
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
native

Private Bug Bounty Audit Contest Prepared For: native
Lead Security Expert: hildingr
Date Audited: May 23 - May 29, 2025
Final Commit: 6745b1d

1

Introduction
Native is an on-chain platform to build token liquidity that is openly accessible and cost
effective. It serves as an alternative to traditional AMMs through integration of two
innovative designs: the Native Swap Engine and Native Credit Pool. The contest’s focus
is on ensuring fund safety in the credit pool and the usage of the fund, through Swap
Engine.

Scope
Repository: Native-org/v2-core

Audited Commit: 6ee5ef69f8a7f2e0435e1fc65dc3f34786a177f7

Final Commit: 6745b1deb50eda266ebcc4d724cff0c79448df83

Files:

• src/CreditVault.sol

• src/NativeLPToken.sol

• src/NativeRFQPool.sol

• src/NativeRouter.sol

• src/interfaces/IQuote.sol

• src/libraries/ConstantsLib.sol

• src/libraries/ExternalSwap.sol

• src/libraries/ReentrancyGuardTransient.sol

Final Commit Hash
6745b1deb50eda266ebcc4d724cff0c79448df83

Findings
Each issue has an assigned severity:

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• High issues are directly exploitable security vulnerabilities that need to be fixed.

2

Issues Found

High Medium

3 11

Issues Not Fixed and Not Acknowledged

High Medium

0 0

Security experts who found valid issues
0xAadi
0xShoonya
0xSolus
0xaxaxa
0xc0ffEE
0xrex
John44

Kirkeelee
Kose
aslanbek
dobrevaleri
eeyore
hildingr
iamandreiski

ifeco445
jasonxiale
montecristo
moray5554
newspacexyz
tobi0x18

3

Issue H-1: Users will be charged 2x fees and during
multiHop swaps will lose tokens to the router
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/92

Found by
0xShoonya, 0xSolus, 0xrex, John44, Kirkeelee, eeyore, montecristo, newspacexyz

Summary
There is a current deduction of fee charged to the user from the amount being traded
which is excessive and shouldn't be deducted since each user already pays for the
trading fee of the trade out of pocket. As a result of this, a lot of issues spawn up that
ultimately leads to the user losing tokens overall either to the router or more charged
fees and even less output tokens received.

Root Cause

function tradeRFQT(
RFQTQuote memory quote,
uint256 actualSellerAmount,
uint256 actualMinOutputAmount

) external payable override nonReentrant whenNotPaused {
...

// cut widget fee based on the actual amount
@> effectiveSellerTokenAmount =

_transferSellerToken(quote.multiHop, payee, quote.sellerToken,
effectiveSellerTokenAmount, quote.widgetFee);↪→

if (isNativePool) {
@>

NativeRFQPool(payable(quote.pool)).tradeRFQT(effectiveSellerTokenAmount, quote);↪→

} else if (whitelistRouter[quote.pool]) {
...

}

function _transferSellerToken(
bool multiHop,
address payee,
address sellerToken,

4

uint256 sellerTokenAmount,
WidgetFee memory widgetFee

) internal returns (uint256 effectiveSellerTokenAmount) {
if (msg.value > 0 && !multiHop) {

...
} else {

@> effectiveSellerTokenAmount = _chargeWidgetFee(widgetFee,
sellerTokenAmount, sellerToken, false);↪→

if (multiHop) {
@> TransferHelper.safeTransfer(sellerToken, payee,

effectiveSellerTokenAmount);↪→

} else {
@> TransferHelper.safeTransferFrom(sellerToken, msg.sender, payee,

effectiveSellerTokenAmount);↪→

}
}

}

function _chargeWidgetFee(
WidgetFee memory widgetFee,
uint256 amountIn,
address sellerToken,
bool hasAlreadyPaid

) internal returns (uint256) {
uint256 fee = widgetFee.feeRate > 0 ? (amountIn * widgetFee.feeRate) /

10_000 : 0;↪→

if (fee > 0) {
TransferHelper.safeTransferFrom(

sellerToken, hasAlreadyPaid ? address(this) : msg.sender,
widgetFee.feeRecipient, fee↪→

);
emit WidgetFeeTransfer(widgetFee.feeRecipient, widgetFee.feeRate, fee,

sellerToken);↪→

@> amountIn -= fee;
}

@> return amountIn;
}

A little primer on what the protocol intends to do:

1. Alice tries to trade 10 WETH for USDC when 1 WETH is currently worth 3000 USDC

2. The widgetFee.feeRate to facilitate this trade is 1% hence Alice should receive
30,000 USDC while 300 USDC will be taken from Alice separately using safeTransfe
rFrom inside the _chargeWidgetFee function as can be seen below:

5

if (fee > 0) {
TransferHelper.safeTransferFrom(

sellerToken, hasAlreadyPaid ? address(this) : msg.sender,
widgetFee.feeRecipient, fee↪→

);

3. However, this is not the current case and Alice will be double charged the 1% fee.

This happens because inside the _chargeWidgetFee function, we first take 1% fee from
Alice using safeTransferFrom then we go on again to also deduct 1% from the amount
Alice intends to swap. The correct implementation is to deduct once either do it by the s
afeTransferFrom or do it by deducting the 1% from the swap about by doing amountIn -=
fee but don't do both.

4. Because of this deductions and transfers Alice will be double charged and also if
Alice does a multiHop swap, some tokens will be left in the contract corresponding
to the 1% fee for the swap which will be locked and should have been swapped
during Alice's trade.

The _chargeWidgetFee returns an amountIn that influences what the effectiveSellerToke
nAmount that is used in multiple parts of the internal functions and outer functions that
the tradeRFQT function of the NativeRouter contract calls. Since this amount is already
flawed, all of the instances where it is used will be flawed as well the external swap logic
where the sellerTokenAmount: quote.sellerTokenAmount, still remains the initial amount
the market maker signed for the qoute without the fee accounted. For the cases of
external router, swaps the sellerTokenAmount: quote.sellerTokenAmount, will already be
higher than the effectiveSellerTokenAmount which will also cause the external swap to
fail as we later approve that amount in the externalSwap function call even though the
NativeRouter contract has less amount than the quote.sellerTokenAmount states here se
llerTokenAmount: quote.sellerTokenAmount,.

https://github.com/sherlock-audit/2025-05-native-smart-contract-v2/blob/main/v2-c
ore/src/NativeRouter.sol#L112-L116 https://github.com/sherlock-audit/2025-05-native-
smart-contract-v2/blob/main/v2-core/src/NativeRouter.sol#L263-L270
https://github.com/sherlock-audit/2025-05-native-smart-contract-v2/blob/main/v2-c
ore/src/NativeRouter.sol#L281-L290

Internal Pre-conditions
There are no internal conditions for this to occur. The fee deductions and transfers logic
in the current code implementation is just flawed.

External Pre-conditions
Assume there is a fee set for the widgetFee.feeRate such as 0.1%, 0.01% 0.5% any
amount of fee basis point at all.

6

Attack Path
N/A. Once, there is a widgetFee.feeRate set for facilitating trading, the issue comes to
fruition for all users of that trading pairs.

Impact
As a result of the over deductions of fees whereby the same fee has already been pulled
from the user, the user will be:

1. Double charged in fees

2. In multiHop trades, some portion of the second token trade will be locked in the
NativeRouter contract

3. The user will end up receiving less tokens than bargained for in the ending token of
a multiHop swap as well as a normal swap

PoC
In the NativeRouter.t.sol test file, make this diff change inside _createQuote to begin the
setup for a multiHop trade

function _createQuote(
address poolAddress,
uint256 sellAmount,
uint256 expectedUsdcAmount

) internal view returns (IQuote.RFQTQuote memory) {
IQuote.RFQTQuote memory quote = IQuote.RFQTQuote({

pool: poolAddress,
signer: halo,

- recipient: alice,
+ recipient: address(router),

sellerToken: address(weth),
buyerToken: address(USDC),
sellerTokenAmount: sellAmount,
buyerTokenAmount: expectedUsdcAmount,
amountOutMinimum: expectedUsdcAmount,
deadlineTimestamp: block.timestamp + 1 hours,
nonce: 0,
multiHop: false,
signature: bytes(""),
externalSwapCalldata: bytes(""),
quoteId: bytes16(0),

- widgetFee: IQuote.WidgetFee({feeRecipient: deployer, feeRate: 0}),
+ widgetFee: IQuote.WidgetFee({feeRecipient: address(1), feeRate: 100}),

widgetFeeSignature: bytes("")
});

7

// Generate quote signature
bytes32 quoteDigest = SignatureUtils.generateQuoteSignature(quote);
(uint8 v, bytes32 r, bytes32 s) = vm.sign(haloKey, quoteDigest);
quote.signature = abi.encodePacked(r, s, v);

// Generate widget fee signature
bytes32 widgetFeeDigest = SignatureUtils.generateWidgetFeeSignature(quote,

alice, address(router));↪→

(v, r, s) = vm.sign(deployerKey, widgetFeeDigest);
quote.widgetFeeSignature = abi.encodePacked(r, s, v);

return quote;
}

Add this function below inside the NativeRouter.t.sol file to facilitate the market maker
creating the second hop trade in a multiHop trade

function _createQuoteTokka(
address poolAddress,
uint256 sellAmount,
uint256 expectedWbtcAmount

) internal view returns (IQuote.RFQTQuote memory) {
IQuote.RFQTQuote memory quote = IQuote.RFQTQuote({

pool: poolAddress,
signer: tokka,
recipient: alice,
sellerToken: address(USDC),
buyerToken: address(wbtc),
sellerTokenAmount: sellAmount,
buyerTokenAmount: expectedWbtcAmount,
amountOutMinimum: expectedWbtcAmount,
deadlineTimestamp: block.timestamp + 1 hours,
nonce: 1,
multiHop: true,
signature: bytes(""),
externalSwapCalldata: bytes(""),
quoteId: bytes16(0),
widgetFee: IQuote.WidgetFee({feeRecipient: address(1), feeRate: 100}),
widgetFeeSignature: bytes("")

});

// Generate quote signature
bytes32 quoteDigest = SignatureUtils.generateQuoteSignature(quote);
(uint8 v, bytes32 r, bytes32 s) = vm.sign(tokkaKey, quoteDigest);
quote.signature = abi.encodePacked(r, s, v);

// Generate widget fee signature
bytes32 widgetFeeDigest = SignatureUtils.generateWidgetFeeSignature(quote,

alice, address(router));↪→

8

(v, r, s) = vm.sign(deployerKey, widgetFeeDigest);
quote.widgetFeeSignature = abi.encodePacked(r, s, v);

return quote;
}

Then paste this PoC in the NativeRouter.t.sol file and run with test with forge test --mt
test_doubeChargesAndLostTokensPoC -vvv

function test_doubeChargesAndLostTokensPoC() public {
setupPMM();

// Mint WETH for Alice
deal(address(weth), alice, 10 ether);

// deal trade tokens to the tokka treasury
deal(address(wbtc), tokka, 1_000_000e8);

// Store initial balances first
uint256 aliceInitialEth = weth.balanceOf(alice);
uint256 aliceInitialUsdc = USDC.balanceOf(alice);
uint256 routerInitialEth = weth.balanceOf(address(router));
uint256 routerInitialUSDC = USDC.balanceOf(address(router));

console.log("Alice initialETH: ", aliceInitialEth);
console.log("Alice initialUSDC: ", aliceInitialUsdc);
console.log("Router initialETH: ", routerInitialEth);
console.log("Router initialUSDC: ", routerInitialUSDC);

// Calculate amounts
uint256 ethPriceInUsdc = 3000 * 10 ** 6;
uint256 sellAmount = 10e18; // selling WETH
uint256 expectedUsdcAmount = sellAmount * ethPriceInUsdc / 1 ether; //

expects 30k USDC↪→

vm.prank(halo);
USDC.approve(address(haloRFQPool), type(uint256).max);
vm.prank(tokka);
wbtc.approve(address(tokkaRFQPool), type(uint256).max);

// Create and execute the first hop trade
IQuote.RFQTQuote memory quote = _createQuote(address(haloRFQPool),

sellAmount, expectedUsdcAmount);↪→

vm.startPrank(alice);
weth.approve(address(router), type(uint256).max);
router.tradeRFQT(quote, quote.sellerTokenAmount, quote.amountOutMinimum);
vm.stopPrank();

9

console.log("Alice endingETH: ", weth.balanceOf(alice));
console.log("Alice endingUSDC: ", USDC.balanceOf(alice));
console.log("Router endingETH: ", weth.balanceOf(address(router)));
console.log("Router endingUSDC: ", USDC.balanceOf(address(router)));

// now do the second hop
uint256 wbtcPriceInUsdc = 90000 * 10 ** 6;
uint256 sellAmount1 = 29700 * 10 ** 6; // selling 27k USDC
uint256 expectedWbtcAmount = sellAmount1 * (10 ** 8) / wbtcPriceInUsdc;
console.log("expected WBTC amount: ", expectedWbtcAmount);

// Create and execute the second hop trade
IQuote.RFQTQuote memory quote2 = _createQuoteTokka(address(tokkaRFQPool),

sellAmount1, expectedWbtcAmount);↪→

vm.startPrank(alice);
USDC.approve(address(router), type(uint256).max);
router.tradeRFQT(quote2, quote2.sellerTokenAmount, quote2.amountOutMinimum);
vm.stopPrank();

console.log("Alice endingETH: ", weth.balanceOf(alice));
console.log("Alice endingUSDC: ", USDC.balanceOf(alice));
console.log("Alice endingWbtc: ", wbtc.balanceOf(alice));
console.log("Router endingETH: ", weth.balanceOf(address(router)));
console.log("Router endingUSDC: ", USDC.balanceOf(address(router)));
console.log("Router endingWbtc: ", wbtc.balanceOf(address(router)));

}

After running the above test, we will notice the following issues:

1. The user is over charged fees

2. The user also loses some USDC that is now locked in the Router contract

3. The user receives less WBTC than they should

[PASS] test_doubeChargesAndLostTokensPoC() (gas: 12570730)
Logs:
Alice initialETH: 10000000000000000000
Alice initialUSDC: 1000000000000
Router initialETH: 0
Router initialUSDC: 0
Alice endingETH: 0
Alice endingUSDC: 1000000000000
Router endingETH: 0
Router endingUSDC: 29700000000
expected WBTC amount: 33000000
Alice endingETH: 0
Alice endingUSDC: 999703000000
Alice endingWbtc: 32670000
Router endingETH: 0
Router endingUSDC: 297000000

10

Router endingWbtc: 0

Mitigation
The mitigation below is a possible fix that resolves all the issues described in this report:

function _chargeWidgetFee(
WidgetFee memory widgetFee,
uint256 amountIn,
address sellerToken,
bool hasAlreadyPaid

) internal returns (uint256) {
uint256 fee = widgetFee.feeRate > 0 ? (amountIn * widgetFee.feeRate) /

10_000 : 0;↪→

if (fee > 0) {
TransferHelper.safeTransferFrom(

sellerToken, hasAlreadyPaid ? address(this) : msg.sender,
widgetFee.feeRecipient, fee↪→

);
emit WidgetFeeTransfer(widgetFee.feeRecipient, widgetFee.feeRate, fee,

sellerToken);↪→

- amountIn -= fee;
}

return amountIn;
}

Do the above fix or transfer the fee from the user inside if condition below and keep the a
mountIn the same without deducting fee from it. Either one is okay, just don't transfer
fees and still deduct the same fee from amountIn.

if (fee > 0) {
TransferHelper.safeTransferFrom(

sellerToken, hasAlreadyPaid ? address(this) : msg.sender,
widgetFee.feeRecipient, fee↪→

);

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits: https://github.com/Nat
ive-org/v2-core/commit/5a744ec472bb93badd0306e38d89aca017343f54

11

Issue H-2: Exploit of yield mechanism
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/143

This issue has been acknowledged by the team but won't be fixed at this time.

Found by
hildingr

Summary
The yield distribution mechanism can be exploited by front-running epoch-updates and
withdrawing after two yield distributions. An attacker can double their
yield-to-capital-commitment ratio by exploiting the yield distribution mechanism when
the default values are used for minRedeemInterval and EPOCH_UPDATE_INTERVAL. All other
LPs yield is diluted since the attacker receives more than expected.

Root Cause
Yield is distributed to all LP holders regardless of deposit time, this allow attackers to
front-run the distribution and redeem between distribution events.

Yield is distributed every 8h when epochUpdate() is called *

lpTokens[token].distributeYield(fundingFee);

A user can deposit right before this and receive the yield. The user can the redeem after
minRedeemInterval has passed and then enter again before epochUpdate() is called.

When the user redeems after minRedeemInterval has passed no fee is paid.*

if (
block.timestamp < lastDepositTimestamp[msg.sender] + minRedeemInterval &&
earlyWithdrawFeeBips > 0↪→

&& !redeemCooldownExempt[msg.sender]
) {

underlyingAmount -= (underlyingAmount * earlyWithdrawFeeBips) / 10_000;
}

Internal Pre-conditions
1. Funding fees need to be accrued in the system to be distributed as yield

12

External Pre-conditions
None

Attack Path
1. Attacker deposits funds into the LP pool just before the epochUpdate function is
called.

2. The epochUpdate function is called and distributes yield to all current LP token
holders, including the attacker who just deposited

3. Attacker waits in the pool for another ~8> hours until a second epochUpdate occurs

4. The second epochUpdate distributes yield again to all LP token holders, including
the attacker

5. Attacker redeems their funds immediately after receiving the second yield
distribution without paying a fee since more than 8 has passed

6. Attacker repeats this cycle every ~16 hours

Impact
The existing LP token holders suffer a dilution of yield as the attacker receives a
disproportionate amount of yield compared to their time commitment. The attacker
effectively doubles their yield-to-capital-commitment ratio by only staying in the pool
for 8 hours but receiving yield for 16 hours worth of capital commitment.

PoC
No response

Mitigation
No response

Discussion
Ethronaut

Hi, this is not an issue, we discussed it internally a long time ago, if a front-running LP
holder is willing to keep their funds in our credit vault formore than 8 hours, they're
welcome to do so. honestly, I’ve never seen a front-running hacker with that much
patience

WangSecurity

13

Although it may be true that most front-running attackers are not ”with that much
patience”, the attack is quite likely, since no funds are put at risk.

So it's not bothersome for the attacker to use this attack pattern. There are ways
through which, even if the utilization is high, the attacker can manage to withdraw his
funds (by performing a swap, for instance).

The idea is that, for instance, if normal users get 2x yield in 2 epoch distributions for their
commitment, the attacker gets 2x distributions worth of yield in just 1 epoch distributi
on + 1 block, without putting any funds at risk.

Ethronaut

@WangSecurity, understood, as we acknowledged when designing the earlyWithdrawFee
feature, if a user is willing to keep their funds locked in our credit vault for more than 8
hours, we’re willing to accommodate that.

Please include this response in the final audit report, thanks

14

IssueH-3: InflationAttackpossible through redeem
function
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/144

Found by
0xaxaxa, John44, aslanbek, eeyore, hildingr

Summary
An inflation attack is possible since the penalty taken in the redeem() stays in the vault
and inflates the share price.

Root Cause
When shares are redeemed a fee is taken *

if (
block.timestamp < lastDepositTimestamp[msg.sender] + minRedeemInterval &&
earlyWithdrawFeeBips > 0↪→

&& !redeemCooldownExempt[msg.sender]
) {

underlyingAmount -= (underlyingAmount * earlyWithdrawFeeBips) / 10_000;
}

The fee amount remains in the CreditVault and is still accounted in the underlyingAmount
for the remaining shares.

Redeeming early can inflates the share price since the the total amount sharesToBurn is
burned while the corresponding underlyingAmount is not removed since the fee remains.

When a pool has been inflated the subsequent depositors will receive less shares then
expected due to rounding down in share calculation *

if (totalShares == 0) {
sharesToMint = amount; // Initial shares 1:1

} else {
sharesToMint = (amount * totalShares) / totalUnderlying;

}

15

Internal Pre-conditions
1. EarlyWithdrawFeeBips !=0

This inflation attack happens as the pool is newly created. Most likely it will be done by
front-running a large deposit to steal a substantial portion.

External Pre-conditions
None

Attack Path
Assume large deposit of 12000 USDC is in the mempool. The attacker will front-run the
user and deposit and then redeem all but 1 share to poison the pool

1. Attacker deposit 600001 and receives 600001 shares

2. Attacker redeems 600000 shares. 1% penalty is taken such that totalUnderlying =
6000 + 1 = 6001 USDC. Attacker now holds 1 share with 6001 USDC totalUnderlying.

3. User deposit is now executed. User sharesToMint = 12000*1/6001 =1 since 1.99 is
rounded down to 1.

total underlying is now 12000 + 6100 = 18001. Attacker holds 50% of the shares and can
redeem 9000 USDC and steal 3000 USDC from the user.

Impact
User lose a substantial amount off funds as outlined in the attack paths above.

PoC
No response

Mitigation
Give earlyWithdrawFee to a fee recipient so that it does not affect the exchange rate

It is also a good practice to burn a small amount in a deposit in the constructor such that
an attacker never can own all the shares.

Discussion
sherlock-admin2

16

The protocol team fixed this issue in the following PRs/commits: https://github.com/Nat
ive-org/v2-core/commit/3280bb66fb8dce6657912759fd03419e603ff9f1

17

Issue M-1: Users can avoid earlyWithdrawFee with
small sharesToBurn
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/25

This issue has been acknowledged by the team but won't be fixed at this time.

Found by
aslanbek, newspacexyz

Summary
In _redeem function of NativeLPToken contract, there is no min amount check and users
can avoid earlyWithdrawFee by splitting share into small amount.

Root Cause
Looking into _redeem function of NativeLPToken contract, you can notice that users can
avoid earlyWithdrawFee with small sharesToBurn :

function _redeem(uint256 sharesToBurn, address to) internal returns (uint256
underlyingAmount) {↪→

require(sharesToBurn > 0, ErrorsLib.ZeroAmount());
require(shares[msg.sender] >= sharesToBurn, ErrorsLib.InsufficientShares());

// Calculate underlying amount
underlyingAmount = (sharesToBurn * totalUnderlying) / totalShares;

if (
block.timestamp < lastDepositTimestamp[msg.sender] + minRedeemInterval

&& earlyWithdrawFeeBips > 0↪→

&& !redeemCooldownExempt[msg.sender]
) {

@> underlyingAmount -= (underlyingAmount * earlyWithdrawFeeBips) / 10_000;
}

...
}

Let's imagine that earlyWithdrawFeeBips is 1%(100 in bps).
In this case, if underlyingAmount is 99 wei, earlyWithdrawFee is 0.
If user repeats this operation, there is no loss due to early withdraw.

18

Considering the gas price, with WBTC(8 decimal and over 100000 usd), 1 wei is worth than
gas price on some L2.
This means that users can get profit and also protocol gets loss of no early withdraw fee.

Internal Pre-conditions
NativeLPToken with WBTC

External Pre-conditions
L2 with low gas price

Attack Path
.

Impact
Loss of protocol from no early withdraw fee

Mitigation
Introduce min threshold in _redeem function or use rounding up with early withdraw fee
calculation.

Discussion
Ethronaut

Hi, this is not an issue, a very small shareToBurn amount has no economic sense. if
someone tries to avoid the early withdrawal fee this way, the frontrunning profit from
such a tiny token amount would be zero, and it wouldn't cover the gas costs.

WangSecurity

It was computed that on certain chains (e.g. Arbitrum and Mantle), with high-value
tokens such as, specifically,WBTC, the gas fees are 3x lower than the potential ”early
withdrawal” fee penalty.

Thus, technically, on these chains it is profitable for the attacker; also, the incentive to
perform it may be to get the same return underlyingAmount-wise (actually, it was
computed that ~70% of the penalty can be avoided) but also deprive the LPs of the
otherwise redistributed penalty fee.

Ethronaut

19

As you suggested, in an extreme case, the only scenario where profit might be possible is
if the WBTC NativeLP token is deployed on Arbitrum.

actually we will apply different early withdrawal fee rates depending on the value and
decimals of the underlying token, 1% will not be a realistic fee rate for our NativeLP
token, currently the contract have maximum fee cap of 10%.

WangSecurity

As you suggested, in an extremecase, the only scenariowhere profitmight bepossible
is if the WBTC NativeLP token is deployed on Arbitrum.

But that still means the scenario is possible, and based on our guidelines, it's considered
an extensive constraint, which makes the vulnerability a Medium severity.

actually wewill apply different early withdrawal fee rates depending on the value and
decimals of the underlying token, 1% will not be a realistic fee rate for our NativeLP
token, currently the contract have maximum fee cap of 10%.

We didn't know how the early withdrawal fee value would be decided, and a 1% fee,
considering the max is 10%, seems reasonable.

That's why the decision was to validate an issue.

Ethronaut

@WangSecurity from a purely mathematical point of view, it is possible, but, we’ve
decided not to fix this extremely edge case.

If you take a look at our epochUpdate function, themaximum yield distribution per
update is capped at 1%, and each epoch update occurs every 8 hours. This translates to
an annualized simple interest rate of 1000%, which is clearly unrealistic.

Let’s consider a more reasonable scenario: assuming an 8-hour funding rate that results
in a token yield of 0.1% per epoch update (which is still quite high and equates to ~100%
APY). In this case, a user would have to deposit 1,000 wei WBTC just to earn 1 wei of yield.

To avoid being charged the early withdrawal fee through front-running, if the
earlyWithdrawFeeBips is just 1%, a user can only redeem 99 wei per attempt. This means
they would need to call the function 11 times to fully redeem

If the fee is 10%, they would only be able to redeem 9 wei per attempt — requiring 112
calls in total

We believe this behavior is manageable and controlled, and therefore we won’t be fixing
this issue.

Please kindly include this response in the final audit report, thanks

20

IssueM-2: quote.nonce is not checked and updated
in NativeRouter.tradeRFQT
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/41

Found by
0xSolus, 0xc0ffEE, John44, dobrevaleri, iamandreiski, ifeco445, jasonxiale, newspacexyz

Summary
quote.nonce is not checked and updated in NativeRouter.tradeRFQT

Root Cause
While NativeRouter.tradeRFQT is called, the signature will be verified in
_verifyRFQSignature, but the issue is quote.nonce is not updated during the call, which
means the same signature can be reused if quote.pool is external router

77 function tradeRFQT(
78 RFQTQuote memory quote,
79 uint256 actualSellerAmount,
80 uint256 actualMinOutputAmount
81) external payable override nonReentrant whenNotPaused {
82 require(quote.widgetFee.feeRate <= MAX_WIDGET_FEE_BIPS,

ErrorsLib.InvalidWidgetFeeRate());↪→

83 require(block.timestamp <= quote.deadlineTimestamp,
ErrorsLib.QuoteExpired());↪→

84
85 _verifyRFQSignature(quote);
86

...
115 if (isNativePool) {
116

NativeRFQPool(payable(quote.pool)).tradeRFQT(effectiveSellerTokenAmount, quote);↪→

117 } else if (whitelistRouter[quote.pool]) {
>>> because the `quote.nonce` is not checked and updated, this branch can be called

multiple times↪→

118 Orders.Order memory order = Orders.Order({
119 id: 0, // not used
120 signer: address(0), // not used
121 buyer: quote.pool,
122 seller: address(0), // not used
123 buyerToken: quote.buyerToken,

21

124 sellerToken: quote.sellerToken,
125 buyerTokenAmount: quote.buyerTokenAmount,
126 sellerTokenAmount: quote.sellerTokenAmount,
127 deadlineTimestamp: quote.deadlineTimestamp,
128 caller: msg.sender,
129 quoteId: quote.quoteId
130 });
131
132 uint256 actualAmountOut = ExternalSwap.externalSwap(
133 order, effectiveSellerTokenAmount, quote.recipient,

address(this), quote.externalSwapCalldata↪→

134);
135
136 require(
137 actualAmountOut >= quote.amountOutMinimum,
138 ErrorsLib.NotEnoughAmountOut(actualAmountOut,

quote.amountOutMinimum)↪→

139);
140 } else {
141 revert ErrorsLib.InvalidNativePool();
142 }
143 }

Internal Pre-conditions
None

External Pre-conditions
external pool is used for swap tokens

Attack Path
swap using external pool

Impact
1. break the invariants listed in readme

Each nonce must be used exactly once

2. the user can use the same signature to call NativeRouter.tradeRFQTmulitple time,
which might damage the protocol

22

PoC
No response

Mitigation
No response

Discussion
Ethronaut

Let me explain the logic of the tradeRFQT function. We support two trading modes:

RFQ Trades – where the swapper trades directly with our partnered market makers.

External Swaps – where the swap is executed through external, whitelisted router
contracts (most of which use an AMMmechanism), such as the aggregator contracts of
1inch or OpenOcean.

The key difference between these two modes — lies in who the counterparty is:

If the counterparty is our partnered market maker, we must use a nonce to prevent
replay attacks, since the quote has a time limit (e.g., 60 seconds).

If the counterparty is a whitelisted aggregator contract, the quote is real-time and
executed on-chain, so there's no need for a nonce, the nonce field will be default 0

Additionally, in the externalSwap logic, we already verify that the output amount is
greater than or equal to the expected buyerTokenAmount.

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits: https://github.com/Nat
ive-org/v2-core/commit/6745b1deb50eda266ebcc4d724cff0c79448df83

23

Issue M-3: _calculateTokenAmount doesn’t adjust
the buyer amount when the effective amount is
larger than the initial seller amount
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/45

Found by
0xaxaxa, 0xc0ffEE, 0xrex, John44, dobrevaleri, iamandreiski, newspacexyz, tobi0x18

Summary
When a native router transaction is initiated, the initiator can change the effective seller
amount up to 10%, either below or above the amount outlined in the initial RFQT order.
The problem is that within the ExternalSwap library, and more specifically the _calculate
TokenAmount, the buyerAmount isn't adjusted to match the adjusted seller amount, unlike
in the native pool where this is done for both scenarios.

Root Cause
Whenever the effective amount passed to the ExternalSwap library is larger than the
initial seller amount outlined in the order, the buyerAmount won't be modified:

function _calculateTokenAmount(
uint256 flexibleAmount,
Orders.Order memory _order

) internal pure returns (uint256, uint256) {
uint256 buyerTokenAmount = _order.buyerTokenAmount;
uint256 sellerTokenAmount = _order.sellerTokenAmount;

require(sellerTokenAmount > 0 && buyerTokenAmount > 0 && flexibleAmount > 0,
ErrorsLib.ZeroAmount());↪→

if (flexibleAmount < sellerTokenAmount) {
buyerTokenAmount = FullMath.mulDiv(flexibleAmount, buyerTokenAmount,

sellerTokenAmount);↪→

sellerTokenAmount = flexibleAmount;
}
require(buyerTokenAmount > 0, ErrorsLib.ZeroAmount());
return (buyerTokenAmount, sellerTokenAmount);

}

24

As a reference, this is how the case is handled within the Native RFQ Pool where both the
< and > cases are handled:

_buyerTokenAmount = effectiveSellerTokenAmount != sellerTokenAmount

? (effectiveSellerTokenAmount * buyerTokenAmount) / sellerTokenAmount
: buyerTokenAmount;

This is a problem as whenever the seller decides to increase the seller amount, they won't
receive a proportionally increased buyer amount which would lead to two possible
outcomes.

• These trades frequently fail and the effective amount can't be increased (core
functionality is broken) due to slippage set by the original initiator of the RFQ
transaction:

uint256 actualAmountOut = ExternalSwap.externalSwap(
order, effectiveSellerTokenAmount, quote.recipient, address(this),

quote.externalSwapCalldata↪→

);

require(
actualAmountOut >= quote.amountOutMinimum,
ErrorsLib.NotEnoughAmountOut(actualAmountOut,

quote.amountOutMinimum)↪→

);

Or if one isn't set, this would never be caught by the ”automated” slippage checks within
externalSwap, as the buyerAmount was never modified:

SwapState memory state;
(state.buyerTokenAmount, state.sellerTokenAmount) =

_calculateTokenAmount(flexibleAmount, order);↪→

require(amountOut >= state.buyerTokenAmount, ErrorsLib.NotEnoughTokenReceived());

Internal Pre-conditions
N/A

25

External Pre-conditions
1. User inputs an effectiveAmount greater than the order seller amount (within the
10% range);

2. The RFQ creator utilizes a non-native pool and the transaction is performed via an
ExternalSwap.

Attack Path
1. User initiates a RFQT transaction with an effective amount larger than the
sellerTokenAmount, and a non-native pool so that an ExternalSwap is utilized.

2. The contract logic never adjusts the buyer amount to match the modified
sellerTokenAmount.

3. The transaction either fails or goes through at the expense of the user since the
buyerAmount was never modified, the automated slippage checks didn't catch it,
and the user is automatically negatively affected.

Impact
The buyerTokenAmount isn't adjusted whenever the effective amount is larger than the
sellerTokenAmount leading to either failed RFQT transactions or users receiving less
buyerToken than they're entitled to.

PoC
No response

Mitigation
Adjust the buyerTokenAmount whenever the effective amount is both less than or more
than the sellerTokenAmount (i.e. use != as it is in the native RFQ pool).

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits: https://github.com/Nat
ive-org/v2-core/commit/3c8930be86f62501dd5079795bf20b8041133750

26

IssueM-4:Nativewon’tbeable toOperateonMantle
Chain Because of Transient Storage Usage
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/46

This issue has been acknowledged by the team but won't be fixed at this time.

Found by
Kose

Summary
Mantle Chain does not support transient storage currently. However all entry functions
for Native utilizes nonReentrantmodifier from ReentrancyGuardTransient.sol. Hence all
these functions will revert.

Root Cause
Native states that protocol will be deployed in Mantle Chain in README. However with
its current implementation, Native won't be able to operate in Mantle Chain. Reentrancy
GuardTransient.sol implements a nonReentrantmodifier via utilizing Transient storage,
hence TSTORE and TLOAD opcodes introduced in EIP-1153. This nonReentrantmodifier is
used in all main entry functions for the protocol:

• deposit and redeem for LP's,

• addCollateral, removeCollateral, repay, settle for Market Makers,

• liquidate for liquidators,

• tradeRFQT for swappers

• Some helper and admin functions in NativeRouter

However Mantle Chain does not support opcodes TLOAD and TSTORE as of date as can be
seen from Unsupported Opcodes.

Hence all calls to these functions will revert because of invalid opcode usage.

Internal Pre-conditions
None

27

External Pre-conditions
None

Attack Path
It is a vulnerability that will occur naturally.

Impact
Issue renders all contracts useless in one of the chains (Mantle) that protocol will be
deployed.

PoC
No response

Mitigation
For Mantle deployment, utilize old ReentrancyGuard -that doesn't use Transient Storage
Opcodes- in all contracts.

Discussion
Ethronaut

Thanks for pointing that out, the chains we currently support are: ETH, BNB, Base,
Arbitrum, and Berachain, we have not deployed to Mantle.

28

IssueM-5:Unable to sell native tokenusingexternal
router
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/59

Found by
0xc0ffEE, 0xrex

Summary
Seller token is not converted to wrapped native token while swapping with external
router. This can cause the trade failed

Root Cause
In the function NativeRouter::tradeRFQT(), if the seller token is native token, then it will
be wrapped to be WETH. From here, it can be accepted that the seller token is WETH,
not the native token because the contract is holding WETH. However, if the trade is
using external router, the order's seller token is still not updated to be WETH.

// ...
if (isNativePool) {

NativeRFQPool(payable(quote.pool)).tradeRFQT(effectiveSellerTokenAmount, quote);↪→

} else if (whitelistRouter[quote.pool]) {
Orders.Order memory order = Orders.Order({

id: 0, // not used
signer: address(0), // not used
buyer: quote.pool,
seller: address(0), // not used
buyerToken: quote.buyerToken,

@> sellerToken: quote.sellerToken, // <<<<<<<<<< this is still
native token with address 0x0↪→

buyerTokenAmount: quote.buyerTokenAmount,
sellerTokenAmount: quote.sellerTokenAmount,
deadlineTimestamp: quote.deadlineTimestamp,
caller: msg.sender,
quoteId: quote.quoteId

});

uint256 actualAmountOut = ExternalSwap.externalSwap(
order, effectiveSellerTokenAmount, quote.recipient, address(this),

quote.externalSwapCalldata↪→

29

);
// ...

When the execution goes into the function ExternalSwap::externalSwap(), it will revert
because it will make contract call to address order.sellerToken, which is actuall address
(0). As a result, the trade will be failed

function externalSwap(
Orders.Order memory order,
uint256 flexibleAmount,
address recipient,
address payer,
bytes memory fallbackCalldata

) internal returns (uint256 amountOut) {
require(flexibleAmount > 0, ErrorsLib.ZeroAmount());
require(order.deadlineTimestamp >= block.timestamp,

ErrorsLib.OrderExpired());↪→

SwapState memory state;
(state.buyerTokenAmount, state.sellerTokenAmount) =

_calculateTokenAmount(flexibleAmount, order);↪→

// prepare token for external call
if (payer != address(this)) {

@> IERC20(order.sellerToken).safeTransferFrom(payer, address(this),
state.sellerTokenAmount);↪→

}
@> IERC20(order.sellerToken).safeIncreaseAllowance(order.buyer,

state.sellerTokenAmount);↪→

uint256 routerTokenOutBalanceBefore =
IERC20(order.buyerToken).balanceOf(address(this));↪→

uint256 recipientTokenOutBalanceBefore =
IERC20(order.buyerToken).balanceOf(recipient);↪→

{
// call to external contract
(bool success,) = order.buyer.call(fallbackCalldata);

require(success, ErrorsLib.ExternalCallFailed(order.buyer,
bytes4(fallbackCalldata)));↪→

}

{
// assume the tokenOut is sent to "recipient" by external call directly
uint256 recipientDiff = IERC20(order.buyerToken).balanceOf(recipient) -

recipientTokenOutBalanceBefore;↪→

uint256 routerDiff = IERC20(order.buyerToken).balanceOf(address(this))
- routerTokenOutBalanceBefore;↪→

30

// if routerDiff is more, router has the tokens, so router transfers it
out to recipient↪→

if (recipientDiff < routerDiff) {
IERC20(order.buyerToken).safeTransfer(recipient, routerDiff);
amountOut = IERC20(order.buyerToken).balanceOf(recipient) -

recipientTokenOutBalanceBefore;↪→

} else {
// otherwise, recipient has the tokens, so we can use recipientDiff
amountOut = recipientDiff;

}

// amountOut is always the difference in after - before of recipient
balance, to account for fee on transfer tokens↪→

require(amountOut >= state.buyerTokenAmount,
ErrorsLib.NotEnoughTokenReceived());↪→

}

emit ExternalSwapExecuted(
order.buyer,
order.caller,
order.sellerToken,
order.buyerToken,
int256(state.sellerTokenAmount),
-int256(amountOut),
order.quoteId

);
}

Internal Pre-conditions
NA

External Pre-conditions
NA

Attack Path
1. An user requests to trade ETH -> USDC

2. The trade is quoted to use external router

3. User submits transaction and it reverts

31

Impact
• Unable to sell native token using external router

PoC
No response

Mitigation

Orders.Order memory order = Orders.Order({
id: 0, // not used
signer: address(0), // not used
buyer: quote.pool,
seller: address(0), // not used
buyerToken: quote.buyerToken,

- sellerToken: quote.sellerToken,
+ sellerToken: quote.sellerToken == address(0) ? WETH9 :

quote.sellerToken,↪→

buyerTokenAmount: quote.buyerTokenAmount,
sellerTokenAmount: quote.sellerTokenAmount,
deadlineTimestamp: quote.deadlineTimestamp,
caller: msg.sender,
quoteId: quote.quoteId

});

Discussion
Ethronaut

Hi, this is expected behavior. Our platform primarily supports RFQ trading, while
external swaps (i.e., AMMs) serve only as a fallback. We only forward to external swaps
when our RFQ cannot provide a quote for certain trading pairs, or when the quotes from
AMMs are better than ours.

Most AMM-based DEXs only support ERC-20 tokens — we do not automatically wrap the
swapper’s native tokens into ERC-20 tokens like WETH. So if the final AMM trade fails
(e.g., due to not meeting the minimum output amount), the swapper bears the greater
loss.

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits: https://github.com/Nat
ive-org/v2-core/commit/6745b1deb50eda266ebcc4d724cff0c79448df83

32

Issue M-6: Tokens will be stuck in NativeRouter in a
multihop swap with non-native pool
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/61

Found by
montecristo

Summary
actualAmountOut can not be pre-determined if a swap is done via a non-native pool (i.e.
ExternalSwap).

If a multihop swap involves a non-native pool, neither actualSellerAmount or quote.selle
rTokenAmount can be pre-calculated beforehand. The best thing we can do is to estimate
the amount, but there will always be some slippage between actuallSellerAmount and ac
tualAmountOut.

However, NativeRouter does not adjust effectiveSellerTokenAmount based on previous a
ctualAmountOut.

As a result, either multihop swap reverts due to insufficient ERC20 balance, or some
tokens will be stuck in NativeRouter contract.

Root Cause
Root cause is summarized in Summary section, but let's dive deeper into the problem
with an example.

Let's assume the following:

• User wants to perform a swapWETH -> DAI -> WBTC with 20 ETH

• ETH -> DAI involves an external swap

• DAI -> WBTC uses a native pool

• All fees are 0, in order to make things simpler

• Quoter gives the user the following RFQTQuotes:

– Quote 1

* pool: address of Uniswap

* recipient: address of NativeRouter

* sellerTokenAmount: 20 WETH

33

* buyerTokenAmount: 50000 DAI

* multiHop: false

– Quote 2

* pool: address of DAI/WBTC native pool

* recipient: msg.sender

* sellerTokenAmount: 49500 DAI (to acknowledge DEX slippage)

* buyerTokenAmount: 0.495 BTC

* multiHop: true

Now the user will multicall NativeRouter to execute the following methods in a single
transaction:

• NativeRouter::tradeRFQT(Quote1, 0, 0)

• NativeRouter::tradeRFQT(Quote2, 0, 0)

In the first trade, NativeRouter will swap 20 WETH to DAI. Let's assume Uniswap returned
49900 DAI for 20 WETH. In the second trade, NativeRouter will only use 49500 DAI to
perform swap to WBTC. So 400 DAI will be stuck in NativeRouter contract.

The problem here is that no one can correctly estimate actualAmountOut. There will
always be difference between actualAmountOut and estimatedAmountOut. And the
difference will be stuck in NativeRouter contract.

Internal Pre-conditions
User performs a multihop swap that involves a non-native pool.

External Pre-conditions
n/a

Attack Path
n/a

Impact
Ineffective use of assets, users will face fund loss during a swap

PoC
No response

34

Mitigation
Mitigation is outlined in the following diff:

diff --git a/v2-core/src/NativeRouter.sol b/v2-core/src/NativeRouter.sol
index d5efc6c..404d8cb 100644
--- a/v2-core/src/NativeRouter.sol
+++ b/v2-core/src/NativeRouter.sol
@@ -81,6 +81,7 @@ contract NativeRouter is INativeRouter, EIP712, Ownable2Step,

Pausable, Multical↪→

) external payable override nonReentrant whenNotPaused {
require(quote.widgetFee.feeRate <= MAX_WIDGET_FEE_BIPS,

ErrorsLib.InvalidWidgetFeeRate());↪→

require(block.timestamp <= quote.deadlineTimestamp,
ErrorsLib.QuoteExpired());↪→

+ require(!quote.multiHop || actualSellerAmount == 0, "Cannot set amount in
a multihop");↪→

_verifyRFQSignature(quote);

@@ -102,6 +103,8 @@ contract NativeRouter is INativeRouter, EIP712, Ownable2Step,
Pausable, Multical↪→

require(deviation < MAX_AMOUNT_DEVIATION_BPS, "actual amount deviation
exceeds 10%");↪→

effectiveSellerTokenAmount = actualSellerAmount;
+ } else if (quote.multiHop) {
+ effectiveSellerTokenAmount =

IERC20(quote.sellerToken).balanceOf(address(this));↪→

}

Discussion
Ethronaut

Hi, multi-hop trades only occur within NativePool transactions, externalswap will never
be used as one of multi-hop transaction

sherlock-admin2

The protocol team fixed this issue in the following PRs/commits: https://github.com/Nat
ive-org/v2-core/commit/6745b1deb50eda266ebcc4d724cff0c79448df83

35

IssueM-7:OpenZeppelinv4.9.6 safeIncreaseAllowance
incompatibility leads toUSDTexternal swaps failure
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/80

Found by
0xaxaxa, 0xc0ffEE, 0xrex, Kose, dobrevaleri, iamandreiski, ifeco445, newspacexyz

Summary
The ExternalSwap::externalSwap() function uses safeIncreaseAllowance() from
OpenZeppelin v4.9.6 (ref), which fails with certain tokens like USDT that revert on
non-zero to non-zero approvals, causing all external swaps with such tokens to fail.

Root Cause
In ExternalSwap.sol::exterbalSwap() the code uses OpenZeppelin's safeIncreaseAllowanc
e() function which is incompatible with tokens like USDT that have special approval
behavior.

IERC20(order.sellerToken).safeIncreaseAllowance(order.buyer,
state.sellerTokenAmount);↪→

USDT is a ”weird ERC20” token that reverts when trying to update an allowance from a
non-zero value to another non-zero value. This is to prevent a specific front-running
attack vector with ERC20 approvals.

The OpenZeppelin's SafeERC20 library in v4.9.6 uses safeIncreaseAllowance() which calls
approve() with the old allowance + new value. For USDT, if any previous allowance exists
(even 1 wei), this will cause the transaction to revert with ”USDT approval failure.”

This is problematic because the project documentation explicitly states that USDT will
be supported:

”Yes tokens will be integrated
• Only whitelisted (admin approved) tokens will be added
• Might include these ”weird tokens”: [...] 5. Approval Race Protections - like USDT”

Internal Pre-conditions
1. The protocol must whitelist USDT as a supported token

36

2. A user must attempt an external swap with USDT as the input token

External Pre-conditions
1. The order.buyer (external router) must have a non-zero allowance from the
contract for USDT token

Attack Path
1. A user wants to trade USDT using an external swap through the protocol

2. The user calls NativeRouter::tradeRFQT() with USDT as the seller token

3. The router executes ExternalSwap::externalSwap()

4. The function tries to call safeIncreaseAllowance() on USDT

5. If any previous allowance exists (even 1 wei), the USDT contract will revert on the
approval attempt

6. The transaction fails, preventing users from conducting external swaps with USDT

Impact
All external swaps that use USDT as the input token will fail, rendering a core protocol
functionality unusable for one of the most widely used stablecoins. This directly
contradicts the project's stated goal of supporting USDT and similar tokens with
approval race protections.

PoC
1. A user initiates an external swap with USDT through NativeRouter::tradeRFQT()

2. The router calls ExternalSwap::externalSwap(), which attempts to move USDT
tokens from the payer to the contract

3. Assuming the contract already has some USDT allowance (from a previous
uncompleted swap), it then calls:

IERC20(order.sellerToken).safeIncreaseAllowance(order.buyer,
state.sellerTokenAmount);↪→

4. The safeIncreaseAllowance() function in OpenZeppelin's SafeERC20 (v4.9.6)
executes:

function safeIncreaseAllowance(IERC20 token, address spender, uint256 value)
internal {↪→

uint256 oldAllowance = token.allowance(address(this), spender);

37

_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector,
spender, oldAllowance + value));↪→

}

5. USDT reverts on the approval call because it prevents changing an allowance from
a non-zero value to another non-zero value

Mitigation
Upgrade OpenZeppelin to the latest version. The latest version of OpenZeppelin
Contracts has better handling for problematic tokens like USDT.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits: https://github.com/Nat
ive-org/v2-core/commit/1df2de81c052cd6ebfdc23b57046e27ae4f49384

38

IssueM-8:buyerTokenandsellerTokenFieldsMutated
Before Signature Verification, Causing Legitimate
Quotes to Fail in In NativeRFQPool.tradeRFQT()
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/86

This issue has been acknowledged by the team but won't be fixed at this time.

Found by
0xAadi, Kirkeelee, moray5554

Summary
In NativeRFQPool.tradeRFQT()Mutating the buyerToken and sellerToken fields in the quot
e struct before signature verification will cause valid off-chain signatures to fail, as the
data used for verification no longer matches the original signed message. This breaks
and prevents legitimate RFQ trades.

Root Cause
In the tradeRFQT() function, the following lines appear before the _verifyPMMSignature()
call:

function tradeRFQT(uint256 effectiveSellerTokenAmount, RFQTQuote memory quote)
external override onlyRouter {↪→

// Prevent replay attacks
require(!nonces[quote.nonce], ErrorsLib.NonceUsed());

// Mark nonce as used
nonces[quote.nonce] = true;

// Store original buyerToken address to handle ETH unwrapping if buyerToken
is zero address↪→

address originalBuyerToken = quote.buyerToken;

// Handle ETH case: convert zero address to WETH9 for buyer or seller token
@> quote.buyerToken = quote.buyerToken == address(0) ? WETH9 :

quote.buyerToken;↪→

@> quote.sellerToken = quote.sellerToken == address(0) ? WETH9 :
quote.sellerToken;↪→

// Verify market maker signature

39

@> _verifyPMMSignature(quote);

https://github.com/sherlock-audit/2025-05-native-smart-contract-v2/blob/main/v2-c
ore/src/NativeRFQPool.sol#L87C2-L102C36

This mutates the quote data, replacing address(0) with WETH9, before the signature is
verified using EIP-712. As a result, the hash computed for signature recovery no longer
reflects the original signed data. If a market maker signed a quote using address(0) to
represent ETH, the on-chain verification will fail because the quote.buyerToken or quote.
sellerToken has already been modified to WETH9.

EIP-712 signature verification requires the exact same data to be used when computing
the hash. Any in-place mutation of struct fields before signature verification breaks this
guarantee.

Internal Pre-conditions
None

External Pre-conditions
None

Attack Path
1. Market maker signs an RFQ quote off-chain with buyerToken or sellerToken set to a

ddress(0) to indicate native ETH.

2. The NativeRouter submits the quote to NativeRFQPool.tradeRFQT().

3. The contract replaces address(0)with WETH9 in quote.buyerToken and quote.sellerT
oken.

4. The modified quote is used to compute the EIP-712 signature hash.

5. Signature verification fails because the hash differs from what was signed
off-chain.

6. The transaction reverts, making the valid off-chain quote unusable on-chain.

Impact
This issue will cause valid off-chain RFQ signatures to fail verification when they contain
address(0) for buyerToken or sellerToken. This prevents legitimate trades from being
executed and could result in unnecessary quote rejections.

40

PoC
No response

Mitigation

function tradeRFQT(uint256 effectiveSellerTokenAmount, RFQTQuote memory quote)
external override onlyRouter {↪→

// Prevent replay attacks
require(!nonces[quote.nonce], ErrorsLib.NonceUsed());

// Mark nonce as used
nonces[quote.nonce] = true;

// Store original buyerToken address to handle ETH unwrapping if buyerToken
is zero address↪→

address originalBuyerToken = quote.buyerToken;

+ // Verify market maker signature
+ _verifyPMMSignature(quote);

// Handle ETH case: convert zero address to WETH9 for buyer or seller token
quote.buyerToken = quote.buyerToken == address(0) ? WETH9 :

quote.buyerToken;↪→

quote.sellerToken = quote.sellerToken == address(0) ? WETH9 :
quote.sellerToken;↪→

- // Verify market maker signature
- _verifyPMMSignature(quote);

Discussion
Ethronaut

Hi, this is not an issue

In the RFQTQuote struct, we have two different signature fields:

1: market maker's EIP-712 signature

2: Native backend signed widgetFeeSignature

It’s clear from this structure: when a swap involves a native token as either the buyToken
or sellToken, the native backend treats such tokens as address(0). However, our
market makers always represented native tokens using their wrapped token addresses
(e.g., WETH instead of address(0)).

So, in _verifyRFQSignature, quote.sellerToken and quote.buyerToken remain address(0),
because that’s how the native backend signed them.

41

But in _verifyPMMSignature, these addresses are replaced withWETH, since that’s how
the market maker signed them — by treating native tokens as their wrapped equivalents.

It’s like a key and a lock — both must match. Each party (backend and market maker)
signs according to their own interpretation, but both signatures are compliant with the
EIP-712 standard.

Please don’t misunderstand — this has nothing to do with whether the market maker is a
whitelisted signer or not.

42

Issue M-9: Native swap transactions will revert in
NativeRouter on new chains with strict WETH9
implementations
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/116

Found by
0xc0ffEE, Kirkeelee, Kose, eeyore, iamandreiski, jasonxiale, montecristo

Summary
The _chargeWidgetFee() function in NativeRouter can revert when used with
native-wrapped tokens (e.g., WETH on Arbitrum, wBERA on Berachain, wMNT on Mantle)
due to stricter transferFrom() allowance checks.

Vulnerability Detail
These WETH variants do not bypass the allowance check when src == msg.sender. Thus,
if the user pays with native token (ETH, BERA, MNT) and the router wraps it, calling safeT
ransferFrom(msg.sender, feeRecipient) without an approved allowance will revert.

For native payments, NativeRouter uses the call effectiveSellerTokenAmount = _chargeW
idgetFee(widgetFee, sellerTokenAmount, WETH9, true);, passing true for the hasAlread
yPaid parameter in _chargeWidgetFee():

if (fee > 0) {
@> TransferHelper.safeTransferFrom(// will DoS for WETH on Arbitrum, wBERA on

Berachain, and wMNT on Mantle in case of native payment↪→

sellerToken, hasAlreadyPaid ? address(this) : msg.sender,
widgetFee.feeRecipient, fee↪→

);
emit WidgetFeeTransfer(widgetFee.feeRecipient, widgetFee.feeRate, fee,
sellerToken);↪→

amountIn -= fee;
}

Impact
DoS for RFQ trades involving native tokens (ETH, BERA, MNT) on Arbitrum, Berachain,
and Mantle.

43

Code Snippet
https://github.com/sherlock-audit/2025-05-native-smart-contract-v2/blob/main/v2-c
ore/src/NativeRouter.sol#L259 https://github.com/sherlock-audit/2025-05-native-sma
rt-contract-v2/blob/main/v2-core/src/NativeRouter.sol#L282-L284

Tool Used
Manual Review

Recommendation
Use safeTransfer() if hasAlreadyPaid == true:

if (fee > 0) {
if (hasAlreadyPaid) {

TransferHelper.safeTransfer(sellerToken, widgetFee.feeRecipient, fee);
} else {

TransferHelper.safeTransferFrom(sellerToken, msg.sender,
widgetFee.feeRecipient, fee);↪→

}
emit WidgetFeeTransfer(widgetFee.feeRecipient, widgetFee.feeRate, fee,
sellerToken);↪→

amountIn -= fee;
}

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits: https://github.com/Nat
ive-org/v2-core/commit/f265cb3691fb9d6d4dda35c5c04cf72971ce3dec

44

Issue M-10: Valid trades will fail due to incorrect
slippage validation
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/124

Found by
0xaxaxa, John44, dobrevaleri, montecristo

Summary
When a trade occurs through an external swap ExternalSwap.externalSwap will be called.
The issue is that this function will validate that the received amount is not less than the b
uyerTokenAmount even though a trade should be valid when the received amount is not
below the amountOutMinimum specified by the initiator.

Root Cause
In ExternalSwap.externalSwap:73 the received tokens must be more or equal to buyerTok
enAmount, even though they should only be more or equal to amountOutMinimum:

https://github.com/sherlock-audit/2025-05-native-smart-contract-v2/blob/main/v2-c
ore/src/libraries/ExternalSwap.sol#L73

Internal Pre-conditions
No internal pre-conditions needed.

External Pre-conditions
No external pre-conditions needed.

Attack Path
1. A user performs a trade swapping 1e18 of AssetA for 2e18 of AssetB.

2. They set the amountOutMinimum to 1.9e18.

3. A trade is performed through an external swap, however, due to price changes the
buyer sends out only 1.99e18 of AssetB.

45

4. The trade should still be valid as 1.99e18 is higher than the minimum specified by the
caller, however, the call reverts due to the fact that externalSwap will check that
1.99e18 >= 2e18.

Impact
Valid trades will revert preventing users from interacting with the router.

PoC
No response

Mitigation
Consider not validating whether amountOut >= state.buyerTokenAmount as the necessary
validation is performed in NativeRouter.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits: https://github.com/Nat
ive-org/v2-core/commit/6745b1deb50eda266ebcc4d724cff0c79448df83

46

IssueM-11: Somecollateral canbe locked in theCredit
Vault contract
Source: https://github.com/sherlock-audit/2025-05-native-smart-contract-v2-judging/
issues/135

This issue has been acknowledged by the team but won't be fixed at this time.

Found by
0xaxaxa, dobrevaleri, montecristo, tobi0x18

Summary
The NativeLPToken is not only a yield-bearing token but also a rebasing token. However,
when updating the collateral amount, it is never accounted for. As a result, some NativeL
PToken can be locked in the CreditVault contract.

Root Cause
When adding collateral into the CreditVault, the collateral amount of the trader is
increased at L319 and the NativeLPToken is transferred from the trader at L321.

function addCollateral(TokenAmountUint[] calldata tokens, address trader)
external nonReentrant {↪→

require(traders[trader], ErrorsLib.OnlyTrader());

for (uint256 i; i < tokens.length; ++i) {
address token = tokens[i].token;
require(supportedMarkets[token], ErrorsLib.OnlyLpToken());

uint256 amount = tokens[i].amount;
319: collateral[trader][token] += amount;

321: IERC20(token).safeTransferFrom(msg.sender, address(this), amount);
}

emit CollateralAdded(trader, tokens);
}

However, the NativeLPToken is not only a yield-bearing token but also a rebasing token.

https://github.com/sherlock-audit/2025-05-native-smart-contract-v2/blob/main/v2-c
ore/src/CreditVault.sol#L422-L426

47

function _transfer(address from, address to, uint256 amount) internal override {
uint256 sharesToTransfer = getSharesByUnderlying(amount);
_transferShares(from, to, sharesToTransfer);
_emitTransferEvents(from, to, amount, sharesToTransfer);

}

As a result, when removing collateral from the CreditVault, some shares will remain, if
some yields have been generated. https://github.com/sherlock-audit/2025-05-native-s
mart-contract-v2/blob/main/v2-core/src/CreditVault.sol#L203-L225

function removeCollateral(
RemoveCollateralRequest calldata request,
bytes calldata signature

) external onlyTraderOrSettler(request.trader) nonReentrant {
_verifyRemoveCollateralSignature(request, signature);

for (uint256 i; i < request.tokens.length; ++i) {
collateral[request.trader][request.tokens[i].token] -=

request.tokens[i].amount;↪→

}

address recipient = traderToRecipient[request.trader];
for (uint256 i; i < request.tokens.length; ++i) {

address token = request.tokens[i].token;
uint256 amount = request.tokens[i].amount;

/// Enforce rebalance cap before funds leave vault
_updateRebalanceCap(request.trader, token, amount);

IERC20(token).safeTransfer(recipient, amount);
}

emit CollateralRemoved(request.trader, request.tokens);
}

Internal pre-conditions

External pre-conditions

Attack Path

Impact
Some collateral can be locked in the CreditVault contract, preventing traders from
withdrawing the accrued yield.

48

PoC

Mitigation
The amount of shares should be tracked instead of the amount of underlying tokens.

Discussion
Ethronaut

Hi, I think there's a misunderstanding about how rebasing tokens work. The trader's
collateral is NativeLPToken. For example:

Trader Alice adds 1000 Native-USDC LP as collateral, which gives her 1000 shares. Let's
assume the exchange rate is initially 1. Even after multiple rounds of epoch updates, then
the exchange rate rises to 1.1, her share count remains 1000, not 1100.

Therefore, when removeCollateral is called, it only transfers the shares, not the
underlying amount The underlying value will never be locked in the credit vault

WangSecurity

When the trader withdraws from the CreditVault, the amount can be up to the original co
llateral[trader][token].

Since the NativeLPToken is an yield-bearing, rebasing token, if the exchange rate
increases after addCollateral is called, for a withdrawal of size equal amount, less shares
will be needed to fulfill it.
(https://github.com/sherlock-audit/2025-05-native-smart-contract-v2/blob/0872a930
73063d7c7a05a2226a04d22a5923a3fe/v2-core/src/NativeLPToken.sol
allowbreak #L422-L423)

In the CreditVault contract, there is no direct method to sweep/rescue the remaining Na
tiveLPToken.shares(address(this)).

Although the trader receives exactly the same amount of underlying as their original
deposited amount, the remaining shares are left in the CreditVault contract.

For example, in this scenario:

TraderAliceadds 1000Native-USDCLPas collateral, whichgives her 1000 shares. Let's
assume the exchange rate is initially 1. Even after multiple rounds of epoch updates,
then the exchange rate rises to 1.1, her share count remains 1,000, not 1,100.

• Alice gets 1,000 USDC worth of LP token back;

• But 100 shares are left owned by the CreditVault, worth 110 USDC now.

transfer will adjust the shares to transfer based on the requested amount, so the
additional generated value will be left in the CreditPool.

49

There is a workaround to rescue these remainders, but it is very inconvenient and will
corrupt some mappings too. That's why we decided the issue should be valid.

Ethronaut

@WangSecurity that’s exactly where I think you might have misunderstood.

Whether the market maker is calling addCollateral or removeCollateral, it’s always
based on the number of shares, not the underlying amount.

This is because the NativeLP token is a rebasing token — meaning the same amount of
shares can represent different amounts of underlying over time, so if we were to removeCo
llateral based on the underlying amount, it could easily leave a small residual amount
of shares stuck in the contract.

you can also refer our redeem function — its parameters are all based on sharesToBurn,
not the underlying amount.

WangSecurity

Whether the market maker is calling addCollateral or removeCollateral, it’s always
based on the number of shares, not the underlying amount.

The current code utilises the underlyingAmount-based _transfer function (which is used
under safeTransfer in removeCollateral, resulting in transfers that leave the accrued
yield behind, equal to the quantity of the remaining shares.

For instance, if transferShares was used instead in removeCollateral, the problem would
most likely not exist.

But, currently, it uses exactly the amount-based _transfer:
https://github.com/sherlock-audit/2025-05-native-smart-contract-v2/blob/0872a9307
3063d7c7a05a2226a04d22a5923a3fe/v2-core/src/NativeLPToken.sol
allowbreak #L422-L425

/// @notice Override ERC20's _transfer to handle yield-bearing LP token transfers
/// @dev Since this is a yield-bearing token, the actual transfer is done by

transferring shares↪→

/// rather than token amounts directly. The shares represent the user's
proportion of the↪→

/// total underlying assets including yield.
/// @param from The address to transfer from
/// @param to The address to transfer to
/// @param amount The underlying token amount to transfer
function _transfer(address from, address to, uint256 amount) internal override {

uint256 sharesToTransfer = getSharesByUnderlying(amount);
_transferShares(from, to, sharesToTransfer);
_emitTransferEvents(from, to, amount, sharesToTransfer);

}

The Lead Judge also made a POC here https://gist.github.com/c-plus-plus-equals-c-plu
s-one/006f790bafb9e9a16020502b171d9683

50

In this PoC, when the exchangeRate grows by 10% and less shares are needed to fulfill the
same amount, 1000000000 - 900000000 = 100000000 shares are locked in the CreditVault,
while the trader's collateralmapping is 0.

Therefore, the generated yield is locked. Let us know if we're misunderstanding
something.

Ethronaut

@WangSecurity sorry, you are right, after double-checking, the addCollateral and remov
eCollateral do use ERC20 transfer, which means the operations are based on the
underlying amount, not shares.

this could lead to the issue you described, we'll fix it.

Ethronaut

@WangSecurity After internal discussion„ we will adopt a model similar to Lido’s wstETH

specifically, if a market maker wants to use the NativeLP token as collateral, they must
wrap it into a non-rebasing token (wstNLP), otherwise, we will only accept non-rebasing
ERC-20 tokens as collateral �the add/remove Collateral request need be signed from
our backend)

Given this design decision, we will not fix this issue, please include this response in the
final audit report, thanks

51

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

52

