
Endless Technical White Paper

March 2025

Table of Contents

1 Overview 1

2 Accounts 3

2.1 Enhanced Account Model ... 3

2.1.1 Limitations of Traditional Multisignature 3

2.1.2 Limitations of On-Chain Multisignature 4

2.1.3 Endless Off-Chain Multisignature 4

2.2 Enhanced Account Address .. 5

2.2.1 Address Format Verification ... 6

2.2.2 Storage Structure and Special Addresses 6

2.3 Support for Keyless Login ... 7

2.3.1 Key Features of Keyless Accounts 7

2.3 .2 Working Principle ... 7

3 Consensus Model 13

3.1 Traffic Resource-Based Consensus Model 13

3.1.1 Core Technology Analysis .. 13

3.1.2 Comprehensive System Architecture 17

3.1.3 Key Advantages and Features .. 20

3.2 Storage Resource-Based Consensus Model 22

3.2.1 Technical Solution ... 22

i

3.2.2 Endless KZG Polynomial Proof .. 24

3.2.3 File Storage Commitment .. 26

3.2.4 On-Chain Random Challenge Generation 27

3.2.5 Storage Provider’s KZG Proof Generation 27

3.2 .6 On-Chain Verification ... 27

3.3 Fee and Penalty Mechanism .. 27

3.3.1 Treasury and Fee Management .. 27

3.3.2 Challenge and Penalty Mechanism 28

3.3.3 Gas Fee Subsidy Mechanism ... 29

3.3.4 Challenge Limitations ... 29

3.3.5 User Payment Default Handling Mechanism 29

3.4 Consensus Model of the Endless Blockchain 30

4 Asset Standards 33

4.1 Unified Conversion of FT Asset Standards 33

4.2 Unified Conversion of DA Asset Standards 33

5 Transactions 35

5.1 Sponsored Transactions .. 35

5.2 Secure Transactions .. 36

5.3 Transaction Processing .. 38

5.3.1 Transaction Processing Optimization Mechanisms 39

5.3.2 Parallel Transaction Execution ... 41

5.3.3 Experimental Results and Performance Optimization 42

6 Indexer 45

6.1 Performance Comparison .. 46

6.1.1 Synchronization Speed ... 46

ii

6.1.2 Write Speed .. 48

6.1.3 Query Speed ... 49

6.1.4 Disk Usage .. 49

6.2 Advantages and Limitations .. 50

7 Token Standards 51

7.1 Introduction to Token Locking Standards 51

7.2 Core Features of the Contract ... 51

7.3 Design Objectives and Functions .. 52

7.4 Design Goals .. 52

8 Move Smart Contracts 54

8.1 Move Contract Language .. 54

8.2 Move Contract Modules .. 56

8.2.1 Module Overview .. 56

8.2.2 Resources ... 57

8.3 Execution and Security of Move Smart Contracts 58

9 On-chain Trusted Randomness 60

1

1 Overview

Endless Genesis Cloud is a distributed network infrastructure composed of

decentralized blockchain, decentralized storage, and decentralized traffic services.

By integrating various technological components through a consensus model, the

system aims to lower the technical barriers for migrating from Web2 to Web3,

simplify user onboarding, and provide a comprehensive Web3 aggregation solu-

tion.

Endless Genesis Cloud leverages advanced cryptographic and distributed

computing technologies, including ZK proofs, ED25519 signatures, BLS12-381

signatures, KZG proofs, the Move programming language, the Block-STM par-

allel execution engine, and the Diem BFT consensus mechanism, to offer core

functionalities such as decentralized storage services, application hosting, and

traffic distribution.

As the underlying consensus layer of Endless Genesis Cloud, the Endless

Blockchain is an optimized and improved version of the Aptos chain, with en-

hancements in account systems, security mechanisms, user experience, storage

architecture, performance optimization, and asset standards. Additionally, the

Endless Blockchain introduces key functionalities such as a storage consensus

protocol, a traffic consensus protocol, an asset locking standard, and gas fee

sponsorship, further enhancing the overall ecosystem’s scalability and usability.

The following chapters will introduce the core technological components of

2

Endless Genesis Cloud.

3

2 Accounts

2.1 Enhanced Account Model

2.1.1 Limitations of Traditional Multisignature

On the Aptos or Sui blockchain, every account contains a 32-byte authenti-

cation key (auth_key) upon creation. This auth_key is derived from the public

key and the authentication scheme. For example, for a ”single-signature” ac-

count using the Ed25519 signature scheme, its authentication key is computed as

follows:

auth_key = sha3_256(pub_key | 0x00)

where 0x00 indicates that the account adopts the Ed25519 authentication

scheme.

Aptos/Sui also supports ”multisignature” accounts. For example, on the

Aptos platform, a ”multisignature” account using the 1-of-2 signature scheme

calculates its authentication key as follows:

auth_key = sha3_256(0x2 | 0x01 | pub_key0 | 0x01 | pub_key1 | 0x00)

where:

4

• 0x2 indicates that the account is associated with 2 keys.

• 0x01 represents the authentication scheme of the keys, i.e., Ed25519 .

• The final 0x00 designates the account as a ”multisignature account.”

Multisignature accounts are typically used in conjunction with on-chain mul-

tisignature Move modules (such as Aptos’ 0x1::multisig_account) for on-chain

multi-party authentication.

2.1.2 Limitations of On-Chain Multisignature

Compared to off-chain multisignature solutions, on-chain multisignature mech-

anisms exhibit the following limitations:

• Higher gas fees are required.

• Multiple transaction interactions increase execution complexity.

• The account model is fixed, making it impossible to flexibly convert between
”single-signature accounts” and ”multisignature accounts.”

2.1.3 Endless Off-Chain Multisignature

On the Endless platform, an account’s authentication key (auth_key) is com-

posed of a set of addresses, which may include one or multiple account addresses:

• When auth_key contains only a single account address, the account is a
”single-signature account.”

• When auth_key contains multiple account addresses, the account is a ”mul-
tisignature account.”

• Endless accounts natively support K-of-N multisignature configurations.

5

Endless Account Structure

The basic structure of an Endless account is as follows:

/// Simplified Endless account structure

pub struct AccountData {

pub sequence_number: u64,

pub authentication_key: Vec<AccountAddress>,

pub num_signatures_required: u64,

}

Endless platform natively supports an ”off-chain multisignature” mechanism.

Users can manage multisignature configurations via CLI commands or DApps

(such as the Endless Multisig DApp), allowing them to add or remove account

addresses from the auth_key set.

Advantages of Endless Off-Chain Multisignature

• Lower gas consumption: More efficient compared to traditional on-chain
multisignature schemes.

• Smoother user experience: With well-designed DApps such as Endless
Multisig DApp, account management becomes more convenient.

For more examples on conducting transactions and managing authentication
keys using multisignature accounts, please refer to: Your First Multisig.

2.2 Enhanced Account Address

The Endless Blockchain utilizes Base58 encoding for account addresses, with

the following characteristics:

https://signature.endless.link/
https://signature.endless.link/
https://docs.endless.link/endless/devbuild/build/tutorials/your-first-multisig

6

• Most account addresses range from 43 to 44 characters in length.

• Account addresses can be quickly distinguished by checking their first and

last characters.

• Supports vanity addresses (customized addresses containing specific char-

acters).

2.2.1 Address Format Verification

An account address consists of multiple characters. To ensure that an ad-

dress aligns with user expectations, verifying only the first and last characters is

insufficient. It is recommended to validate the entire address.

For example, the following is an Endless account address:

5SHvmLEaSr76dsKy4XLR5vMht14PRuLzJFx6svJzqorP

Currently, the Base58 encoded address format is fully supported by the

Endless CLI and the Endless Blockchain Explorer The following link showcases

an example of an account transaction within the blockchain explorer.

2.2.2 Storage Structure and Special Addresses

At the underlying implementation level, an Endless account address is actu-

ally stored as a 32-byte array. In certain contexts (such as the CLI or blockchain

explorer), the account address may be displayed in hexadecimal format. For

example, two core system account addresses in the Endless Blockchain are:

• 0x000...001 (abbreviated as 0x1): The system account, responsible for
executing system contracts.

• 0x000...004 (abbreviated as 0x4): The system token account, responsible
for managing Tokens and NFTs.

https://scan.endless.link/

7

2.3 Support for Keyless Login

Keyless accounts represent a new Web3 account model that allows users to

access Web3 applications across devices without the need for a traditional crypto

wallet, delivering a seamless decentralized experience.

Users can log in to Web3 applications directly using familiar social accounts

(such as Google or Apple accounts), simplifying the complexity of traditional

blockchain accounts.

2.3.1 Key Features of Keyless Accounts

• Convenient Login: Users can access Web3 applications directly with their
existing social accounts.

• Easy Recovery: No need to worry about losing private keys or mnemonic
phrases.

• Multi-Device Access: Users can effortlessly manage their accounts across

different devices.

Users can visit: https://scan.endless.link/ to explore the Keyless account

functionality.

2.3.2 Working Principle

Keyless Accounts

Before the introduction of Keyless accounts, the only way to secure an End-

less account was by protecting the associated private key. However, in practice,

private keys may be lost (e.g., if a user forgets to back up their mnemonic phrase)

https://scan.endless.link/

8

or stolen (e.g., if a user is deceived into revealing their private key), making pri-

vate key management a burden for users.

Endless introduces Keyless accounts, which are generated from existing OIDC

accounts (such as Google/Apple Web2 accounts), meaning ”Blockchain Account

= OIDC Account.” Note:

• A Keyless account is determined jointly by the OIDC provider and the
service provider.

• Different OIDC providers or service providers will generate different Keyless

accounts.

Public Key

A Keyless account ’s public key consists of:

• iss_val: OIDC provider identifier (derived from the JWT iss field, e.g.,
https://accounts.google.com).

• addr_idc: Identity Commitment (IDC), which includes:

– uid_val: Unique identifier of the user within the OIDC provider.

– uid_key: JWT identity field (typically sub or email).

– aud_val: Service provider ID (derived from the JWT aud field).

The ‘IDC‘ is computed via a SNARK-friendly hash function:

addridc = H ′ (uid__key, uid__val, aud__val; r)

where , 1}256

https://accounts.google.com

9

Pepper

The blinding factor r is referred to as Pepper, which has the following prop-
erties:

• Losing Pepper results in the loss of the Keyless account.

• Exposure of Pepper only reveals the Web2-Web3 identity mapping.

A ”Pepper Service” assists in generating and storing Pepper.

Authentication Key

Definition:

authkey = H(issval , addr idc)

where H is a cryptographic hash function.

Private Key

Users are not required to store a private key; the private key is embodied by

the ability to log in using an OIDC account via OAuth.

Signature

The signature for Keyless accounts is based on ”Zero-Knowledge Proofs”.

Transaction signature definition:

σtxn = (header, epk,σeph, exp __date, exp __horizon,extra__field,override__aud__val,σtw ,π)

Where:

1. header is the Header of JWT, containing the signature scheme of the OIDC

provider and the key ID of JWK.

10

2. epk is an ephemeral public key generated by the application (DApp or
wallet), paired with the ephemeral private key esk, typically an ED25519

key pair.

3. σeph is the signature on the transaction txn using the ephemeral private key
esk.

4. exp __date is the expiration time for the ephemeral key pair esk and epk.

5. exp __horizon is a public parameter that limits the maximum validity pe-
riod of ephemeral key pairs, preventing DApps from incorrectly setting
excessively long expiration periods.

6. extra__field is optional and used to expose specific fields from the JWT. For

example, if a user wishes to share their email, extra__field could be set to
ëmail:̈ älice@gmail.com̈ .

7. override__aud__val is an optional parameter for ”account recovery”. If set,
it overrides the aud in the JWT and uses override__aud__val to generate the

IDC.

8. σ tw is the signature on π by the zero-knowledge proof service, which is
optional and determined by on-chain configuration.

9. π is the zero-knowledge proof of knowledge (ZKPoK).

Verification process:

1. Verify that authkey = H(issval , addr idc).

2. Ensure that exp __horizon ∈ (0, max__exp__horizon).

3. Verify the validity period of the EPK: current__block__ time() < exp __date.

4. Verify the signature σeph.

5. Retrieve the JWT public key jwk.

6. Generate the public input hash:

pih = Hzk (epk,addr__ idc, exp __date, exp __horizon,

iss__val, extra__field,header,jwk, override__aud__val)

7. If a training round key is configured, verify σtw .

8. Verify the ZKPoK proof π, ensuring the existence of a secret input w that
satisfies the relation:

pih;

w =
epk, addr__idc, exp__date, exp__horizon, iss__val,

R
w =

pub
extra__field, header, jwk, override__aud__val

,

wpriv =
aud__val, uid__key, uid__val,

The reason for introducing zero-knowledge proofs in the signing process is

that transaction verification for Keyless accounts depends on JWT information.

However, directly recording JWT data on-chain could potentially compromise

user privacy. Therefore, Endless employs zero-knowledge proof techniques to

ensure the legality of the transaction signature while avoiding the need to store

JWT information on-chain. Specifically, the zero-knowledge proof of knowledge

(ZKPoK) mechanism enables verifiers to validate the transaction signature σtxn

without revealing the sensitive JWT content.

More Robust Keyless Accounts

By integrating Endless ’multisignature feature, Keyless accounts can remain
functional even when the OAuth server is unavailable. See the Endless Off-Chain

11

r,σold , jwt,ρ

https://docs.endless.link/endless/devbuild/build/tutorials/your-first-multisig
https://docs.endless.link/endless/devbuild/build/tutorials/your-first-multisig

12

Multisignature documentation for details.

https://docs.endless.link/endless/devbuild/build/tutorials/your-first-multisig

13

3 Consensus Model

3.1 Traffic Resource-Based Consensus Model

The Endless Blockchain project was founded to address the challenges faced

by the Web3 ecosystem in integrating cloud services. Our goal is to break through

the limitations of traditional cloud services and build an open, efficient, and secure

blockchain ecosystem. This ecosystem enables Web3 developers to seamlessly

access cloud services, allowing them to focus on the innovative development of

decentralized applications (DApps).

Endless achieves efficiency, security, and fairness in cloud service utilization

through precise client traffic statistics combined with automated smart contract

settlements on the blockchain. This innovative model not only simplifies the de-

velopment process for Web3 developers but also establishes a fair and transparent

cooperation mechanism for cloud service providers and end users, promoting the

adoption and optimization of decentralized cloud computing services.

3.1.1 Core Technology Analysis

Exploring the BLS12-381 Algorithm

The BLS12-381 algorithm is one of the core technologies behind the Endless

Blockchain’s traffic statistics functionality. It is based on the Barreto-Naehrig

14

(BN) curve and possesses outstanding signature and aggregation capabilities,

making it a crucial component in cryptographic applications. In the mathematical

framework of BLS12-381, the definition of the elliptic curve is foundational. Over

a finite field p, the equation of the BLS12-381 curve is elegantly simple:

y2 = x3 + b

where p is a carefully selected large prime number that ensures the cryp-

tographic security of the system, and b is a key parameter that determines the

shape and properties of the curve.

On this elliptic curve, point addition and multiplication operations follow

strict and intricate rules. Given two distinct points on the curve,

P (x1 , y1)

and

Q(x2 , y2) ,

the addition operation involves computing a critical slope parameter:

λ = y2 − y1

which then leads to the sum

R = P + Q

with coordinates:

x3 = λ2 − x1 − x2 ,

x2 − x1
,

15

y3 = λ(x1 − x3) − y1 .

If the two points are identical, a slightly different formula is used:

λ = , x3 = λ2 − 2x1 ,

y3 = λ(x1 − x3) − y1 .

Point multiplication is achieved through repeated point addition. For a point

multiplied by an integer, the computation is defined as:

nP = P + P + ··· + P (n additions of P).

This addition-based multiplication method ensures mathematical rigor and

serves as a foundation for subsequent signature and aggregation operations.

BLS12-381 Signature Mechanism Analysis

The BLS12-381 signing process is secure and well-structured, ensuring the

authenticity and integrity of traffic data. First, a user randomly selects a private

key from the integer ring modulo p, Zp. This private key acts as the core secret

of the signing process, similar to a user’s digital identity password. Based on the

private key, a public key is generated as follows:

pk = sk · G,

where G is a fixed base point on the elliptic curve. The public key functions

like a digital identity card that can be shared publicly to verify the authenticity

of signatures.

16

When a user signs a message m, they first compute the hash of the message

using a cryptographic hash function H:

h = H(m).

A hash function acts like a unique fingerprint generator, always producing a

fixed-length hash value regardless of the message’s content. The user then signs

the hash with their private key to generate a signature:

σ = sk · h.

To verify the signature, the recipient computes the message hash h = H(m)

and checks the validity of the equation:

pk · σ = h · G.

If the equation holds—analogous to a key precisely fitting its corresponding

lock—it confirms the signature’s validity and ensures that the message has not

been tampered with in transit. If the equation does not hold, the signature is

deemed invalid, indicating potential risks.

Unveiling the Efficient Aggregation of BLS12-381

One of the standout features of BLS12-381 in Endless ’traffic statistics func-

tion is its efficient aggregation capability, which significantly enhances the sys-

tem’s performance and data processing efficiency. Suppose there are n different

messages m1 , m 2 , ··· , mn , each with a corresponding signature σ 1 ,σ 2 , ··· ,σ n and

public key pk1 , pk2 , ··· , pkn. To generate an aggregate signature, we simply sum

up all individual signatures:

17

σagg = σi.

During verification, the recipient computes the hash of each message:

hi = H (mi) , i = 1, 2, ··· ,n,

and checks whether the equation:

pki · σagg = hi · G

holds.

If it does, all signatures are verified as valid, ensuring that messages remain

intact during transmission and aggregation. This efficient aggregation method

allows multiple signatures to be condensed into a single compact signature, signif-

icantly reducing the computational cost of signature verification and minimizing

network bandwidth consumption. As a result, Endless ’traffic statistics function

can operate stably and efficiently even in large-scale application scenarios.

3.1.2 Comprehensive System Architecture

Client SDK: The Frontline Sentinel for Data Collection

The Client SDK is a key front-end component of the Endless traffic statistics

functionality, acting as a vigilant scout that continuously monitors and collects

network traffic data from client applications.

One of its core capabilities is precise traffic measurement. Whether it is

data transmission during uploads or resource retrieval during downloads, the

Client SDK captures and accurately accounts for all network traffic in real time,

providing reliable data for subsequent billing and analysis.

18

Regarding private key management, the Client SDK integrates a custom-

developed Rust library alongside advanced obfuscation compilation techniques.

Rust is renowned for its exceptional memory safety and concurrency manage-

ment, which offer a strong foundation for securely storing and utilizing private

keys. Meanwhile, obfuscation compilation acts as an invisible shield, making it

significantly harder for attackers to decipher and extract private keys, thereby

enhancing data security.

Once traffic data is collected, the Client SDK signs the data using the BLS12-

381 algorithm. This process applies an unforgeable digital signature to the data,

ensuring its authenticity and integrity throughout transmission. Finally, at pre-

determined time intervals, the Client SDK submits the signed traffic data to the

signature network, preparing it for further processing and verification.

Signature Network: The Central Hub for Data Validation and Aggre-

gation

The Signature Network is a decentralized infrastructure composed of multiple

distributed nodes, responsible for data validation, storage, and aggregation within

Endless’ traffic measurement system.

• When the Signature Network receives traffic data submitted by the Client
SDK, it first undergoes rigorous verification using the BLS12-381 signature
scheme. Only validated data is considered trustworthy, subsequently stored

within the network and synchronized across other nodes.

• This decentralized storage and synchronization mechanism not only guar-
antee data security and reliability but also facilitate data traceability and
auditing.

• Another key function of the Signature Network is traffic data aggregation.

19

It adheres to predefined aggregation rules to merge multiple BLS signatures

into a condensed aggregate signature, thereby significantly reducing the

amount of data submitted to the Endless Blockchain.

This optimization technique reduces the blockchain’s computational load,

improves operational efficiency, and conserves network bandwidth resources. Ad-

ditionally, the Signature Network provides cloud service providers with user-

friendly API interfaces, enabling them to retrieve historical traffic data for set-

tlement and business analytics.

Blockchain Smart Contracts: The Impartial Arbiter for Automated

Settlement

Smart contracts serve as a fundamental component enabling automated set-

tlements within the Endless Blockchain ’s traffic statistics system. Acting as an

impartial and self-executing judge, smart contracts ensure the accuracy, fairness,

and transparency of traffic-based fee settlements.

• Cloud service providers submit aggregated traffic data retrieved from the
Signature Network to the blockchain’s smart contract, which first performs
strict BLS signature verification.

• Only validated traffic data is deemed authentic and progresses to the set-
tlement process.

• Settlement is executed automatically based on the logic encoded within the
smart contract, eliminating the need for manual intervention.

This approach enhances the efficiency and accuracy of settlements while

mitigating errors or fraud that could result from human involvement. It ensures

data trustworthiness and pricing transparency between cloud service providers

and Web3 developers.

20

3.1.3 Key Advantages and Features

Low Barrier to Entry: A Convenient Gateway for Web3 Developers

Endless provides a seamless SDK integration, allowing developers to easily

access the Endless ecosystem and utilize extensive decentralized cloud service re-

sources simply by incorporating the appropriate software development kit (SDK).

By reducing complexity, developers no longer need to spend excessive time

learning cloud service configurations or deployment processes, nor do they need

to engage in intricate agreements with cloud service providers. This enables them

to focus entirely on DApp innovation and business expansion, accelerating the

development and launch of Web3 applications.

Ultimate Security Assurance: A Secure Fortress for Private Keys

Endless leverages a custom-developed Rust library combined with obfusca-

tion compilation technology to provide Web3 developers with a highly secure

private key management solution:

• Rust ’s memory safety and concurrency control effectively mitigate the risk
of private key leaks.

• Obfuscation compilation technology transforms and encrypts the SDK,
making it extremely difficult for attackers to analyze and reverse-engineer
the logic behind key storage and usage.

• Developers can generate their dedicated SDK using the Rust Lib provided
by Endless, achieving dual protection for both key security and SDK abuse
prevention.

21

High-Performance Optimization: A High-Speed Data Processing En-

gine

The extensive optimization of the BLS12-381 algorithm empowers Endless ’

traffic statistics capabilities with exceptional data processing efficiency:

• Implements signature aggregation technology to merge multiple signatures
into a single signature, reducing computational and storage overhead.

• Enhances network throughput and lowers blockchain load through an effi-
cient traffic data signing and distributed storage strategy.

• Ensures efficient and stable data statistics and validation even under high-
concurrency conditions.

Automated Smart Contract Settlements: A Fair and Transparent Billing

Mechanism

Endless utilizes a smart contract-based automated billing system that allows

cloud service providers to complete on-chain settlements driven by real-time data

without incurring additional operational costs:

• All settlement operations are fully traceable on-chain, ensuring transparency.

• Prevents opaque pricing issues commonly found in centralized platforms,
guaranteeing fair billing.

• Settlement results can be confirmed in real time, aligning perfectly with

Web3 ’s trustless and decentralized economic model.

22

Data Traceability: A Reliable Foundation for Auditing and Queries

Through the Endless Signature Network ’s distributed storage and synchro-

nization mechanism, all traffic data is permanently archived and traceable on the

blockchain:

• Ensures critical data remains immutable, supporting intelligent auditing
and regulatory compliance.

• Allows developers and cloud service providers to query historical data any-
time for business analysis and optimization.

• Provides a verifiable traffic data notarization mechanism to prevent data
fraud or tampering.

3.2 Storage Resource-Based Consensus Model

3.2.1 Technical Solution

Endless adopts a verifiable proof-of-storage mechanism based on crypto-

graphic commitments and the Challenge-Response protocol to construct an effi-

cient, secure, and decentralized storage consensus system. Leveraging the blockchain’s

immutability, this model ensures data integrity and auditability. The core process

is as follows:

1. File Upload (Files to Provider): Users encrypt and fragment files before
sending them to storage providers (such as decentralized storage nodes or
cloud storage service providers).

2. Metadata Generation (Metadatas to User) : Storage providers gen-
erate metadata for the files (including hash values, storage location, times-
tamps, etc.), returning them to users to ensure verifiability.

23

3. Digital Signature Binding (Signatures): Storage providers use digital
signature algorithms (e.g., ECDSA) to sign the metadata, proving data
ownership, integrity, and storage responsibility.

4. Cryptographic Commitment Generation (Commitment) : Storage
providers compute a storage proof using advanced cryptographic techniques

(e.g., KZG polynomial commitments) and record it on-chain for non-repudiable

data storage.

5. Challenge Mechanism (Challenge): The blockchain network or users

can periodically issue random challenges requiring storage providers to

prove they still possess the full data, preventing data loss or malicious

deletions.

6. Proof Generation (Proof): Storage providers compute a proof of stor-

age based on the challenge request and submit it on-chain for verification,

ensuring data availability.

24

Files
_ _1 Files to Provider_

← —2 Metadatas to user—

— —3 Signatures—

Provider
4 Commitment

6 Proof

commitments

commitments

alongeE6

5 Challenge

users

Endless
Blockchain

O00
000

commitments

User

Figure 3.1:Storage Resource-Based Consensus Model

3.2.2 Endless KZG Polynomial Proof

Let F be a field and G be a group with generator g.Define the notation
[a]=a·g.Let the highest degree of a polynomial be m,and let s be a security
key.The values of d elements in group G are represented as:

[s],[s²],[s³],...,[s"].

For a polynomial of degree m,defined as. ,its commitment

Cf∈G is given by:

The KZG proof for f(y)=z is defined as:

π[f(y)=z]=CT,

25

where

Ty (X) =

is a polynomial of degree (m − 1).

To construct the proof, T’s coefficients are computed recursively:

Ty (X) = t iX i ,

tm−1 = fm ,

tj = fj+1 + y · tj+1 (computed recursively from high to low degree).

Expanding the polynomial Ty (X) results in:

Ty (X) = fmXm−1 + (fm−1 + yfm) Xm−2 +(f
m−2 + yfm−1 + y2 fm

)
Xm−3

+ (f
m−3 + yfm−2 + y2 fm−1 + y3 fm

)
Xm−4 + ··· +(f0 + yf1 + ··· + ym−1fm

)
.

Let ψ ∈ Fp be an ℓ-th root of unity such that ψℓ = 1. To verify a polynomial ’

s values at ℓ points:

f(y) = z0 , f(ψy) = z1 , ..., f (ψℓ−1y) = zℓ−1 ,

we observe that:

(x − y)(x − ψy) ··· (x − ψℓ−1y) = xℓ − yℓ .

This allows us to compute:

g(x) = f(x) // (xℓ − yℓ
)
,

where // denotes truncated polynomial division, producing the proof:

π [f(y) = z0,.. ., f (ψℓ−1y) = zℓ−1
]
= [g(s)] .

During verification, the residual polynomial is computed as:

h(x) = f(x) mod (xℓ − yℓ
)
,

and a bilinear pairing equation is checked:

e(Cf, ·) = e (π [f(y) = z0 , ... , f (ψ↕−1y)= z↕− 1
]
, [sℓ − y↕])e(h(s) , ·)

26

3.2.3 File Storage Commitment

When user U uploads files to storage provider P , P must generate daily
commitments for newly uploaded files and submit them on-chain. Given K files

uploaded in a day, each file fi (i ∈ [0, K)) is divided into ni segments:

Segments i =
[
seg0, seg1,..., segn i−1

]
.

The Merkle root for segments is computed as:

ri = MerkleRoot(Segments i).

File Fi’s metadata [Metadata]i contains:

• Storage provider ’s account address addrserver .

• Merkle root ri.

• File sequence number i.

• Accumulated uploaded bytes AccumulatedByteSize.

• Number of segments ni.

Storage providers sign the metadata:

sigi = Signatureed25519 ([Metadata] i) .

For the K files, the commitment is generated as:

Commitment = Fk20 ([sig
0, sig1,..., sigK−1

])
.

This commitment is submitted daily on-chain.

27

3.2.4 On-Chain Random Challenge Generation

On-chain challenges Challenge are generated from Commitment, producing

a random pair [rf , rs]:

• rf ∈ [0, K) selects a file.

• pos = rs%N selects a segment from the file.

3.2.5 Storage Provider’s KZG Proof Generation

Storage provider P generates:

1. Merkle Proof:

ProofMerkel = [RawDatapos, MerkelPath] .

2. Fk20 Proof :

ProofFk20 = Prove (Commitment, rf) .

3.2.6 On-Chain Verification

Smart contracts verify:

isPass = Verifymerkel (Proofmerkel) ∧ VerifyFk20 (ProofFk20) .

If isPass = false, the storage provider is penalized.

3.3 Fee and Penalty Mechanism

3.3.1 Treasury and Fee Management

• Treasury: On-chain allocated funds primarily used to subsidize the storage

provider ’s Gas fees.

28

• Price Configuration:

– Pricing can be set based on Byte/KB/MB/GB, with billing calcu-

lated on a daily basis.

– Prices can be updated at a minimum interval of one month.

• Storage Provider Charges:

– Storage fees are collected once per day.

– Fees are credited to the storage provider’s account but remain frozen

and can only be withdrawn after a 7-day challenge period.

• Withdrawal Conditions:

– The storage provider’s account balance must be MIN__BALANCE

(10,000 EDS) to withdraw funds.

3.3.2 Challenge and Penalty Mechanism

During storage services, if a storage provider fails to meet contractual storage

obligations, users may initiate challenges. The challenge mechanism includes the

following rules:

Definition: Let package represent the set of files uploaded by a user in a

single day (stored within the same commitment). Assume the package contains

N valid files.

• Package Challenge Failure:

– The storage fee paid for the past 7 days is fully refunded to the user.

– The storage provider incurs a triple penalty:

∗ 1x fee + 1 EDS refunded to the user.

29

∗ 2x fee + 1 EDS awarded to the challenger.

• User Challenges Storage Provider for Missing Package Deletion

Records:

– The storage fee paid for the past 7 days is fully refunded to the user.

– The storage provider incurs a tenfold penalty:

∗ 5x fee + 2 EDS refunded to the user.

∗ 5x fee + 2 EDS awarded to the challenger.

3.3.3 Gas Fee Subsidy Mechanism

• If no storage challenge failure occurs within 14 days, the Gas fees for chal-

lenges completed 7 days earlier will be reimbursed.

3.3.4 Challenge Limitations

• General Public Challenge Limit:

10 × + 2 × log2 (Number of Files)/day

• User-Specific Challenge Limit per File:

1 ×

3.3.5 User Payment Default Handling Mechanism

• When a user fails to pay for storage:

– The storage provider has the option to delete all user files.

– The smart contract will simultaneously delete the on-chain storage

records.

30

3.4 Consensus Model of the Endless Blockchain

Endless adopts a hybrid consensus model that combines Byzantine Fault

Tolerance (BFT) and Proof-of-Stake (PoS) mechanisms to ensure the security,

decentralization, and high performance of the blockchain.

BFT Consensus Mechanism

The Endless blockchain is maintained by a set of validators who participate

in a Byzantine Fault Tolerant (BFT) consensus protocol to validate and process

user transactions. Specifically:

• Token holders can lock/stake their EDS tokens to support validators of

their choice.

• The voting power of each validator in consensus is proportional to the

amount of EDS tokens staked on them.

• A validator can exist in one of the following states:

– Active State: Participating in consensus, executing transaction val-
idation, and block proposal.

– Inactive State: Occurs under the following conditions:

∗ Fails to meet the minimum staking requirement due to insufficient

staked tokens.

∗ Removed from the validator set due to the validator rotation

mechanism.

∗ Chooses to go offline to sync blockchain state.

∗ Identified by the consensus protocol as a non-participant due to

poor historical performance.

31

Submitting New validator

Full node

Validators

Active
validator

Synchronizing

Light cient

Subm

nse

svnchronizing

△/

(inactive)

Figure 3.2:Endless Blockchain Consensus Model

PoS (Proof-of-Stake)Consensus Mechanism

To become a validator on the Endless blockchain and participate in transac-
tion verification,candidate validators must stake a certain amount of EDS tokens.
The specific rules of the PoS mechanism are as follows:

Staking affects multiple consensus parameters:

-Transaction propagation phase:Determines the 2f+1 weight of
PoAv (Proof ofAvailability).

-Block metadata ordering: Influences voting power and leader se-

lection.

·Validator reward distribution:

-Validators can independently decide how to distribute PoS rewards
between themselves and their delegators.

·

32

• Delegator staking rights :

– Any token holder can stake their funds with one or more validators,
earning PoS reward shares based on pre-agreed distribution terms.

– At the end of each epoch, rewards are automatically settled via on-

chain smart contracts.

• Validator participation rules:

– Any entity with sufficient minimum staking can freely join the Endless

blockchain as a validator.

– All parameters, including the minimum staking amount, can be ad-

justed through decentralized governance processes and executed on-

chain.

33

4 Asset Standards

4.1 Unified Conversion of FT Asset Standards

On the Endless blockchain, all fungible tokens (FT) adhere to the Fungible-

Asset standard, ensuring a consistent token interface and reducing integration

complexity for developers.

The FungibleAsset standard defines the attributes and API interfaces for

all FT assets:

• This standard ensures that all fungible tokens within the Endless ecosystem

conform to a universal interface.

• Developers can conveniently create user-specific FT assets using develop-

ment tools such as the Endless CLI and TypeScript SDK.

For detailed information on the Fungible Asset standard, please refer to:

Endless Fungible Asset Standard

4.2 Unified Conversion of DA Asset Standards

Similar to the FT asset standard, the Endless blockchain employs the Digi-

talAsset (DA) standard to standardize the management of non-fungible tokens

(NFTs).

https://docs.endless.link/endless/devbuild/build/endless-standards/endless-fungible-asset-standard

34

The DigitalAsset standard offers the following features:

• Supports NFT minting via the Endless CLI and TypeScript SDK.

• The Endless CLI provides the nft subcommand, making NFT creation

more convenient.

• The nft subcommand supports the Soul Bound feature, allowing users to

mint non-transferable NFTs for purposes such as on-chain identity verifica-

tion or non-tradable assets.

For more details and examples related to the Digital Asset standard, please
refer to: Endless Digital Asset Standard

https://docs.endless.link/endless/devbuild/build/endless-standards/endless-digital-asset-standard

35

5 Transactions

5.1 Sponsored Transactions

In blockchain systems, users typically need to pay transaction fees (Gas

Fees) to execute transactions. However, for new users, developers, or specific

decentralized applications (dApps), these fees may become a barrier to adoption

and participation.

Sponsored transactions allow third parties to cover transaction fees on be-

half of users, simplifying the onboarding process and enhancing the overall user

experience. For example, the mainstream blockchain Aptos enables third-party

gas station services to sponsor transaction fees. However, the centralized nature

of such services may result in the following issues:

• Single point of failure: If the service provider ’s server goes down, the
entire sponsorship service becomes unavailable.

• Transaction privacy risks: Since fee payments are controlled by a cen-
tralized service, user privacy may be compromised.

To address these issues, Endless offers a fully on-chain sponsored

transaction solution, enabling a decentralized payment mechanism. When

a Move module implements the sponsorship functionality, any transaction invok-

ing this function will have its gas fees deducted directly from the associated Move

36

module account.

Key considerations for developers implementing the sponsorship

function:

• Access control rules: Support mechanisms such as whitelists/blacklists
to regulate which accounts can invoke the sponsored transaction function.

• Management of the Move module account fund pool : Ensure suf-
ficient sponsorship funds are available to continuously support transaction
fee payments.

Since the entire sponsored transaction process is executed fully on-chain

and remains decentralized, it provides a more robust and fault-tolerant service

architecture compared to traditional centralized gas station models.

For technical details, refer to: Sponsored Transaction.

5.2 Secure Transactions

While blockchain technology is favored for its decentralization, transparency,

and security, smart contracts may still contain vulnerabilities that pose serious

threats to the ecosystem. Common vulnerabilities include:

• Arithmetic overflow/underflow;

• Reentrancy attacks;

• Access control issues;

• Oracle manipulation;

• Logic bugs.

https://docs.endless.link/endless/devbuild/technical-documentation/sponsored-transaction

37

Attackers often exploit smart contract vulnerabilities to conduct fraud, such

as:

• Creating fake investment projects or games to lure users into transactions,
then using reentrancy attacks to steal assets;

• Coordinating multiple malicious contracts and external data sources to ma-
nipulate markets and evade tracking or forensic analysis.

Analysis of Transaction Preview Vulnerabilities

Currently, mainstream blockchain wallets provide transaction preview func-

tionality. When a user submits a transaction (such as a transfer or DApp inter-

action), the wallet performs the following steps:

• Calls a specialized RPC method via on-chain nodes to simulate transaction
execution;

• Estimates gas fees and provides a transaction preview result;

• Displays the expected balance changes for the user ’s account and related

accounts.

However, the transaction preview result does not necessarily match the actual

transaction execution result, creating an attack vector that adversaries can exploit

to deceive users into submitting malicious transactions:

• Path A: During the preview phase, the balance changes appear as expected

to the user.

• Path B: During actual execution, the transaction logic diverges, leading

to asset theft.

38

Endless’ Strong Security Mode Validation

To mitigate such attacks, Endless enhances transaction security vali-

dation by introducing a Strong Security Mode (Safety Switch) :

• During transaction execution, the system verifies whether the previewed

results match the final execution results.

• If the account balance changes unexpectedly, the system automatically in-

tercepts the transaction to prevent asset loss.

For example, if a malicious contract attempts to exploit Path B to steal

user funds, the activated Safety Switch ensures:

• The transaction is intercepted during execution, preventing financial loss.

• The security of user assets remains intact.

For technical details, refer to: Secure Transaction Specification.

5.3 Transaction Processing

The Endless blockchain maximizes system throughput, enhances concur-

rency, and reduces system complexity by leveraging Pipeline Processing, Batch

Processing, and Parallel Transaction Execution . This optimized design not

only improves overall performance but also unlocks new interaction models be-

tween validators and clients, such as:

1. Clients can receive notifications when a specific transaction is included in

a Persisted Batch .

2. Clients can choose to execute transactions locally, reducing network latency

and improving transaction confirmation speed.

https://example.com/safety-transaction

39

3. Clients can wait for validators to certify the transaction execution results

to ensure finality and consistency.

5.3.1 Transaction Processing Optimization Mechanisms

The Endless blockchain adopts various optimization techniques to enhance

transaction throughput, reduce latency, and strengthen network security. Key

optimization mechanisms include Batch Processing, Streaming Transaction

Propagation , Block Metadata Ordering , and Blockchain Time Synchro-

nization .

Batch Processing

Batch processing is a critical efficiency optimization strategy in multiple

operational phases of the Endless blockchain. During the propagation phase,

transactions are grouped into multiple batches by each validator, and in the

consensus phase, these batches are merged into complete blocks.

• Core Logic: Transactions are grouped into batches and processed simul-
taneously in the consensus flow.

• Latency Optimization: While batch processing may introduce minor
latency, the system supports flexible configuration, enabling automatic
optimization between low latency and high throughput.

Streaming Transaction Propagation

To improve network utilization, Endless adopts a decoupled architecture

between transaction propagation and consensus, enabling continuous transaction

streaming instead of traditional batch broadcasting.

40

• All validators continuously stream batch transactions, maximizing the us-
age of available network resources.

• Each batch carries a timestamp, which serves two key purposes:

– Garbage Collection (GC): Efficiently cleans up expired transac-
tions, reducing storage overhead.

– Defense Against Storage Attacks: Ensures transactions do not
accumulate indefinitely, mitigating the risk of malicious DoS attacks.

Block Metadata Ordering

Endless utilizes the DiemBFTv4 consensus protocol and enhances perfor-

mance by decoupling transaction propagation from execution, which significantly

improves blockchain throughput and reduces consensus latency:

• Decentralization Optimization: Non-consensus tasks such as transac-

tion propagation and execution are completely independent of the consensus

process.

• Protocol Security : DiemBFTv4 ensures high availability and secu-

rity even in partially synchronous environments, maintaining an effi-

cient consensus mechanism under real-world network conditions.

Blockchain Time Synchronization

To enhance time consistency across the network, each block in the Endless

blockchain contains an Approximate Consensus on Physical Timestamp .

This design supports multiple on-chain functionalities, including:

• Time-Dependent Logic: Smart contracts can leverage global time for

on-chain computations.

41

·Accurate On-Chain Data Association: Ensures transactions are exe-

cuted in chronological order,enabling up-to-date data writes.

TransactionExpiryMechanism: Implements a TTL(Time-to-Live)

mechanism to prevent outdated transactions from lingering,thereby im-
proving blockchain efficiency and throughput.

Number of threads

Figure 5.1:TPS Growth with Batch Processing for Different Account Numbers
in Block-STM

5.3.2 Parallel Transaction Execution

In the Endless blockchain,once the metadata ordering of a consensus block

is completed,any validator,full node,or client can execute transactions.At least

2f+1 weighted validators must persistently commit the transaction batches

Since transaction propagation occurs continuously,additional honest validators

will sequentially receive transaction batches over time.

Parallel Data Model

The Move data model supports global data and module addressing.Trans-
actions that do not conflict with each other can be executed in parallel.Endless

·

42

employs a pipeline design that allows transaction groups to be reordered to min-

imize conflicts, thereby enhancing concurrent execution capabilities. This model

introduces the concept of ”incremental writes” , enabling all transactions to be

processed in parallel, while conflict transactions apply their incremental writes

sequentially in the final phase to ensure deterministic transaction execution.

Parallel Execution Engine

The Block-STM parallel execution engine is responsible for managing con-

flicts within ordered transaction sets and adopts an optimistic concurrency con-

trol mechanism to maximize parallel execution capabilities. Transaction batches

are initially executed in parallel using optimistic execution, and in the event of

a validation failure, they are re-executed. Block-STM leverages a multi-version

data structure to mitigate write-write conflicts, thereby supporting more complex

concurrent transaction processing.

5.3.3 Experimental Results and Performance Optimiza-

tion

Experimental results indicate that under low-conflict scenarios, Block-STM

achieves up to a 16× speedup, while in high-conflict scenarios, it still provides

a performance improvement of more than 8× . Block-STM dynamically extracts

parallelism from workloads, reducing the number of transactions, improving ex-

ecution efficiency, and significantly lowering user latency.

1. Transaction Ordering and Parallelism Optimization

The block metadata ordering step does not restrict transaction reordering

during the parallel execution phase. Transactions can be dynamically reordered

43

across multiple blocks to optimize concurrent execution while ensuring that all
honest validators maintain determinism in transaction execution results.By in-
tegrating Block-STM and utilizing transaction reordering techniques,the parallel
execution efficiency can be further enhanced.

4 is suspended
due to a

dependency

12345678
0o

o

V
3

2 does notwrite
toa new location

stage-3

currently being executed execution suspended 四 currently being validated

4 writes to a
new location
stage-4

2 fails validation

123456789

E
1,2,3,4,5,
6,7,8,9,…

E
4,5,6,7,
8,9,…

E
6,7,8,9...2,4,5,6,

7,8,9,.…12345678 12345678
4,6,7,
8,9,.… 23456789

stage-2stage-1 stage-5

1,2,3 4,52,5

E E

oo0

Figure 5.2:Block-STM Collaboration Model

2.Performance Optimization

The Endless blockchain significantly enhances system performance in trans-

action processing,throughput,latency,scalability,and hardware efficiency through
various optimization techniques.These optimizations not only improve the over-

all system performance but also ensure efficient and stable operation in large-scale

application scenarios.

Parallelization and Modular Transaction Processing Parallelization and
modular transaction processing are core strategies for performance optimization

in the Endless blockchain.By dividing the transaction processing workflow into

independent parallel execution stages,the system maximizes computational re-
source utilization,significantly enhancing overall throughput.

Throughput Enhancement Thanks to the batch processing mechanism and
pipeline processing architecture,the Endless blockchain can process large groups

44

of transactions at each stage, significantly boosting system throughput. Even

under high-load conditions, the system effectively handles massive transaction

requests, avoiding the network congestion issues commonly seen in traditional

blockchain systems.

Latency Optimization The system leverages the Block-STM parallel execu-

tion engine, which minimizes transaction processing latency through a multi-

version data structure and optimistic concurrency control. In low-conflict en-

vironments, transaction processing speeds can improve by over 16×, while in

high-conflict scenarios, the system maintains at least an 8× performance im-

provement .

Optimization of Transaction Latency and Final Confirmation Time

The Endless blockchain is deeply optimized to reduce transaction latency and

final confirmation time, ensuring that users receive rapid transaction confirma-

tions to enhance their transaction experience.

Block Metadata Ordering By decoupling non-consensus tasks from the con-

sensus phase, the system significantly reduces transaction processing latency.

Coupled with the DiemBFTv4 consensus protocol, the network achieves fast

and secure transaction confirmation even in partially synchronous environ-

ments.

Physical Timestamps Each block proposal carries a physical timestamp to

support time-dependent logic operations and transaction expiration management.

This mechanism ensures the timely processing of transactions and prevents exe-

cution delays caused by time lag.

45

6 Indexer

The Endless Indexer serves as a crucial supporting service for the Endless

blockchain, providing rich query interfaces that support retrieval of key data such

as address transaction history, Coin details, and NFT details.

As a high-throughput blockchain, Endless generates a large volume of data

at a rapid growth rate, posing significant challenges for the implementation of the

Indexer. To meet the demands of efficient indexing in a big data environment,

the Endless Indexer adopts RocksDB as its underlying data storage and leverages

metadata processing and storage, combined with a chain-based Hook mechanism,

to achieve efficient indexing of the entire transaction history on Endless.

The Endless Indexer offers two modes of data acquisition to accommodate

different deployment environments:

• Local Environment: When the Indexer and the Endless full node are in

the same local environment, Unix Domain Socket is used for synchroniza-

tion, enabling efficient and low-latency data interaction.

• Remote Environment: In distributed or cross-regional deployment sce-

narios, the Indexer employs GRPC as the transaction data transmission

protocol to ensure stable and efficient data transfer.

46

6.1 Performance Comparison

Compared to the Aptos Indexer, the Endless Indexer demonstrates signif-

icant advantages in synchronization speed, query speed, and database storage

efficiency.

6.1.1 Synchronization Speed

Synchronization speed is primarily influenced by transaction data retrieval

speed, transaction processing efficiency, and database write throughput. In an

environment with rapidly growing data, database write performance becomes a

critical factor in overall system performance. The Aptos Indexer uses Postgres,

whereas the Endless Indexer utilizes RocksDB. The fundamental differences be-

tween their storage engines in terms of write mechanisms and performance directly

impact their efficiency in handling large-scale data scenarios.

Write Performance of Postgres

As a relational database, Postgres’ write performance is affected by multiple

factors as data volume grows:

• Transaction Log and Index Updates: Every write operation requires
updating the Write-Ahead Log (WAL) and modifying associated indexes.
As data volume increases, index structures become larger, leading to higher
update costs and reduced overall write efficiency.

• Table Bloat: Frequent write and update operations cause table bloat,
requiring periodic VACUUM and ANALYZE operations to reclaim disk
space and optimize query performance.

47

• Lock Contention: In high-concurrency write scenarios, Postgres may ex-

perience performance bottlenecks due to contention for table or row locks,

leading to a drop in write speed.

Overall, in high-data-volume and high-concurrency write environments, Post-

gres’ write speed tends to degrade as data scales up.

Write Performance of RocksDB

RocksDB is a key-value storage database based on the Log-Structured Merge

Tree (LSM Tree) structure, optimized for large-scale data storage and high-

concurrency write scenarios. Its main advantages include:

• Optimized Sequential Writes: RocksDB employs an LSM tree struc-
ture, temporarily storing write operations in an in-memory MemTable and
flushing them to disk in batches, thereby improving write throughput.

• Tiered Storage: By leveraging the multi-level compaction mechanism of

the LSM tree, RocksDB efficiently organizes data, avoiding frequent random

writes and significantly reducing disk I/O overhead.

• Write Amplification Control: Through intelligent compaction and com-

pression strategies, RocksDB effectively mitigates write amplification ef-

fects, allowing write performance to maintain excellent linear scalability as

data volume grows.

Compared to Postgres, which uses a relational storage structure, RocksDB

performs more stably in high-frequency transaction write scenarios, better sup-

porting the Endless Indexer’s need for efficient indexing in large-scale data envi-

ronments.

48

6.1.2 Write Speed

To provide an intuitive comparison of the write performance of Postgres and

RocksDB as data volume increases, we present the following table:

Table 6.1: Comparison of Write Speed Decline Trends

Data Growth Postgres Write Speed Decline RocksDB Write Sp

Small-scale Data Fast Fast

Medium-scale Data Noticeable Decline Slight Decl

Large-scale Data Significant Decline Stable

Ultra-large Data Severe Decline, Optimization Needed or Sharding Maintains High E

Assuming the write speed S changes with data volume D, we can express

the relationship with the following functions:

• Postgres: The write speed SP decreases as data volume D increases, which

can be approximated as:

SP (D) = , α > 1

where C is a constant, and α represents the rate of write performance

degradation.

• RocksDB: The write speed SR changes only slightly with increasing data

volume D, which can be approximated as:

SR (D) = , logarithmic decline

In summary, RocksDB demonstrates significantly better write performance

than Postgres in rapidly growing data scenarios, especially in large-scale data pro-

cessing and high-concurrency write environments. The Endless Indexer utilizes

49

RocksDB, enabling it to handle massive data from high-speed blockchains more

efficiently, whereas the Aptos Indexer, using Postgres, faces greater performance

constraints.

During periods of high blockchain load (i.e., high TPS), the Endless Indexer

is able to maintain near real-time synchronization, whereas the Aptos Indexer

lags behind the full node by several hours.

6.1.3 Query Speed

The following table compares the query time for retrieving the total transac-

tion count and transaction list of address 0x1 in a local environment (to eliminate

network latency factors):

Table 6.2: Query Time Comparison (Unit: Seconds)

Query Target Aptos Indexer Endless Indexer

0x1 Transaction Count 60.76759320 0.00051460

Since the Aptos Indexer uses Postgres as its database, query time increases

proportionally with the number of transactions. In contrast, the Endless Indexer,

using RocksDB, benefits from its LSM (Log-Structured Merge Tree) design, caus-

ing query speed to decline only slightly.

6.1.4 Disk Usage

The following table compares the disk space required when indexing the

blockchain at the same height:

Compared to the Aptos Indexer, the Endless Indexer reduces disk usage by

99%.

50

Table 6.3: Disk Usage Comparison (Unit: MB)

Metric Aptos Indexer Endless Indexer

Disk Usage 61400 722

6.2 Advantages and Limitations

Although the Endless Indexer demonstrates significant advantages in terms

of performance, it still has certain limitations, including:

• Limited Flexibility of RESTful APIs: Compared to the Aptos In-
dexer, which supports GraphQL queries, the Endless Indexer provides only

RESTful APIs. This results in lower query flexibility, making it difficult to
perform complex multi-condition queries and data aggregation operations.

• Restricted Query Conditions: Since the Endless Indexer adopts a key-

value (KV) database as its underlying architecture, its query conditions are

less flexible compared to relational databases such as Postgres. As a result,

it is better suited for applications with relatively fixed query patterns.

51

7 Token Standards

7.1 Introduction to Token Locking Standards

The Endless system contract introduces a new smart contract, locking_coin_ex.move,

designed for managing token locking and distribution. This contract standard-

izes the token distribution process through a locking and unlocking mechanism,

ensuring that tokens are gradually unlocked over a specified period, thereby ef-

fectively regulating token circulation. Additionally, the contract provides a view

API that allows users to query token locking status at any time.

By establishing a standardized token locking and release mechanism, this

contract enables all DApp projects that adopt the standard to manage token

assets more efficiently, transparently, and fairly.

7.2 Core Features of the Contract

• Token Locking: The contract allows administrators to lock tokens at a
designated address and set an unlocking schedule. The locked tokens will
be gradually unlocked over the specified period.

• Token Unlocking: According to the predefined unlocking schedule, the
contract will automatically release the corresponding amount of tokens at
the end of each unlocking period.

52

• Query Functionality: The contract provides a variety of query interfaces,
enabling users to check the total locked amount in the system, the locking
details of all participants, the staked amount, and the unlocking status of
a specific user.

• Event Logging: During the token unlocking and claiming process, the

contract records relevant events to facilitate data tracking and auditing by

users.

7.3 Design Objectives and Functions

The core design principle of this contract is to regulate token circulation by

implementing a ”locking” and ”gradual unlocking” mechanism. This approach

prevents a large amount of tokens from being released in a short period, helping

to maintain market stability.

7.4 Design Goals

• Prevent Market Volatility: By gradually unlocking tokens, the contract
mitigates significant market fluctuations caused by the sudden release of a
large number of tokens.

• Incentivize Long-term Holding: The token locking mechanism encour-

ages users to hold tokens for an extended period, enhancing the stability of

token value.

• Transparent Management: Leveraging the automated execution and

event logging functionality of smart contracts, the entire token locking and

unlocking process remains transparent and auditable.

53

For more details, please refer to the Token Locking & Distribution documen-

tation.

https://docs.endless.link/endless/devbuild/technical-documentation/token-locking-distribution

54

8 Move Smart Contracts

8.1 Move Contract Language

Move is an innovative smart contract programming language that empha-

sizes security and flexibility. The Endless blockchain adopts Move ’s object model

to represent its ledger state and utilizes Move code (modules) to define state tran-

sition rules. User-submitted transactions can perform the following operations:

• Deploy new modules;

• Upgrade existing modules;

• Invoke entry functions defined in a module;

• Execute scripts that interact directly with the public interfaces of modules.

The Move ecosystem consists of a compiler, a virtual machine, and various

development tools. Inspired by the Rust programming language, Move intro-

duces concepts such as linear types to make data ownership more explicit at the

language level. Move emphasizes resource scarcity, protection mechanisms, and

access control. Move modules define the lifecycle, storage scheme, and access pat-

terns of each resource, ensuring the security of assets such as tokens. Specifically:

• The creation of resources must be strictly verified, preventing unauthorized

generation;

55

• Resources cannot be double-spent, ensuring the consistency of assets across
the network;

• Resources cannot be lost or destroyed arbitrarily, maintaining data in-
tegrity.

Move employs a Bytecode Verifier to ensure type and memory safety, even

when running untrusted code. Furthermore, to enhance code reliability, Move

provides a formal verification tool called Move Prover, which verifies the func-

tional correctness of Move programs based on specified specifications, ensuring

that contract logic behaves as expected.

To support a broader range of Web3 application scenarios, the Endless

blockchain incorporates several optimizations tailored for Move:

• Fine-grained Resource Control: Enables more precise resource manage-
ment, facilitating efficient parallel execution while ensuring that the cost of
accessing and modifying on-chain data remains nearly constant.

• Fine-grained Storage Optimization: Provides table-based storage struc-

tures that allow a single account to store large-scale datasets, such as mas-

sive collections of NFT assets.

• On-chain Native Shared Accounts: Endless supports fully on-chain

representations of shared or autonomous accounts, enabling decentralized

autonomous organizations (DAOs) to collaborate using shared accounts

while allowing these accounts to serve as containers for heterogeneous re-

sources.

56

8.2 Move Contract Modules

8.2.1 Module Overview

Move modules are composed of Move bytecode and contain declarations of

data types (structures) and procedures. Each module is uniquely identified by the

account address that declares it and the module name. For example, in Figure

2, the first currency module is identified as 0x1::coin. Modules can depend on

other on-chain modules to facilitate code reuse. For instance, in Figure 2, the

wallet module depends on the coin module to provide extended functionality.

Each module name must be unique within the same account address, mean-

ing that an account cannot declare multiple modules with the same name. For

example, in Figure 2, the account at address 0x1 cannot declare another mod-

ule named coin. However, an account at address 0x3 can declare a separate

coin module, uniquely identified as 0x3::coin. It is important to note that

0x1::coin::Coin and 0x3::coin::Coin are considered distinct types—they can-

not be used interchangeably and do not share common module code.

On the other hand, 0x1::coin::Coin<0x2::wallet::USD> and0x1::coin::Coin<0x2::w

are different instantiations of the same generic type. While they cannot be used

interchangeably, they share the underlying module code.

Modules are organized into packages located at the same address. The pack-

age owner can publish these modules on-chain as a unit, including both bytecode

and package metadata. Package metadata determines its upgradeability:

• Immutable Packages: Once deployed, the package contents cannot be

modified.

• Upgradeable Packages: The package supports upgrades but must pass

compatibility checks before upgrading:

57

-Existing entry functions cannot be modified;

-Existing in-memory stored resources cannot be altered;

-New functions and resources can be added.

The Endless framework consists of the core library and configurations of the
Endless blockchain and is defined as a standard upgradeable module package.

θx1 0x2 θx3

module wallet(
use ex1::coin::Coin:

struct USD(
struct JPY(

struct ultiCurrencyMallet has key,store(
sdp y:C: in<Uoin Y>,

modu
s
le
truct

coin
C
(
oincphantom D has key.store(..

modu
s
le
truct

coi (
oin has key.store(..}

publ1c fun nint(..)(..

Figure 8.1:Example of On-chain Move Modules

8.2.2 Resources

In the Move language,each account address can be associated with specific

data values,and only one value of a given type can be stored under that address.

For example,in Figure 3,address Ox50 holds a value of type 0x3::coin::Coin.

Different instantiations of the same generic type are treated as distinct data

types,providing a foundation for system scalability.The rules governing data

changes,deletions,and declarations are encoded in the module that defines the

data,and Move's security and verification mechanisms prevent unauthorized code

from manipulating these data types directly.

58

While each address can store only one top-level value per type,this limitation

can be circumvented using wrapper types.For instance,developers can create

container data structures to manage multiple values without violating Move's

storage constraints.

Not all data types can be stored on-chain—only those with both the key

ability(Key Ability)and storage ability (Store Ability)can be stored as top-level

or nested values.In the Move ecosystem,data types possessing both abilities are

called resources and ensure that such data can be securely and efficiently stored

and managed on the blockchain.

θx60

module y_coin(

ex1::coin::Coin<0x60::my_coin::MyCoin《
value:50.

0x2::wallet::wallet(
usd:0x1::coin::Coin<ex2::wallet::USD>(

value:8.

1py:0x¹::coin::Cotin<0x2:wallet::JPY《
value:10,

θx50

0x3::coin::Coin(
value:100. structMyCoin

Figure 8.2:Example of On-chain Data

8.3 Execution and Security ofMove Smart Con-

tracts

The Endless blockchain utilizes the Move smart contract language in com-

bination with its parallel execution architecture to achieve efficient and secure

contract execution.During execution,the Move Virtual Machine(Move VM)

manages ledger state updates and resource handling,ensuring that no state con-

flicts or resource leaks occur while contracts are running.

Each step of Move contract execution undergoes formal verification and static
analysis to ensure compliance with established security standards,thereby reduc-

59

ing the risk of smart contract vulnerabilities. Specifically:

• Bytecode Verification: Before execution, the Move VM performs checks
using the Bytecode Verifier to ensure that the code adheres to type safety
and memory safety standards.

• Resource Security: Move’s linear type system enforces unique resource
ownership, ensuring that resources cannot be illegally duplicated, lost, or
consumed multiple times.

• Access Control: The smart contract employs a modular access control
mechanism, allowing developers to define custom permission policies, re-

stricting access to critical state variables and functions to enhance security.

The Endless blockchain supports a modular smart contract development ar-

chitecture, enabling developers to flexibly extend and upgrade existing contracts

without modifying underlying logic. This design:

• Facilitates composability of smart contracts, simplifying code reuse and
improving development efficiency;

• Prevents large-scale contract migrations by allowing incremental upgrades,
optimizing the sustainability of Web3 applications;

• Maintains system security during upgrades, mitigating potential regression

vulnerabilities.

60

9 On-chain Trusted Randomness

In blockchain systems, the trustworthiness and security of randomness are

crucial, especially for applications that rely on randomness, such as elections,

lotteries, and gaming. The Endless chain implements an on-chain trusted ran-

domness generation mechanism to achieve enhanced security and efficiency.

• Weighted Publicly Verifiable Secret Sharing (wPVSS) Algorithm :

Endless employs the wPVSS algorithm to ensure that each validator node

can efficiently perform randomness generation while minimizing communi-

cation overhead.

• Weighted Distributed Key Generation (wDKG) Protocol : Endless
utilizes the wDKG protocol, which offers higher communication efficiency,
further enhancing the reliability of random number generation.

• Weighted Verifiable Random Function (wVRF) : In each round, val-

idator nodes evaluate the wVRF to ensure the trustworthiness and security

of the randomness while avoiding a linear increase in communication over-

head relative to validators’ staked amounts.

• Application Scenarios: The Endless smart contract provides a random-
ness API, such as randomness::u64_integer(), which generates unbiased

64-bit unsigned integers. By leveraging these APIs, DApp developers can

61

implement secure and verifiable random number generation, enhancing the

security and fairness of their applications.

For more details on using the Endless randomness API, including examples

and security considerations, please refer to:

• API Usage Guide

• Example Programs

• Security Considerations

https://docs.endless.link/endless/devbuild/technical-documentation/randomness#api-usage
https://docs.endless.link/endless/devbuild/technical-documentation/randomness#demonstration
https://docs.endless.link/endless/devbuild/technical-documentation/randomness#security-considerations

	Endless Technical White Paper
	1 Overview
	2 Accounts
	2.1 Enhanced Account Model
	2.1.1 Limitations of Traditional Multisignature
	2.1.2 Limitations of On-Chain Multisignature
	2.1.3 Endless Off-Chain Multisignature

	2.2 Enhanced Account Address
	2.2.1 Address Format Verification
	2.2.2 Storage Structure and Special Addresses

	2.3 Support for Keyless Login
	2.3.1 Key Features of Keyless Accounts
	2.3.2 Working Principle

	3 Consensus Model
	3.1.1 Core Technology Analysis
	3.1.2 Comprehensive System Architecture
	3.1.3 Key Advantages and Features
	3.2 Storage Resource-Based Consensus Model
	3.2.1 Technical Solution
	3.2.2 Endless KZG Polynomial Proof
	3.2.3 File Storage Commitment
	3.2.4 On-Chain Random Challenge Generation
	3.2.5 Storage Provider’s KZG Proof Generation
	3.2.6 On-Chain Verification

	3.3 Fee and Penalty Mechanism
	3.3.1 Treasury and Fee Management
	3.3.2 Challenge and Penalty Mechanism
	3.3.3 Gas Fee Subsidy Mechanism
	3.3.4 Challenge Limitations
	3.3.5 User Payment Default Handling Mechanism

	3.4 Consensus Model of the Endless Blockchain

	4 Asset Standards
	5 Transactions
	5.1 Sponsored Transactions
	5.2 Secure Transactions
	5.3 Transaction Processing
	5.3.1 Transaction Processing Optimization Mechan
	5.3.2 Parallel Transaction Execution
	5.3.3 Experimental Results and Performance O

	6 Indexer
	6.1 Performance Comparison
	6.1.1 Synchronization Speed
	6.1.2 Write Speed
	6.1.3 Query Speed
	6.1.4 Disk Usage

	6.2 Advantages and Limitations

	7 Token Standards
	7.1 Introduction to Token Locking Standards
	7.2 Core Features of the Contract
	7.3 Design Objectives and Functions
	7.4 Design Goals

	8 Move Smart Contracts
	8.1 Move Contract Language
	8.2 Move Contract Modules
	8.2.1 Module Overview
	8.2.2 Resources

	8.3 Execution and Security of Move Smart Con-

	9 On-chain Trusted Randomness

