
Layerbank V3
Security Audit Report

July 17, 2025

Contents

1 Introduction

2 Overall Assessment

3 Vulnerability Summary

4 Appendix

1.1 About Layerbank V3

3.1 Overview

3.3 Vulnerability Details

4.1 About AstraSec

4.3 Contact

1.2 Source Code

3.2 Security Level Reference

4.2 Disclaimer

1.3 Revision History

1 Introduction

LayerBank V3 is a decentralized lending protocol built on a robust and
battle-tested architecture. Following a strategic adjustment, the LayerBank
team decided to migrate its EVM-based infrastructure from the previous
implementation to a new design focused on enhancing security, modularity,
and scalability. The protocol features a complete suite of lending
functionalities, including lending pools, interest-bearing tokens, dynamic
interest rate models, secure liquidation mechanisms, and strategy contracts
that facilitate users to create leveraged positions. LayerBank V3 is
positioned as the core infrastructure layer to support future protocol
deployments and innovations within the LayerBank ecosystem.

1.1 About Layerbank V3

1.2 Source Code

The following source code was reviewed during the audit:

https://github.com/layerbank-foundation/v3-contracts-audit

Commit: 32e2517 & 7849564

src/contracts/extensions/leverage-looping
src/contracts/extensions/maverick-adapter
src/contracts/extensions/morpho-adapter
src/contracts/extensions/nest-adapter
src/contracts/extensions/leverage-looping/strategies/internal

It should be noted that the audit scope under extensions directory only
covers the the following directories:

This is the final version representing all fixes implemented for the issues
identified in the audit:

layerbank-foundation/v3-contracts-audit@fix/leverage-looping-findings

Commit: aeefeed

1.3 Revision History

Version Date Description

v1.0 July 17, 2025 Initial Audit

https://github.com/layerbank-foundation/v3-contracts-audit
https://github.com/layerbank-foundation/v3-contracts-audit/tree/fix/leverage-looping-findings

2 Overall Assessment

This report has been compiled to identify issues and vulnerabilities within
the Layerbank V3 protocol. Throughout this audit, we identified a total of 7
issues spanning various severity levels. By employing auxiliary tool
techniques to supplement our thorough manual code review, we have
discovered the following findings.

Severity Count Acknowledged Won’t Do Addressed

Critical – – – –

High 1 – – 1

Medium 4 1 – 3

Low 1 – – 1

Informational 1 1 – –

Undetermined – – – –

M-1

I-1

3 Vulnerability Summary

3.1 Overview
Click on an issue to jump to it, or scroll down to see them all.

Suggested Revert Usages For Gas Efficiency

Invalid Slippage Control in MaverickSwapAdapter

L-1 Revisited Implementation Logic in MaverickLeverageStrategy

H-1 Incorrect Implementation Logic in getBestPool()

M-4 Potential Risks Associated with Centralization

M-2 Hardcoded Slippage in MaverickLeverageStrategy

M-3 Flashloan Amount Miscalculation in Aave Related Strategies

In web3 smart contract audits, vulnerabilities are typically classified into
different severity levels based on the potential impact they can have on
the security and functionality of the contract. Here are the definitions for
critical-severity, high-severity, medium-severity, and low-severity
vulnerabilities:

Severity Acknowledged

C-X (Critical)

A severe security flaw with immediate and significant negative
consequences. It poses high risks, such as unauthorized access, financial
losses, or complete disruption of functionality. Requires immediate
attention and remediation.

H-X (High)

Significant security issues that can lead to substantial risks. Although not
as severe as critical vulnerabilities, they can still result in unauthorized
access, manipulation of contract state, or financial losses. Prompt
remediation is necessary.

M-X (Medium)
Moderately impactful security weaknesses that require attention and re-
mediation. They may lead to limited unauthorized access, minor financial
losses, or potential disruptions to functionality.

L-X (Low)
Minor security issues with limited impact. While they may not pose
significant risks, it is still recommended to address them to maintain a
robust and secure smart contract.

I-X (Informational) Warnings and things to keep in mind when operating the protocol. No
immediate action required.

U-X (Undetermined)
Identified security flaw requiring further investigation. Severity and impact
need to be determined. Additional assessment and analysis are
necessary.

3.2 Security Level Reference

3.3 Vulnerability Details

3.3.1 [H-1] Incorrect Implementation Logic in getBestPool()

The getBestPool() function in the MaverickSwapAdapter contract is used to search all
pools for a given token pair (tokenIn and tokenOut) from the Maverick V2 factory contract
and return the one with the highest liquidity. It does so by calling the factory’s lookup
function to retrieve a list of pools, iterating through each pool, calculating the total
reserves (reserveA + reserveB), and selecting the pool with the highest total reserves.
However, the current implementation does not account for the possibility that tokenIn and
tokenOut may have different decimals. Moreover, this approach to select the best pool by
comparing reserveA + reserveB is not suitable for concentrated liquidity AMMs like
Maverick V2. It fails to account for the actual liquidity available near the current price
range and does not consider trade direction or price impact, which may result in
suboptimal pool selection and poor execution prices.

Remediation It is recommended to simulate swap quotes for each candidate pool and
select the one offering the best effective rate.

Target Category IMPACT LIKELIHOOD STATUS

MaverickAdapter Business Logic High Low Addressed

https://github.com/layerbank-foundation/v3-contracts-audit/commit/5eb157d88f42c23afd9e6f2d0ee20c72d7ebfcd9

3.3.2 [M-1] Invalid Slippage Control in MaverickSwapAdapter

The helper function swapExactTokensForTokens() in the MaverickSwapAdapter contract
is designed to swap a specified amount of tokenIn for tokenOut on Maverick V2, while
ensuring that the amount of tokenOut received is not less than a predefined minimum.
During our review of the function's implementation, we notice that when the user passes
amountIn as the maximum uint256 value (i.e., type(uint256).max) or provides an amount
exceeding the contract's balance, the function automatically adjusts the input amount to
the contract's actual balance. It then calls getSwapQuote() to retrieve the current quote
and dynamically calculates amountOutMin based on that quote. However, since the
quoting function relies on the on-chain state, it is vulnerable to manipulation by MEV bots,
which can result in an execution price significantly worse than expected, thereby
rendering the slippage protection ineffective.

Remediation To mitigate potential sandwich attacks in the input scenarios described
above, it is recommended to remove the code from lines 46 to 51.

Target Category IMPACT LIKELIHOOD STATUS

MaverickAdapter Business Logic High Low Addressed

https://github.com/layerbank-foundation/v3-contracts-audit/commit/21ff08af8ab7b159f148d7deca543fc885c7f847

3.3.3 [M-2] Hardcoded Slippage in MaverickLeverageStrategy

In the executeOperation() function, when performing the token swap via the
SWAP_HELPER contract, the slippage control parameter data.slippage—decoded from
the FlashLoanData struct—is not utilized. Instead, the swap is executed using a
hardcoded 3% slippage threshold internally within the SWAP_HELPER. This
implementation introduces several potential risks. First, the hardcoded 3% slippage
threshold lacks flexibility and cannot be dynamically adjusted based on market volatility
or trade size, which may lead to unnecessary transaction costs or failures in highly
volatile markets. Second, the fixed slippage setting may create arbitrage opportunities for
malicious actors, such as profiting within the 3% range by manipulating prices or inserting
transactions (front-running), thereby increasing the cost of execution for regular users.

Remediation Refactor the swap() function call to explicitly pass and enforce the
data.slippage parameter during the swap operation. This ensures users retain control
over acceptable price deviations and enhances the protocol’s resistance to front-running
and adverse price movements.

Target Category IMPACT LIKELIHOOD STATUS

MaverickLeverage Business Logic Medium Medium Addressed

https://github.com/layerbank-foundation/v3-contracts-audit/commit/5eb157d88f42c23afd9e6f2d0ee20c72d7ebfcd9

3.3.4 [M-3] Flashloan Amount Miscalculation in Aave Related Strategies

In Aave V3, InterestRateMode indicates the interest model applied when borrowing
assets. When InterestRateMode != NONE, the borrower opts not to repay the flashloan
within the same transaction but instead opens a debt position under the chosen rate
model. In the leverage strategy contracts reviewed, all AAVE related flashloan operations
specify VARIABLE as the InterestRateMode, meaning the borrowed amount is converted
into variable-rate debt and no flashloan fee is charged. However, these strategy contracts
incorrectly factor in the flashloan premium when calculating the flashloan amount, despite
no fee being applicable in this mode. This miscalculation can lead to under-leveraged
positions and inefficient capital usage, deviating from intended leverage ratios.

Remediation Update the flashloan amount calculation logic to exclude the flashloan
premium when InterestRateMode is set to VARIABLE, as no fee applies in this case. This
ensures accurate leverage behavior and protocol compliance.

Target Category IMPACT LIKELIHOOD STATUS

Multiple Contracts Business Logic Low High Addressed

https://github.com/layerbank-foundation/v3-contracts-audit/commit/5eb157d88f42c23afd9e6f2d0ee20c72d7ebfcd9

3.3.5 [M-4] Potential Risks Associated with Centralization

In the Layerbank V3 project, the existence of a privileged owner account introduces
centralization risks, as it holds significant control and authority over critical operations
governing the protocol. In the following, we show the representative function potentially
affected by the privileges associated with the privileged account.

Remediation To mitigate the identified issue, it is recommended to introduce multi-sig
mechanism to undertake the role of the privileged account. Moreover, it is advisable to
implement timelocks to govern all modifications to the privileged operations.

Response By Team This issue has been confirmed by the team.

Target Category IMPACT LIKELIHOOD STATUS

Multiple Contracts Security High Low Acknowledged

3.3.6 [L-1] Revisited Implementation Logic in MaverickLeverageStrategy

In the _executeLoopingStep() function, when the token swap via SWAP_HELPER returns
a swappedAmount of zero, the function immediately exits without updating the
corresponding loopData.totalBorrowed value. This behavior introduces a logical
inconsistency in the leverage strategy execution: the debt has already been borrowed
from the Aave pool, but since totalBorrowed is not updated, the leverage tracking
becomes inaccurate. This can affect subsequent loop iterations and mislead downstream
logic, potentially leading to miscalculated leverage positions.

Remediation Ensure that loopData.totalBorrowed is updated even when the swap fails
(i.e., swappedAmount == 0), or implement a rollback mechanism to reverse the borrow
action. This will maintain internal state consistency and enhance the robustness of the
leverage strategy.

Target Category IMPACT LIKELIHOOD STATUS

MaverickLeverage Business Logic Medium Low Addressed

https://github.com/layerbank-foundation/v3-contracts-audit/commit/5eb157d88f42c23afd9e6f2d0ee20c72d7ebfcd9

3.3.7 [I-1] Suggested Revert Usages For Gas Efficiency

The LayerBank V3 protocol codebase extensively uses require statements for input
validation and error handling, rather than utilizing revert with custom error types or more
gas-efficient alternatives. While require offers straightforward conditional checks, its
frequent usage throughout the code can lead to higher gas consumption, particularly in
complex functions with multiple validation steps. In contrast, modern versions of Solidity
support revert with custom errors, which encode error data more efficiently and avoid
unnecessary string storage, resulting in significantly lower gas costs. Replacing some
require statements with revert and custom errors can enhance gas efficiency and overall
contract performance, especially under high-frequency usage scenarios. This
optimization aligns with best practices in smart contract development and helps reduce
transaction costs for end users.

Remediation Replace frequent require statements with revert and custom errors to
improve gas efficiency.

TARGET CATEGORY IMPACT LIKELIHOOD STATUS

Multiple Contracts Coding Practices N/A N/A Acknowledged

4 Appendix

AstraSec is a blockchain security company that serves to provide high-quality auditing
services for blockchain-based protocols. With a team of blockchain specialists, AstraSec
maintains a strong commitment to excellence and client satisfaction. The audit team
members have extensive audit experience for various famous DeFi projects. AstraSec’s
comprehensive approach and deep blockchain understanding make it a trusted partner
for the clients.

The information provided in this audit report is for reference only and does not constitute
any legal, financial, or investment advice. Any views, suggestions, or conclusions in the
audit report are based on the limited information and conditions obtained during the audit
process and may be subject to unknown risks and uncertainties. While we make every
effort to ensure the accuracy and completeness of the audit report, we are not
responsible for any errors or omissions in the report.
 We recommend users to carefully consider the information in the audit report based on
their own independent judgment and professional advice before making any decisions.
We are not responsible for the consequences of the use of the audit report, including but
not limited to any losses or damages resulting from reliance on the audit report.
 This audit report is for reference only and should not be considered a substitute for
legal documents or contracts.

4.1 About AstraSec

4.2 Disclaimer

4.3 Contact

Phone +86 156 0639 2692

Email contact@astrasec.ai

Twitter https://x.com/AstraSecAI

