
FuseFi Audit Report

FuseFi Smart Contract Initial Audit Report

Overview 3
Scope of Audit 3
Checked Vulnerabilities 5

Techniques and Methods 6

Issue Categories 7
Number of issues per severity 9
Functional Testing Results 10

Issues Found 12
High Severity Issues 12

● Exploiting voltPerSec by dividing rewards 12
● emergencyWithdraw allows exploiting Double Rewarder Farms 12
● Zero address initialization 13

Medium Severity Issues 14
● Old Compiler version 14
● Insufficient Tests Coverage 15
● Incorrect Vesting Days Calculation 16
● Limited Supply can lead to unoperational minting/contract 17
● Possible Reentrancy Issue 18
● Missing best practice to handle deflationary tokens 18
● Missing Important Checks 19
● Missing Input Validation 21
● Not updating existing pools prior to adding/modifying a pool 22

Low Severity Issues 22
● Missing Zero Address Check 23
● Missing SafeMath operations for arithmetic calculations 23
● Critical Address change 23
● Missing Important Checks 24
● Missing Events for Critical Operations 25
● External call before updating critical state variables. 25
● Use of Token Contract in place of interfaces 25
● Missing Error Statement 26

audits.quillhash.com                                                                                                            1



FuseFi Audit Report

● Missing Input Validation 27
● Missing Important Checks 27

Informational Issues 28-32
Closing Summary 33

audits.quillhash.com                                                                                                            2



FuseFi Audit Report

Overview
VoltFinance by FuseFi
It is a hub of defi tools on the fuse blockchain, providing features of Farming, Lending
and Staking.

Scope of Audit

The scope of this audit was to analyze FuseFi smart contract’s codebase for quality,
security, and correctness.

FuseFi Contracts:

Voltage-Core: https://github.com/voltfinance/voltage-core
Branch: Master
Commit: d881c70e86352d753ec97d29bac6b7d1d8066838

Token-Sale: https://github.com/voltfinance/token-sale-contracts
Branch: Master
Commit: 413fb9a85432fd366f6ca9136580ba2a8872ee37

VoltToken.sol ERC20 Governance Token

VoltBar.sol Staking contract where users deposit
VOLT and receive xVOLT

MasterChefVoltV2.sol Staking Vault which rewards users in
VOLTs, and contains double rewarder
farms for bonus rewards. The VOLT
tokens created per second, are
distributed to the devs, treasury, investor
and pools.

MasterChefVoltV3.sol Staking Vault on top of V2.

SimpleRewarderPerSec.sol Used for double rewarder farms,

audits.quillhash.com                                                                                                            3

https://voltage.finance/
https://github.com/voltfinance/voltage-core
https://github.com/voltfinance/token-sale-contracts
https://github.com/voltfinance/voltage-core/blob/master/contracts/VoltToken.sol
https://github.com/voltfinance/voltage-core/blob/master/contracts/VoltBar.sol
https://github.com/voltfinance/voltage-core/blob/master/contracts/MasterChefVoltV2.sol
https://github.com/voltfinance/voltage-core/blob/master/contracts/MasterChefVoltV3.sol
https://github.com/voltfinance/voltage-core/blob/master/contracts/rewarders/SimpleRewarderPerSec.sol


FuseFi Audit Report

rewarding users either in native currency
or in bonus token

VoltMakerV2.sol Converts VOLT LPs into VOLT and sends
the VOLT to the VoltBar

TokenSale.sol Facilitates the token sale where users
purchase volts using fuse

VestingVault12.sol Purchased Volts are vested for the user
under two first and second vesting
periods, which can be claimed on a per
day basis.

audits.quillhash.com                                                                                                            4

https://github.com/voltfinance/voltage-core/blob/master/contracts/VoltMakerV2.sol
https://github.com/voltfinance/token-sale-contracts/blob/master/contracts/TokenSale.sol
https://github.com/voltfinance/token-sale-contracts/blob/master/contracts/VestingVault12.sol


FuseFi Audit Report

Checked Vulnerabilities

We have scanned the smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that we
considered:

● Re-entrancy
● Timestamp Dependence
● Gas Limit and Loops
● Exception Disorder
● Gasless Send
● Use of tx.origin
● Compiler version not fixed
● Address hardcoded
● Divide before multiply
● Integer overflow/underflow
● Dangerous strict equalities
● Tautology or contradiction
● Return values of low-level calls
● Missing Zero Address Validation
● Private modifier
● Revert/require functions
● Using block.timestamp
● Multiple Sends
● Using SHA3
● Using suicide
● Using throw
● Using inline assembly

audits.quillhash.com                                                                                                            5



FuseFi Audit Report

Techniques and Methods
Throughout the audit of FuseFi smart contracts, care was taken to ensure:

● The overall quality of code.
● Use of best practices.
● Code documentation and comments match logic and expected behaviour.
● Implementation of ERC-20 token standards.
● Efficient use of gas.
● Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the smart
contracts.

Structural Analysis

In this step, we have analyzed the design patterns and structure of smart contracts. A
thorough check was done to ensure the Smart contract is structured in a way that will
not result in future problems.

Static Analysis

Static Analysis of Smart Contracts was done to identify contract vulnerabilities. In this
step, a series of automated tools are used to test the security of smart contracts.

Code Review / Manual Analysis

Manual Analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually
analyzed, their logic was checked and compared with the one described in the
whitepaper. Besides, the results of the automated analysis were manually verified.

audits.quillhash.com                                                                                                            6



FuseFi Audit Report

Gas Consumption

In this step, we have checked the behavior of smart contracts in production. Checks
were done to know how much gas gets consumed and the possibilities of optimization
of code to reduce gas consumption.

Tools and Platforms used for Audit

Mythril, Slither, SmartCheck, Surya, Solhint.

audits.quillhash.com                                                                                                            7



FuseFi Audit Report

Issue Categories
Every issue in this report has been assigned with a severity level. There are four levels
of severity, and each of them has been explained below.

High Severity Issues

A high severity issue or vulnerability means that your smart contract can be exploited.
Issues on this level are critical to the smart contract’s performance or functionality, and
we recommend these issues be fixed before moving to a live environment.

Medium Severity Issues

The issues marked as medium severity usually arise because of errors and deficiencies
in the smart contract code. Issues on this level could potentially bring problems, and
they should still be fixed.

Low Severity Issues

Low-level severity issues can cause minor impact and or are just warnings that can
remain unfixed for now. It would be better to fix these issues at some point in the future.

Informational

These are four issues that indicate an improvement request, a general question, a
cosmetic or documentation error, or a request for information. There is low-to-no impact.

audits.quillhash.com                                                                                                            8



FuseFi Audit Report

Number of issues per severity
TYPE HIGH MEDIUM LOW INFORMATIONAL
Open 3 9 11 11

Acknowledged 0 0 0 0
Closed 0 0 0 0

audits.quillhash.com                                                                                                            9



FuseFi Audit Report

Functional Testing Results

Some of the tests performed are mentioned below:

VoltToken
✅should only allow owner to mint token
✅Should be able to transfer tokens
✅Should fail if you try to do bad transfers
✅Should be able to move delegates when transferring tokens
✅User should be able to delegate voting rights to its delegatee

MasterChefVoltV2

✅Should be able to add lp pool
✅Should be able to set/update lp pool data
✅Should be able to deposit
✅Should be able to withdraw with and without rewarder
✅Should be able to emergency withdraw
✅Should work for all pools with intended behavior.
✅Should be able to update emission rate

MasterChefVoltV3
✅Should be able to deposit dummy tokens via init()
✅Should be able to add lp pool
✅Should be able to set/update lp pool data

audits.quillhash.com                                                                                                            10



FuseFi Audit Report

✅Should be able to deposit
✅Should be able to withdraw with and without rewarder
❌Should be able to emergency withdraw
✅Someone with dummy token can deposit these tokens in MasterChefVoltV2’s
dummy token pool

SimpleRewarderPerSec
✅Should be able to update pool
✅Should be able to set reward rate
✅Should be able to distribute reward token
✅Should be able to emergency withdraw

VoltBar
✅Should be able to enter VoltBar
✅Should be able to leave VoltBar

VoltMakerv2
✅Should be able to convert token pair to volts
✅Should be able to convert multiple pairs
✅Should be able to convert using bridges

TokenSale
✅Should be able to add purchase limit
✅Should be able to buy tokens by sending FUSE to contract
✅Should be able to buy tokens by calling purchaseTokens
✅Should be able to purchase amount equal to purchase limit
✅Owner can withdraw Fuse from contract
✅Owner can withdraw tokens from contract
✅Should revert if try to purchase after sale has ended
✅Should revert if try to purchase before sale starts
✅Should revert if someone tries to purchase more than purchase limit
❌Purchase tokens will always be successful

VestingVault12
✅Owner should be able to set v12MultiSig
✅v12MultiSig can add token grants

audits.quillhash.com                                                                                                            11



FuseFi Audit Report

✅Should be able to claim vesting for both schedules

Issues Found

High Severity Issues

MasterChefVoltV3
● Exploiting voltPerSec by dividing rewards

MasterChefVoltV3 depends upon MasterChefVoltV2 for its voltPerSec reward
rate. However, it assumes and builds its logic, by considering that all of the pool
rewards of MASTER_PID will be harvested/minted to MasterChefVoltV3, and
doesn’t consider the sharing of rewards with multiple users in the same pool.

For instance, if another stakes some tokens into the same MASTER_PID pool,
the total rewards generated will be shared into two users, and may decrease the
actual voltPerSec reward rate which MasterChefVoltV3 is referring to for its own
reward generation, as a consequence, the MasterChefVoltV3 may
receive/harvest less tokens but still try to provide tokens v3 pools with the total
reward rate of MASTER_PID pool.

audits.quillhash.com                                                                                                            12



FuseFi Audit Report

Recommendation: Consider reviewing and verifying the operational and
business logic

MasterChefVoltv2

● emergencyWithdraw allows exploiting Double Rewarder Farms

Function emergencyWithdraw allows the user to exit from a pool and
withdrawing all the staked LP Tokens, without caring about VOLTs rewards.
However, the function doesn’t call/harvest rewarder’s rewards or updates
rewarder’s state for the particular user. As a result, the user can drain out/ exploit
double rewarder farms.

Exploit Scenario:
A user deposits x number of LP tokens into a double rewarder farm. It can use
flash loan to deposit a large number of tokens. After that it calls
emergencyWithdraw, taking out all the deposited LP Tokens. Although the user
has taken out all the LP Tokens and the vault doesn’t have any state for the user,
the rewarder’s state for the user is still intact, and will still serve the same
pending rewards whenever the user deposits into the same pool again. Now the
user can deposit just a single LP Token and wait for some days, and harvest the

audits.quillhash.com                                                                                                            13



FuseFi Audit Report

bonus rewards for all the x number of tokens deposited earlier, instead of 1,
hereby possibly draining the rewarder farms.

Recommendation: Consider reviewing and verifying the operational and
business logic, and consider harvesting rewards of rewarder in double rewarder
farms in the emergencyWithdraw, and the rewarder state of user should be
updated with 0 amount.

● Zero address initialization for dev/treasury/investor may lead to
unoperational minting/contract

constructor and dev/treasury/investor address setters, lacks zero address
checks for _devAddr, _treasuryAddr, _investorAddr

As the contract tries to mint some VOLTs to dev/treasury/investor addresses
based on voltPerSec reward rate. If any of these address is accidentally or
intentionally set to zero address, the updatePool will always revert, as the volt
token is an openzeppelin’s ERC20 implementation, which doesn’t allow any
mints over zero addresses.

Also, since these addresses can only be changed by existing addresses. It will
not be possible to change them later as nobody controls zero address, hence
making the minting and in turn the entire contract unoperational.

Recommendation: Consider reviewing and verifying the operational and
business logic and adding zero address checks for dev, investor and treasury
addresses.

Medium Severity Issues

audits.quillhash.com                                                                                                            14



FuseFi Audit Report

● Old Compiler version

VestIngVault12 contract (using 0.4.24) and Voltage-core Contracts (using
0.6.12) are using old version of solidity, solc frequently releases new compiler
versions. Using an old version prevents access to new Solidity security checks.

Recommendation: Use the latest compiler version in order to avoid bugs
introduced in older versions.

VestingVault12

● Lack of test coverage:

[#L148] function removeTokenGrant is used to remove a grant and transfer the
funds which were not vested back to the v12MultiSig and the function can only
be called by v12MultiSig. The intended operational logic is that the v12MultiSig
is supposed to be changed to TokenSale contract after the initialization of the
vault, in order to allow TokenSale contract to add token grants in the vault.
However, TokenSale doesn’t contain any function to call vault’s
removeTokenGrant, as a consequence a grant will never be removed from the
vault.

For the same reason, vault’s changeMultiSig will be unoperational, as the
existing TokenSale contract doesn’t contain any function to change multisig to a
new address.

Recommendation: Consider reviewing and verifying the operational and
business logic

● Incorrect Vesting Days Calculation

[#L100] function calculateGrantClaim, calculates and returns the vested days
and amount for a particular grant. However, it returns incorrect vested days for
some scenarios, which may lead to incorrect daysClaimed value for the grant,
while claiming vested tokens.

audits.quillhash.com                                                                                                            15



FuseFi Audit Report

For instance,
Let’s assume, an active grant of 100 tokens has a vesting duration of 10 days.
So, per day, the recipient is eligible to claim 10 vested tokens, considering there
is no cliff(0 days).

Let’s say, 5 days have passed since the grant was started. Now the recipient
wants to claim vested tokens, calculateGrantClaim will return

daysVested: 5

amountVested: 50

grants.daysClaimed will be 5

grants.totalClaimed will be 50

audits.quillhash.com                                                                                                            16



FuseFi Audit Report

Now, let’s say the user came back after 10 days of claiming the last grant,
meaning the grant duration is over. Now the recipient wants to claim remaining
vested tokens, calculateGrantClaim will return

daysVested: 10 (the entire grant duration, and not the unclaimed days)

amountVested: 100 - 50 = 50 (total grant amount - total claimed amount)

grants.daysClaimed will be 5 + 10 = 15

grants.totalClaimed will be 50 + 50 = 100

So, even though the grant duration was 10 days, the grant’s daysClaimed is
now pointing to 15 days.

Recommendation: Consider reviewing and verifying the operational and
business logic. Possible solution might be to return
tokenGrant.vestingDuration - tokenGrant.daysClaimed as the vested days if
the vesting duration is over

MasterChefVoltv2

● Limited Supply can lead to unoperational minting/contract

V2 generates/mints VOLTs based on the defined voltPerSec reward rate.

However, the supply to mint is capped, and can’t exceed more than maxSupply.

audits.quillhash.com                                                                                                            17



FuseFi Audit Report

Thus any new reward generation beyond maxSupply will fail, which will in turn
make v2 non-functional or operational, as none of the critical operations will
work.

Recommendation: Consider reviewing and verifying the operational and
business logic

● Possible Reentrancy Issues

The critical operations: deposit and Withdraw, can lead to reentrancy scenarios,
in double rewarder farms, considering the fact that recipient/caller can make a
reentrant call if the rewarder rewards in native currency. The reentrant calls may
produce incorrect results in edge case scenarios.

Recommendation: Consider using openzeppelin’s ReentrancyGuard for
deposit and withdraw in order to avoid risks that can generate from edge case/
cross function reentrancy scenarios.

● Missing best practice to handle deflationary tokens

Function deposit, allows a user to deposit lpTokens into a pool. However, it
doesn’t follow the best practice for handling deflationary tokens. If an LP Token is
an ERC20 deflationary token(fee deducing tokens), the contract will receive less
funds from the user, but update the critical state variables amount and
rewardDebt, based on initial values, rather than considering the funds which
were actually received. It will allow the user to extract more rewards than
intended.

audits.quillhash.com                                                                                                            18

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol


FuseFi Audit Report

Recommendation: Consider following the best practice as:
Check contract funds prior and after transferring tokens from the user, and
subtracting the newer balance from the older balance. It will provide the actual
amount of LPTokens that were received during the deposit. Now this amount
should be considered to update the critical state variables amount and
rewardDebt for the user.

TokenSale

● Missing Important Checks
[#L48] constructor: _firstVesting[0] and _secondVesting[0] defines the
duration in days for the first and second vesting respectively. However,
constructor lacks important checks for them, which may lead to incorrect
initialization and produce incorrect results.

audits.quillhash.com                                                                                                            19



FuseFi Audit Report

Some important checks to consider:

1. Zero Duration: _firstVesting[0] and _secondVesting[0] can be
initialized with 0 vesting duration, as a consequence the user will end up
paying fuse amount but no VOLTs will be vested for it.

2. Upper Bound Checks: As it is hardcoded in the function addTokenGrant
in Vesting vault, that duration can’t exceed 25 years. However, there is no
such check added in the token sale constructor, hence it is possible to
initialize token sale with vesting periods of duration more than 25 years. If
initialized with more than 25 years, the token purchase transactions will
always revert.

audits.quillhash.com                                                                                                            20



FuseFi Audit Report

Recommendation: Consider adding the required checks

MasterChefVoltV3

● Missing Input Validation

Function init, allows the owner to deposit dummyToken to the MASTER_PID
pool of MasterChefVoltV2. However, there is no check to make sure the
dummyToken should be the same as the lpToken of MASTER_PID pool, as a
consequence, if supplied an incorrect token, all the owner’s tokens will be forever
stuck in the contract, as there is no function to recover ERC20 tokens.

audits.quillhash.com                                                                                                            21



FuseFi Audit Report

Recommendation: Consider adding a check so as to make sure the input
address of dummyToken should be the same as the MASTER_PID pool’s
lpToken.

● Not updating existing pools prior to adding/modifying a pool

[#L220] function add & [#L254] function set, don’t all the existing update pools
prior to adding a new pool or modifying an existing pool, which may affect the
reward rate for the existing pools, as adding and modifying a pool changes the
totalAllocPoint, which is a crucial factor that determines the reward rate of a
particular pool.

For instance,
Let’s assume voltPerSec is 1 token, thus 100 seconds will generate a reward of
100 tokens. Now, let’s assume there are 4 pools with allocation point of 25 each.
So, the 25 tokens will be distributed to each pool.

However, the pools were not updated before adding a new pool, and a new pool
again with the same allocation point of 25 gets added. Now 100 rewards are
supposed to be distributed to 5 pools, with 20 tokens to each pool.

This can be prevented if we update the existing pools, to distribute the generated
rewards with the current reward rate, and then add/modify a pool.

Recommendation: Consider reviewing and verifying the operational and
business logic.

Low Severity Issues

● Missing Zero Address Checks

Contracts lack zero address checks, hence are prone to be initialized with zero
addresses.

MasterChefVoltV2 contract lacks zero address check for _volt

audits.quillhash.com                                                                                                            22



FuseFi Audit Report

MasterChefVoltV3 contract lacks zero address check for _MASTER_CHEF_V2,
_volt

VoltBar contract lacks zero address check for _volt

VoltMakerV2 contract lacks zero address check for _factory, _bar, _volt,
_wfuse

Recommendation: Consider adding zero address checks in order to avoid risks
of incorrect contract initializations.

SimpleRewarderPerSec

● Missing SafeMath operations for arithmetic calculations

Contract uses SafeMath library for safe arithmetic calculations as the 0.6.12
compiler version doesn’t have any built-in safe arithmetic checks. However, some
instances of unsafe arithmetic calculations have been reported.

Recommendation:  Consider using SafeMath for all the arithmetic calculations
to increase code readability and reduce risks that may arise from any edge case
scenario.

● Missing Important Checks
[#L94] constructor lacks value checks for _tokenPerSec which may result in an
incorrect and undesired initialization.

audits.quillhash.com                                                                                                            23



FuseFi Audit Report

Recommendation: Consider adding the required checks defining a lower and
upper bound for the value.

MasterChefVoltV2

● Critical Address change

When privileged roles are being changed, it is recommended to follow a two-step
approach: 1) The current privileged role proposes a new address for the change
2) The newly proposed address then claims the privileged role in a separate
transaction. This two-step change allows accidental proposals to be corrected
instead of leaving the system operationally with no/malicious privileged role. (Ref:
Security Pitfalls: 162)

However, functions dev, setTreasuryAddr, setInvestorAddr functions set
critical addresses following a one step process, which may lead to accidental
loss of access control over privileged roles

Recommendation: Consider switching to a two-step process for transferring
critical and privileged roles

audits.quillhash.com                                                                                                            24

https://secureum.substack.com/p/security-pitfalls-and-best-practices-101


FuseFi Audit Report

● Missing Important Checks

constructor lacks value checks for _startTimestamp, which is a crucial
parameter that defines when the reward generation starts for a particular pool.
The contract can however be initialized with _startTimestamp with a time in the
past.

constructor and updateEmissionRate lacks value checks for _voltPerSec,
which is a crucial parameter that defines how the rewards will be generated. The
contract can however be initialized with unintended and incorrect _voltPerSec.

Recommendation: Consider reviewing and verifying the operational and
business logic, and consider adding necessary checks so as to avoid risks of
incorrect contract initialization.

● Missing Events for Critical Operations

The contract does not emit events for critical operations dev/treasury/investor
percent and address setters. Missing events will make it difficult for the off-chain
monitoring tools to track critical parameters and operations off-chain.

Recommendation: Consider adding events for critical operations.

● External call before updating critical state variables.

Function emergencyWithdraw makes an external call prior to updating the
critical state variables amount and rewardDebt for the caller.

audits.quillhash.com                                                                                                            25



FuseFi Audit Report

In case of a malicious lpToken, the external call may lead to reentrancy and caller
may exploit the contract funds.

Recommendation: Consider changing the critical state prior to making an
external call thus following the Check-Effects-Interaction pattern. Openzeppelin’s
ReentrancyGuard may be used as well.

VestingVault12 & TokenSale

● Use of token contracts instead of interfaces

Contract deals with ERC20 token, instead of using token interface
VestingVault12 & TokenSale contract imports the complete token contract which
comes with already imported libraries and contracts.

Recommendation: Token interfaces can be used instead of token complete
contract.

VestingVault12

● Meaningless Error Statement

The error statements used in the contract don't convey a meaningful information
or message.

audits.quillhash.com                                                                                                            26

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol


FuseFi Audit Report

Recommendation: Consider adding meaningful error statements in order to
convey easy to understand messages and improve code readability at the same
time.

● Missing Input Validation
Functions don’t perform input validation for _grantId input parameter, as a
consequence, the function may produce incorrect or inconsistent results.

Recommendation: Consider adding checks/modifier in all the functions dealing
with _grantId, making sure that the input grant id should be less than
totalVestingCount.

TokenSale

● Missing Important Checks
[#L48] constructor initializes the token sale with _tokensForSale, which
defines the number of available tokens for sale. However, there is no such check
to make sure the contract will have the required tokens to vest and no token
purchase will fail.

audits.quillhash.com                                                                                                            27



FuseFi Audit Report

Recommendation: Consider transferring tokens equal to _tokensForSale from
the deployer to the contract at the time of contract initialization itself.

Informational

● Public functions never used by the contract internally should be declared
external to save gas

● Floating Pragma:

Contracts should be deployed with the same compiler version and flags that they
have been tested with thoroughly.
Locking the pragma helps to ensure that contracts do not accidentally get
deployed using, for example, an outdated compiler version that might introduce
bugs that affect the contract system negatively.

Recommendation: Lock the pragma version for the compiler version that is
chosen.

● Trader Joe’s references have been reported multiple times in multiple contracts.

audits.quillhash.com                                                                                                            28



FuseFi Audit Report

Recommendation: Consider replacing trader joe’s references with volt and
voltage finance to increase code readability.

● As most of the logic has been built around 18 decimal tokens. It is best advised
to make sure the contracts deal with 18 decimal tokens. Tokens with different
decimals may produce incorrect results in edge case scenarios.

VoltBar

● [#L43] function leave: Function contains no checks for zero total supply which
may result in SafeMath: division by zero reverts

Recommendation: Consider adding the required checks to handle the
mentioned case with custom error statements.

MasterChefVoltv2

● [#L280, #L305, #L313] msg.sender is wrapped in address type, which is not
required.

audits.quillhash.com                                                                                                            29



FuseFi Audit Report

Recommendation: msg.sender global variable returns address type value that
can be used without wrapping it with address().

● Contract imports hardhat debugging libraries, which is supposed to be removed
prior to deployment of contract

Recommendation: Consider removing hardhat debugging libraries.

● Unnecessary value checks

constructor & dev/treasury/investor percent setter functions perform input
validation, by checking that input percent should be >=0. However, these are not
needed as uint256 values will always be >=0

audits.quillhash.com                                                                                                            30



FuseFi Audit Report

Recommendation: Consider removing unnecessary checks

● Meaningless function names

Function dev allows the existing devAddr to assign a new devAddr. However the
function name doesn’t convey meaningful information.

audits.quillhash.com                                                                                                            31



FuseFi Audit Report

Recommendation: Consider giving meaningful names to critical functions

TokenSale

● Unnecessary Payable Keyword

Owner has been wrapped into a payable type to transfer the available fuse
balance in the contract to the owner with low level call. However, payable is not
required and can be removed.

● Unindexed critical event parameters.
[#L46]event PurchaseLimitChanged doesn't have any indexed parameters.
Unindexed parameters makes it difficult to track important data for off-chain
monitoring tools.

audits.quillhash.com                                                                                                            32



FuseFi Audit Report

Recommendation: Consider indexing event parameters to avoid the task of
off-chain services searching and filtering for specific events.

audits.quillhash.com                                                                                                            33



FuseFi Audit Report

Closing Summary:

Several issues of High, Medium and Low severity were found. Some suggestions and
best practices are also provided in order to improve the code quality and security
posture.

Disclaimer

Quillhash audit is not a security warranty, investment advice, or an endorsement of the FuseFi.
This audit does not provide a security or correctness guarantee of the audited smart contracts.
The statements made in this document should not be interpreted as investment or legal advice,
nor should its authors be held accountable for decisions made based on them. Securing smart
contracts is a multistep process. One audit cannot be considered enough. We recommend that
the FuseFi team put in place a bug bounty program to encourage further analysis of the smart
contract by other third parties.

audits.quillhash.com                                                                                                            34


