
can define the spread in terms of the Black-Scholes price and the c-level

q(x, St, k, τ, r)︸ ︷︷ ︸
quotedPrice

= BS(St, k, τ, r, σ(k, τ))︸ ︷︷ ︸
fairOptionPrice

+ (c(x)− 1) BS(St, k, τ, r, σ(k, τ))︸ ︷︷ ︸
spread

14

Note that whenever the minimum c-level cmin is greater or equal to zero the
spread is non-negative. For a minimum c-level less than one the quoted price
can become less than the options fair value. In this case the option is sold at a
discount giving the LP exposure to an option position with negative expected
value.

2.7.2 addListing(): updating the set of listings upon a trade

Whenever a trade occurs the vault checks whether the option maturity and strike
were previously added. In case the listing does not exist the maturity-strike pair
gets added to the set of maturities and maturitiesToStrikes

M =M∪ {m}
K(m) = K(m) ∪ {k}

Furthermore, the vault checks whether minMaturity and maxMaturity need to
be updated.

2.7.3 Updating totalAssets

The vault’s totalAssets are incremented by the c-level adjusted fair option
price. It is not incremented by the minting fee as the minting fee is transferred
from the user to the pool for minting the options and therefore is balanced as a
transit item within the vault.

An+1 ← An + c(x)BS(St, k, τ, r, σ(k, τ))

2.7.4 Updating totalLockedAssets

Whenever a trade is processed totalLockedAssets is incremented by the amount

Ln+1 ← Ln +

{
s(k,m) if call

s(k,m) · k if put

2.7.5 Updating spread state variables (afterBuy())

The hook afterBuy was introduced to update spread state variables whenever
a trade was processed. Before incrementing spread state variables the procedure
updateState is called as otherwise inconsistencies between the totalLockedSpread
and spreadUnlockingRate may be introduced6. Afterwards, the totalLockedSpread
is incremented by the amount of spread earned γ ≥ 0, and the spreadUnlockingRate

6Please ask if this is unclear.

15

and spreadUnlockingTick at maturity m are increased by the spread disper-
sion rate γ

m−t .

ξ ← ξ + γ

φ← φ+
γ

(m− t)

φ(m)← φ(m) +
γ

(m− t)

2.7.6 Price invariance

A trade should not increase nor decrease the trade as otherwise it would be
subject to frontrunning / arbitrage opportunities. Let t− and t+ be the im-
mediate time before and after the trade is processed and p(t−), p(t+) denote
the corresponding prices per share7, L(t−),L(t+) the total liablities and ξ(t−),
ξ(t+) the total locked spreads. Furthermore, assume π denotes the option’s fair
value and z the spread paid due to the c-level. Then we observe that the prices
per share before and after the trade are equal

p(t+) =
An+1 − ξ(t+)− L(t+)

Sn+1

=
(An + π + z)− (ξn(t−) + z)− (L(t−) + π)

Sn

=
An − ξ(t−)− L(t−)

Sn
= p(t−1)

Thus, the vault is protected from front-running / arbitrageurs.

2.8 Settlement of expired options

Short options need to be settled for the remaining collateral to be released.
The liberation of collateral through settlement makes collateral available and
lowers the vault’s utilisation. Settling expired options can be triggered through
a keeper or a user at any time.

2.8.1 Updating totalAssets

During settlement the vault’s totalAssets are decreased by the option’s exer-
cise value

An+1 ← An −

{
s(k,m)(1− k

Sm
)+ if call

s(k,m)(k − Sm)+ if put

where again s(k,m) denotes the number of short contracts with strike k and
expiry m and Sm denotes the spot price at time m.

7More precisely p(t−) and p(t+) can be viewed as the left and right limit.

16

2.8.2 Updating totalLockedAssets

totalLockedAssets need to be decreased by the collateral value of the short
position

Ln+1 ← Ln −

{
s(k,m) if call

s(k,m) · k if put

which is equal to the amount of shorts s(k,m) for calls and the amount of
short adjusted by the strike s(k,m) · k for puts. Note that we do not increment
totalAssets by the released collateral since we never deducted the locked assets
which are deposited as a security into the short position from totalAssets. See
subsection 2.7 for more details.

2.8.3 removeListing(): updating the set of listings upon settlement

Moreover, every maturity m ∈ M that was settled is removed from the set of
maturities M and every strike specific to the maturity m ∈ M is removed
from the set of strikes K(m)

M =M\ {m}
K(m) = K(m) \ {∀k : k ∈ K(m)} = ∅

Furthermore, minMaturity is incremented to the next maturity in the set of
maturities and set to 0 in case the set is empty. Likewise, maxMaturity is set
to 0 in case there are no more active listings.

It is worth noting that because maturities and strikes are removed from the
option lattice the vault has to update it’s spread state variables before removing
them as otherwise the vault is not able to decrement the spread unlocking rate φ
using the spread unlocking tick φ(m) specific to the removed maturity m ∈ M
anymore. Therefore, the method settle calls the method updateState prior
to removing any maturity-strike pairs from the option lattice.

17

	Introduction
	General overview and functionality
	User Stories

	Algorithmic description
	ERC4626 state variables
	Updating totalAssets and totalSupply: LP interactions

	Tracking existing option listings
	Accounting of locked spreads
	Constructive computation of the totalLockedSpread

	The fair value of the vault's option book
	Fee collection
	Management fees
	Performance fees
	Total fee burden
	The maximum of transferable shares
	pricePerShare invariance upon fee collection
	Updating timeOfDeposit
	Updating netUserDeposit
	Frequently asked questions

	pricePerShare: exchanging between collateral and vault shares
	trade: buying options from the vault
	c-level: adjustments to the fair option value to earn a spread
	addListing(): updating the set of listings upon a trade
	Updating totalAssets
	Updating totalLockedAssets
	Updating spread state variables (afterBuy())
	Price invariance

	Settlement of expired options
	Updating totalAssets
	Updating totalLockedAssets
	removeListing(): updating the set of listings upon settlement

