
Native V2 (Security Review)

Executive Summary
This security review was prepared by Quantstamp, the leader in blockchain security.

Type DeFi

Timeline 2024-12-16 through 2025-01-06

Language Solidity

Methods
Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification README.md

Source Code Native-org/v2-core #c2fdeab

Auditors
Joseph Xu Technical R&D Advisor

Valerian Callens Senior Auditing Engineer

Documentation quality Low

Test quality Medium

Total Findings
18

Fixed: 6 Acknowledged: 9
Mitigated: 3

High severity findings 3 Fixed: 2 Acknowledged: 1

Medium severity findings 6 Fixed: 3 Acknowledged: 3

Low severity findings 5 Fixed: 1 Acknowledged: 3
Mitigated: 1

Undetermined severity
findings

3 Acknowledged: 2 Mitigated: 1

Informational findings 1 Mitigated: 1

Summary of Findings
Final Report (2025-01-06): Quantstamp has reviewed additional responses by Native team, including an updated commit hash 9430af6 . The
team has Fixed another issue NATv2-1, which was previously Acknowledged to have a fix incoming. As of now, the great majority of the issues
identified in the Initial Report are Fixed, Mitigated, or Acknowledged with fixes/mitigations actively planned.

Updated Report 2 (2025-01-03): Quantstamp has reviewed additional responses by Native team, including an updated commit hash 5a3b5b2 .
The team has Fixed and Mitigated several issues on top of what was done in the Updated Report, including a few Auditor Suggestions. As of now,
the great majority of the issues identified in the Initial Report are Fixed, Mitigated, or Acknowledged with fixes/mitigations actively planned.

Updated Report 1 (2025-01-01): Quantstamp has reviewed the responses by Native team, including an updated commit hash 8e053f14 . The
team Fixed or Mitigated 5 issues, and Acknowledged most other issues with concrete plans to improve the protocol's overall security (with 1 High
severity issue removed as it was identified to be False Positive). The Acknowledged issues mostly deal with off-chain signing component and
management of privileged addresses, both of which would require a separate audit. To this end, Native team plans to take the following actions
to strengthen the overall security of the protocol: (1) consult a security expert regarding the off-chain component, (2) conduct additional rounds
of audit that includes the off-chain component, (3) ensure that no single point of failure exists between the off-chain validation and on-chain
settlement procedures, and (4) consider adding a hard limit for token transfer out of the protocol to limit the damage in case of potential exploits.

Initial Report (2024-12-20): Quantstamp conducted a 3-day security review of the Native v2 smart contracts. This was not a full audit of the
protocol but a time-boxed effort to perform quick security checks and review the most critical paths. Our approach focused initially on the high-
level architecture, then delved into critical paths after understanding the most important flows. We primarily concentrated on the critical
functions of the following contracts: CreditVault.sol , LPToken.sol , NativeRFQPool.sol , and NativeRouter.sol . The team has
simplified the architecture, added new features, and re-wrote part of the existing features from Native v1. It should be noted that there are
centralized off-chain components that play critical roles. For the purpose of this security review, we have assumed that the off-chain components
will perform correctly in formatting the data, but we have not assumed data integrity or validity.

Despite the nature of the time-boxed security review, the auditors identified 19 issues, with 4 High severity and 6 Medium severity issues that
can potentially impact protocol funds, user funds, general usability, and code correctness. In addition, two issues identified in the previous
Quantstamp security review are still present, and are included in this report (NATv2-7 is escalated to Medium severity and NATv2-18 still as Low
severity). It is likely that with additional time and auditor effort, more High or Medium severity issues may be identified. Nevertheless, the
repository provided still appears to be in development, and the overall security will be improved, with ample opportunities to address each of the

https://quantstamp.com/
https://github.com/Native-org/v2-core
https://github.com/Native-org/v2-core/commit/c2fdeabc3f1232d8cdd033c9f486cd6ffcecfe89

issues identified. Quantstamp strongly recommends addressing the issues identified in this report and arranging for a full audit before deploying
these smart contracts in production.

ID DESCRIPTION SEVERITY STATUS

NATv2-1
Any Whitelisted Trader Can Settle Trades and Remove
Collateral on Behalf of Another Trader • High Fixed

NATv2-2 Incorrect Updates of fundingFees • High Fixed

NATv2-3
Fake LPToken.sol contract instances can be used to drain
underlying tokens

• High Acknowledged

NATv2-4
An Address Gets Added to the poolArray Every Time
setNativePool() Is Called

• Medium Fixed

NATv2-5
The Exchange Rate Can Increase by More than 1% During the
Epoch Update • Medium Acknowledged

NATv2-6
Data Signed Off-Chain May Be Out of Sync with the On-Chain
State or the Current Market Condition • Medium Acknowledged

NATv2-7 Adding Collateral to Non-Trader Addresses Is Possible • Medium Fixed

NATv2-8
Unclear Specifications of Fee Accounting and Associated
Invariants • Medium Fixed

NATv2-9 The Maximum Allowed Widget Fee Rate May Be Too High • Medium Acknowledged

NATv2-10
NativeRouter.sol Does Not Always Wrap Incoming ETH in
_transferSellerToken()

• Low Acknowledged

NATv2-11 Possible to Renounce Ownership of Contracts • Low Acknowledged

NATv2-12 Risks of Supporting Non-Standard ERC-20 Tokens • Low Mitigated

NATv2-13 Some Important Updates of the System Do Not Emit Events • Low Fixed

NATv2-14 Potential Underpayment to Recipient in externalSwap() • Low Acknowledged

NATv2-15 Possible Division by Zero • Informational Mitigated

NATv2-16 Possible Empty Market Attack • Undetermined Mitigated

NATv2-17 Roles with Strong Privileges • Undetermined Acknowledged

NATv2-18 Unchecked Values in RFQTQuote Inputs • Undetermined Acknowledged

Assessment Breakdown
Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best
practices.

Disclaimer
Only features that are contained within the repositories at the commit hashes specified on the front page of the report are within the
scope of the audit and fix review. All features added in future revisions of the code are excluded from consideration in this report.

This was a time-boxed effort and should not be considered a full audit. A full smart contract security audit would be necessary to obtain
a comprehensive assessment of how all components work together. The auditors did not perform detailed examinations of the
protocol's off-chain components. Due to the nature of the time-boxed security review, external integrations were not thoroughly
examined, nor were configuration and deployment issues that could introduce security risks.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence
Timestamp dependence
Mishandled exceptions and call stack limits
Unsafe external calls
Integer overflow / underflow
Number rounding errors
Reentrancy and cross-function vulnerabilities
Denial of service / logical oversights
Access control
Centralization of power
Business logic contradicting the specification
Code clones, functionality duplication
Gas usage
Arbitrary token minting

Methodology

1. Code review that includes the following
1. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and

functionality of the smart contract.
2. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
3. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions

provided to Quantstamp describe.
2. Testing and automated analysis that includes the following:

1. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is
exercised when we run those test cases.

2. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarity, maintainability, security, and

control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Scope
Files Included

Repo: https://github.com/Native-org/v2-core/(c2fdeabc3f1232d8cdd033c9f486cd6ffcecfe89) Files: src/libraries/ConstantsLib.sol;
src/libraries/ErrorsLib.sol; src/libraries/ReentrancyGuardTransient.sol; src/libraries/TStorage.sol; src/CreditVault.sol; src/LPToken.sol;
src/NativeRFQPool.sol; src/NativeRouter.sol

Operational Considerations
1. The solvency of the protocol is not based on permissionless liquidations. As a result, it only depends on the availability and reactivity of the

addresses allowed to perform liquidations.
2. The same underlying asset cannot be supported by more than one market in the same contract CreditVault.sol , due to its mapping

lpTokens[] .

Findings
NATv2-1
Any Whitelisted Trader Can Settle Trades and Remove Collateral on
Behalf of Another Trader

• High Fixed

Update
CreditVault.sol has been updated. Only the trader or the authorized settler can perform actions such as settling trades or

removing collaterals from the associated address as of commit 9430af6 .

File(s) affected: src/CreditVault.sol

Description: In the CreditVault.sol contract, the operations settle() and removeCollateral() are protected by the modifier
onlyTraderOrSettler , which has the following code:

modifier onlyTraderOrSettler(address trader) {
 if (!isTraders[msg.sender] && !(isTraders[trader] && msg.sender == settlers[trader])) {
 revert ErrorsLib.OnlyTrader();
 }
 _;
}

We can observe that having isTraders[msg.sender] == true is enough to bypass this condition.

Exploit Scenario:
1. Alice is a whitelisted trader and liquidator, and Bob is a whitelisted trader. Alice can increase the likelihood of Bob getting liquidated

by making his positions more risky, by successfully getting that request signed by the signer .
2. Alice and Bob are traders. Alice settles the position of request.trader == Bob and request.recipient == Alice . She gets

that request signed by the signer . She calls settle() with that request and the contract CreditVault.sol will transfer the negative
requested amounts to her.

Recommendation: Consider updating the code of the modifier to enforce that only a trader or an authorized settler of that trader can settle
trades or remove collaterals from the associated address.

NATv2-2 Incorrect Updates of fundingFees • High Fixed

Update
Native team has fixed the issue, with additional modification to clarify the flow of fees to LP token holders and to the protocol itself. The
portion of the fee that goes to the LP token holders is named fundingFee and the portion of the fee that goes to the protocol itself is
named reserveFee .

File(s) affected: src/CreditVault.sol

Description: In CreditVault.sol , the storage variable fundingFees is used as an accounting variable for the funding fees accumulated
when the function epochUpdate() is executed. However, the same variable is used to keep track of funding fees accumulated through
different assets. This causes two problems (i) there is information loss on how much fee is available for each token, and (ii) there is a high risk of
miscalculation due to the precision mismatch in the tokens. As an example, if 1e18 ETH and 1e6 USDC are accounted for in the contract as
funding fees (with fundingFees == 1e18 + 1e6) that also owns 1e18 USDC , it is possible for feeWithdrawer to withdraw 1e18 USDC
from the contract via withdrawFundingFees() .

In addition, the address feeWithdrawer can withdraw any amount of underlying asset to any arbitrary recipient address via the function
withdrawFundingFees() . However, there is no mechanism to make sure that the underlying token is supported by the contract (which could

result in incorrectly reducing the value of fundingFees , resulting in the loss of these fees).

Recommendation: Change the uint256 fundingFees to mapping(address => uint256) fundingFeesByToken to track funding fees
available by each asset.

NATv2-3
Fake LPToken.sol contract instances can be used to drain
underlying tokens

• High Acknowledged

Update
Native team considers this risk to be minimal, as the supportMarket() function is only callable by the owner of the
CreditVault.sol contract. At the same time, the team acknowledges the importance of privileged addresses in guaranteeing the

security of the whole protocol. They plan to re-evaluate the overall protocol security posture to ensure that no single point of failure
exists on these privileged addresses that can cause a single compromise to exploit the whole system.

File(s) affected: src/CreditVault.sol , src/LPToken.sol

Description: The CreditVault.sol contract uses the supportMarket() function to support the market corresponding to a
LPToken.sol contract instance. Once the market is supported, the LPToken.sol address can withdraw its underlying ERC20 token to an

arbitrary to address.

While supportMarket() function performs various checks on the LPToken.sol contract instance, none of the checks can correctly identify
if the instance in question is indeed deployed by the Native team or its partners. Adding a fake, malicious instance of LPToken.sol contract
may lead to all of the ERC20 tokens in CreditVault.sol being drained.

Recommendation: Use a factory contract to keep track of the true deployed instances of LPToken.sol . Additionally, implement additional
checks in transferOut() function so that it is not possible to transfer tokens to an arbitrary to address.

NATv2-4
An Address Gets Added to the poolArray Every Time setNativePool() Is
Called

• Medium Fixed

Update
The variable poolArray has been removed and the function setNativePool() has been updated accordingly.

File(s) affected: src/CreditVault.sol

Description: CreditVault.sol contract has a function setNativePool() that is used to toggle the whitelist status of an instance of
NativeRFQPool.sol contract. However, every call to the function, whether it's activating, de-activating, or no-op, would push the pool

address in the function argument to the poolArray , which is the storage list used to keep track of the whitelisted addresses for the
NativeRFQPool.sol instances. This does not seem aligned with the expected behavior.

Recommendation: Re-implement the setNativePool() function to (i) remove the de-whitelisted pool address from the poolArray , and (ii)
not re-add existing whitelisted pool address to the poolArray . While working on this fix, please keep in mind the risk of out-of-gas error.

NATv2-5
The Exchange Rate Can Increase by More than 1% During
the Epoch Update

• Medium Acknowledged

Update
Native team considers this risk to be minimal, as the epochUpdate() function is only callable by the epochUpdater address. At the
same time, the team acknowledges the importance of privileged addresses in guaranteeing the security of the whole protocol. They
plan to re-evaluate the overall protocol security posture to ensure that no single point of failure exists on these privileged addresses that
can cause a single compromise to exploit the whole system.

File(s) affected: src/CreditVault.sol

Description: In the function epochUpdate() , the address epochUpdater can update the funding fees for traders at the end of each epoch.
When browsing the assets to update for a given trader, a check makes sure that the exchange rate of the LP token does not increase by more
than 1% . However, it is possible to bypass this check and have an increase of more than 1% by adding multiple times the same asset in the list.

Recommendation: Consider making sure that there is no duplicated token in the data structure accruedFees . For instance, it can be done by
enforcing the fact that assets must be sorted by address.

NATv2-6
Data Signed Off-Chain May Be Out of Sync with the On-
Chain State or the Current Market Condition

• Medium Acknowledged

Update
Native team acknowledges the importance of the off-chain backend API in guaranteeing the security of the whole protocol. They plan to
take the following actions to strengthen the overall security of the protocol: (1) consult a security expert regarding the off-chain
component, (2) conduct additional rounds of audit that includes the off-chain component, (3) ensure that no single point of failure exists
between the off-chain validation and on-chain settlement procedures, and (4) consider adding a hard limit for token transfer out of the
protocol to limit the damage in case of potential exploits.

File(s) affected: src/CreditVault.sol , src/NativeRFQPool.sol , src/NativeRouter.sol

Description: Many of the functionalities in Native's system relies on processing transactions with calldata signed off-chain. These calldata
include price quotations, request to remove collaterals, and requests for liquidations. If the calldata is processed on-chain at a sufficiently later
time than the signature, it could lead to various adverse consequences due to the on-chain state or the market condition being very different
from those at the time of signature generation. Some of the adverse effects include:

Traders being able to trade more than their capacity by exploiting the timestamp differences between addCollateral() ,
tradeRFQT() , and removeCollateral() .

The Native pools executing bad trades when market moves very quickly, particularly through the auto-sign feature.
This risk was initially brought up with the Native team during the v1 security review, and the team considered this risk to be rather unlikely due to
the fact that only trusted partners will be involved. However, there have been instances since the v1 security review where protocols have been

exploited due to the off-chain signing mechanism being out of sync with the on-chain state or the market condition. Therefore, the auditors have
chosen to highlight this issue again and increase the severity to Medium as this risk is concrete.

Recommendation: Add checks on important procedures such as swaps and liquidations to verify the on-chain state and current market
conditions. In addition, the off-chain signatures should expire relatively quickly - an appropriate level needs to be determined based on block
time, market conditions, and usability.

NATv2-7 Adding Collateral to Non-Trader Addresses Is Possible • Medium Fixed

Update
Collateral can only be added to whitelisted trader address as of commit 5a3b5b2 .

File(s) affected: src/CreditVault.sol

Description: In the CreditVault.sol contract, anyone can call the function addCollateral() to add collateral for another address.
However, there is no check to make sure that the receiver address is a whitelisted trader in the system. If this is not the case, tokens sent as
collateral may remain locked in the contract.

Recommendation: Consider making sure that the receiver address is a whitelisted trader .

NATv2-8
Unclear Specifications of Fee Accounting and Associated
Invariants

• Medium Fixed

Update
Native team has modified the code to clarify the flow of fee accumulation to both LP token holders and the protocol itself (included in
the fix for issue NATv2-2 Incorrect Updates of fundingFees). Additional test cases have also been written to address this issue.

File(s) affected: src/CreditVault.sol , src/LPToken.sol

Description: The documentation and code comments indicate that the protocol is supposed to generate revenue by accumulating funding fees
and also be able to distribute this to holders of LP tokens. The mechanisms by which this happens is not obvious from the code and in some
cases the solvency of the fee mechanism is unclear.

As an example, the mechanism by which LP Token gains fees is through LPToken.distributeYield() external call that is made on each
CreditVault.epochUpdate() function call. However, the distributeYield() function simply updates the total underlying token amount

of the LP token without actually transferring token.

In addition, the auditors suspect that there may need to be some sort of invariant between lpFee and fundingFee such as lpFee <
fundingFee because the LP fee actually originates from the funding fee accumulated. No such check takes place on-chain, and it is assumed

that accruedFees input must be correct.

Recommendation: Improve the documentation and specifications on how fees are generated and distributed. Update the code to include
invariant checks on-chain if needed.

NATv2-9
The Maximum Allowed Widget Fee Rate May Be Too High

• Medium Acknowledged

Update
Native team has indicated that they plan to set a maximum widget fee rate around 2000 .

File(s) affected: src/NativeRouter.sol

Description: The market makers facilitating trade on Native can charge a fee called the widgetFee from the swappers. The current maximum
value allowed for this parameter is 10000 , which represents 100% of the swapper's input token amount being charged as fee. This should be
lowered to mitigate the risk of a market maker overcharging the swapper from fees.

Recommendation: Set a more reasonable maximum for the widget fee rate between 1000 to 3000 .

NATv2-10
NativeRouter.sol Does Not Always Wrap Incoming ETH in
_transferSellerToken()

• Low Acknowledged

Update
Native team has chosen not to modify the code given that any excess ETH that remain in the NativeRouter.sol contract can be
refunded.

File(s) affected: src/NativeRouter.sol

Description: The NativeRouter.sol contract uses an internal function _transferSellerToken() to facilitate the transfer of token from
the swapper (i.e., seller) to the market maker's treasury or the NativeRouter.sol contract. The contract handles the case where msg.value
> 0 (i.e., if the swapper wants to sell native ETH) by first wrapping the swapper's native ETH as WETH and then completing the transfer.
However, there is another boolean argument multiHop used to enter this branch, and the wrapping only takes place if msg.value > 0 AND
multiHop == false .

As a result, the native ETH will not be wrapped if multiHop == true even when the swapper somehow transfers ETH through the function call
(msg.value > 0), resulting in excess ETH being held by the NativeRouter.sol contract that the contract owner must return using the
refundETH() function.

Recommendation: The intended usage and the specification of the boolean argument multiHop is unclear as it likely has to do with the off-
chain component, which was out of the scope of this audit. We recommend adding an else if statement in the _transferSellerToken()
function to properly handle the case when msg.value > 0 AND multiHop == true . If the conditions msg.value > 0 and multiHop
== true are not supposed to both hold at the same time, a check should be added so that the transaction reverts.

NATv2-11 Possible to Renounce Ownership of Contracts • Low Acknowledged

Update
Native team has indicated that all of their contract owners are multi-signature addresses, similar to most DeFi protocols. There is an
implicit understanding among the signers that ownership should not be renounced because doing so would make it impossible to
update contract parameters or states.

File(s) affected: src/CreditVault.sol , src/LPToken.sol , src/NativeRFQPool.sol , src/NativeRouter.sol

Description: The CreditVault.sol , LPToken.sol , NativeRFQPool.sol , and NativeRouter.sol contracts allow the owner to
renounce ownership. While this functionality is standard, it poses a significant risk if triggered accidentally or maliciously, as the contracts rely on
the owner's role to perform critical network functions. Once ownership is renounced, the associated privileges are permanently lost.

Recommendation: Consider overriding the renounceOwnership() function in the child contract to disallow it entirely, wherever necessary.

NATv2-12 Risks of Supporting Non-Standard ERC-20 Tokens • Low Mitigated

Update
Native team is aware of the consequences of supporting non-standard ERC20 tokens. The team has indicated that at this moment they
only plan to support stETH or wstETH.

File(s) affected: src/CreditVault.sol , src/LPToken.sol

Description: Supporting tokens with specific features such as fees, rebasing, pausable, upgradeable, blacklistable, or hooks on transfers could
negatively impact the main flows of the system if no specific mitigation measure is enforced to limit the consequences.

Exploit Scenario:
Consider analyzing thoroughly from a security perspective any token you would like to be supported.

NATv2-13
Some Important Updates of the System Do Not Emit Events

• Low Fixed

Update
Important contract state changes now emit events.

File(s) affected: src/CreditVault.sol , src/NativeRouter.sol

Description: The following updates of the contract's state do not result in emitting an event, making it harder for observers (team or users) to
track important contract state changes (intended or not) and react fast if something unexpected is identified:

1. Updates to privileged addresses in CreditVault.sol (liquidator , signer , epochUpdated , and feeWithdrawer);
2. Execution of the functions NativeRouter.refundERC20() and NativeRouter.unwrapWETH9() ;
3. Adding routers to the whitelist in NativeRouter.setWhitelistRouter() ;

Recommendation: Consider emitting the suggested events.

NATv2-14 Potential Underpayment to Recipient in externalSwap() • Low Acknowledged

Update
Native team has indicated that the current implementation is the intended design. Any residual ERC20 token in the
NativeRouter.sol contract can be refunded using the refundERC20() function.

File(s) affected: src/libraries/ExternalSwapRouter.sol

Description: In the ExternalSwapRouterUpgradeable.externalSwap() function, there are two variables, recipientDiff and
routerDiff , that record the token balance differences before and after the external contract call. However, if both values are non-zero

(positive) and recipientDiff >= routerDiff , the amountOut will ignore the routerDiff and consider only recipientDiff . The
intention might be that the routerDiff should also be transferred to the recipient and counted as part of the amountOut , as the function
does not intend to collect funds for the router.

In practice, we believe that only one of the two variables (recipientDiff and routerDiff) will be non-zero. The idea is likely to support
external swap contracts that either swap to the msg.sender (which is the router contract in this case) or directly to the recipient.

Recommendation: Consider changing the condition if (recipientDiff < routerDiff) to if (routerDiff > 0) . Alternatively, add a
validation that only one of recipientDiff and routerDiff can be non-zero, if that is the intention.

NATv2-15 Possible Division by Zero • Informational Mitigated

Update
Native team has indicated that the current implementation as of commit 5a3b5b2 maintains the invariant such that totalShares ==
0 implies totalUnderlying == 0 and vice versa. The current implementation implicitly checks the denominator based on this
invariant and other conditions (e.g., checking for sharesToBurn > 0 AND shares[msg.sender] > sharesToBurn in the
redeem() function). This means that the current implementation will not have division by zero error even if the denominators are not

explicitly checked.

File(s) affected: src/LPToken.sol

Description: The variables totalUnderlying and totalShares are both used as denominators in critical functions. While the denominators
are checked to prevent division by zero in most places, this check is missing in some places. Specifically, the functions deposit() and
getSharesByUnderlying() do not check against totalUnderlying == 0 , while the function redeem() does not check against
totalShares == 0 .

Recommendation: We recommend implementing checks so that denominators are never zero throughout the code to prevent problems that
might arise from an unintended divide by zero operation.

NATv2-16 Possible Empty Market Attack • Undetermined Mitigated

Update
Native team has provided details on their market initialization process and how it mitigates the risk of empty market attacks. In short,
the trading pairs must be registered with the Native backend, and therefore unsupported LP trades or withdrawals cannot be initiated.

Native team acknowledges the importance of the off-chain backend API in guaranteeing the security of the whole protocol. They plan to
take the following actions to strengthen the overall security of the protocol: (1) consult a security expert regarding the off-chain
component, (2) conduct additional rounds of audit that includes the off-chain component, (3) ensure that no single point of failure exists
between the off-chain validation and on-chain settlement procedures, and (4) consider adding a hard limit for token transfer out of the
protocol to limit the damage in case of potential exploits.

File(s) affected: src/CreditVault.sol

Description: The CreditVault.sol contract enables trading in a market through the supportMarket() function. This function adds the
market corresponding to a LPToken.sol contract instance. However, no checks or initialization takes place within this function to ensure that

the market is indeed ready to be traded.

The exact impact of this issue is unclear because documentation or specification for this procedure is unavailable. The conditions and invariant
that must hold for the market to be tradable is also unclear and not documented. Given the lack of information we have marked it as an
Undetermined, as there is still the possibility of system failure due to a transaction being called to a market that has not been properly initialized.

Recommendation: Ensure that the market is properly initialized before activating trading functionalities after the market has been supported in
CreditVault.sol .

NATv2-17 Roles with Strong Privileges • Undetermined Acknowledged

Update
Native team acknowledges the importance of privileged addresses in guaranteeing the security of the whole protocol. They plan to re-
evaluate the overall protocol security posture to ensure that no single point of failure exists on these privileged addresses that can
cause a single compromise to exploit the whole system.

File(s) affected: src/CreditVault.sol , src/LPToken.sol

Description: The protocol assigns special privileges to several addresses. The privileges assigned to these addresses are rather strong, and may
lead to a significant amount of lost funds if compromised. In addition, there is no mechanism to challenge the actions of these strongly privileged
addresses (e.g., governance).

We list the strongly privileged addresses and their privileges below:
1. The address signer in CreditVault.sol contract can sign any request to settle positions, remove collateral or liquidate positions. As a

result, if compromised, it can:
sign malicious requests that will drain assets from users;
front-run as a liquidator a profitable liquidation opportunity submitted by another liquidator.

2. The address owner in CreditVault.sol contract can add a new market, enable/disable a supported market, allow a Native pool to
spend tokens owned by the contract, whitelist/de-whitelist trader addresses and their associated settler addresses, whitelist/de-whitelist
liquidator addresses, update the signer address, update the epochUpdater address, and update the feeWithdrawer address. As a
result, if compromised, it can:

drain the protocol by whitelisting a malicious contract as a Native pool via setNativePool() , then allowing it to spend tokens
owned by the contract via setAllowance() , and finally drain the vault from the malicious contract.

3. The protocol relies on the address epochUpdater in CreditVault.sol to call CreditVault.epochUpdate() on time to properly
update funding fees and collect/distribute accumulated fees.

4. The address owner in LPToken.sol contract can:
transfer and renounce ownership of the token;
pause/unpause the contracts, which will impact deposits and redeems;
update the minimum amount for deposits to any uint256 value;
update to any uint256 value the minimum interval to wait without sustaining early withdrawal penalties;
update the fee for early withdrawals from 0 to 100% ;
temporarily pause only redeems by setting minRedeemInterval with a high value and the early withdrawal fee to 100% ;
temporarily pause only deposits by setting minDeposit with a high value.

Recommendation: Provide details on the intended level of privileges, specifications, and operational security measures taken with regards to
these privileged addresses. It is recommended to distribute privileges across addresses and also distribute control (e.g., to a governance multi-
sig) to ensure that there is no single point of failure for these privileged addresses. Moreover, we suggest adding some mechanism to timelock,
challenge, or roll back decisions by these strongly privileged addresses.

NATv2-18 Unchecked Values in RFQTQuote Inputs • Undetermined Acknowledged

Update
Native team acknowledges the importance of the off-chain backend API in guaranteeing the security of the whole protocol. They plan to
take the following actions to strengthen the overall security of the protocol: (1) consult a security expert regarding the off-chain
component, (2) conduct additional rounds of audit that includes the off-chain component, (3) ensure that no single point of failure exists
between the off-chain validation and on-chain settlement procedures, and (4) consider adding a hard limit for token transfer out of the
protocol to limit the damage in case of potential exploits.

File(s) affected: src/NativeRFQPool.sol , src/NativeRouter.sol , src/interfaces/IQuote.sol

Description: Many of the functionalities in Native's system relies on processing transactions with calldata signed off-chain. The format of the
calldata is specified in src/interfaces/IQuote.sol contract under struct RFQTQuote . While we have generally assumed that the data
is formatted correctly when the off-chain signatures are generated, we have not assumed data validity or data integrity. There are certain
instances where additional checks on the values of the RFQTQuote memory quote input value may be useful. These instances are as follows:

The nonce check is missing in NativeRouter.tradeRFQT() , even though it is checked in NativeRouter.tradeAutoSign() .
In NativeRouter._verifyAutoSignature() , the values quote.pool , quote.multiHop , quote.widgetFee ,
quote.effectiveSellerTokenAmount are not checked.

In NativeRouter._verifyWidgetSignature() , the values quote.quoteID and quote.amountOutMinimum are not checked.
In NativeRFQPool._verifyRFQSignature() , the values quote.pool , quote.effectiveSellerTokenAmount ,
quote.multihop , quote.widgetFee , quote.widgetFeeSignature , quote.externalSwapCalldata , and
quote.amountOutMinimum are not checked.

Recommendation: We recommend creating a detailed documentation or specification for the off-chain signatures. The documentation should
indicate whether or not these parameters should be included in the signature, as well as whether or not these parameters should be verified (and
the conditions to be checked). A detailed documentation can help prevent users from adding unnecessary parameters (whether intentional or
not) to change the intended behavior. Furthermore, we recommend adding on-chain checks to check for valid quote parameters where
necessary.

Auditor Suggestions
S1
Inconsistency in Reverting or Returning False on ECDSA Signature
Mismatch

Fixed

File(s) affected: src/NativeRFQPool.sol

Description: The protocol has several internal functions that are used to verify ECDSA signature throughout CreditVault.sol ,
NativeRFQPool.sol , and NativeRouter.sol contracts. Most of these internal functions will revert if there is a signature mismatch.

However, NativeRFQPool._verifyRFQSignature() does not revert but instead returns false and then reverts in the calling function.

Recommendation: We recommend reverting within the _verifyRFQSignature() to be consistent with other internal functions.

S2 No Limit on the Length of RFQ Pool Name Acknowledged

Update
Native team confirms that they do not consider long RFQ pool names to be an issue.

File(s) affected: src/NativeRFQPool.sol

Description: The constructor of the NativeRFQPool.sol contract does not check for a maximum length of the name variable.

Recommendation: Include a check in the constructor to revert if the _name argument is excessively long.

S3 Missing Input Validation in refundETH() Fixed

Update
The function refundERC20() will now send the minimum of the contract's ETH balance and the amount requested.

File(s) affected: src/NativeRouter.sol

Description: NativeRouter.sol contract has an emergency function refundETH() that is used to send native ETH token to a certain
address. This function does not validate its input for the amount of token to be transferred so that it does not exceed the NativeRouter.sol
contract's current ETH balance. While the lack of input validation does not lead to negative consequences, the error message returned in this
case is uninformative.

Recommendation: We recommend validating the input amount so that it does not exceed the current contract ETH balance. This allows for
reverting more informatively with ErrorsLib.InsufficientTokenAmount(); as is done in the refundERC20() function.

Alternatively, the error message in TransferHelper.safeTransferETH() can be improved so that it is more infromative.

S4 Usage of safeApprove() Is Deprecated Acknowledged

Update
Native team is aware of the deprecation of safeApprove() . The team indicated that the alternative safeIncreaseAllowance()
and safeDecreaseAllowance() functions are not suitable for their needs, and therefore chose to modify the safeApprove()
function within the SafeERC20.sol contract to match their requirement instead.

File(s) affected: src/CreditVault.sol

Description: The function CreditVault.setAllowance() uses safeApprove() that is deprecated:
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#SafeERC20-safeApprove-contract-IERC20-address-uint256-

Recommendation: Consider not using safeApprove() .

S5 Unlocked Pragma Fixed

File(s) affected: src/LPToken.sol , src/libraries/ConstantsLib.sol , src/libraries/ErrorsLib.sol ,
src/libraries/ExternalSwap.sol , src/libraries/ReentrancyGuardTransient.sol , src/libraries/TStorage.sol

Description: Every Solidity file specifies in the header a version number of the format pragma solidity (^)0.8.* . The caret (^) before the
version number implies an unlocked pragma, meaning that the compiler will use the specified version and above, hence the term "unlocked". The
pragma used in the repositories are all unlocked and inconsistent, ranging from ^0.8.4 all the way to ^0.8.24 .

Recommendation: For consistency and to prevent unexpected behavior in the future, we recommend removing the caret and standardizing the
Solidity version across all smart contracts in the repositories.

S6 Code Conciseness Fixed

File(s) affected: CreditVault.sol , NativeRFQPool.sol , NativeRouter.sol

Description:
1. Two different libraries of SafeCast are used (@openzeppelin/contracts/utils/math/SafeCast.sol in CreditVault.sol and

./libraries/SafeCast.sol in NativeRouter.sol).
2. In NativeRFQPool.sol , Context.sol is imported but not used.
3. The value of address(lpToken.underlying()) is accessed twice in CreditVault.supportMarket() , instead of using the local

variable underlying .
4. The keyword payable can be removed from the functions of NativeRouter.sol where it is not used.

Recommendation: Consider addressing these items.

S7 Gas Optimization Mitigated

Update
The keyword immutable has been added to the storage variable WETH9 in NativeRFQPool.sol and NativeRouter.sol
contracts.

File(s) affected: CreditVault.sol , NativeRFQPool.sol , NativeRouter.sol

Description:
1. In NativeRouter.sol , the keyword immutable can be used for the storage variables WETH9 and vault to save gas.
2. In NativeRFQPool.sol , the keyword immutable can be used for the storage variables name , WETH9 , and router in order to save

gas.
3. In CreditVault.sol , the value of positionsUpdates.length can be cached in the local variable before the for loop.

Recommendation: Consider addressing these items.

Definitions
High severity – High-severity issues usually put a large number of users' sensitive information at risk, or are reasonably likely to lead to
catastrophic impact for client's reputation or serious financial implications for client and users.

Medium severity – Medium-severity issues tend to put a subset of users' sensitive information at risk, would be detrimental for the client's
reputation if exploited, or are reasonably likely to lead to moderate financial impact.

Low severity – The risk is relatively small and could not be exploited on a recurring basis, or is a risk that the client has indicated is low
impact in view of the client's business circumstances.

Informational – The issue does not post an immediate risk, but is relevant to security best practices or Defence in Depth.

Undetermined – The impact of the issue is uncertain.

Fixed – Adjusted program implementation, requirements or constraints to eliminate the risk.

Mitigated – Implemented actions to minimize the impact or likelihood of the risk.

Acknowledged – The issue remains in the code but is a result of an intentional business or design decision. As such, it is supposed to be
addressed outside the programmatic means, such as: 1) comments, documentation, README, FAQ; 2) business processes; 3) analyses
showing that the issue shall have no negative consequences in practice (e.g., gas analysis, deployment settings).

Appendix
File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise,
after the security review. You are cautioned that a different SHA-256 hash could be (but is not necessarily) an indication of a changed condition
or potential vulnerability that was not within the scope of the review.

Files

cc1...1e1 ./src/NativeRFQPool.sol

181...93e ./src/NativeRouter.sol

40b...33b ./src/CreditVault.sol

d3a...eff ./src/LPToken.sol

9eb...c9b ./src/interfaces/ICreditVault.sol

01d...629 ./src/interfaces/IWETH9.sol

615...516 ./src/interfaces/INativeRouter.sol

6cd...358 ./src/interfaces/INativeRFQPool.sol

da2...859 ./src/interfaces/IQuote.sol

247...1a2 ./src/libraries/Order.sol

385...cda ./src/libraries/TStorage.sol

b1a...4ae ./src/libraries/ConstantsLib.sol

5b7...e4c ./src/libraries/Multicall.sol

043...b6d ./src/libraries/ErrorsLib.sol

cc0...b7c ./src/libraries/ExternalSwap.sol

bba...ab2 ./src/libraries/TransferHelper.sol

80f...4b9 ./src/libraries/FullMath.sol

7c6...d2e ./src/libraries/SafeCast.sol

691...bca ./src/libraries/ReentrancyGuardTransient.sol

6b2...49c ./src/libraries/BytesLib.sol

da8...32a ./src/test/WETH9.sol

32d...b36 ./src/test/MockERC20.sol

Test Suite Results
All tests are passing.

Ran 24 tests for test/integration/LPToken.t.sol:LPTokenTest
[PASS] test_ComplexDepositRedeemScenario() (gas: 827515)
[PASS] test_SetEarlyWithdrawFeeBips() (gas: 65259)
[PASS] test_deposit_belowMinDeposit() (gas: 46800)
[PASS] test_deposit_insufficientAllowance() (gas: 46766)
[PASS] test_deposit_insufficientBalance() (gas: 73961)
[PASS] test_deposit_multipleUsers() (gas: 278602)
[PASS] test_deposit_success() (gas: 222245)
[PASS] test_deposit_whenPaused() (gas: 44709)
[PASS] test_deposit_zeroAmount() (gas: 21550)
[PASS] test_distributeYield_multipleDistributions() (gas: 230920)
[PASS] test_distributeYield_onlyVault() (gas: 230083)
[PASS] test_distributeYield_success() (gas: 230167)
[PASS] test_distributeYield_whenPoolNotInitialized() (gas: 51112)
[PASS] test_distributeYield_zeroAmount() (gas: 184770)
[PASS] test_pauseAndUnpause() (gas: 214640)
[PASS] test_redeem_afterYieldDistribution() (gas: 509026)
[PASS] test_redeem_earlyWithdrawalFee() (gas: 228729)

[PASS] test_redeem_insufficientShares() (gas: 21843)
[PASS] test_redeem_partialAmount() (gas: 226980)
[PASS] test_redeem_success() (gas: 206231)
[PASS] test_redeem_whenPaused() (gas: 194169)
[PASS] test_redeem_zeroAmount() (gas: 19193)
[PASS] test_setMinDeposit() (gas: 53437)
[PASS] test_setMinRedeemInterval() (gas: 48501)
Suite result: ok. 24 passed; 0 failed; 0 skipped; finished in 366.74ms (101.91ms CPU time)

Ran 1 test for test/integration/NativeRFQPool.sol:NativeRFQPoolTest
[PASS] test_multipleRoutersAndPools() (gas: 18366874)
Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 371.54ms (78.32ms CPU time)

Ran 20 tests for test/integration/LPTokenERC20.t.sol:LPTokenERC20Test
[PASS] test_approve_and_allowance() (gas: 71014)
[PASS] test_approve_emitsEvent() (gas: 46367)
[PASS] test_approve_multipleApprovals() (gas: 87655)
[PASS] test_approve_zeroAddress() (gas: 16417)
[PASS] test_transferFrom() (gas: 318367)
[PASS] test_transferFrom_afterApprovalRevoked() (gas: 253268)
[PASS] test_transferFrom_insufficientAllowance() (gas: 248499)
[PASS] test_transferFrom_insufficientBalance() (gas: 253005)
[PASS] test_transferFrom_noApproval() (gas: 226932)
[PASS] test_transferFrom_toSelf() (gas: 251120)
[PASS] test_transferFrom_zeroAddress() (gas: 251110)
[PASS] test_transferFrom_zeroAmount() (gas: 261106)
[PASS] test_transfer_emitsEvents() (gas: 69174)
[PASS] test_transfer_insufficientBalance() (gas: 26494)
[PASS] test_transfer_pausedState() (gas: 71851)
[PASS] test_transfer_success() (gas: 108700)
[PASS] test_transfer_toSelf() (gas: 22388)
[PASS] test_transfer_withComplexExchangeRate() (gas: 3924061)
[PASS] test_transfer_zeroAddress() (gas: 22099)
[PASS] test_transfer_zeroAmount() (gas: 36734)
Suite result: ok. 20 passed; 0 failed; 0 skipped; finished in 377.52ms (71.71ms CPU time)

Ran 25 tests for test/integration/CreditVault.t.sol:CreditVaultTest
[PASS] test_addCollateral_addForOthers() (gas: 556552)
[PASS] test_addCollateral_multipleTokens() (gas: 934232)
[PASS] test_addCollateral_notLpToken() (gas: 325325)
[PASS] test_addCollateral_success() (gas: 508601)
[PASS] test_epochUpdate_cooldownPeriod() (gas: 632331)
[PASS] test_epochUpdate_exchangeRateLimit() (gas: 506883)
[PASS] test_epochUpdate_feeAccrual() (gas: 610893)
[PASS] test_epochUpdate_lpPoolNotInitialized() (gas: 50582)
[PASS] test_epochUpdate_onlyEpochUpdater() (gas: 588328)
[PASS] test_liquidate_notLiquidator() (gas: 552852)
[PASS] test_liquidate_success() (gas: 1637494)
[PASS] test_removeCollateral() (gas: 772959)
[PASS] test_repay_success() (gas: 469871)
[PASS] test_setAllowance() (gas: 3287951)
[PASS] test_setEpochUpdater() (gas: 71863)
[PASS] test_setFeeWithdrawer() (gas: 72751)
[PASS] test_setLiquidator() (gas: 85964)
[PASS] test_setNativePool() (gas: 3103791)
[PASS] test_setSigner() (gas: 70920)
[PASS] test_setTrader() (gas: 146867)
[PASS] test_settle_success() (gas: 1162043)
[PASS] test_supportMarket() (gas: 7176488)
[PASS] test_swapCallback() (gas: 3173307)
[PASS] test_transferOut() (gas: 348362)
[PASS] test_withdrawFundingFee() (gas: 649602)
Suite result: ok. 25 passed; 0 failed; 0 skipped; finished in 1.93s (124.11ms CPU time)

Ran 6 tests for test/fuzz/LPToken.fuzz.t.sol:LPTokenFuzzTest
[PASS] testFuzz_deposit(uint256) (runs: 1024, μ: 211583, ~: 211640)
[PASS] testFuzz_depositAndEarlyRedeem(uint256,uint256,uint256) (runs: 1024, μ: 258991, ~: 259354)
[PASS] testFuzz_depositAndNormalRedeem(uint256,uint256,uint256) (runs: 1024, μ: 234678, ~: 235000)
[PASS] testFuzz_depositReverts(uint256) (runs: 1024, μ: 20339, ~: 20339)
[PASS] testFuzz_redeem(uint256,uint256) (runs: 1024, μ: 256843, ~: 256898)
[PASS] testFuzz_redeemReverts(uint256) (runs: 1024, μ: 18797, ~: 18797)
Suite result: ok. 6 passed; 0 failed; 0 skipped; finished in 2.96s (6.38s CPU time)

Ran 4 tests for test/integration/NativeRouter.t.sol:NativeRouterTest
[PASS] test_tradeAutoSign() (gas: 18106466)
[PASS] test_tradeAutoSign_revertScenarios() (gas: 17993734)
[PASS] test_tradeRFQWithCredit() (gas: 18124965)
[PASS] test_tradeRFQWithPMMInventory() (gas: 18105974)
Suite result: ok. 4 passed; 0 failed; 0 skipped; finished in 19.24s (285.36ms CPU time)

Ran 5 tests for test/invariant/LPToken.invariants.t.sol:LPTokenInvariants
[PASS] invariant_depositWithdrawalAccounting() (runs: 512, calls: 32768, reverts: 16359)
[PASS] invariant_sumOfSharesEqualsTotalShares() (runs: 512, calls: 32768, reverts: 16322)
[PASS] invariant_totalSupplyMatchesUnderlying() (runs: 512, calls: 32768, reverts: 16466)
[PASS] invariant_underlyingBalance() (runs: 512, calls: 32768, reverts: 16311)
[PASS] invariant_underlyingMatchesNetDeposits() (runs: 512, calls: 32768, reverts: 16221)
Suite result: ok. 5 passed; 0 failed; 0 skipped; finished in 22.09s (97.36s CPU time)

Ran 7 test suites in 22.14s (47.33s CPU time): 85 tests passed, 0 failed, 0 skipped (85 total tests)

Code Coverage
Tests achieve 75-95% coverage for the CreditVault.sol and LPToken.sol contracts. Test coverages for NativeRFQPool.sol and
NativeRouter.sol contracts are lower at ~40-70%.

╭--+------------------+-------------------+-----------------+--
---------------╮
| File | % Lines | % Statements | % Branches | %
Funcs |
+==
===============+
| script/Deploy_ERC20.s.sol | 0.00% (0/10) | 0.00% (0/11) | 100.00% (0/0) |
0.00% (0/1) |
--+------------------+-------------------+-----------------+--
script/Deploy_PMM_Pool.s.sol
0.00% (0/1)
--+------------------+-------------------+-----------------+--

script/Deploy_USDC.s.sol
0.00% (0/1)
--+------------------+-------------------+-----------------+--

script/Deploy_WETH9.s.sol
0.00% (0/1)
--+------------------+-------------------+-----------------+--

script/Deploy_core.s.sol
0.00% (0/1)
--+------------------+-------------------+-----------------+--

script/Deploy_lp.s.sol
0.00% (0/1)
--+------------------+-------------------+-----------------+--

script/Utils.sol
0.00% (0/3)
--+------------------+-------------------+-----------------+--

src/CreditVault.sol
100.00% (24/24)
--+------------------+-------------------+-----------------+--

src/LPToken.sol
95.00% (19/20)
--+------------------+-------------------+-----------------+--

src/NativeRFQPool.sol
81.82% (9/11)
--+------------------+-------------------+-----------------+--

---------------|
| src/NativeRouter.sol | 48.96% (47/96) | 49.04% (51/104) | 18.52% (5/27) |
64.29% (9/14) |
--+------------------+-------------------+-----------------+--
src/libraries/BytesLib.sol
0.00% (0/4)
--+------------------+-------------------+-----------------+--

src/libraries/ExternalSwap.sol
0.00% (0/2)
--+------------------+-------------------+-----------------+--

src/libraries/FullMath.sol
0.00% (0/2)
--+------------------+-------------------+-----------------+--

src/libraries/Multicall.sol
0.00% (0/2)
--+------------------+-------------------+-----------------+--

src/libraries/Order.sol
0.00% (0/5)
--+------------------+-------------------+-----------------+--

src/libraries/ReentrancyGuardTransient.sol
100.00% (4/4)
--+------------------+-------------------+-----------------+--

src/libraries/SafeCast.sol
0.00% (0/3)
--+------------------+-------------------+-----------------+--

src/libraries/TStorage.sol
100.00% (2/2)
--+------------------+-------------------+-----------------+--

src/libraries/TransferHelper.sol
20.00% (1/5)
--+------------------+-------------------+-----------------+--

src/test/MockERC20.sol
75.00% (3/4)
--+------------------+-------------------+-----------------+--

src/test/WETH9.sol
28.57% (2/7)
--+------------------+-------------------+-----------------+--

test/BaseTest.t.sol
55.56% (5/9)
--+------------------+-------------------+-----------------+--

test/helpers/SignatureUtils.sol
100.00% (8/8)
--+------------------+-------------------+-----------------+--

test/invariant/handlers/LPTokenHandler.sol
80.00% (4/5)
--+------------------+-------------------+-----------------+--

test/invariant/helpers/AddressSet.sol
50.00% (2/4)
--+------------------+-------------------+-----------------+--

Total
63.89% (92/144) |
╰--+------------------+-------------------+-----------------+--
---------------╯

Changelog
2024-12-20 - Initial Report
2025-01-01 - Updated Report 1
2025-01-03 - Updated Report 2
2025-01-06 - Final Report

About Quantstamp
Quantstamp is a global leader in blockchain security. Founded in 2017, Quantstamp’s mission is to securely onboard the next billion users to Web3
through its best-in-class Web3 security products and services.

Quantstamp’s team consists of cybersecurity experts hailing from globally recognized organizations including Microsoft, AWS, BMW, Meta, and
the Ethereum Foundation. Quantstamp engineers hold PhDs or advanced computer science degrees, with decades of combined experience in
formal verification, static analysis, blockchain audits, penetration testing, and original leading-edge research.

To date, Quantstamp has performed more than 500 audits and secured over $200 billion in digital asset risk from hackers. Quantstamp has
worked with a diverse range of customers, including startups, category leaders and financial institutions. Brands that Quantstamp has worked
with include Ethereum 2.0, Binance, Visa, PayPal, Polygon, Avalanche, Curve, Solana, Compound, Lido, MakerDAO, Arbitrum, OpenSea and the
World Economic Forum.

Quantstamp’s collaborations and partnerships showcase our commitment to world-class research, development and security. We're honored to
work with some of the top names in the industry and proud to secure the future of web3.

Notable Collaborations & Customers:
Blockchains: Ethereum 2.0, Near, Flow, Avalanche, Solana, Cardano, Binance Smart Chain, Hedera Hashgraph, Tezos
DeFi: Curve, Compound, Maker, Lido, Polygon, Arbitrum, SushiSwap
NFT: OpenSea, Parallel, Dapper Labs, Decentraland, Sandbox, Axie Infinity, Illuvium, NBA Top Shot, Zora
Academic institutions: National University of Singapore, MIT

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated
otherwise by Quantstamp; however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you
access using the internet or other means, and assumes no obligation to update any information following publication or other making available of
the report to you by Quantstamp.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your
agreement with Quantstamp. These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized
by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp. Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites&aspo; owners. You agree that
Quantstamp are not responsible for the content or operation of such web sites, and that Quantstamp shall have no liability to you or any other
person or entity for the use of third-party web sites. Except as described below, a hyperlink from this web site to another web site does not imply
or mean that Quantstamp endorses the content on that web site or the operator or operations of that site. You are solely responsible for
determining the extent to which you may use any content at any other web sites to which you link from the report. Quantstamp assumes no
responsibility for the use of third-party software on any website and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any output generated by such software.

Disclaimer

The review and this report are provided on an as-is, where-is, and as-available basis. To the fullest extent permitted by law, Quantstamp
disclaims all warranties, expressed implied, in connection with this report, its content, and the related services and products and your use
thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement. You agree
that access and/or use of the report and other results of the review, including but not limited to any associated services, products, protocols,
platforms, content, and materials, will be at your sole risk. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE
THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF
FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE. This report is based on the scope of materials and documentation
provided for a limited review at the time provided. You acknowledge that Blockchain technology remains under development and is subject to
unknown risks and flaws and, as such, the report may not be complete or inclusive of all vulnerabilities. The review is limited to the materials
identified in the report and does not extend to the compiler layer, or any other areas beyond the programming language, or programming aspects
that could present security risks. The report does not indicate the endorsement by Quantstamp of any particular project or team, nor guarantee
its security, and and may not be represented as such. No third party is entitled to rely on the report in any any way, including for the purpose of
making any decisions to buy or sell a product, product, service or any other asset. Quantstamp does not warrant, endorse, guarantee, or assume
responsibility for any product or service advertised or offered by a third party, or or any open source or third-party software, code, libraries,
materials, or information to, to, called by, referenced by or accessible through the report, its content, or any related related services and
products, any hyperlinked websites, or any other websites or mobile applications, and we will not be a party to or in any way be responsible for

monitoring any any transaction between you and any third party. As with the purchase or use of a product or service through any medium or in
any environment, you should use your best judgment and exercise caution where appropriate.

© 2025 – Quantstamp, Inc. Native v2 (Security Review)

