

Disclaimer

The ensuing audit offers no assertions or assurances about the code's security. It cannot
be deemed an adequate judgment of the contract's correctness on its own. The authors of
this audit present it solely as an informational exercise, reporting the thorough research
involved in the secure development of the intended contracts, andmake nomaterial
claims or guarantees regarding the contract's post-deployment operation. The authors of
this report disclaim all liability for all kinds of potential consequences of the contract's
deployment or use. Due to the possibility of human error occurring during the code’s
manual review process, we advise the client team to commission several independent
audits in addition to a public bug bounty program.

5

Table of Contents
Disclaimer.. 3
Summary..8
Scope..10
Methodology... 13
Project Dashboard..15
CodeMaturity Evaluation..18
Findings.. 21

3S-LENFT-C01... 21
3S-LENFT-H01...23
3S-LENFT-M01.. 24
3S-LENFT-M02... 26
3S-LENFT-L01..28
3S-LENFT-L02...30
3S-LENFT-L03... 33
3S-LENFT-L04...35
3S-LENFT-L05... 37
3S-LENFT-N01...38
3S-LENFT-N02.. 39
3S-LENFT-N03.. 40
3S-LENFT-N04...41
3S-LENFT-N05.. 42
3S-LENFT-N06..43
3S-LENFT-N07.. 44
3S-LENFT-N08.. 45
3S-LENFT-N09..46
3S-LENFT-N10... 47
3S-LENFT-N11..49
3S-LENFT-N12...50
3S-LENFT-N13... 52
3S-LENFT-N14... 53
3S-LENFT-N15...55

6

3S-LENFT-N16...56
3S-LENFT-N17..57
3S-LENFT-N18...58
3S-LENFT-N19...59
3S-LENFT-N20..60
3S-LENFT-N21..61
3S-LENFT-N22.. 62
3S-LENFT-N23.. 63
3S-LENFT-N24.. 65
3S-LENFT-N25..66
3S-LENFT-N26..68

7

8

Summary

Three Sigma Labs audited leNFT in a 6 personweek engagement. The audit was conducted
from 05-06-2023 to 23-06-2023.

Protocol Description

leNFT is a protocol that aims to revolutionize NFT finance by providing a robust and efficient
platform for NFT trading and lending.

For trading, the protocol utilizes an AutomatedMarket Maker (AMM)model based on the
lssvmmodel popularized by sudoswap. This approach aims to provide themost efficient
liquidity utilization, resulting inmore profits for liquidity providers and better pricing for
traders. This makes leNFT an ideal choice for traders looking for low slippage and high
capital efficiency.

For lending, leNFT employs a peer-to-pool lending architecture that allows NFT holders to
access instant liquidity by borrowing against their assets. Liquidity providers can deposit
into lending pools and collect rewards originating from the loans' interest payments. This
incentivizes liquidity providers to participate in the ecosystem, and the borrowers can
access instant liquidity without having to sell their NFTs.

leNFT also features a vote-gauge system, similar to that of Curve, which incentivizes
liquidity providers by distributing LE inflation to LP providers through the use of Gauges. NFT
projects are incentivized to lock veLE in order to provide liquidity within their ecosystems.
[1]

https://lenft.gitbook.io/lenft-docs/

9

Java

10

Scope
All files present in the contracts folder.

contracts
├── libraries
│ ├── balancer
│ │ └── ERC20Helpers.sol
│ ├── logic
│ │ ├── BorrowLogic.sol
│ │ └── LiquidationLogic.sol
│ ├── types
│ │ ├── ConfigTypes.sol
│ │ └── DataTypes.sol
│ └── utils
│ ├── PercentageMath.sol
│ └── SafeCast.sol
└── protocol

├── AddressProvider.sol
├── Bribes.sol
├── FeeDistributor.sol
├── Gauges
│ ├── GaugeController.sol
│ ├── LendingGauge.sol
│ └── TradingGauge.sol
├── GenesisNFT.sol
├── Lending
│ ├── InterestRate.sol
│ ├── LendingMarket.sol
│ ├── LendingPool.sol
│ ├── LoanCenter.sol
│ ├── NFTOracle.sol
│ └── TokenOracle.sol
├── NativeToken.sol
├── NativeTokenVesting.sol
├── Trading
│ ├── LiquidityPairMetadata.sol
│ ├── PricingCurves
│ │ ├── Exponential.sol
│ │ └── Linear.sol
│ ├── SwapRouter.sol
│ ├── TradingPool.sol
│ ├── TradingPoolFactory.sol

https://github.com/leNFT/contracts/tree/master/contracts

11

│ └── TradingPoolHelpers.sol
├── Trustus
│ └── Trustus.sol
├── VotingEscrow.sol
└── WETHGateway.sol

The reviewwas conducted on the code present in the leNFT public repository, which
contains themain contracts, testing scripts as well as a documentation providing additional
information. The codewas frozen for review at commit
78170402e176f2f754e0e24cb22a90961c9e5799 .

Assumptions

The scope of the audit was carefully defined to include the contracts at the lowest level of
the inheritance hierarchy, as these are the ones that will be deployed to themainnet. The
only external libraries used in the implementation of these contracts were ones trusted by
the community (i.e. OpenZeppelin, Balancer and AAVE) - these libraries have already been
battle-tested bymultiple protocols, guaranteeing a high level of security.

https://github.com/leNFT/contracts/tree/78170402e176f2f754e0e24cb22a90961c9e5799/contracts

12

13

Methodology

To begin, we reasoned meticulously about the contract's business logic, checking
security-critical features to ensure that there were no gaps in the business logic and/or
inconsistencies between the aforementioned logic and the implementation. Second, we
thoroughly examined the code for known security flaws and attack vectors. Finally, we
discussed the most catastrophic situations with the team and reasoned backwards to
ensure they are not reachable in any unintentional form.

Taxonomy

In this audit we report our findings using as a guideline Immunefi’s vulnerability taxonomy,
which can be found at immunefi.com/severity-updated/. The final classification takes into
account the severity, according to the previous link, and difficulty of the exploit. The
following table summarizes the general expected classification according to severity and
difficulty; however, each issue will be evaluated on a case-by-case basis and may not
strictly follow it.

Severity / Difficulty HIGH MEDIUM LOW

NONE None

LOW Low

MEDIUM Low Medium Medium

HIGH Medium High High

CRITICAL High Critical Critical

http://immunefi.com/severity-updated/

14

15

Project Dashboard

Application Summary

Name leNFT

Commit 7817040

Language Solidity

Platform Ethereum

Engagement Summary

Timeline 05 June to 23 June, 2023

Nº of Auditors 2

Review Time 6 personweeks

Vulnerability Summary

Issue Classification Found Addressed Acknowledged

Critical 1 1 0

High 1 1 0

Medium 2 2 0

Low 5 5 0

None 26 26 0

https://github.com/leNFT/contracts/tree/78170402e176f2f754e0e24cb22a90961c9e5799/contracts

16

Category Breakdown

Suggestion 9

Documentation 1

Bug 4

Optimization 20

Good Code Practices 3

17

18

CodeMaturity Evaluation

CodeMaturity Evaluation Guidelines

Category Evaluation

Access Controls The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system.

Arithmetic The proper use of mathematical operations and semantics.

Centralization The presence of a decentralized governance structure for
mitigating insider threats andmanaging risks posed by contract
upgrades

Code Stability The extent to which the codewas altered during the audit.

Upgradeability The presence of parameterizations of the system
that allowmodifications after deployment.

Function
Composition

The functions are generally small and have clear
purposes.

Front-Running The system’s resistance to front-running attacks.

Monitoring All operations that change the state of the system emit events,
making it simple tomonitor the state of the system. These events
need to be correctly emitted.

Specification The presence of comprehensive and readable codebase
documentation.

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests,
integration tests, and verificationmethods) and sufficient test
coverage.

19

CodeMaturity Evaluation Results

Category Evaluation

Access Controls Satisfactory. The codebase has a strong access
control mechanism.

Arithmetic Satisfactory. The codebase uses Solidity version
>0.8.0 as well as takes the correct measures in
rounding the results of arithmetic operations.

Centralization Weak. The owner has significant privileges over the
protocol, namely upgrading the contracts and
setting new addresses using AddressProvider

Code Stability Satisfactory. The codewas stable during the audit.

Upgradeability Satisfactory. Major contracts can be upgraded by the
owner.

Function Composition Satisfactory. There is little duplicated logic and
functions have a clear purpose.

Front-Running Satisfactory. There are little front-running
opportunities

Monitoring Moderate. Some events are emitted, however some
lack info and some state changing operations are not
accompanied by events. [3S-LENFT-L03, N06]

Specification Moderate. There is documentation, but sometimes
lacking or not properly updated.

Testing and Verification Satisfactory.There is an adequate testing suite with
unit, integration, functional and fuzz testing.

20

21

Findings

3S-LENFT-C01
protocol/FeeDistributor.sol: claiming rewards will not allow for future
checkpoints

Id 3S-LENFT-C01
Classification Critical
Severity Critical
Likelihood High
Category Bug
Relevant Links protocol/FeeDistributor.sol

master/POC-3S-LENFT-C01.js

Description

The current implementation of the FeeDistributor requires an always increasing balance for
correct operation. This happens since the _accountedFees[token]mapping can never be
decreased. It is only updated in the following function:

function checkpoint(address token) external override {
(...)
// Find the current balance of the token in question
uint256 balance = IERC20Upgradeable(token).balanceOf(address(this));
// Add unaccounted fees to current epoch
_epochFees[token][currentEpoch] += balance - _accountedFees[token];
// Update total fees accounted for
_accountedFees[token] = balance;

}

This logic works whenever the balance of the contract is increasing, but an issue arises
when someone claims rewards, withdrawing funds from this contract without updating the
_accountedFeesmapping. If this ever happens, all subsequent calls to checkpoint() will
most likely revert, since the result of balance - _accountedFees[token]will be negative,
leading to an underflow.

https://github.com/leNFT/contracts/blob/master/contracts/protocol/FeeDistributor.sol
https://github.com/threesigmaxyz/leNFT_5june-issues-external/blob/master/POC-3S-LENFT-C01.js
https://github.com/leNFT/contracts/blob/master/contracts/protocol/FeeDistributor.sol

22

Since the checkpoint() function is called whenever fees are transferred to the protocol,
this function reverting will cause claimLiquidation() (on the Lending part of the protocol)
and buy()/sell() (on the Trading side of the protocol) to also revert, not allowing users to
claim liquidations nor buy/sell NFTs to the protocol.

Recommendation

In the claim() function, just before sending the rewards to the user, the _accountedFees
mapping should be updated to account for this change in contract balance. This can be
achievedwith the following line: _accountedFees[token] -= amountToClaim;

Tests for this scenario should also be included in the tests folder.

POC

POC-3S-LENFT-C01.js

Status

Addressed here: leNFT/contracts@3a3a6bf

https://github.com/threesigmaxyz/leNFT_5june-issues-external/blob/master/POC-3S-LENFT-C01.js
https://github.com/leNFT/contracts/commit/3a3a6bf7d7d678e500be960ef16908a95cda0a60

23

3S-LENFT-H01
protocol/WETHGateway.sol: contract can be griefed not allowing
borrowing

Id 3S-LENFT-H01
Classification High
Severity High
Likelihood Medium
Category Bug
Relevant Links protocol/WETHGateway.sol#L117

Description

The borrow operation of theWETHGateway contract can be rendered useless if someone
sends 1 wei to the contract (causing it to always revert on line 117):
assert(_weth.balanceOf(address(this)) == amount);

This issue is not critical since theWETHGateway contract is just a router which simplifies
operations with eth (by converting it to weth), however, the severity is still high since it is
used by the front end, so this exploit could significantly harm user experience.

Recommendation

Remove this line since the market.borrow() call will either revert or transfer the amount to
the contract. Even if it doesn't, the calls to unwrap the weth and send it back to the user will
also revert, so the user funds are always protected.

Note: Is is always possible to remove the balance of theWETHGateway contract, since
anyone can use depositTradingPool() to get approval for all NFTs andweth from the
contract. This would not present a definitive solution though, as any user could send
another wei to the contract, blocking it again.

Status

Addressed here: leNFT/contracts@c2c3eaa

https://github.com/leNFT/contracts/blob/master/contracts/protocol/WETHGateway.sol#L117
https://github.com/leNFT/contracts/blob/master/contracts/protocol/WETHGateway.sol#L117
https://github.com/leNFT/contracts/commit/c2c3eaa2b76d760ac5433b95ae2e479acf567c54

24

3S-LENFT-M01
protocol/Gauges/GaugeController.sol: incorrect getRewardsCeiling()
logic

Id 3S-LENFT-M01
Classification Medium
Severity Medium
Likelihood Medium
Category Bug
Relevant Links Gauges/GaugeController.sol#L478-L491

Description

The current implementation of the GaugeController has the following function to calculate
the rewards ceiling per epoch:

function getRewardsCeiling(uint256 epoch) public view returns (uint256) {
uint256 inflationEpoch;
// If we are in the loading period, return smaller rewards
if (epoch < LOADING_PERIOD) {

return (_initialRewards * epoch) / LOADING_PERIOD;
} else if (inflationEpoch > MAX_INFLATION_PERIODS) {

inflationEpoch = MAX_INFLATION_PERIODS;
} else {

inflationEpoch = epoch / INFLATION_PERIOD;
}
return

(_initialRewards * (3 ** inflationEpoch)) / (4 ** inflationEpoch);
}

The issue here is that the inflationEpoch is a memory variable initialized to zero, so the
condition if (inflationEpoch > MAX_INFLATION_PERIODS)will always be false, and the
codewill always set the inflationEpoch = epoch / INFLATION_PERIOD after the initial
loading period of 6months. This results in an incorrect calculation of the RewardsCeiling
after the MAX_INFLATION_PERIODS (8 years), where the RewardsCeiling will never reach its
cap.

https://github.com/leNFT/contracts/blob/master/contracts/protocol/Gauges/GaugeController.sol#L478-L491
https://github.com/leNFT/contracts/blob/master/contracts/protocol/Gauges/GaugeController.sol#L478-L491

25

Recommendation

Fix the getRewardsCeiling function.

Note: Since the formula for the RewardsCeiling is not described in the documentation, a
more specific suggestion can't be provided.

Status

Addressed here: leNFT/contracts@f8f48a7

https://github.com/leNFT/contracts/commit/f8f48a760a84c043bdb8c57692d9b68f6fc56b7a

26

3S-LENFT-M02
protocol/GenesisNFT.sol: Only 1336 GenesisNFT tokens can beminted

Id 3S-LENFT-M02
Classification Medium
Severity Medium
Likelihood High
Category Bug
Relevant Links documentation

protocol/GenesisNFT.sol#L42
protocol/GenesisNFT.sol#L344

Description

The documentationmentions that the Genesis Mint is limited to just 1337 tokens, which is
corroborated by the constant set in the GenesisNFT contract: MAX_CAP = 1337;

The issue is that the current implementation of the GenesisNFT contract only allows for
1336 NFTs to beminted. This contract uses the following logic for minting:

contract testCap {
uint256 constant MAX_CAP = 10;
uint256 counter = 1;
function mint(uint256 amount) external {

require(counter + amount <= MAX_CAP, "G:M:CAP_EXCEEDED");

for (uint256 i = 0; i < amount; i++) {
// Mint
counter ++;

}
}

}

Here, even though the MAX_CAP is set at 10 tokens, if you ever try to call themint function
with an amount of 10, the call will revert since the counter is initialized at 1, and so the
require condition 11 <= 10will be false.

https://lenft.gitbook.io/lenft-docs/genesis-mint
https://github.com/leNFT/contracts/blob/master/contracts/protocol/GenesisNFT.sol#L42
https://github.com/leNFT/contracts/blob/master/contracts/protocol/GenesisNFT.sol#L344
https://lenft.gitbook.io/lenft-docs/genesis-mint
https://github.com/leNFT/contracts/blob/master/contracts/protocol/GenesisNFT.sol#L42

27

Recommendation

Change line 344 to _tokenIdCounter.current() + amount <= getCap() + 1, and
add a test for this situation

Status

Addressed here: leNFT/contracts@59e5b41

https://github.com/leNFT/contracts/blob/master/contracts/protocol/GenesisNFT.sol#L344
https://github.com/leNFT/contracts/commit/59e5b4141513f5f970be127dfb258587f421117f

28

3S-LENFT-L01
Throughout code: functions are not reentrant secure

Id 3S-LENFT-L01
Classification Low
Severity Low
Likelihood Low
Category Suggestion
Relevant Links Solidity Documentation

Description

There are several instances of functions that don't use the secure
Checks-Effects-Interactions pattern commonly used in solidity to prevent reentrancy
attacks. This pattern states that solidity functions should:

- start by checking the contract state and function arguments, making sure theymatch the
required conditions.

- make all changes to internal storage as a result of the function call.

- leave for last external calls that could give flow control back to the user.

This practice ensures that all possible reentrant calls will bemade after state changes have
taken effect, making the reentrant calls identical to an ordinary call made in a future
transaction (minimizing exposure to reentrancy attacks).

In the current implementation, this is not a severe issue since the nonReentrant modifier
used is effective against most reentrancy attacks, however, this practice is still
recommended since it:

- doesn't cost any gas (unlikemutexes which constantly require storage reads andwrites)

- prevents reentrancy even in view functions (which don't usually have the nonReentrant
modifier). This is useful since reentrancy could be performed in a different protocol or third
party contract, which could use getters to obtain outdated or uninitialized storage values.

For instance, function createLock() on the VotingEscrow contract, mints ERC721 tokens to
users (letting then take execution control with function onERC721Received) before all the
appropriate storage initialization is performed, allowing users to call functions like

https://docs.soliditylang.org/en/v0.6.11/security-considerations.html

29

claimRebates()with a token that hasn't been initialized yet (i.e. _tokenIdCounter hasn't
been incremented, _lockedBalance[tokenId] and _nextClaimableEpoch[tokenId] are
still null, and the native tokens haven't been transferred to the contract).

Recommendation

For security redundancy, and to prevent future problems on upgrades or third party
integration, the use of this pattern is heavily suggested.

Some detected examples include:

- VotingEscrow: function createLock()

- Trading Gauge: function withdraw()

-Genesis NFT: function mint()

Here, the lines that allow user reentrancy (usually calls that transfer or mint ERC217 tokens
to users) should be placed at the very end of the respective functions.

Note:More information on this pattern can be found in the Solidity Documentation

Status

Addressed here: leNFT/contracts@f15aa0b

https://docs.soliditylang.org/en/v0.6.11/security-considerations.html
https://github.com/leNFT/contracts/commit/f15aa0b675636169507a4f23bbb5946bab8bf885

30

3S-LENFT-L02
Throughout codebase: cache variables to save on gas

Id 3S-LENFT-L02
Classification Low
Severity Low
Likelihood Medium
Category Optimization, Good Code Practices
Relevant Links Trading/TradingPool.sol#L384-L390

Trading/TradingPool.sol#L493-L499
Trading/TradingPool.sol#L384-L390
Trading/TradingPool.sol#L493-L499
protocol/VotingEscrow.sol#L196-L200
Lending/LendingMarket.sol#L209-L212
Trading/TradingPool.sol#L384-L390
Trading/TradingPool.sol#L493-L499

Description

Throughout the codebase, several times storage variables are loaded and used in the same
scopewhich incurs in significant gas costs since a SLOAD operation is muchmore
expensive than aMSTORE and then consequentMLOAD operations. Below is a list of several
times where this occurs:

TradingPool

- _addressProvider.getFeeDistributor() is called twice in the buy and sell functions.

- _addressProvider is loaded several times in the buy and sell functions.

VotingEscrow

- writeTotalWeightHistory, a lot of storage reads aremade in this function, save themost
used ones inmemory

- getEpoch(): cache variable _deployTimestamp to prevent one storage read

- cache _addressProvider.getNativeToken() (lines 220 and 225)

https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L384-L390
https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L493-L499
https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L384-L390
https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L493-L499
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/VotingEscrow.sol#L196-L200
https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/LendingMarket.sol#L209-L212
https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L384-L390
https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L493-L499
https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L493-L499
https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L493-L499
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/VotingEscrow.sol#L196-L200

31

Bribes:

- claim(): cache IVotingEscrow(votingEscrow).getEpoch(lockLastPoint.timestamp)
to prevent an external call

- withdrawBribe(): cache _userBribes[token][gauge][nextEpoch][msg.sender]

LoanCenter

- liquidateLoan() cache _loans[loanId].owner

Router

- cache _addressProvider.getTradingPoolFactory()

Fee Distribuitor

- cache _epochFees[token][epoch] in salvageFees()

- cache votingEscrow.getEpoch(block.timestamp) (line 146)

- cache IERC721Upgradeable(address(votingEscrow)).ownerOf(tokenId) in claim()

Genesis NFT:

- cache _addressProvider.getWETH() (lines 367 and 374 and 394)

- cache _addressProvider.getVotingEscrow() (lines 433 and 437)

- cache _tokenIdCounter.current()

- cache _addressProvider.getNativeToken() and _addressProvider.getWETH() (line
654 and 655)

GaugeController

- cache getTotalWeightAt(epoch) function getGaugeRewards()

Lending Gauge

- cache votingEscrow.getEpoch(block.timestamp) (line 101)

TradingGauge

- cache _lpValue[lpId] (lines 348 and 349)

LendingMarket

32

- createLendingPool()-> _addressProvider is loaded from storage several times.
_poolCount is also loaded a couple times

WETHGateway

- throughout the contract: _weth variable should be cached inmemory in each function
(and other storage variables if possible), since it is usedmore than 2 timesmost times.

Recommendation

Weunderstand that sometimes saving variables from storage tomemory is not possible
due to the possibility of the "Stack too deep" error; nevertheless, this pattern should still be
followedwhenever possible. Below is an example implementation in TradingPool, where the
fee distributor is loaded twice from storage in the same function both in the buy function
and in the sell function.

address feeDistributor_ = _addressProvider.getFeeDistributor();
IERC20(_token).safeTransfer(feeDistributor_ ,
PercentageMath.percentMul(totalFee, protocolFeePercentage));
IFeeDistributor(feeDistributor_).checkpoint(_token);

Status

Addressed here: leNFT/contracts@9e0e7dc

https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/LendingMarket.sol#L209-L212
https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L384-L390
https://github.com/leNFT/contracts/blob/2628b49bf5e334e8f8cb0fa2fef7d516bd78bbfe/contracts/protocol/Trading/TradingPool.sol#L493-L499
https://github.com/leNFT/contracts/commit/9e0e7dce12abf0cc8a255f76d2f2a9600dd27e01

33

3S-LENFT-L03
protocol/Bribes.sol: WithdrawBribe event should be emittedwith the
msg.sender

Id 3S-LENFT-L03
Classification Low
Severity Low
Likelihood Low
Category Suggestion
Relevant Links

Description

At themoment, the Bribes contract implements the following logic to deposit and withdraw
bribes:

function depositBribe(address briber, address token, address gauge, uint256
amount){

_userBribes[token][gauge][nextEpoch][briber] += amount;
IERC20Upgradeable(token).safeTransferFrom(msg.sender, address(this),

amount);
emit DepositBribe(briber, token, gauge, amount);

}
function withdrawBribe(address receiver, address token, address gauge,
uint256 amount){

_userBribes[token][gauge][nextEpoch][msg.sender] -= amount;
IERC20Upgradeable(token).safeTransfer(receiver, amount);
emit WithdrawBribe(receiver, token, gauge, amount);

}

Here, the issue is that the withdrawBribe function removes the bribe from themapping
_userBribes corresponding to the "msg.sender", but emits the event with the "receiver"
address. This means the user withdrawing the bribe in storage is not the one emitted by the
event, which also conflicts with the DepositBribe event (where the address emitted is the
one being changed in storage).

34

Recommendation

For consistency between the _userBribesmapping and DepositBribe/WithdrawBribe
events, theWithdrawBribe event should be emitted as: emit WithdrawBribe(msg.sender,

gauge, amount);.

Status

Addressed here: leNFT/contracts@ef492de

https://github.com/leNFT/contracts/commit/ef492de27ac2d4b781f82181433f62c88852309f

35

3S-LENFT-L04
Trading/TradingPool.sol: track totalProtocolFee instead of totalFee

Id 3S-LENFT-L04
Classification Low
Severity Low
Likelihood Low
Category Suggestion
Relevant Links

Description

On the TradingPool contract, the buy() and sell() functions use the following logic for the
protocol fee:

function buy()
for (uint i = 0; i < nftIds.length; i++) {

fee = spotPrice * fee;
protocolFee = fee * protocolFeePercentage;
tokenAmount += (spotPrice + fee - protocolFee);
totalFee += fee;

}
protocoTotalFee = totalFee * protocolFeePercentage

}

This logic is not optimized gas-wise, and will lead tomathematical rounding errors, which
result in a sum of protocolFee's subtracted from the LPs slightly smaller than the total fee
sent to the protocol.

Note: These rounding errors could even not allow LPs to remove their liquidity, in an extreme
casewhere the contract's balance would go negative by that tinymargin.

Recommendation

Since totalFee is only used to compute the protocoTotalFee, store the
totalProtocolFee instead of totalFee to improve readability, save gas and protect
against rounding errors, changing the above logic to:

36

function buy()
for (uint i = 0; i < nftIds.length; i++) {

fee = spotPrice * fee;
protocolFee = fee * protocolFeePercentage;
tokenAmount += (spotPrice + fee - protocolFee);
totalProtocolFee += protocolFee ;

}
}

Status

Addressed here: leNFT/contracts@407c469 and leNFT/contracts@4fd7404

https://github.com/leNFT/contracts/commit/407c4699ad1a3e9a51256d26175682886f0610f1
https://github.com/leNFT/contracts/commit/4fd7404d244a6f82b8abc1f8b63c29061cc1dfc5

37

3S-LENFT-L05
protocol/Lending/TokenOracle.sol: possibility of oracle prices rounding to
zero

Id 3S-LENFT-L05
Classification Low
Severity Low
Likelihood Low
Category Suggestion
Relevant Links Lending/TokenOracle.sol#L56

Description

On line 56 of the TokenOracle: return uint256(price) * (PRICE_PRECISION /

feedPrecision); there is a possibility that (PRICE_PRECISION / feedPrecision) rounds
down to zero, leading to a returned price of 0 eth per token.

At themoment this should not happen, since PRICE_PRECISION = 1e18 and
feedPrecision = 10 ** priceFeed.decimals(), with the current chainlink
AggregatorV3Interface's decimals being set to 8.

There is, however, the possibility that the returned decimals change in a future update, or
that the team changes the PRICE_PRECISION in a future version or the protocol.

Recommendation

Changing line 56 to return (uint256(price) * PRICE_PRECISION) / feedPrecision; is
safer, since if themultiplication ever overflowed, there would be an error (and the team
could solve the problem by setting a new oracle with a different PRICE_PRECISION). The
issue of overflow is also a lot less likely, since a uint256s can store values up to around
1.16e+77.

Status

Addressed here: leNFT/contracts@3496906

https://github.com/leNFT/contracts/blob/master/contracts/protocol/Lending/TokenOracle.sol#L56
https://github.com/leNFT/contracts/blob/master/contracts/protocol/Lending/TokenOracle.sol#L56
https://github.com/leNFT/contracts/commit/34969062d005d90f56e133dd89305e84b7de8849

38

3S-LENFT-N01
protocol/Trading/SwapRouter.sol: nonReentrant modifier isn't necessary

Id 3S-LENFT-N01
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links Trading/SwapRouter.sol

protocol/WETHGateway.sol

Description

Since the SwapRouter contract is just a router (it doesn't hold any funds or storage
variables), and the only user that can reenter is the caller, its external function does not
need the nonReentrant security measure. Moreover, since the functions it is calling already
have the samemodifier, the exposure to reentrancy attacks is basically null.

Recommendation

Remove the nonReentrant modifier to save gas.

Note: This issue is also valid for theWETHGateway contract

Status

Addressed here: leNFT/contracts@7ce25ea

https://github.com/leNFT/contracts/blob/master/contracts/protocol/Trading/SwapRouter.sol
https://github.com/leNFT/contracts/blob/master/contracts/protocol/WETHGateway.sol
https://github.com/leNFT/contracts/blob/master/contracts/protocol/Trading/SwapRouter.sol
https://github.com/leNFT/contracts/blob/master/contracts/protocol/WETHGateway.sol
https://github.com/leNFT/contracts/commit/7ce25ea8dea71d43dc6eea857b58b7dd6094c8ad

39

3S-LENFT-N02
libraries/types/DataTypes.sol: structs should be packed

Id 3S-LENFT-N02
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links types/DataTypes.sol

Description

Structs, especially when used inmappings and storedmultiple times, should be as compact
as possible, saving a considerable amount of gas on storage reads andwrites.

Recommendation

The following structs, defined in the DataTypes library, should be packed, taking up less
storage space:

- NftToLp (indexes can be uint128s)

- LiquidityPair (spotPrice and tokenAmount can be uint128s and fee and delta
uint48)

- LockedBalance (amount can be a uint216 and the timestamp a uint40)

- WorkingBalance (timestamp can be stored as uint40 and all variables can be packed into
a single storage slot)

- Point (timestamp can be stored as uint40 and all variables can be packed into a single
storage slot)

- MintDetails (lpAmount should be uint176 or smaller)

Status

Addressed here: leNFT/contracts@a683386

https://github.com/leNFT/contracts/blob/master/contracts/libraries/types/DataTypes.sol
https://github.com/leNFT/contracts/blob/master/contracts/libraries/types/DataTypes.sol
https://github.com/leNFT/contracts/commit/a683386bf25b900e412eb4897b10d7cfe1a5ab3e

40

3S-LENFT-N03
libraries/logic /BorrowLogic.sol: Move GenesisNFT validation logic to
GenesisNFT contract

Id 3S-LENFT-N03
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links logic/BorrowLogic.sol#L218-L245

Description

In the current implementation, the logic to validate if a genesisNFT can be locked by the
msg.sender on behalf of a user during loan creation is being executed on the
BorrowLogic.sol contract. This requires 5 calls to the genesisNFT to validate the
parameters and lock the genesisNFT.

Recommendation

All this logic could be placed inside a function lockGenesisNFT() inside the genesisNFT
contract, preventing all those external calls. This function could be the first thing executed
during the borrow validation and could also return the maxLTVBoost necessary for future
validations. This change should therefore also involve the replacement of function
setLockedState()with lockGenesisNFT() and unlockGenesisNFT()

Note: We are aware that the GenesisNFT contract is already quite large, so this optimization
might not be possible to implement if it would cause the GenesisNFT contract to exceed the
maximum contract size.

Status

Addressed here: leNFT/contracts@43354af

https://github.com/leNFT/contracts/blob/master/contracts/libraries/logic/BorrowLogic.sol#L218-L245
https://github.com/leNFT/contracts/blob/master/contracts/libraries/logic/BorrowLogic.sol#L218-L245
https://github.com/leNFT/contracts/commit/43354afe1d4bd4ed101f2438f15442757798270b

41

3S-LENFT-N04
libraries/logic /LiquidationLogic.sol: entire loan struct is being needlessly
loaded

Id 3S-LENFT-N04
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links logic/LiquidationLogic.sol#L71

Description

In function bidLiquidationAuction() of the LiquidationLogic, the entire loan struct is
being loaded from storage just to access loanData.state and loanData.pool. Since the
loanCenter already has getters for these two variables, it is cheaper to use these two
getters instead of calling the function loanCenter.getLoan(params.loanId).

Recommendation

Use getters getLoanLendingPool() and getLoanState() instead of getLoan() to save gas
on storage loads.

Status

Addressed here: leNFT/contracts@babafec

https://github.com/leNFT/contracts/blob/master/contracts/libraries/logic/LiquidationLogic.sol#L71
https://github.com/leNFT/contracts/blob/master/contracts/libraries/logic/LiquidationLogic.sol#L71
https://github.com/leNFT/contracts/commit/babafecfcf6f002371c43d2775fbc8d91ca0f668

42

3S-LENFT-N05
libraries/types/ConfigTypes.sol: pack InterestRateConfig struct
variables to save gas

Id 3S-LENFT-N05
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links types/ConfigTypes.sol#L24

Description

Currently, the InterestRateConfig struct has the following variables:
struct InterestRateConfig {

uint256 optimalUtilizationRate;
uint256 baseBorrowRate;
uint256 lowSlope;
uint256 highSlope;

}

These variables are either rates or slopes, with values in the order of magnitude of a few
thousand on the test parameters. Since this struct is used quite frequently andmost of the
time all the parameters are loaded in the same transaction, packing all these variables into a
single storage slot would save a great deal of gas.

Storing these 4 variables as uint64s would still allow them to hold values up to ~1.84e+19, far
above the interval required for their application.

Recommendation

Change the struct variable's type from uint256 to uint64.

Status

Addressed here: leNFT/contracts@3339a7c and leNFT/contracts@9ad882c

https://github.com/leNFT/contracts/blob/master/contracts/libraries/types/ConfigTypes.sol#L24
https://github.com/leNFT/contracts/blob/master/contracts/libraries/types/ConfigTypes.sol#L24
https://github.com/leNFT/contracts/commit/3339a7c6a574af1ac9be38954f91c0f547bc7d59
https://github.com/leNFT/contracts/commit/9ad882c66313b2907e623b919f0cc5ec1ada35e2

43

3S-LENFT-N06
Throughout codebase: some events could be emitted

Id 3S-LENFT-N06
Classification None
Severity None
Likelihood
Category Suggestion
Relevant Links Lending/InterestRate.sol#L32-L39

Lending/InterestRate.sol#L43-L48
Lending/LendingMarket.sol#LL258C1-L259C1

Description

- In InterestRate.sol, when adding or removing a token no event is emitted publicizing this
change.

-When creating a pool here, more information could be given in the event.

Recommendation

- Emit "TokenAdded" and "TokenRemoved" events when adding or removing a token.

- Also emit the underlying asset of the pool in the CreateLendingPool event

Status

Addressed here: leNFT/contracts@e7bb474

https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/InterestRate.sol#L32-L39
https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/InterestRate.sol#L43-L48
https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/LendingMarket.sol#LL258C1-L259C1
https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/InterestRate.sol#L32-L39
https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/InterestRate.sol#L43-L48
https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/LendingMarket.sol#LL258C1-L259C1
https://github.com/leNFT/contracts/commit/e7bb474897e89c8fd74840f6271905cf350a2e89

44

3S-LENFT-N07
protocol/Lending/TokenOracle.sol: getTokenETHPrice() should also
return price precision

Id 3S-LENFT-N07
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links Lending/TokenOracle.sol

logic/ValidationLogic.sol#L147-L148
logic/ValidationLogic.sol#L215-L218

Description

In the current implementation of the TokenOracle contract, 2 external calls are necessary to
get the real token eth price: one to function getTokenETHPrice() and another to function
getPricePrecision() (to get the correct decimal places). This leads to unnecessary
external calls in functions: validateBorrow() and validateCreateLiquidationAuction() in the
ValidationLogic contract, resulting in gas waste.

Recommendation

In the TokenOracle contract, function getTokenETHPrice() should return a tuple with the
price and the price precision, since the two are always necessary to get the actual token
price.

Status

Addressed here: leNFT/contracts@c0775d1

https://github.com/leNFT/contracts/blob/master/contracts/protocol/Lending/TokenOracle.sol
https://github.com/leNFT/contracts/blob/master/contracts/libraries/logic/ValidationLogic.sol#L147-L148
https://github.com/leNFT/contracts/blob/master/contracts/libraries/logic/ValidationLogic.sol#L215-L218
https://github.com/leNFT/contracts/blob/master/contracts/protocol/Lending/TokenOracle.sol
https://github.com/leNFT/contracts/blob/master/contracts/libraries/logic/ValidationLogic.sol#L147-L148
https://github.com/leNFT/contracts/blob/master/contracts/libraries/logic/ValidationLogic.sol#L215-L218
https://github.com/leNFT/contracts/commit/c0775d168c8ddde17d0a40b7fb6886d59f0c357a

45

3S-LENFT-N08
Documentation: Incorrect formula for rewards

Id 3S-LENFT-N08
Classification None
Severity None
Likelihood
Category Documentation
Relevant Links Gauges

Gauges/GaugeController.sol#L497

Description

On the Gauges documentation page, the formula for the rewards(epoch) presented does
notmatch the plotted curve nor the code implementation.

The formula presented is:

- rewards = ceiling * (locked_LE / (5 * total_LE)) ^3

This represents amonotonically increasing function starting at 0 (when the locked tokens
are 0) and reaching 0.008*ceiling (when the locked_LE is equal to the total_LE). This
function does notmatch the decreasing function plotted in the graph.

The code implementation uses the formula:

- rewards = ceiling * (1 - (locked_LE / (5 * total_LE))) ^3

which starts at 1* ceiling and decreases to 0.512*ceiling, matching the plotted curve.

Recommendation

Fix the documentation

Status

Addressed here: leNFT/docs@de4ef25

https://lenft.gitbook.io/lenft-docs/le-token/gauges
https://github.com/leNFT/contracts/blob/master/contracts/protocol/Gauges/GaugeController.sol#L497
https://lenft.gitbook.io/lenft-docs/le-token/gauges
https://github.com/leNFT/contracts/blob/master/contracts/protocol/Gauges/GaugeController.sol#L497
https://github.com/leNFT/docs/commit/de4ef2552ae5781e6a1f8625982df1f4a082b730

46

3S-LENFT-N09
Throughout codebase: remove imports of unused libraries

Id 3S-LENFT-N09
Classification None
Severity None
Likelihood
Category Good Code Practices
Relevant Links Lending/LendingMarket.sol#L4-L25

Lending/LoanCenter.sol#L4-L13
protocol/GenesisNFT.sol#L4-L27
Trading/TradingPoolFactory.sol#L4-L15

Description

In several files in the codebase, several libraries are imported but never used.

LendingMarket: ILoanCenter, ERC721Upgradeable

LoanCenter: IERC721Upgradeable, Trustus

GenesisNFT: Initializable

TradingPoolFactory: ERC721Upgradeable

Recommendation

Remove thementioned imports.

Status

Addressed here: leNFT/contracts@c3b3f71

https://github.com/leNFT/contracts/blob/9113329743b3e0511434df51c529ed006adf043d/contracts/protocol/Lending/LendingMarket.sol#L4-L25
https://github.com/leNFT/contracts/blob/9113329743b3e0511434df51c529ed006adf043d/contracts/protocol/Lending/LoanCenter.sol#L4-L13
https://github.com/leNFT/contracts/blob/9113329743b3e0511434df51c529ed006adf043d/contracts/protocol/GenesisNFT.sol#L4-L27
https://github.com/leNFT/contracts/blob/9113329743b3e0511434df51c529ed006adf043d/contracts/protocol/Trading/TradingPoolFactory.sol#L4-L15
https://github.com/leNFT/contracts/blob/9113329743b3e0511434df51c529ed006adf043d/contracts/protocol/Lending/LendingMarket.sol#L4-L25
https://github.com/leNFT/contracts/blob/9113329743b3e0511434df51c529ed006adf043d/contracts/protocol/Lending/LoanCenter.sol#L4-L13
https://github.com/leNFT/contracts/blob/9113329743b3e0511434df51c529ed006adf043d/contracts/protocol/GenesisNFT.sol#L4-L27
https://github.com/leNFT/contracts/blob/9113329743b3e0511434df51c529ed006adf043d/contracts/protocol/Trading/TradingPoolFactory.sol#L4-L15
https://github.com/leNFT/contracts/commit/c3b3f7122666120836447b40b55bdf992fb0be93

47

3S-LENFT-N10
Throughout codebase: overuse of libraries

Id 3S-LENFT-N10
Classification None
Severity None
Likelihood
Category Optimization, Good Code Practices
Relevant Links

Description

The protocol uses several libraries to aid in some operations. We consider that this flow is
overused and some libraries can be removed or reduced.

It should also be noted that the way the architecture is implemented right now, it
sometimesmakes code confusing andmakes the code developmentmore prone to errors in
the future. For example, having validation logic separatedmakes it harder in certain function
calls to check if the arguments have previously been validated or not and increases the
amount of calls needed in the validation libraries since the information needed has to be
fetched from other contracts. Moreover, this flow could also hurt future code upgrades.

Recommendation

- remove LockLogic library and incorporate the few lines of code in the contract it is used

- remove LoanLogic library and incorporate the few lines of code in the contract it is used

- as a general rule of thumb, wewould recommend not using libraries (more expensive and
makes the code confusing since it leads to several jumps between files) in situations where
the code logic itself is only being used once;

Note: since the protocol is so far into code development we understand it is not feasible to
make this change, but would advise against this architecture in future coding endeavors.

48

Status

Addressed here: leNFT/contracts@4c03415, leNFT/contracts@cc9c92c and
leNFT/contracts@a739274

https://github.com/leNFT/contracts/commit/4c03415c4edd186a8b78d97ebf9b41ef5c33ea78
https://github.com/leNFT/contracts/commit/cc9c92c605ca2d3e53bc1fb0eed337cd9b17d102
https://github.com/leNFT/contracts/commit/a739274478fbff289e779a32eab44911fe8f45dd

49

3S-LENFT-N11
protocol/Trading/LiquidityPairMetadata.sol: internal function "trait"
should start with underscore

Id 3S-LENFT-N11
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links Trading/LiquidityPairMetadata.sol#L225

Description

According to the standard solidity convention, internal function names should start with an
underscore. This convention is used throughout the repo, except for function trait() in the
LiquidityPairMetadata contract.

Recommendation

Change the function name to "_trait"

Status

Addressed here: leNFT/contracts@940843e and leNFT/contracts@4bbbeb7

https://github.com/leNFT/contracts/blob/master/contracts/protocol/Trading/LiquidityPairMetadata.sol#L225
https://github.com/leNFT/contracts/blob/master/contracts/protocol/Trading/LiquidityPairMetadata.sol#L225
https://github.com/leNFT/contracts/commit/940843e0c64e9787967e1e20ae81dbce3adf994f
https://github.com/leNFT/contracts/commit/4bbbeb785adb2d90f4163f3e15e45102acca9ef3

50

3S-LENFT-N12
Throughout code: variables should be immutable

Id 3S-LENFT-N12
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links

Description

Throughout the code base, there aremultiple contracts with variables set in the
initialization and not allowed to change. These variables should be set to immutable to save
gas, since they will be stored in the bytecode instead of storage (preventing all the
SLOADs).

Recommendation

Change the following variables to immutable.

LendingMarket:

- _addressProvider

LoanCenter

- _addressProvider

- _defaultCollectionsRiskParameters.maxLTV and
_defaultCollectionsRiskParameters.liquidationThreshold (they should also be set as
independent variables and not as a struct, since they are never loaded together)

GaugeController

- _addressProvider

- _initialRewards

51

Trustus

- INITIAL_CHAIN_ID

- INITIAL_DOMAIN_SEPARATOR

Status

Addressed here: leNFT/contracts@3a3d49f , leNFT/contracts@3c7808e and
leNFT/contracts@defafa3

https://github.com/leNFT/contracts/commit/3a3d49f4928ce726f2814d9136323012feebdb16
https://github.com/leNFT/contracts/commit/3c7808e3cce08ebb8d5bace3561e52598d395dc0
https://github.com/leNFT/contracts/commit/defafa3547667814998b60214e894fa776212382

52

3S-LENFT-N13
Throughout codebase: multiple comments fixes

Id 3S-LENFT-N13
Classification None
Severity None
Likelihood
Category Suggestion
Relevant Links protocol/WETHGateway.sol#L41-L42

protocol/WETHGateway.sol#L49
protocol/WETHGateway.sol#L74-L80
protocol/VotingEscrow.sol#L39

Description

There are some typos or missing natspec comments throughout codebase

Suggestion

WETHGateway

- missing natspec comment in constructor

- typo in natspec comment

- missing natspec comment for variable genesisNFTid

VotingEscrow

- typo in natspec comment: "calimable"-> "claimable"

Status

Addressed here: leNFT/contracts@9241d1d

https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/WETHGateway.sol#L41-L42
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/WETHGateway.sol#L49
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/WETHGateway.sol#L74-L80
https://github.com/leNFT/contracts/blob/master/contracts/protocol/VotingEscrow.sol#L39
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/WETHGateway.sol#L41-L42
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/WETHGateway.sol#L49
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/WETHGateway.sol#L74-L80
https://github.com/leNFT/contracts/blob/master/contracts/protocol/VotingEscrow.sol#L39
https://github.com/leNFT/contracts/commit/9241d1d1c33130f8695dc84634b180a65cd8bab9

53

3S-LENFT-N14
protocol/Gauges/LendingGauge.sol: EntireWorkingBalance struct is
being loaded from storage just to access one field

Id 3S-LENFT-N14
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links Gauges/LendingGauge.sol#L272-L277

Gauges/LendingGauge.sol#L288

Description

The current implementation of the _checkpoint() function of the LendingGauge contract
has the following code to load theWorkingBalance struct from storage:

DataTypes.WorkingBalance memory oldWorkingBalance;
if (_workingBalanceHistory[user].length > 0) {

oldWorkingBalance = _workingBalanceHistory[user][
_workingBalanceHistory[user].length - 1

];
}

Since the oldWorkingBalance variable is only used once to read the
oldWorkingBalance.weight, this variable should be loaded instead of the entire struct.

Recommendation

Replace the above codewith:

uint256 oldWorkingBalanceWeight;
if (_workingBalanceHistory[user].length > 0) {

oldWorkingBalanceWeight = _workingBalanceHistory[user][
_workingBalanceHistory[user].length - 1].weight;

https://github.com/leNFT/contracts/blob/master/contracts/protocol/Gauges/LendingGauge.sol#L272-L277
https://github.com/leNFT/contracts/blob/master/contracts/protocol/Gauges/LendingGauge.sol#L288
https://github.com/leNFT/contracts/blob/master/contracts/protocol/Gauges/LendingGauge.sol#L272-L277

54

}

And change variable oldWorkingBalance.weight to oldWorkingBalanceWeight on line 288

Status

Addressed here: leNFT/contracts@59f8f0d and leNFT/contracts@220687e

https://github.com/leNFT/contracts/blob/master/contracts/protocol/Gauges/LendingGauge.sol#L288
https://github.com/leNFT/contracts/commit/59f8f0d166f8a2ee0b9baf522ebba5e8fbbe31f0
https://github.com/leNFT/contracts/commit/220687ea6637911241284339e9b115cadbcdd56a

55

3S-LENFT-N15
Throughout codebase: rename variables to better represent their
meaning

Id 3S-LENFT-N15
Classification None
Severity None
Likelihood
Category Suggestion
Relevant Links Lending/LoanCenter.sol#L269

types/ConfigTypes.sol#L15

Description

Some variables should be renamed to better represent their use andmeaning.

Recommendation

- LoanCenter: Lines 276 and 280, rename 'tokensPrice' to 'NFTsPrice' or 'CollateralPrice' to
better represent its meaning ('tokens' is very generic)

- ConfigTypes, struct LendingPoolConfig, "auctioneerFee"-> "auctioneerFeeRate", since
the true actioner fee is this value times the loan debt

Status

Addressed here: leNFT/contracts@9113329

https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/Lending/LoanCenter.sol#L269
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/libraries/types/ConfigTypes.sol#L15
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/protocol/Lending/LoanCenter.sol#L269
https://github.com/leNFT/contracts/blob/bb8708ab9ab319f64ef3a45aa549d95755e2afaf/contracts/libraries/types/ConfigTypes.sol#L15
https://github.com/leNFT/contracts/commit/9113329743b3e0511434df51c529ed006adf043d

56

3S-LENFT-N16
protocol/VotingEscrow.sol: unnecessarymodifiers

Id 3S-LENFT-N16
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links

Description

On the VotingEscrow contract, functions:

- increaseAmount()

- increaseUnlockTime()

- withdraw()

- claimRebates()

implement themodifiers lockExists(tokenId) and lockOwner(tokenId), which check
that the token exists (owner is not the zero address) and that themessage sender is the
token owner, respectively.

Here, since msg.senderwill never be the zero address, the lockExists(tokenId) modifier
is redundant.

Recommendation

On the functions listed above, remove the lockExists(tokenId)modifier

Status

Addressed here: leNFT/contracts@bb8708a

https://github.com/leNFT/contracts/commit/bb8708ab9ab319f64ef3a45aa549d95755e2afaf

57

3S-LENFT-N17
protocol/Lending/LoanCenter.sol: missing natspec comments & variable
naming

Id 3S-LENFT-N17
Classification None
Severity None
Likelihood
Category Suggestion
Relevant Links Lending/LoanCenter.sol#L78-L95

Description

Natspec comments for `createLoan()` function is missing comment for owner argument

Recommendation

- Add comment describing owner argument

- Additionally, change argument name, since owner can be confusedwith the contract
owner of the LoanCenter (since the contract is Ownable and has a callable function
owner())

Status

Addressed here: leNFT/contracts@db1971f

https://github.com/leNFT/contracts/blob/9ff315b6bcb384089252d02e4b91be73ec158c37/contracts/protocol/Lending/LoanCenter.sol#L78-L95
https://github.com/leNFT/contracts/blob/9ff315b6bcb384089252d02e4b91be73ec158c37/contracts/protocol/Lending/LoanCenter.sol#L78-L95
https://github.com/leNFT/contracts/commit/db1971fa9f7b04232347a066e87941cef339f115

58

3S-LENFT-N18
protocol/VotingEscrow.sol: unnecessary struct storage load

Id 3S-LENFT-N18
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links protocol/VotingEscrow.sol#L443

protocol/VotingEscrow.sol#L447

Description

On the VotingEscrow contract, when creating a lock, line 443

DataTypes.LockedBalance memory oldLocked = _lockedBalance[tokenId];will always
return a struct with 0's, so there is no need to load this struct from storage.

Similarly, in line 447, the struct that was just written to storage is being loaded.

Recommendation

- Replace line 443 with DataTypes.LockedBalance memory oldLocked =

DataTypes.LockedBalance(0,0);

- Replace line 447 with _checkpoint(tokenId, oldLocked,

DataTypes.LockedBalance(amount, roundedUnlockTime));

This would prevent 4 SLOADs, saving a considerable amount of gas

Status

Addressed here: leNFT/contracts@45a7cda and leNFT/contracts@871161d

https://github.com/leNFT/contracts/blob/master/contracts/protocol/VotingEscrow.sol#L443
https://github.com/leNFT/contracts/blob/master/contracts/protocol/VotingEscrow.sol#L447
https://github.com/leNFT/contracts/blob/master/contracts/protocol/VotingEscrow.sol#L443
https://github.com/leNFT/contracts/blob/master/contracts/protocol/VotingEscrow.sol#L447
https://github.com/leNFT/contracts/commit/45a7cda4e8855a7857de8f5419c98702e88c6879
https://github.com/leNFT/contracts/commit/871161daca11c05a986345b45522285d55e67f61

59

3S-LENFT-N19
protocol/GenesisNFT.sol: remove always false condition

Id 3S-LENFT-N19
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links protocol/GenesisNFT.sol#L243-L245

Description

The genesis NFT contract, function _getCircleColor() has the following statement:

if (MAX_LOCKTIME == 0) {
return "000000"; // return black

}

Since MAX_LOCKTIME is a constant equal to 180 days it can never be zero.

Recommendation

Remove this statement

Status

Addressed here: leNFT/contracts@1d247b6

https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/GenesisNFT.sol#L243-L245
https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/GenesisNFT.sol#L243-L245
https://github.com/leNFT/contracts/commit/1d247b6928fbb4d618b550f235b15bfbfad90d1d

60

3S-LENFT-N20
protocol/VotingEscrow.sol: duplicated requirement

Id 3S-LENFT-N20
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links protocol/VotingEscrow.sol#L323-L335

Description

The current implementation of the VotingEscrow has the following function:

function getLockHistoryPoint(uint256 tokenId,uint256 index) public view
returns (DataTypes.Point memory) {

require(index < _lockHistory[tokenId].length, "VE:GLHP:INDEX_TOO_HIGH");
return _lockHistory[tokenId][index];

}

Here, the require(index < _lockHistory[tokenId].length,

"VE:GLHP:INDEX_TOO_HIGH"); isn't necessary since solidity automatically adds this check
by default when accessing an array element (at themoment this check is being run twice)

Recommendation

Remove line 333, require(index < _lockHistory[tokenId].length,

"VE:GLHP:INDEX_TOO_HIGH");

Status

Addressed here: leNFT/contracts@9ff315b

https://github.com/leNFT/contracts/blob/master/contracts/protocol/VotingEscrow.sol#L323-L335
https://github.com/leNFT/contracts/blob/master/contracts/protocol/VotingEscrow.sol#L323-L335
https://github.com/leNFT/contracts/commit/9ff315b6bcb384089252d02e4b91be73ec158c37

61

3S-LENFT-N21
protocol/Lending/InterestRate.sol: cheaper to store the
OptimalBorrowRate

Id 3S-LENFT-N21
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links Lending/InterestRate.sol#L116

Description

Calling function `getOptimalBorrowRate()` is expensive, since it requires 3 storage loads
and somemathematical computations.

Recommendation

- It would be cheaper, gas-wise, to store the OptimalBorrowRate in the
ConfigTypes.InterestRateConfig struct, in the _interestRateConfigsmapping and just
load it from storagewhenever needed, since the value of this variable is only dependant on
other config values.

- Tomake sure the formula is correct, the OptimalBorrowRate could be calculated inside
function setInterestRateConfig(), this way it would only be executed once per token

Status

Addressed here: leNFT/contracts@188036a, leNFT/contracts@ca9aeca,
leNFT/contracts@3339a7c and leNFT/contracts@56f766c

https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/InterestRate.sol#L116
https://github.com/leNFT/contracts/blob/9b1ae95f97ec5d2423c022179642714cee470a68/contracts/protocol/Lending/InterestRate.sol#L116
https://github.com/leNFT/contracts/commit/188036a42e972fd3f0e1ca67d4b0a69dc915f5d4
https://github.com/leNFT/contracts/commit/ca9aecad59e7e2451fd31a973dddb3c8a8db754b
https://github.com/leNFT/contracts/commit/3339a7c6a574af1ac9be38954f91c0f547bc7d59
https://github.com/leNFT/contracts/commit/56f766c40b93069c68c6be403dadaa0050e93b86

62

3S-LENFT-N22
Trading/TradingPool.sol: nonReentrant modifier being calledmany times
inside a function

Id 3S-LENFT-N22
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links

Description

The current implementation of the removeLiquidityBatch(uint256[] lpIds) function
calls the function removeLiquidity(uint256 lpId) for every LP ID in the array. Since
function removeLiquidity(uint256 lpId) is public and reentrancy protected, removing
liquidity by batch will result in switching themutex variable (of the nonReentrant modifier)
on and offmultiple times, leading to gas waste.

Recommendation

To avoid constantly setting the nonReentrant mutex on and off, consider writing the
removeLiquidity logic in a private function, without the nonReentrant modifier, and calling
this function from the external functions removeLiquidityBatch and removeLiquidity,
(which would be reentrancy protected)

Status

Addressed here: leNFT/contracts@ed7c261 and leNFT/contracts@77e1657

https://github.com/leNFT/contracts/commit/ed7c261fb1c7724537ee53400f3b59b685acbfe9
https://github.com/leNFT/contracts/commit/77e1657c0d3e60c39130ba35f06aa3d4555d6a26

63

3S-LENFT-N23
Trading/SwapRouter.sol: Replace line to reduce gas and improve
readability

Id 3S-LENFT-N23
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links

Description

The current implementation of the SwapRouter, function swap() has the following
statement:

// If the price difference + sell price is greater than the buy price,
return the difference to the user
if (sellPrice + priceDiff > buyPrice) {

IERC20(sellPoolToken).safeTransfer(
msg.sender,
sellPrice + priceDiff - buyPrice

);
change = sellPrice + priceDiff - buyPrice;

}

Here, the variable change, i.e., sellPrice + priceDiff - buyPrice is being computed
twice.

Recommendation

Change the statement to the following to improve readability and improve gas usage:

// If the price difference + sell price is greater than the buy price,
return the difference to the user
if (sellPrice + priceDiff > buyPrice) {

64

change = sellPrice + priceDiff - buyPrice;
IERC20(sellPoolToken).safeTransfer(

msg.sender,
change

);
}

Status

Addressed here: leNFT/contracts@03fda52

https://github.com/leNFT/contracts/commit/03fda52260b303cd86f83d5a8818815c9df9cc19

65

3S-LENFT-N24
protocol/Lending/LoanCenter.sol: functions repayLoan() and
liquidateLoan() sharemost of the code

Id 3S-LENFT-N24
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links Lending/LoanCenter.sol#L130-L185

Description

In the LoanCenter, functions repayLoan() and liquidateLoan() have the exact same code
(except for the first line that sets the loanState).

Recommendation

Knowing this, an auxiliary internal function should be created to close a loan, i.e.:

- Delete themapping fromNFT to loan ID

- Remove loan from user active loans

Creating this internal function would substantially reduce the LoanCenter contract size and
improve code readability.

Status

Addressed here: leNFT/contracts@03fda52 and leNFT/contracts@5e8edb3

https://github.com/leNFT/contracts/blob/78170402e176f2f754e0e24cb22a90961c9e5799/contracts/protocol/Lending/LoanCenter.sol#L130-L185
https://github.com/leNFT/contracts/blob/78170402e176f2f754e0e24cb22a90961c9e5799/contracts/protocol/Lending/LoanCenter.sol#L130-L185
https://github.com/leNFT/contracts/commit/03fda52260b303cd86f83d5a8818815c9df9cc19
https://github.com/leNFT/contracts/commit/5e8edb3298c702f104b952aac4b868c2e48728fa

66

3S-LENFT-N25
Bribes.sol: Rework loop to save gas

Id 3S-LENFT-N25
Classification None
Severity None
Likelihood
Category Optimization
Relevant Links

Description

On the claim() function of the Bribes contract, the following loop can be simplified (saving
gas in storage reads andwrites):

uint256 epoch;
for (uint i = 0; i < 50; i++) {

// Break if we're at the current epoch or higher
epoch = _voteNextClaimableEpoch[token][gauge][tokenId];
if (epoch > currentEpoch) {

break;
}
(...)
// Increment epoch
_voteNextClaimableEpoch[token][gauge][tokenId]++;

}

Recommendation

Rewrite the loop as:

uint256 epoch = _voteNextClaimableEpoch[token][gauge][tokenId];
for (uint i = 0; i < 50 && epoch <= currentEpoch; i++) {

(...)
// Increment epoch
epoch++;

67

}
_voteNextClaimableEpoch[token][gauge][tokenId] = epoch;

Note: The loop could even be further optimized by incrementing iwithout checking for
overflow:

uint256 epoch = _voteNextClaimableEpoch[token][gauge][tokenId];
for (uint i = 0; i < 50 && epoch <= currentEpoch;) {

(...)
// Increment epoch
epoch++;
unchecked {

++i;
}

}
_voteNextClaimableEpoch[token][gauge][tokenId] = epoch;

Status

Addressed here: leNFT/contracts@2198a24 and leNFT/contracts@5f0c82b

https://github.com/leNFT/contracts/commit/2198a246a75d1f5a3c9cb5218a63510164b0a8d0
https://github.com/leNFT/contracts/commit/5f0c82b62cd7e0c0afb59104c9293d32f5f7e082

68

3S-LENFT-N26
GenesisNFT.sol: use payable(address(this)) instead of payable(this)

Id 3S-LENFT-N26
Classification None
Severity None
Likelihood
Category Suggestion
Relevant Links

Description

The current implementation of the GenesisNFT.sol contract has the following receive
function:

// Function to receive Ether
receive() external payable {

revert("G:RECEIVE_NOT_ALLOWED");
}

This function always reverts, and only exists because the exitPool() function of the
balancer vaults require an address payable as argument, and the current GenesisNFT.sol
contract uses the payable(this) to retrieve the payable address.

Recommendation

Casting the contract to an address first, and then to a payable address (i.e.
payable(address(this))) would allow the removal of this function, maintaining the exact
same behavior (of reverting on ether received).

Status

Addressed here: leNFT/contracts@7817040

https://github.com/leNFT/contracts/commit/78170402e176f2f754e0e24cb22a90961c9e5799

