
CertiK Assessed on Jan 28th, 2025

Betfin Lottery Contracts
Security Assessment

Executive Summary

Vulnerability Summary

8 Critical 8 Resolved

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

2 Major 1 Resolved, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

5 Medium 5 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

9 Minor 8 Resolved, 1 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

10 Informational 7 Resolved, 3 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY BETFIN LOTTERY CONTRACTS

CertiK Assessed on Jan 28th, 2025

Betfin Lottery Contracts

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

GameFi

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 01/28/2025

KEY COMPONENTS

N/A

CODEBASE
lottery-contract

View All in Codebase Page

COMMITS
9583befb88b5201579685f15649573ac54a6bf5b

658e27289934d7901953a1f1fd0625fd1e5d3c3b

View All in Codebase Page

34
Total Findings

29
Resolved

0
Mitigated

0
Partially Resolved

5
Acknowledged

0
Declined

https://github.com/betfinio/lottery-contract/tree/
https://github.com/betfinio/lottery-contract/tree/9583befb88b5201579685f15649573ac54a6bf5b/src
https://github.com/betfinio/lottery-contract/tree/658e27289934d7901953a1f1fd0625fd1e5d3c3b

TABLE OF CONTENTS BETFIN LOTTERY CONTRACTS

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

Privileged Functions

External Dependencies

Findings

LOE-01 : Missing Validation on the Status During Editing Tickets Process

LOE-02 : Missing Validation of New Tickets During Editing Tickets Process

LOT-03 : Missing Validation on the Status of the Lottery Round in `_claim` Function

LRB-02 : Missing Validation on the Status of the Lottery Round in `requestRandomness` Function

LRB-07 : Refund Process Always Reverts due to Missing Bets Array Population

LRB-08 : Incorrect Recipient During Refund Process

LRH-01 : `fulfillRandomWords` Always Revert Due to Reentrancy Protection of VRF Coordinator

LRH-02 : Recover Process After Requesting Random Numbers Cannot Recover `MAX_SHARES *
ticketPrice`

LOT-02 : Centralization Related Risks

LOT-04 : Locked Tokens in the Lottery Contract Due to Miscalculated `toSend`

LIB-01 : Ticket's Numbers May be Large Than `0x3E00000` And The Last Bit Is Not Zero

LOT-06 : Concurrent Rounds Overwrite `additionalJackpot` Causing Claim Inconsistencies

LRB-03 : Improperly Handing Duplicates in Lottery Number Generation Using Bitwise Operations

LRT-01 : Potential Locked Funds Due to Empty Bets of Round

LRU-01 : Potential Invalid Winning Ticket Generation in `fulfillRandomWords`

LBB-02 : Missing Zero Address Validation

LOR-01 : Non-Uniform Distribution of the Final Set of Numbers

LOR-02 : Incorrect Amount of `JackpotWon` Event

LOT-05 : Privileged Role Cannot Be Revoked Due to Unassigned `DEFAULT_ADMIN_ROLE`

LOT-07 : Chainlink VRF Request Failure Leading to Locked Funds

TABLE OF CONTENTS BETFIN LOTTERY CONTRACTS

LOT-08 : Lottery Round Starting Close to Calculation Window May Cause Staking Loss Misreporting

LRB-04 : Inconsistent Ticket Price Validation Due to Mutable `lottery.TICKET_PRICE()` in `LotteryRound`
Contract

LRB-05 : `fulfillRandomWords` Must Not Revert

LRT-02 : Enhanced Security Through Increased Block Confirmations in Chainlink VRF Requests on Polygon
Network

LBB-03 : Invalid Use of Access Control Modifier

LIB-02 : The Normal Expected Value (Mathematical Expectation) of the Lottery Game to is Approximately
`0.71 × ticketPrice`

LOS-02 : User Can Place Bet With Zero Tickets And Zero Amount

LOT-01 : Potential Miscalculation of the `MAX_SHARES`

LOT-09 : Local Variable Shadowing

LOY-01 : No Logic to Cancel the Subscription and Withdraw the Remaining Funds From Chainlink
Subscription

LRB-06 : Unused Function

MBB-01 : Purpose of `MultiBet` Contract

SRC-03 : Third-Party Dependency Usage

SRC-04 : Solidity Version 0.8.23 Won't Work For All Chains Due To MCOPY

Optimizations

LBB-01 : Cache array length

LRB-01 : Costly operations inside a loop

LRH-03 : Potential Optimization to the Shuffle Loops

SRC-01 : Variables That Could Be Declared as Immutable

Formal Verification

Considered Functions And Scope

Verification Results

Appendix

Disclaimer

TABLE OF CONTENTS BETFIN LOTTERY CONTRACTS

CODEBASE BETFIN LOTTERY CONTRACTS

Repository

lottery-contract

Commit

9583befb88b5201579685f15649573ac54a6bf5b

658e27289934d7901953a1f1fd0625fd1e5d3c3b

CODEBASE BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/
https://github.com/betfinio/lottery-contract/tree/9583befb88b5201579685f15649573ac54a6bf5b/src
https://github.com/betfinio/lottery-contract/tree/658e27289934d7901953a1f1fd0625fd1e5d3c3b

AUDIT SCOPE BETFIN LOTTERY CONTRACTS

32 files audited 3 files with Acknowledged findings 9 files with Resolved findings 20 files without findings

ID Repo Commit File SHA256 Checksum

LIB
betfinio/lottery-

contract
9583bef Library.sol c85e86a56c9f826b389cbcafd7a6924d98

9dfb9b9d09929f82ac1f55dda1dede

LOT
betfinio/lottery-

contract
9583bef Lottery.sol

cd07799e05defb706ed5544ce966ca9cda

51f2a38e5cd68d9ebdaa45535e5208

LRB
betfinio/lottery-

contract
9583bef LotteryRound.sol

e5879948346b5298dbb47f6d1947cda0c5

6999e10fe9a89dd3247572b53e887a

LBB
betfinio/lottery-

contract
9583bef LotteryBet.sol

37a5fcd500eefea1f8a1ea9032916314574

418d62c1e0f731be9e8443d42b22b

LOE
betfinio/lottery-

contract
6fb2f98 src/Lottery.sol e0627a23ced3e3cb0c028c1d60955fd63c

c01e2a9787ceb0a7b17046f5bd34a8

LRU
betfinio/lottery-

contract
6fb2f98 src/LotteryRound.sol cafd1e3520fbc18f1a280a416141e343c72

0e633d1e1220de3dd9568db4199e3

LOR
betfinio/lottery-

contract
d530555 Lottery.sol cc9a53eb2dd8ea3dccce0bad8b55e2139

22c7e420854ad638008e7386a98c01a

LRH
betfinio/lottery-

contract
d530555 LotteryRound.sol

b69ff91d2d299459c6dd367d27446ca540

a0e7a42d89c0d7b91a1767432c5ba8

LOY
betfinio/lottery-

contract
d87e4fb src/Lottery.sol

15125c519a10a6e9fff371f755fa5997ce64

05782d2d593114de67b3a6b9577e

LRT
betfinio/lottery-

contract
d87e4fb src/LotteryRound.sol

716e5b91947a28d9354507b57e20a410b

97e93d0012407e55246834da0dcd6a7

LOS
betfinio/lottery-

contract
d705061 src/Lottery.sol 4f550c484e33093889f4f8451ec5c0b578e

82194d479c8ffd4c1073d48dfee95

LIC
betfinio/lottery-

contract
29971fd src/Library.sol e2d7aa7545773674419b9af2dbd1d68c6e

e8116287b691332d42ab51f1d5222a

LIR
betfinio/lottery-

contract
6fb2f98 src/Library.sol

73f75a7195ecbfa476593fff06d4a4dbeda7

37e237c3ff218d1af29dc8eaf5e7

AUDIT SCOPE BETFIN LOTTERY CONTRACTS

ID Repo Commit File SHA256 Checksum

LBU
betfinio/lottery-

contract
6fb2f98 src/LotteryBet.sol 9911432a056328f3769686d76d770c92b1

43dee18b2926a005288c7e58bfcfef

LIA
betfinio/lottery-

contract
d530555 Library.sol dcd28627b36519512e6def80c4e6c10b7c

b83f3382c068f763d21885010a90ea

LBH
betfinio/lottery-

contract
d530555 LotteryBet.sol

36bd49fed20b626bc6139aaaad44cef6b0

5405b189b9a86ee45db85e3d30129f

LIY
betfinio/lottery-

contract
d87e4fb src/Library.sol

dcd28627b36519512e6def80c4e6c10b7c

b83f3382c068f763d21885010a90ea

LBT
betfinio/lottery-

contract
d87e4fb src/LotteryBet.sol

36bd49fed20b626bc6139aaaad44cef6b0

5405b189b9a86ee45db85e3d30129f

LIS
betfinio/lottery-

contract
d705061 src/Library.sol dcd28627b36519512e6def80c4e6c10b7c

b83f3382c068f763d21885010a90ea

LBI
betfinio/lottery-

contract
d705061 src/LotteryBet.sol 36bd49fed20b626bc6139aaaad44cef6b0

5405b189b9a86ee45db85e3d30129f

LRI
betfinio/lottery-

contract
d705061 src/LotteryRound.sol

0a70a8d53359172eceec9487af4f92b925

60c91fce41edee0d27909d3017e1e9

LOC
betfinio/lottery-

contract
29971fd src/Lottery.sol

21b42407bfef5e0d54d0e75cc5f29872046

760a3df0287ac49c429d484549fc5

LBG
betfinio/lottery-

contract
29971fd src/LotteryBet.sol

36bd49fed20b626bc6139aaaad44cef6b0

5405b189b9a86ee45db85e3d30129f

LRG
betfinio/lottery-

contract
29971fd src/LotteryRound.sol 0a70a8d53359172eceec9487af4f92b925

60c91fce41edee0d27909d3017e1e9

LI4
betfinio/lottery-

contract
441e2c6 src/Library.sol c7d69cc3c229771e88387e7a13292c883

95aa64d55187228fcbdc2e07b16cde7

LO4
betfinio/lottery-

contract
441e2c6 src/Lottery.sol 21b42407bfef5e0d54d0e75cc5f29872046

760a3df0287ac49c429d484549fc5

LBO
betfinio/lottery-

contract
441e2c6 src/LotteryBet.sol

36bd49fed20b626bc6139aaaad44cef6b0

5405b189b9a86ee45db85e3d30129f

LRO
betfinio/lottery-

contract
441e2c6 src/LotteryRound.sol

0a70a8d53359172eceec9487af4f92b925

60c91fce41edee0d27909d3017e1e9

AUDIT SCOPE BETFIN LOTTERY CONTRACTS

ID Repo Commit File SHA256 Checksum

LI6
betfinio/lottery-

contract
658e272 src/Library.sol c7d69cc3c229771e88387e7a13292c883

95aa64d55187228fcbdc2e07b16cde7

LO6
betfinio/lottery-

contract
658e272 src/Lottery.sol b98c1ed449e4fb8b3d199027a5cdef691b

6dace5b1ffd869aaf612f8c9b45b4d

LBN
betfinio/lottery-

contract
658e272 src/LotteryBet.sol

36bd49fed20b626bc6139aaaad44cef6b0

5405b189b9a86ee45db85e3d30129f

LRN
betfinio/lottery-

contract
658e272 src/LotteryRound.sol

0a70a8d53359172eceec9487af4f92b925

60c91fce41edee0d27909d3017e1e9

AUDIT SCOPE BETFIN LOTTERY CONTRACTS

APPROACH & METHODS BETFIN LOTTERY CONTRACTS

This report has been prepared for Betfin to discover issues and vulnerabilities in the source code of the Betfin Lottery

Contracts project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Static Analysis, Formal Verification, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BETFIN LOTTERY CONTRACTS

REVIEW NOTES BETFIN LOTTERY CONTRACTS

Overview

The Betfin Lottery project facilitates a lottery game where players select a ticket consisting of 5 distinct numbers (ranging

from 1 to 25) and 1 symbol (ranging from 1 to 5). During each round, a winning ticket with the same format is randomly

generated. Players win rewards based on the number of matching numbers and whether the symbol matches, with payouts

increasing for more matches. The reward for each ticket is determined by a coefficient, ranging from 1 to 33,334, multiplied

by the ticket price with potential jackpot rewards. On average, players can expect to receive approximately 62% of their ticket

price as winnings.

Privileged Functions

In the Lottery contract and related contracts, the admin roles are adopted to ensure the dynamic runtime updates of the

project, which are specified in the finding Centralization Related Risks .

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community.

It is also worth noting the potential drawbacks of these functions, which should be clearly stated through the client's

action/plan.

Additionally, if the private keys of the privileged accounts are compromised, it could lead to devastating consequences for the

project. To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the

community. Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of

the Timelock contract.

External Dependencies

The Betfin Lottery project relies on a few external contracts or addresses to fulfill the needs of its business logic.

The following are third dependencies contracts used within the Lottery and LotteryRound contracts:

openzeppelin : including AccessControl , ReentrancyGuard , IERC20 , SafeERC20 and Ownable ;

chainlink : including VRFCoordinatorV2_5 and VRFConsumerBaseV2Plus .

It is assumed that these contracts or addresses are trusted and properly implemented within the entire project.

The team utilizes the subscription method of the Chainlink VRF service to generate random numbers. It is assumed that the

subscriptionId in the project is always valid and maintains a sufficient balance to fund requests from consumer contracts.

REVIEW NOTES BETFIN LOTTERY CONTRACTS

FINDINGS BETFIN LOTTERY CONTRACTS

This report has been prepared to discover issues and vulnerabilities for Betfin Lottery Contracts. Through this audit, we have

uncovered 34 issues ranging from different severity levels. Utilizing the techniques of Static Analysis, Formal Verification &

Manual Review to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

LOE-01
Missing Validation On The Status During Editing

Tickets Process
Logical Issue Critical Resolved

LOE-02
Missing Validation Of New Tickets During

Editing Tickets Process
Logical Issue Critical Resolved

LOT-03
Missing Validation On The Status Of The Lottery

Round In _claim Function
Logical Issue Critical Resolved

LRB-02
Missing Validation On The Status Of The Lottery

Round In requestRandomness Function
Logical Issue Critical Resolved

LRB-07
Refund Process Always Reverts Due To Missing

Bets Array Population
Logical Issue Critical Resolved

LRB-08 Incorrect Recipient During Refund Process Logical Issue Critical Resolved

LRH-01
fulfillRandomWords Always Revert Due To

Reentrancy Protection Of VRF Coordinator
Logical Issue Critical Resolved

LRH-02

Recover Process After Requesting Random

Numbers Cannot Recover MAX_SHARES *

ticketPrice

Logical Issue Critical Resolved

LOT-02 Centralization Related Risks Centralization Major Acknowledged

LOT-04
Locked Tokens In The Lottery Contract Due To

Miscalculated toSend
Logical Issue Major Resolved

FINDINGS BETFIN LOTTERY CONTRACTS

34
Total Findings

8
Critical

2
Major

5
Medium

9
Minor

10
Informational

ID Title Category Severity Status

LIB-01
Ticket's Numbers May Be Large Than

0x3E00000 And The Last Bit Is Not Zero
Logical Issue Medium Resolved

LOT-06

Concurrent Rounds Overwrite

additionalJackpot Causing Claim

Inconsistencies

Logical Issue Medium Resolved

LRB-03
Improperly Handing Duplicates In Lottery

Number Generation Using Bitwise Operations
Logical Issue Medium Resolved

LRT-01
Potential Locked Funds Due To Empty Bets Of

Round
Design Issue Medium Resolved

LRU-01
Potential Invalid Winning Ticket Generation In

fulfillRandomWords
Logical Issue Medium Resolved

LBB-02 Missing Zero Address Validation Volatile Code Minor Resolved

LOR-01
Non-Uniform Distribution Of The Final Set Of

Numbers
Design Issue Minor Resolved

LOR-02 Incorrect Amount Of JackpotWon Event Logical Issue Minor Resolved

LOT-05
Privileged Role Cannot Be Revoked Due To

Unassigned DEFAULT_ADMIN_ROLE
Design Issue Minor Resolved

LOT-07
Chainlink VRF Request Failure Leading To

Locked Funds
Design Issue Minor Resolved

LOT-08
Lottery Round Starting Close To Calculation

Window May Cause Staking Loss Misreporting
Design Issue Minor Acknowledged

LRB-04

Inconsistent Ticket Price Validation Due To

Mutable lottery.TICKET_PRICE() In

LotteryRound Contract

Logical Issue Minor Resolved

LRB-05 fulfillRandomWords Must Not Revert Coding Issue Minor Resolved

LRT-02

Enhanced Security Through Increased Block

Confirmations In Chainlink VRF Requests On

Polygon Network

Design Issue Minor Resolved

FINDINGS BETFIN LOTTERY CONTRACTS

ID Title Category Severity Status

LBB-03 Invalid Use Of Access Control Modifier Logical Issue Informational Resolved

LIB-02

The Normal Expected Value (Mathematical

Expectation) Of The Lottery Game To Is

Approximately 0.71 × ticketPrice

Design Issue Informational Acknowledged

LOS-02
User Can Place Bet With Zero Tickets And Zero

Amount
Design Issue Informational Resolved

LOT-01 Potential Miscalculation Of The MAX_SHARES
Magic

Numbers
Informational Resolved

LOT-09 Local Variable Shadowing Coding Style Informational Resolved

LOY-01

No Logic To Cancel The Subscription And

Withdraw The Remaining Funds From Chainlink

Subscription

Design Issue Informational Resolved

LRB-06 Unused Function Coding Issue Informational Resolved

MBB-01 Purpose Of MultiBet Contract Design Issue Informational Acknowledged

SRC-03 Third-Party Dependency Usage Design Issue Informational Acknowledged

SRC-04
Solidity Version 0.8.23 Won't Work For All

Chains Due To MCOPY
Design Issue Informational Resolved

FINDINGS BETFIN LOTTERY CONTRACTS

LOE-01 MISSING VALIDATION ON THE STATUS DURING EDITING
TICKETS PROCESS

Category Severity Location Status

Logical Issue Critical src/Lottery.sol (12/16/2024-6fb2f9): 237 Resolved

Description

The editTickets function allows users to modify their tickets even after the winning numbers have been generated. This

lets users replace their old tickets with new ones that match the winning numbers, ensuring they win the lottery.

 function editTicket(uint256 id, Library.Ticket[] memory _newTickets) external {

 ...

 // check if bet exists

 require(betAddress != address(0), "LT11");

 ...

 // check if claimed

 require(!bet.getClaimed(), "LT09");

 // check count of tickets

 require(_newTickets.length == bet.getTicketsCount(), "LT01");

 // check player

 require(bet.getPlayer() == _msgSender(), "LT04");

 ...

 }

The function does not verify the status of the round or whether the round is already waiting for the random numbers.

Proof of Concept

The PoC shows that this issue lets users modify their tickets after the winning numbers are publicly revealed.

LOE-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/6fb2f9851d8a19194f917f6073c3d0365d52d2e2/src/Lottery.sol#L237-L237

 function testEditTicketsDuringWrongStatus() public {

 Library.Ticket[] memory tickets = new Library.Ticket[](1);

 tickets[0] = Library.Ticket(2, 1984); // 2 and 00000000000000011111000000 =

[6,7,8,9,10] & 2

 placeBet(alice, address(round), tickets);

 vm.warp(block.timestamp + 30 days + 30 minutes);

 fulfill(1, 2, 3, 4, 5, 1, address(round));

 tickets[0] = Library.Ticket(1, 62); // 1 and 00000000000000000000111110 =

[1,2,3,4,5] & 1

 vm.prank(alice);

 lottery.editTicket(1, tickets);

 round.processJackpot();

 lottery.claim(1);

 (uint8 symbol, uint32 numbers) = round.winTicket();

 assertEq(symbol, 1);

 assertEq(numbers, 62);

 assertEq(token.balanceOf(address(alice)), ticketPrice * 13_334);

 }

Result:

Ran 1 test for test/LotteryClaimTest.t.sol:LotteryClaimTest

[PASS] testEditTicketsDuringWrongStatus() (gas: 1567695)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 1.98ms (691.83µs CPU

time)

Ran 1 test suite in 154.57ms (1.98ms CPU time): 1 tests passed, 0 failed, 0 skipped

(1 total tests)

Recommendation

Ensure that tickets can only be edited before requesting random numbers. Note that if the contract allows tickets to be

modified prior to executing fulfillRandomNumbers , the contract is still vulnerable to front-running attacks.

Alleviation

[Betfin, 12/23/2024]

The team resolved this issue by validating the status in the LotteryRound.editTicket() function in the commit

d5305559fa99aa12ec0b5efe19317e51b926f843.

LOE-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

LOE-02 MISSING VALIDATION OF NEW TICKETS DURING EDITING
TICKETS PROCESS

Category Severity Location Status

Logical Issue Critical src/Lottery.sol (12/16/2024-6fb2f9): 254~255 Resolved

Description

The editTickets function does not validate the new tickets submitted. This allows users to create invalid tickets with more

than the allowed 5 selected numbers. For example, a ticket with 11111111111111111111111110 (which represents all 25

numbers) guarantees a match with the winning ticket numbers.

Specifically, it does not ensure that the new ticket:

Has exactly 5 numbers selected.

Adheres to the allowed range for the numbers field.

 function editTicket(uint256 id, Library.Ticket[] memory _newTickets) external {

 ...

 // check count of tickets

 require(_newTickets.length == bet.getTicketsCount(), "LT01");

 ...

 // edit tickets in round

 round.editTickets(betAddress, _newTickets);

 // set tickets in bet

 bet.setTickets(_newTickets);

 ...

 }

 function editTickets(address _bet, Library.Ticket[] memory _tickets) external

onlyOwner {

 ...

 require(oldTickets.length == _tickets.length, "LR01");

 ...

 // interate over tickets and save new bitmaps

 for (uint256 i = 0; i < _tickets.length; i++) {

 // get bitmap

 bytes memory bitmap = abi.encode(_tickets[i].symbol,

_tickets[i].numbers);

 ...

 }

 }

LOE-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/6fb2f9851d8a19194f917f6073c3d0365d52d2e2/src/Lottery.sol#L254-L255

 function setTickets(Library.Ticket[] memory _tickets) external onlyRole(LOTTERY)

{

 delete tickets;

 ticketsCount = _tickets.length;

 for (uint256 i = 0; i < ticketsCount; i++) {

 tickets.push(_tickets[i]);

 }

 if (ticketsCount >= 3) {

 symbolUnlocked = true;

 }

 }

Proof of Concept

The PoC shows that a user can edit their ticket to select all 25 numbers (11111111111111111111111110) or any invalid

combination. Such a ticket will guarantee that the user matches the winning numbers since it "selects" every possible option.

 function testEditTicketsWithInvalidTicket() public {

 Library.Ticket[] memory tickets = new Library.Ticket[](1);

 tickets[0] = Library.Ticket(2, 1984); // 2 and 00000000000000011111000000 =

[6,7,8,9,10] & 2

 placeBet(alice, address(round), tickets);

 tickets[0] = Library.Ticket(1, 67108862); // 1 and

11111111111111111111111110 = [1,2,3,4,5] & 1

 vm.prank(alice);

 lottery.editTicket(1, tickets);

 vm.warp(block.timestamp + 30 days + 30 minutes);

 fulfill(1, 2, 3, 4, 5, 1, address(round));

 round.processJackpot();

 lottery.claim(1);

 (uint8 symbol, uint32 numbers) = round.winTicket();

 assertEq(symbol, 1);

 assertEq(numbers, 62);

 assertEq(token.balanceOf(address(alice)), ticketPrice * 13_334);

 }

Result:

LOE-02 BETFIN LOTTERY CONTRACTS

[⠊] Compiling...

No files changed, compilation skipped

Ran 1 test for test/LotteryClaimTest.t.sol:LotteryClaimTest

[PASS] testEditTicketsWithInvalidTicket() (gas: 1567773)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 6.93ms (1.56ms CPU

time)

Ran 1 test suite in 186.28ms (6.93ms CPU time): 1 tests passed, 0 failed, 0 skipped

(1 total tests)

Recommendation

Validate the new tickets using Library.validate() before accepting them in editTickets .

Alleviation

[Betfin, 12/23/2024]

The team resolved this issue by validating the new tickets in the Lottery.editTicket() function in the commit

d5305559fa99aa12ec0b5efe19317e51b926f843.

LOE-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

LOT-03 MISSING VALIDATION ON THE STATUS OF THE LOTTERY
ROUND IN _claim FUNCTION

Category Severity Location Status

Logical Issue Critical Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5b): 233 Resolved

Description

A vulnerability exists in the Lottery.claim function. The function lacks a check to verify the round’s status before allowing

users to claim rewards. This allows claims to be processed prematurely, even if the winning ticket (winTicket) has not been

generated. The absence of this validation can result in reward loss or potential revert of fullfillRandomNumbers , which

can causing the locked tokens in the contract.

 function _claim(uint256 id) internal {

 ...

 require(betAddress != address(0), "LT11");

 ...

 require(bet.getClaimed() == false, "LT09");

 ...

 // parse win ticket

 (uint8 symbol, uint32 numbers) = round.winTicket();

 ...

 }

Proof of Concept

The proof-of-concept below demonstrates that users can prematurely claim the bet, which unintentionally reverts the

rawFulfillRandomWords function.

LOT-03 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L233-L233

 function testPreClaimIssue() public{

 Library.Ticket[] memory tickets = new Library.Ticket[](3);

 tickets[0] = Library.Ticket(1, 62); // 1 and 00000000000000000000111110 =

[1,2,3,4,5] & 1

 tickets[1] = Library.Ticket(2, 1984); // 2 and 00000000000000011111000000 =

[6,7,8,9,10] & 2

 tickets[2] = Library.Ticket(3, 63_488); // 3 and 00000000001111100000000000

= [11,12,13,14,15] & 3

 placeBet(alice, address(round), tickets);

 Library.Ticket[] memory tickets1 = new Library.Ticket[](1);

 tickets1[0] = Library.Ticket(2, 94); // 2 and 00000000000000000001011110 =

[1,2,3,4,6] & 2

 address _bet1 = placeBet(bob, address(round), tickets1);

 LotteryBet bet1 = LotteryBet(_bet1);

 uint256 tokenId1 = bet1.getTokenId();

 lottery.claim(1);

 vm.warp(block.timestamp + 30 days + 30 minutes);

 fulfill(1, 2, 3, 4, 5, 1, address(round));

 (uint8 symbol, uint32 numbers) = round.winTicket();

 assertEq(symbol, 1);

 assertEq(numbers, 62);

 assertEq(token.balanceOf(address(alice)), ticketPrice * 33_334 +

(ticketPrice * 3) * 3 / 100);

 }

Result

LOT-03 BETFIN LOTTERY CONTRACTS

 ├─ [83453] LotteryRound::rawFulfillRandomWords(555, [0, 1, 2, 3, 4, 0])

 │ ├─ [596] Lottery::getToken() [staticcall]

 │ │ └─ ← [Return] Token: [0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f]

 │ ├─ [3348] Token::transfer(Lottery:

[0xF62849F9A0B5Bf2913b396098F7c7019b51A820a], 180000000000000000000 [1.8e20])

 │ │ ├─ emit Transfer(from: LotteryRound:

[0x4f81992FCe2E1846dD528eC0102e6eE1f61ed3e2], to: Lottery:

[0xF62849F9A0B5Bf2913b396098F7c7019b51A820a], value: 180000000000000000000 [1.8e20])

 │ │ └─ ← [Return] true

 │ ├─ [23713] Lottery::updateJackpot(180000000000000000000 [1.8e20])

 │ │ └─ ← [Stop]

 │ ├─ [479] LotteryBet::isSymbolUnlocked() [staticcall]

 │ │ └─ ← [Return] true

 │ ├─ [147] LotteryBet::getTokenId() [staticcall]

 │ │ └─ ← [Return] 1

 │ ├─ [2176] Lottery::claim(1)

 │ │ ├─ [760] LotteryBet::getClaimed() [staticcall]

 │ │ │ └─ ← [Return] true

 │ │ └─ ← [Revert] revert: LT09

 │ └─ ← [Revert] revert: LT09

 └─ ← [Revert] revert: LT09

Suite result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 2.96ms (706.08µs

CPU time)

Ran 1 test suite in 674.22ms (2.96ms CPU time): 0 tests passed, 1 failed, 0 skipped

(1 total tests)

Recommendation

Recommend adding a check for status to ensure the round has generated a valid winning ticket.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by adding a status check to the _claim function in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LOT-03 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LRB-02 MISSING VALIDATION ON THE STATUS OF THE LOTTERY
ROUND IN requestRandomness FUNCTION

Category Severity Location Status

Logical

Issue
Critical

LotteryRound.sol (9583befb88b5201579685f15649573ac54a6bf5b): 1

23
Resolved

Description

A critical vulnerability exists in the LotteryRound contract, specifically within the requestRandomness() function. The

function lacks validation of the round's current status before requesting randomness. This omission allows an attacker to

repeatedly call requestRandomness() , leading to multiple serious impacts, including fund locking, invalidation of prior

Chainlink VRF requests, and potential manipulation of the winning lottery outcome.

 function requestRandomness() external {

 require(!StakingInterface(lottery.getStaking()).isCalculation(),

"LT10");

 // check if the round is closed

 require(!isOpen(), "LR06");

 // check if the request period has passed

 require(block.timestamp < finish + REQUEST_PERIOD, "LR05");

 ...

 // update status

 status = 2;

 ...

 }

There is no check to ensure the status is in a valid state (e.g., 1 - betting) before proceeding with the randomness request.

The status is only updated to 2 after the reserve and randomness request logic, leaving the function vulnerable to repeated

calls.

Proof of Concept

The proof-of-concept below demonstrates that it is possible to repeatedly execute requestRandomness() .

LRB-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L123-L123

 function repeatedRequestsAndfulfill(uint32 n1, uint32 n2, uint32 n3

 , uint32 n4, uint32 n5, uint8 s, address _round) internal {

 vm.mockCall(

 coordinator,

abi.encodeWithSelector(IVRFCoordinatorV2Plus.requestRandomWords.selector),

abi.encode(555)

);

 LotteryRound(_round).requestRandomness(); // First request

 vm.mockCall(

 coordinator,

abi.encodeWithSelector(IVRFCoordinatorV2Plus.requestRandomWords.selector),

abi.encode(556)

);

 LotteryRound(_round).requestRandomness(); // Second request

 uint256[] memory randomWords = new uint256[](6);

 randomWords[0] = n1 - 1;

 randomWords[1] = n2 - 1;

 randomWords[2] = n3 - 1;

 randomWords[3] = n4 - 1;

 randomWords[4] = n5 - 1;

 randomWords[5] = s - 1;

 vm.startPrank(address(coordinator));

 vm.expectRevert();

 LotteryRound(_round).rawFulfillRandomWords(555, randomWords); // First

fulfill fails

 vm.stopPrank();

 vm.prank(address(coordinator));

 LotteryRound(_round).rawFulfillRandomWords(556, randomWords); // Second

fulfill success

 assertEq(round.getStatus(), 3);

 }

 function testRepeatedFulfill() public {

 Library.Ticket[] memory tickets = new Library.Ticket[](1);

 tickets[0] = Library.Ticket(1, 62); // 1 and 00000000000000000000111110 =

[1,2,3,4,5] & 1

 address _bet = placeBet(alice, address(round), tickets);

 LotteryBet bet = LotteryBet(_bet);

 uint256 tokenId = bet.getTokenId();

 vm.warp(block.timestamp + 30 days + 30 minutes);

 repeatedRequestsAndfulfill(1, 2, 23, 24, 25, 1, address(round));

 vm.startPrank(alice);

 lottery.claim(tokenId);

 vm.stopPrank();

 assertEq(token.balanceOf(address(alice)), ticketPrice * 0);

 }

LRB-02 BETFIN LOTTERY CONTRACTS

Result:

[⠊] Compiling...

[⠒] Compiling 1 files with Solc 0.8.25

[⠑] Solc 0.8.25 finished in 2.62s

Compiler run successful!

Ran 1 test for test/LotteryClaimTest.t.sol:LotteryClaimTest

[PASS] testRepeatedFulfill() (gas: 1428031)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 6.01ms (1.19ms CPU

time)

Ran 1 test suite in 157.98ms (6.01ms CPU time): 1 tests passed, 0 failed, 0 skipped

(1 total tests)

Recommendation

Recommend adding a check to ensure the status is in a valid state before proceeding.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by adding a status check to the requestRandomness function in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LRB-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LRB-07 REFUND PROCESS ALWAYS REVERTS DUE TO MISSING
BETS ARRAY POPULATION

Category Severity Location Status

Logical

Issue
Critical

LotteryRound.sol (9583befb88b5201579685f15649573ac54a6bf5b): 2

24
Resolved

Description

The refund function in the LotteryRound contract is designed to return funds to users in the event of a refund scenario.

However, due to a missing step when registering bets, the bets array remains empty, causing the refund function to revert

because it relies on indexing this empty array.

 function registerBet(address _bet) external onlyOwner {

 // check if the round is still open

 require(isOpen(), "LR02");

 // get bet from address

 LotteryBet bet = LotteryBet(_bet);

 // extract tickets from bet

 bytes[] memory _bitmaps = bet.getTickets();

 // check validity of the tickets

 for (uint256 i = 0; i < _bitmaps.length; i++) {

 // validate if ticket is empty

 require(isBitmapEmpty(_bitmaps[i]), "LR01");

 // save bitmap

 bitmaps[_bitmaps[i]] = _bet;

 // update ticket counter

 ticketsCount++;

 }

 // update bet counter

 betsCount++;

 // check balance of round - should not happen, but anyway

 require(IERC20(lottery.getToken()).balanceOf(address(this)) >= ticketsCount

* lottery.TICKET_PRICE(), "LR04");

 }

LRB-07 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L224-L224

 function refund(uint256 offset, uint256 limit) external {

 // check is round is in refund mode

 require(status == 4, "LR09");

 // check if offset and limit are valid

 require(offset + limit <= betsCount, "LR10");

 // iterate over bets

 for (uint256 i = offset; i < offset + limit; i++) {

 // get bet address

 address bet = bets[i];

 // get bet contract

 LotteryBet betContract = LotteryBet(bet);

 // transfer tokens back to player

 IERC20(lottery.getToken()).transfer(bet, ticketPrice *

betContract.getTicketsCount());

 // set bet as refunded

 betContract.refund();

 }

 }

Proof of Concept

The proof-of-concept below demonstrates that the refund process always reverts due to an empty bets array.

LRB-07 BETFIN LOTTERY CONTRACTS

 function testNormalRefund() public{

 // Alice places a single ticket bet

 Library.Ticket[] memory tickets = new Library.Ticket[](1);

 tickets[0] = Library.Ticket(1, 62); // any valid ticket

 address betAddr = placeBet(alice, address(refundRound), tickets);

 LotteryBet bet = LotteryBet(betAddr);

 uint256 betTokenId = bet.getTokenId();

 // Move forward in time past the round finish

 vm.warp(block.timestamp + 2 days + 1 hours); // After round finish + request

period

 // Start refunds

 refundRound.startRefund();

 // Status should be 4 (refund)

 assertEq(refundRound.getStatus(), 4);

 // Perform the actual refund

 // There's only 1 bet, so offset=0 and limit=1 is valid

 uint256 aliceBalanceBefore = token.balanceOf(alice);

 refundRound.refund(0, 1);

 // Alice should receive her ticket price back

 uint256 aliceBalanceAfter = token.balanceOf(alice);

 assertEq(aliceBalanceAfter - aliceBalanceBefore, ticketPrice);

 // Ensure we cannot refund again (no double refunds)

 vm.expectRevert();

 refundRound.refund(0, 1); // Attempt to refund again should fail

 }

Result:

LRB-07 BETFIN LOTTERY CONTRACTS

 ├─ [5976] LotteryRound::startRefund()

 │ └─ ← [Stop]

 ├─ [781] LotteryRound::getStatus() [staticcall]

 │ └─ ← [Return] 4

 ├─ [0] VM::assertEq(4, 4) [staticcall]

 │ └─ ← [Return]

 ├─ [2625] Token::balanceOf(ECRecover:

[0x0000000000000000000000000000000000000001]) [staticcall]

 │ └─ ← [Return] 0

 ├─ [3032] LotteryRound::refund(0, 1)

 │ └─ ← [Revert] panic: array out-of-bounds access (0x32)

 └─ ← [Revert] panic: array out-of-bounds access (0x32)

Suite result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 5.58ms (961.04µs

CPU time)

Ran 1 test suite in 432.01ms (5.58ms CPU time): 0 tests passed, 1 failed, 0 skipped

(1 total tests)

Failing tests:

Encountered 1 failing test in test/LotteryRefundTest.t.sol:LotteryRefundTest

[FAIL: panic: array out-of-bounds access (0x32)] testNormalRefund() (gas: 1253705)

Recommendation

Adding a line within registerBet that appends the newly registered bet address to bets. Additionally, we noticed that the

team does not have any unit testing for the refund process.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by pushing new bets to the array bets in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LRB-07 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LRB-08 INCORRECT RECIPIENT DURING REFUND PROCESS

Category Severity Location Status

Logical

Issue
Critical

LotteryRound.sol (9583befb88b5201579685f15649573ac54a6bf5b): 2

28
Resolved

Description

In the current refund logic, the contract transfers the token refunds to the LotteryBet contract address instead of the

player. The intended recipient should be the player who originally placed the bet, not the bet contract itself.

 // get bet contract

 LotteryBet betContract = LotteryBet(bet);

 // transfer tokens back to player

 IERC20(lottery.getToken()).transfer(bet, ticketPrice *

betContract.getTicketsCount());

Refunds sent to the bet contract rather than the player may result in the player not receiving their intended refund. This could

lock funds in the bet contract and the bet contract does not provide a mechanism for withdrawals.

Proof of Concept

The proof-of-concept demonstrates that the refund was directed to the LotteryBet contract instead of to Alice.

LRB-08 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L228-L228

 function testNormalRefund() public{

 // Alice places a single ticket bet

 Library.Ticket[] memory tickets = new Library.Ticket[](1);

 tickets[0] = Library.Ticket(1, 62); // any valid ticket

 address betAddr = placeBet(alice, address(refundRound), tickets);

 LotteryBet bet = LotteryBet(betAddr);

 uint256 betTokenId = bet.getTokenId();

 // Move forward in time past the round finish

 vm.warp(block.timestamp + 2 days + 1 hours); // After round finish + request

period

 // Start refunds

 refundRound.startRefund();

 // Status should be 4 (refund)

 assertEq(refundRound.getStatus(), 4);

 // Perform the actual refund

 // There's only 1 bet, so offset=0 and limit=1 is valid

 uint256 aliceBalanceBefore = token.balanceOf(alice);

 refundRound.refund(0, 1);

 // Alice should receive her ticket price back

 uint256 aliceBalanceAfter = token.balanceOf(alice);

 assertEq(aliceBalanceAfter - aliceBalanceBefore, ticketPrice);

 // Ensure we cannot refund again (no double refunds)

 vm.expectRevert();

 refundRound.refund(0, 1); // Attempt to refund again should fail

 }

Result:

LRB-08 BETFIN LOTTERY CONTRACTS

 ├─ [30680] LotteryRound::refund(0, 1)

 │ ├─ [596] Lottery::getToken() [staticcall]

 │ │ └─ ← [Return] Token: [0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f]

 │ ├─ [302] LotteryBet::getTicketsCount() [staticcall]

 │ │ └─ ← [Return] 1

 │ ├─ [25248] Token::transfer(LotteryBet:

[0xCB6f5076b5bbae81D7643BfBf57897E8E3FB1db9], 1500000000000000000000 [1.5e21])

 │ │ ├─ emit Transfer(from: LotteryRound:

[0x4f81992FCe2E1846dD528eC0102e6eE1f61ed3e2], to: LotteryBet:

[0xCB6f5076b5bbae81D7643BfBf57897E8E3FB1db9], value: 1500000000000000000000

[1.5e21])

 │ │ └─ ← [Return] true

 │ ├─ [1310] LotteryBet::refund()

 │ │ └─ ← [Stop]

 │ └─ ← [Stop]

 ├─ [625] Token::balanceOf(ECRecover:

[0x0000000000000000000000000000000000000001]) [staticcall]

 │ └─ ← [Return] 0

 ├─ [0] VM::assertEq(0, 1500000000000000000000 [1.5e21]) [staticcall]

 │ └─ ← [Revert] assertion failed: 0 != 1500000000000000000000

 └─ ← [Revert] assertion failed: 0 != 1500000000000000000000

Suite result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 5.76ms (1.28ms CPU

time)

Ran 1 test suite in 570.84ms (5.76ms CPU time): 0 tests passed, 1 failed, 0 skipped

(1 total tests)

Failing tests:

Encountered 1 failing test in test/LotteryRefundTest.t.sol:LotteryRefundTest

[FAIL: assertion failed: 0 != 1500000000000000000000] testNormalRefund() (gas:

1327527)

Recommendation

Recommend using the betContract.getPlayer as the recipient. Additionally, we noticed that the team does not have any

unit testing for the refund process.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by using the betContract.getPlayer as the recipient in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LRB-08 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LRH-01 fulfillRandomWords ALWAYS REVERT DUE TO

REENTRANCY PROTECTION OF VRF COORDINATOR

Category Severity Location Status

Logical Issue Critical LotteryRound.sol (12/20/2024-d53055): 240 Resolved

Description

On 12/23/2024, in the last commit d5305559fa99aa12ec0b5efe19317e51b926f843, the team introduce the

lottery.removeConsumer() logic in the fulfillRandomWords function.

 function fulfillRandomWords(uint256 _requestId, uint256[] calldata _randomWords)

internal override {

 ...

 // remove round as consumer to empty consumer slot

 lottery.removeConsumer();

 ...

 }

 function removeConsumer() external onlyRole(ROUND) {

 coordinator.removeConsumer(subscriptionId, address(msg.sender));

 emit RoundFinished(msg.sender);

 }

However, the lottery.removeConsumer will always be reverted due to the reentrancy protection in the VRF Coordinator

contract. The comment in the coordinator contract also stated that the fulfillRandomWords should not contain any non-

view/non-pure coordinator functions to be called.

LRH-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/d5305559fa99aa12ec0b5efe19317e51b926f843/src/LotteryRound.sol#L240-L240
https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

 function fulfillRandomWords(Proof memory proof, RequestCommitment memory rc)

external nonReentrant returns (uint96) {

 ...

 bytes memory resp = abi.encodeWithSelector(v.rawFulfillRandomWords.selector,

requestId, randomWords);

 // Call with explicitly the amount of callback gas requested

 // Important to not let them exhaust the gas budget and avoid oracle payment.

 // Do not allow any non-view/non-pure coordinator functions to be called

 // during the consumers callback code via reentrancyLock.

 // Note that callWithExactGas will revert if we do not have sufficient gas

 // to give the callee their requested amount.

 s_config.reentrancyLock = true;

 bool success = callWithExactGas(rc.callbackGasLimit, rc.sender, resp);

 s_config.reentrancyLock = false;

 ...

 }

 /**

 * @inheritdoc VRFCoordinatorV2Interface

 */

 function removeConsumer(uint64 subId, address consumer) external override

onlySubOwner(subId) nonReentrant {

 ...

 }

Recommendation

Recommend the team remove the consumer at the end of each round.

Alleviation

[Betfin, 01/02/2025]

The team resolved this issue by moving the logic out of the fulfillRandomWords in the commit

d87e4fb4c120f38d080b1a65278178e7e7642773.

LRH-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d87e4fb4c120f38d080b1a65278178e7e7642773

LRH-02 RECOVER PROCESS AFTER REQUESTING RANDOM
NUMBERS CANNOT RECOVER MAX_SHARES * ticketPrice

Category Severity Location Status

Logical Issue Critical LotteryRound.sol (12/20/2024-d53055): 160 Resolved

Description

When LotteryRound.requestRandomness() is called, the contract reserves MAX_SHARES * ticketPrice tokens from the

staking contract. And under normal situations (when randomness is fulfilled and the round finalizes), each winning bet is

claimed, and any leftover tokens not used for payouts are transferred back to staking in Lottery.claim() function.

 // transfer back to staking = initial amount - claimed amount

 uint256 toSend = amount * MAX_SHARES - claimedByRound[roundAddress];

 // transfer to staking

 token.transfer(address(staking), toSend);

However, when the contract hits a timeout in which startRecover transitions the round into a status of 6, the code no

longer contains a path that transfers unspent tokens back to the staking contract.

Proof of Concept

The Proof-of-Concept below shows that the MAX_SHARE * ticketPrice tokens are still locked in the Lottery contract

after the refund process.

LRH-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/d5305559fa99aa12ec0b5efe19317e51b926f843/src/LotteryRound.sol#L160-L160

 function testRecoverWithBalanceCheck() external {

 Library.Ticket[] memory tickets = new Library.Ticket[](1);

 tickets[0] = Library.Ticket(1, 62); // 1 and 00000000000000000000111110

 placeBet(alice, address(round), tickets);

 assertEq(round.getStatus(), 1);

 vm.warp(block.timestamp + 30 days + 30 minutes);

 vm.mockCall(

 coordinator,

abi.encodeWithSelector(IVRFCoordinatorV2Plus.requestRandomWords.selector),

abi.encode(555)

);

 round.requestRandomness();

 assertEq(round.getStatus(), 2);

vm.warp(block.timestamp + 36 hours);

round.startRecover();

 // Alice get refund

 uint256 aliceBalanceBefore = token.balanceOf(alice);

 round.refund(0, 1);

 uint256 aliceBalanceAfter = token.balanceOf(alice);

 assertEq(aliceBalanceAfter - aliceBalanceBefore, ticketPrice);

 // Alice cannot claim and then the MAX_SHARES * ticketPrice will not be

transferred to the Staking contract.

 vm.expectRevert();

 lottery.claim(1);

 assertEq(token.balanceOf(address(lottery)), lottery.MAX_SHARES() *

ticketPrice);

 console.log(token.balanceOf(address(lottery)));

 console.log(token.balanceOf(address(round)));

 }

Result:

LRH-02 BETFIN LOTTERY CONTRACTS

[PASS] testRecoverWithBalanceCheck() (gas: 1393882)

Logs:

 282750000000000000000000000

 0

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 2.77ms (525.83µs CPU

time)

Ran 1 test suite in 209.73ms (2.77ms CPU time): 1 tests passed, 0 failed, 0 skipped

(1 total tests)

Recommendation

Recommend include the logic to recover MAX_SHARES * ticketPrice after the process of startRecover .

Alleviation

[Betfin, 01/02/2025]

The team updated the code to return funds to staking in the startRecover function in the commit

d87e4fb4c120f38d080b1a65278178e7e7642773.

[CertiK, 01/06/2025]

We would like to remind the team that the amount of tokens for refund is incorrect. The token amount transferred from the

staking contract to the Lottery contract is ticketPrice * lottery.MAX_SHARES() , instead of ticketPrice *

ticketsCount .

While the team has created relevant unit tests for LotteryRound.startRecover , these tests only verify that the

LotteryRound.startRecover function will not be reverted. They do not validate whether all tokens are successfully

recovered and whether all users are refunded.

 function startRecover() external {

 ...

 // return funds to staking

 lottery.refund(ticketPrice * ticketsCount);

 emit RecoverInitiated();

 }

 function requestRandomness() external {

 ...

 // calculate the amount to reserve

 uint256 toReserve = ticketPrice * lottery.MAX_SHARES();

 // reserve funds

 lottery.reserveFunds(toReserve);

 ...

 }

LRH-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d87e4fb4c120f38d080b1a65278178e7e7642773

[Betfin, 01/13/2025]

The team resolved this issue by using ticketPrice * lottery.MAX_SHARES() in the commit

d705061cb1f8e3cb95efe2d623fc6694095979c9.

LRH-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d705061cb1f8e3cb95efe2d623fc6694095979c9

LOT-02 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major
Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5

b): 129, 154, 221
Acknowledged

Description

In the contract Lottery , the role SERVICE has authority over the functions shown in the list shown below:

createRound() : Create LotteryRound contract for players to place bets.

updateFinish() : Update the specified the finish time of _round .

setTicketPrice() : Set the ticket price of lottery.

removeConsumer() : Remove one round from the consumers of Chainlink VRF subscriptions.

cancelSubscription() : Cancel the Chainlink VRF subscriptions and get remaining LINK and native tokens funds.

Any compromise to the SERVICE account may allow the attacker to take advantage of this authority and create lottery

round, set finish time and set the ticket price in an unexpected behavior.

In the contract Lottery , the role admin has authority over the functions shown in the list shown below:

grantRole() : Grants role to account .

revokeRole() : Revokes role from account .

renounceRole() : Revokes role from the calling account.

Any compromise to the admin account may allow the attacker to take advantage of this authority and grant ROUND , CORE ,

or SERVICE roles to malicious accounts. The malicious ROUND role may utilize the reserveFunds function to drain

the tokens in the staking contract.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

LOT-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L129-L129
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L154-L154
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L221-L221

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Betfin, 12/23/2024]

Issue acknowledged. I will fix the issue in the future, which will not be included in this audit engagement.

[CertiK, 12/23/2024]

It is suggested to implement the aforementioned methods to improve security. Also, it strongly encourages the project team

to periodically revisit the private key security management of all addresses related to centralized roles.

We will update the status of this finding and verify the related transactions once the team shares the relevant transaction

details with us.

LOT-02 BETFIN LOTTERY CONTRACTS

LOT-04 LOCKED TOKENS IN THE LOTTERY CONTRACT DUE TO
MISCALCULATED toSend

Category Severity Location Status

Logical Issue Major Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5b): 275 Resolved

Description

In the Lottery contract, when all tickets in a round are claimed, the remaining balance (unclaimed funds) is returned to the

Staking contract. However, the logic subtracts the additionalJackpot from this remaining balance incorrectly, causing the

contract to hold more tokens than intended, leading to locked tokens.

 if (allClaimed) {

 // transfer back to staking = initial amount - claimed amount

 uint256 toSend = amount * MAX_SHARES - claimedByRound[roundAddress] -

additionalJackpot;

 // transfer to staking

 token.transfer(address(staking), toSend);

 }

The additionalJackpot amount is already in the Lottery contract to roll over for the next round. Subtracting

additionalJackpot again here causes a mismatch, leaving an excess amount in the Lottery contract.

Scenario

1. Place a single ticket in a round.

2. Fulfill randomness, so the jackpot contribution (3% of ticket price) is added to additionalJackpot .

3. Claim the ticket when it does not win the jackpot.

4. Check the remaining tokens in the Lottery contract.

Proof of Concept

The proof-of-concept below shows that the remaining tokens in the Lottery contract double the expected value.

Ticket Price: 1500 ether

Expected Remaining Tokens: 45 ether (3% of 1500 ether)

Actual Remaining Tokens: 90 ether (double the expected value).

LOT-04 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L275-L275

 function testRemainingTokensInContract() public {

 Library.Ticket[] memory tickets = new Library.Ticket[](1);

 tickets[0] = Library.Ticket(1, 62); // 1 and 0000000000000000000111110 =

[1,2,3,4,5] & 1

 address _bet = placeBet(alice, address(round), tickets);

 LotteryBet bet = LotteryBet(_bet);

 uint256 tokenId = bet.getTokenId();

 vm.warp(block.timestamp + 30 days + 30 minutes);

 fulfill(1, 2, 3, 4, 5, 1, address(round));

 assertEq(token.balanceOf(address(lottery)), ticketPrice * 213_770 +

ticketPrice * 3 / 100);

 assertEq(token.balanceOf(address(round)), ticketPrice - ticketPrice * 3 /

100);

 console.log("After fulfilling, remaining tokens in LotteryRound contract: ",

token.balanceOf(address(round)));

 console.log("After fulfilling, remaining tokens in Lottery contract: ",

token.balanceOf(address(lottery)));

 (uint8 symbol, uint32 numbers) = round.winTicket();

 assertEq(symbol, 1);

 assertEq(numbers, 62);

 vm.startPrank(alice);

 lottery.claim(tokenId);

 vm.stopPrank();

 console.log("After claiming, remaining tokens in LotteryRound contract: ",

token.balanceOf(address(round)));

 console.log("After claiming, remaining tokens in Lottery contract: ",

token.balanceOf(address(lottery)));

 console.log("The value of additionalJackpot is: ",

lottery.additionalJackpot());

 assertEq(token.balanceOf(address(alice)), ticketPrice * 13_334);

 }

Result:

LOT-04 BETFIN LOTTERY CONTRACTS

Ran 1 test for test/LotteryClaimTest.t.sol:LotteryClaimTest

[PASS] testRemainingTokensInContract() (gas: 1487679)

Logs:

 After fulfilling, remaining tokens in LotteryRound contract:

1455000000000000000000

 After fulfilling, remaining tokens in Lottery contract:

320655045000000000000000000

 After claiming, remaining tokens in LotteryRound contract: 0

 After claiming, remaining tokens in Lottery contract: 90000000000000000000

 The value of additionalJackpot is: 45000000000000000000

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 3.13ms (1.92ms CPU

time)

Ran 1 test suite in 156.91ms (3.13ms CPU time): 1 tests passed, 0 failed, 0 skipped

(1 total tests)

Recommendation

Recommend that the team review the design of additionalJackpot to determine if it is accumulated from ticketPrice *

MAX_SHARES or from user payments.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by removing the additionalJackpot from the calculation of toSend in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LOT-04 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LIB-01 TICKET'S NUMBERS MAY BE LARGE THAN 0x3E00000 AND

THE LAST BIT IS NOT ZERO

Category Severity Location Status

Logical

Issue
Medium

src/Library.sol (01/19/2025-29971f): 28~31; Library.sol (9583befb88b52

01579685f15649573ac54a6bf5b): 19
Resolved

Description

The Library.validate does not explicitly verify that only bits within the first 25 positions can be set. For example, if the

numbers variable had bits set beyond the 25th bit (positions 26 to 32), countBits would still just count them, and if exactly 5

such bits were set, validate would return true.

 function validate(Ticket calldata ticket) public pure returns (bool) {

 // validate symbol

 if (ticket.symbol == 0 || ticket.symbol >= 6) {

 return false;

 }

 // validate numbers

 if (ticket.numbers == 0) {

 return false; // 00000000000000000000000001 - selected are: [0] - not

possible

 }

 // validate positive bits count

 return countBits(ticket.numbers) == 5;

 }

This may generate more rewards than expected since the possibilities of tickets are more than designed 265,650.

Proof of Concept

The proof-of-concept demonstrates that users can select a number greater than 25.

LIB-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/29971fd3dede51fe689e4274cf00848cb0af589b/src/Library.sol#L28-L31
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Library.sol#L19-L19

 function testPlaceBetOneTicketWithNumberLargerThan25() public {

 Library.Ticket[] memory tickets = new Library.Ticket[](1);

 uint256[] memory numberList = new uint256[](5);

 numberList[0] = 26;

 numberList[1] = 1;

 numberList[2] = 30;

 numberList[3] = 25;

 numberList[4] = 2;

 uint32 number = uint32(2 ** numberList[0] + 2 ** numberList[1] + 2 **

numberList[2]

 + 2 ** numberList[3] + 2 ** numberList[4]);

 tickets[0] = Library.Ticket(1, number);

 address bet = placeBet(alice, address(round), tickets);

 assertEq(token.balanceOf(address(lottery)), 0);

 assertEq(token.balanceOf(address(round)), ticketPrice);

 assertEq(round.getBetsCount(), 1);

 assertEq(round.getTicketsCount(), 1);

 assertEq(LotteryBet(bet).getAmount(), ticketPrice);

 assertEq(LotteryBet(bet).getGame(), address(lottery));

 assertEq(LotteryBet(bet).getTokenId(), 1);

 }

Result:

Ran 1 test for test/LotteryTest.t.sol:LotteryTest

[PASS] testPlaceBetOneTicketWithNumberLargerThan25() (gas: 1234018)

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 6.24ms (1.37ms CPU

time)

Ran 1 test suite in 202.57ms (6.24ms CPU time): 1 tests passed, 0 failed, 0 skipped

(1 total tests)

Recommendation

Ideally, the code should ensure that no bits outside the range of 25 are set, for example by checking:

if (ticket.numbers > 0x3E00000) { // max ticket number is 11111000000000000000000000

 return false;

}

Alleviation

[CertiK, 01/15/2025]

The existing check for the maximum ticket number is not comprehensive, as it does not account for all potential ticket

LIB-01 BETFIN LOTTERY CONTRACTS

numbers. These could lie from 21 to 25, which in binary form is 11111000000000000000000000, corresponding to the

hexadecimal 0x3E00000. Consequently, the check for the maximum value should exceed this number.

 function validate(Ticket calldata ticket) public pure returns (bool) {

 ...

 @> if (ticket.numbers > 0x3E00000) {

 return false;

 }

[Betfin, 01/15/2024]

The team updated the code to check the max ticket number in the commit 29971fd3dede51fe689e4274cf00848cb0af589b.

[CertiK, 01/15/2025]

We would like to remind the team that the Library.validate function does not accurately check if the ticket number

contains 0 selection. For example, a player can place a bet with a ticket such as 00000000000000000000011111 , which is

31. The team needs to verify if the last bit of the number is 1. To do this, the team can use the modulo operator with 2 to

check the last bit.

 // validate numbers

 if (ticket.numbers == 0) {

 return false; // 00000000000000000000000001 - selected are: [0] - not

possible

 }

[Betfin, 01/20/2024]

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/lottery-

contract/commit/441e2c66e1fc0540549cb0ec15f05d9043a17651.

LIB-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/29971fd3dede51fe689e4274cf00848cb0af589b
https://github.com/betfinio/lottery-contract/commit/441e2c66e1fc0540549cb0ec15f05d9043a17651

LOT-06 CONCURRENT ROUNDS OVERWRITE additionalJackpot

CAUSING CLAIM INCONSISTENCIES

Category Severity Location Status

Logical Issue Medium Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5b): 53 Resolved

Description

The problem arises when multiple rounds run concurrently, and both rounds interact with the additionalJackpot variable

in a way that can lead to incorrect calculations during the claim process.

 uint256 public additionalJackpot;

 uint256 toSend = amount * MAX_SHARES - claimedByRound[roundAddress] -

additionalJackpot;

When there are two rounds happening at the same time, and one round completes the fulfillRandomWords function and

clears the additionalJackpots for existing winning tickets, the second round may set the additionalJackpots to a new

value. This change could potentially impact the claim process for the first round.

The root cause is that the additionalJackpot variable is shared globally across all rounds in the Lottery contract, along

with the absence of a mechanism to ensure only one active round at a given timestamp.

Recommendation

It is recommended that the team review the design of additionalJackpot and ensure that a single variable is not shared

between possible simultaneous rounds.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by removing the additionalJackpot from the calculation of toSend in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LOT-06 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L53-L53
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LRB-03 IMPROPERLY HANDING DUPLICATES IN LOTTERY
NUMBER GENERATION USING BITWISE OPERATIONS

Category Severity Location Status

Logical

Issue
Medium

LotteryRound.sol (9583befb88b5201579685f15649573ac54a6bf5b): 1

47~152, 154
Resolved

Description

The fulfillRandomWords function in the LotteryRound contract is responsible for calculating the numbers field of the

winning ticket by summing the powers of two of randomly generated numbers (number1 to number5). This calculation is

intended to create a bitmap representation of the selected numbers, where each bit corresponds to a number between 1 and

25.

However, the current implementation does not handle duplicate numbers properly. Specifically, when duplicate numbers

are generated (e.g., number1 and number2 are both 5), the same power of two is added multiple times. This leads to an

incorrect numbers value because adding the same power of two multiple times results in a value that sets unintended bits in

the bitmap.

 function fulfillRandomWords(uint256 _requestId, uint256[] calldata _randomWords)

internal override {

 // check requrst id

 require(_requestId == requestId, "LR07");

 // update status

 status = 3;

 // create result

 uint256 number1 = _randomWords[0] % 25 + 1;

 uint256 number2 = _randomWords[1] % 25 + 1;

 uint256 number3 = _randomWords[2] % 25 + 1;

 uint256 number4 = _randomWords[3] % 25 + 1;

 uint256 number5 = _randomWords[4] % 25 + 1;

 uint8 symbol = uint8(_randomWords[5] % 5 + 1);

 @> uint32 numbers = uint32(2 ** number1 + 2 ** number2 + 2 ** number3 + 2 **

number4 + 2 ** number5);

If duplicate numbers appear (e.g., number1 = 5 and number2 = 5), the calculation becomes:

 uint32 numbers = uint32(2 ** 5 + 2 ** 5); // Equals 2 ** 6

Instead of correctly setting the 5th bit (representing the number 5), the result incorrectly sets the 6th bit due to the way

addition works with powers of two.

LRB-03 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L147-L152
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L154-L154

Since the winning ticket's numbers field is calculated incorrectly, it becomes impossible for any player's ticket to match the

winning ticket if duplicates occur. The jackpot becomes unwinnable in such cases, potentially leading to user dissatisfaction

and a loss of trust in the lottery system.

Recommendation

To ensure that the jackpot can be won, the team should add extra logic to ensure that the values derived from

_randomWords result in unique numbers for number1 through number5 . Without this guarantee, there could be

duplicates, which might not fulfill the requirements for winning the jackpot.

Alternatively, if ensuring a jackpot is not necessary, the team should adequately handle situations where duplicate numbers

might occur. Rather than simply adding powers of two—which can lead to incorrect results if duplicates are present—the

proper method involves using the bitwise OR (|) operator to combine these powers. This approach guarantees that each

bit is set only once, regardless of the number of times a number appears. For example:

 uint32 numbers = uint32(

 (1 << number1) |

 (1 << number2) |

 (1 << number3) |

 (1 << number4) |

 (1 << number5)

);

Alleviation

[Betfin, 12/17/2024]

The team partially resolved this issue by handling the duplicate numbers in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2. However, this new design introduced two new issues LRU-01 and LRU-02.

Please check these findings for more details.

[Betfin, 12/23/2024]

The team resolved this issue by replacing the current design with Fisher-Yates algorithm in the commit

d5305559fa99aa12ec0b5efe19317e51b926f843.

LRB-03 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2
https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

LRT-01 POTENTIAL LOCKED FUNDS DUE TO EMPTY BETS OF
ROUND

Category Severity Location Status

Design Issue Medium src/LotteryRound.sol (01/06/2025-d87e4f): 149 Resolved

Description

The problem occurs when no bets are placed during a lottery round, and the round proceeds to completion without a

mechanism to return reserved funds to the staking contract.

 function requestRandomness() external {

 require(!StakingInterface(lottery.getStaking()).isCalculation(), "LT10");

 // check if the round is closed

 require(!isOpen(), "LR06");

 // check if the request period has passed

 require(block.timestamp < finish + REQUEST_PERIOD, "LR05");

 // check that round status is correct

 require(getStatus() == 5, "LR12");

 // calculate the amount to reserve

 uint256 toReserve = ticketPrice * lottery.MAX_SHARES();

 // reserve funds

 lottery.reserveFunds(toReserve);

 // update status

 status = 2;

 _requestRandomness();

 }

A lottery round can be created and proceed through its lifecycle without any bets being placed (betsCount == 0). Despite

having zero bets, the round can move to status 2 when requestRandomness is called, and further to status 4 after calling

fulfillRandomWords . The processJackpot can also be executed successfully in this case, but since no bets exist, the

function Lottery.claim is never triggered.

Recommendation

Modify the requestRandomness function to include a check that ensures the round cannot proceed if no bets have been

placed. Additionally, we recommend the team add sufficient unit tests to cover this kind of edge cases.

Alleviation

[Betfin, 01/13/2025]

The team resolved this issue by checking if there is any bets before requesting randomness in the commit

LRT-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/d87e4fb4c120f38d080b1a65278178e7e7642773/src/LotteryRound.sol#L149-L149
https://github.com/betfinio/lottery-contract/tree/d705061cb1f8e3cb95efe2d623fc6694095979c9

d705061cb1f8e3cb95efe2d623fc6694095979c9.

LRT-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d705061cb1f8e3cb95efe2d623fc6694095979c9

LRU-01 POTENTIAL INVALID WINNING TICKET GENERATION IN
fulfillRandomWords

Category Severity Location Status

Logical Issue Medium src/LotteryRound.sol (12/16/2024-6fb2f9): 226 Resolved

Description

The fulfillRandomNumber function may generate invalid winning tickets with numbers exceeding the valid 25-bit range.

This occurs because of unchecked bit positions when selecting unique numbers for the winning ticket.

 for (uint256 i = 0; i < 5; i++) {

 uint32 random = uint32(_randomWords[i] % 25 + 1);

 uint32 newNumbers = numbers | uint32(1 << random);

 uint256 count = Library.countBits(newNumbers);

 uint32 offset = 1;

 while (count != i + 1) {

 newNumbers = numbers | (uint32(1) << (random + offset));

 count = Library.countBits(newNumbers);

 offset++;

 }

 numbers = newNumbers;

 }

The random variable, generated as _randomWords[i] % 25 + 1 , represents a number between 1 and 25. If random is

repeated (e.g., 24 occurs multiple times), the while loop increments offset to find a new bit position. The expression (random

+ offset) can exceed 25, leading to bit shifts beyond the 25-bit range.

Proof of Concept

The PoC shows the winning ticket can exceed the valid range.

LRU-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/6fb2f9851d8a19194f917f6073c3d0365d52d2e2/src/LotteryRound.sol#L226-L226

 function testInvalidTicketGenertedByFulfillRandomNumbers() public{

 Library.Ticket[] memory tickets = new Library.Ticket[](1);

 tickets[0] = Library.Ticket(1, 62); // 1 and 00000000000000000000111110 =

[1,2,3,4,5] & 1

 placeBet(alice, address(round), tickets);

 vm.warp(block.timestamp + 30 days + 30 minutes);

 fulfill(24, 24, 24, 24, 24, 1, address(round));

 round.processJackpot();

 (uint8 symbol, uint32 numbers) = round.winTicket();

 console.log("Symbol: ", symbol);

 console.log("Numbers: ", numbers);

 assertGt(numbers, 65011712); // 11111000000000000000000000

 assertEq(token.balanceOf(address(alice)), 0);

 }

Result:

Ran 1 test for test/LotteryClaimTest.t.sol:LotteryClaimTest

[PASS] testInvalidTicketGenertedByFulfillRandomNumbers() (gas: 1520804)

Logs:

 Symbol: 1

 Numbers: 520093696

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 6.78ms (2.12ms CPU

time)

Ran 1 test suite in 156.69ms (6.78ms CPU time): 1 tests passed, 0 failed, 0 skipped

(1 total tests)

Recommendation

Ensures no invalid bits are set beyond the 25-bit range.

Alleviation

[Betfin, 12/23/2024]

The team resolved this issue by replacing the current design with Fisher-Yates algorithm in the commit

d5305559fa99aa12ec0b5efe19317e51b926f843.

LRU-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

LBB-02 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

LotteryBet.sol (9583befb88b5201579685f15649573ac54a6bf5b): 30, 30,

30, 31, 34, 37, 159, 160
Resolved

Description

Addresses are not validated before assignment or external calls, potentially allowing the use of zero addresses and leading

to unexpected behavior or vulnerabilities. Transferring tokens to a zero address can result in a permanent loss of those

tokens. For example, if the player is address(0) , the token transfer may be reverted unintendedly.

37 round = _round;

_round is not zero-checked before being used.

160 player = _player;

_player is not zero-checked before being used.

34 game = _game;

_game is not zero-checked before being used.

31 player = _player;

_player is not zero-checked before being used.

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[Betfin, 12/17/2024] The team resolved this issue by adding zero address check in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LBB-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L30-L30
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L30-L30
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L30-L30
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L31-L31
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L34-L34
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L37-L37
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L159-L159
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L160-L160
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LOR-01 NON-UNIFORM DISTRIBUTION OF THE FINAL SET OF
NUMBERS

Category Severity Location Status

Design

Issue
Minor

src/LotteryRound.sol (12/16/2024-6fb2f9): 225~229; LotteryRound.sol (1

2/20/2024-d53055): 175
Resolved

Description

In the new commit 6fb2f9851d8a19194f917f6073c3d0365d52d2e2, the team introduced a new design to the

fulfillRandomNumbers function to resolve the issue of potential duplicated random numbers in the winning tickets.

 for (uint256 i = 0; i < 5; i++) {

 uint32 random = uint32(_randomWords[i] % 25 + 1);

 uint32 newNumbers = numbers | uint32(1 << random);

 uint256 count = Library.countBits(newNumbers);

 uint32 offset = 1;

 while (count != i + 1) {

 newNumbers = numbers | (uint32(1) << (random + offset));

 count = Library.countBits(newNumbers);

 offset++;

 }

 numbers = newNumbers;

 }

However, because of the fallback to the "next free number," the final set of chosen numbers is no longer a uniformly random

combination of 5 distinct numbers out of 25.

For example, choosing 2 distinct numbers out of 5 with the same logic.

In a perfectly uniform scenario, after choosing , the probability of each of the four remaining numbers

 as should be .

In the current design, If a collision occurs. The code tries the next number. The probability will be slightly larger than

the uniform scenario. For example, the sequence of random draws is and the first chosen number .

Then, we can compute the probability of :

We can see that the is larger than the perfectly uniform scenario. Hence, not all sets are equally

LOR-01 BETFIN LOTTERY CONTRACTS

X1 = 1 2, 3,

4, 5 X ​2 ​ =4
1 0.25

(r ​, r ​)1 2 X ​ =1 1

X ​ =2 2

P(X2 = 2 ∣ X1 = 1) = P(X2 = 2 ∣ X1 = 1, r2 = 2)P(r2 = 2) + P(X2 = 2

∣ X1 = 1, r2 = 1)P(r2 = 1) = ​ +
5
1

​ =
5
1

​ =
5
2

0.4

P (X2 = 2 ∣ X1 = 1)

https://github.com/betfinio/lottery-contract/blob/6fb2f9851d8a19194f917f6073c3d0365d52d2e2/src/LotteryRound.sol#L225-L229
https://github.com/betfinio/lottery-contract/blob/d5305559fa99aa12ec0b5efe19317e51b926f843/src/LotteryRound.sol#L175-L175
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

likely.

Recommendation

We want to confirm with the team whether this design is intended or if this issue is acceptable.

Alleviation

[Betfin, 12/23/2024]

The team resolved this issue by replacing the current design with the Fisher-Yates algorithm in the commit

d5305559fa99aa12ec0b5efe19317e51b926f843.

LOR-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

LOR-02 INCORRECT AMOUNT OF JackpotWon EVENT

Category Severity Location Status

Logical Issue Minor Lottery.sol (12/20/2024-d53055): 303 Resolved

Description

In the JackpotWon event, the additionalJackpot amount is always zero, which is incorrect. This occurs because the

additionalJackpot variable is reset to zero before the event is emitted. The emit JackpotWon line should use a value for

additionalJackpot that has not been reset yet.

296 if (winAmount > 0) {

297 if (jackpot) {

298 // transfer jackpot to player

299 token.transfer(bet.getPlayer(), winAmount + additionalJackpot);

300 // reset additional jackpot

301 additionalJackpot = 0;

302 // emit Jackpot event

303 @> emit JackpotWon(roundAddress, additionalJackpot);

304 } else {

305 // transfer win amount to player

306 token.transfer(bet.getPlayer(), winAmount);

307 }

308 }

Recommendation

It is recommended to adjust the emitted value in the JackpotWon event to ensure accuracy.

Alleviation

[Betfin Team, 01/02/2025]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/lottery-

contract/commit/d87e4fb4c120f38d080b1a65278178e7e7642773.

[CertiK, 01/06/2025]

The team resolved this issue by adjusting the location of emitting event in the commit

d87e4fb4c120f38d080b1a65278178e7e7642773.

LOR-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/d5305559fa99aa12ec0b5efe19317e51b926f843/src/Lottery.sol#L303-L303
https://github.com/betfinio/lottery-contract/commit/d87e4fb4c120f38d080b1a65278178e7e7642773
https://github.com/betfinio/lottery-contract/tree/d87e4fb4c120f38d080b1a65278178e7e7642773

LOT-05 PRIVILEGED ROLE CANNOT BE REVOKED DUE TO
UNASSIGNED DEFAULT_ADMIN_ROLE

Category Severity Location Status

Design

Issue
Minor

Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5b): 80, 81, 14

2
Resolved

Description

The smart contract employs the AccessControl module for privilege management, with the DEFAULT_ADMIN_ROLE

designated to oversee permission management, including granting and revoking roles.

However, in the current implementation, the DEFAULT_ADMIN_ROLE is not assigned to any participant. This omission is a

major security concern as it leaves the contract devoid of administrative control. Consequently, the dynamic management of

roles is compromised, preventing the alteration, revocation, or reassignment of initially granted roles. This creates potential

risks in role governance and renders privileged functions associated with the DEFAULT_ADMIN_ROLE inoperative.

Recommendation

To mitigate the issue with the unassigned DEFAULT_ADMIN_ROLE , it is recommended to:

Assign the DEFAULT_ADMIN_ROLE to a trusted entity, if the contract allows for post-deployment assignment.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by assigning the DEFAULT_ADMIN_ROLE to the admin address in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LOT-05 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L80-L80
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L81-L81
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L142-L142
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LOT-07 CHAINLINK VRF REQUEST FAILURE LEADING TO LOCKED
FUNDS

Category Severity Location Status

Design Issue Minor Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5b): 274 Resolved

Description

The current implementation of the LotteryRound contract relies on Chainlink VRF to generate a random winning ticket after

a round closes. However, if the Chainlink VRF request fails or expires due to network issues or insufficient subscription

funds, the round becomes indefinitely stuck in a pending state (status = 2). Additionally, the refund phase cannot be activated

since the status is already set to 2. As a result, reserved funds (ticketPrice * MAX_SHARES) in the Lottery contract and

ticket payments (ticketPrice * ticketsCount) in the LotteryRound contract will be locked.

Recommendation

Some possible mitigation approaches:

Monitor the fund balance of the Chainlink VRF subscription.

Introduce logic to re-request the random numbers if the fulfillRandomWords function is not called within 24 hours.

However, the re-request design violates the security consideration provided by the Chainlink

(https://docs.chain.link/vrf/v2-5/security#do-not-allow-re-requesting-or-cancellation-of-randomness). There are

potential risks involved. For instance, the VRF provider might withhold the initial VRF fulfillment and wait for a re-

request. Additionally, if the owner cancels the subscription, it could lead to a denial of service when trying to re-

request random numbers.

Introduce logic to refund payments to users if the fulfillRandomWords function is not called within 24 hours.

However, one downside of this approach is that users will unfairly lose their gas fees for placing bets. The team may

consider providing other compensation measures.

Alleviation

[Betfin, 12/17/2024] The team updated the code by introducing the logic of re-requesting in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

[Certik, 12/17/2024] Our previous recommendation may not be proper for the 'LOT-07 Chainlink VRF Request Failure

Leading To Locked Funds'. According to the Chainlink's documentation for VRF v2 (https://docs.chain.link/vrf/v2-

5/security#do-not-allow-re-requesting-or-cancellation-of-randomness), it's not recommended to allow re-requesting of

randomness, since the VRF provider may withhold the initial VRF fulfillment and wait for the re-requesting. Similarly, there

was a previous exploit that the attacker on Polygon could use to inflate gas prices to ensure Chainlink VRF did not perform

LOT-07 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L274-L274
https://docs.chain.link/vrf/v2-5/security#do-not-allow-re-requesting-or-cancellation-of-randomness
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2
https://docs.chain.link/vrf/v2-5/security#do-not-allow-re-requesting-or-cancellation-of-randomness

callbacks in a short time. Additionally, the subscription owner may cancel the subscription, which may cause the denial of

service issue of re-requesting.

Therefore, the team can probably consider adding refund logic if the contract doesn't receive fulfilledRandomWords within 24

hours. One downside of this approach is that users will unfairly lose their gas fees for placing bets. The team may consider

providing other compensation measures.

We would also like to add more recommendations regarding the 24-hour threshold. According to Chainlink's documentation

(https://docs.chain.link/vrf/v2/subscription#minimum-subscription-balance), if the subscription balance falls below the

minimum, requests can remain pending for up to 24 hours before they expire. However, a fixed 24-hour threshold could

expose the system to edge cases. For instance, if the team deposits sufficient funds into the subscription just before the 24-

hour end, and the fulfillRandomNumbers callbacks occur after this period, a race condition could arise between the refund

process and fulfillRandomNumbers. This situation could enable users to front-run fulfillRandomNumbers with the refund

function and discard unfavorable random numbers. Therefore, it's recommended that the team sets the threshold to more

than 24 hours, such as 36 hours.

[Betfin, 12/23/2024] The team mitigated this issue by adding recover logic in the commit

d5305559fa99aa12ec0b5efe19317e51b926f843.

LOT-07 BETFIN LOTTERY CONTRACTS

https://docs.chain.link/vrf/v2-5/security#do-not-allow-re-requesting-or-cancellation-of-randomness
https://docs.chain.link/vrf/v2/subscription#minimum-subscription-balance
https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

LOT-08 LOTTERY ROUND STARTING CLOSE TO CALCULATION
WINDOW MAY CAUSE STAKING LOSS MISREPORTING

Category Severity Location Status

Design Issue Minor Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5b): 150 Acknowledged

Description

The reserveFunds function ensures that funds can only be reserved when staking.isCalculation() returns false. This

check is performed to avoid reserving funds during the Calculation window, which is the window the staking contract

calculates profit or loss for a specific period.

 function reserveFunds(uint256 amount) external onlyRole(ROUND) {

 require(!staking.isCalculation(), "LT10");

 staking.reserveFunds(amount);

 }

However, if a lottery round starts very close to the start of the Calculation Day, there may not be enough time to complete the

lottery round and return the remaining reserve funds back to the staking contract.

This would cause the reserved funds to be mistakenly treated as an actual loss rather than a temporary fund movement

during the profit/loss calculation.

Recommendation

Recommend the team consider an additional time buffer when creating new rounds and monitor the on-chain data to ensure

the rounds will be ended before the Calculation window.

Alleviation

[Betfin, 12/17/2024] We will monitor that new rounds will be created only on specific date, where there will be a lot of time to

fulfill ticket before calculation starts.

LOT-08 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L150-L150

LRB-04 INCONSISTENT TICKET PRICE VALIDATION DUE TO
MUTABLE lottery.TICKET_PRICE() IN LotteryRound

CONTRACT

Category Severity Location Status

Logical

Issue
Minor

LotteryRound.sol (9583befb88b5201579685f15649573ac54a6bf5b): 10

9
Resolved

Description

In the LotteryRound contract, the ticket price for each round is stored in ticketPrice, which is defined during the round's

creation.

 function registerBet(address _bet) external onlyOwner {

 ...

 // check balance of round - should not happen, but anyway

 require(IERC20(lottery.getToken()).balanceOf(address(this)) >= ticketsCount

* lottery.TICKET_PRICE(), "LR04");

 }

However, the line above uses lottery.TICKET_PRICE() , which fetches the ticket price from the Lottery contract. The

lottery.TICKET_PRICE() is a mutable value in the Lottery contract and can be updated via the setTicketPrice() function

by the SERVICE role. As a result, if lottery.TICKET_PRICE() changes after a round has been created, the requirement

check in LotteryRound will fail unintentionally.

Recommendation

Recommend using the ticketPrice , which is the value fixed during the round's creation.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by using the ticketPrice in the commit 6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LRB-04 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L109-L109
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LRB-05 fulfillRandomWords MUST NOT REVERT

Category Severity Location Status

Coding

Issue
Minor

LotteryRound.sol (9583befb88b5201579685f15649573ac54a6bf5b): 14

1
Resolved

Description

If the fulfillRandomWords() implementation reverts, the VRF service will not attempt to call it a second time, which may

cause locked funds or manipulation of bet results. Make sure contract logic does not revert.

Recommendation

The best practice is to consider simply storing the randomness and taking more complex follow-on actions in separate

contract calls made by you and your users.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by simply storing the randomness and gas consumption will not exceed 2_500_000 in the

commit 6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LRB-05 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L141-L141
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LRT-02 ENHANCED SECURITY THROUGH INCREASED BLOCK
CONFIRMATIONS IN CHAINLINK VRF REQUESTS ON
POLYGON NETWORK

Category Severity Location Status

Design Issue Minor src/LotteryRound.sol (01/06/2025-d87e4f): 173 Resolved

Description

The requestConfirmations in the LotteryRound contract is set at 3. This parameter specifies the minimum number of

block confirmations that Chainlink's VRF (Verifiable Random Function) service should wait before delivering randomness.

This setting is crucial due to the occurrence of chain reorganizations, a scenario where blocks and their transactions are

rearranged, leading to potential changes in the block content. This issue is particularly relevant for applications deployed on

Polygon, an Ethereum scaling solution that utilizes a Proof of Stake (PoS) consensus mechanism. On Polygon, multiple

validators may propose blocks at the same block height simultaneously. Network delays can result in these blocks being

received at different times by different nodes, creating temporary forks. Observations from Forked Blocks indicate that there

are over five reorganizations daily, with some extending beyond 3 blocks in depth. Given that BetFin is active on Polygon,

there's a potential risk that the outcome of a LotteryRound game could change. Specifically, if the transaction requesting

randomness from the VRF is shifted to another block due to a reorg, the resulting randomness—and consequently the

game's outcome—could be altered.

 requestId = coordinator.requestRandomWords(

 VRFV2PlusClient.RandomWordsRequest({

 keyHash: keyHash,

 subId: subscriptionId,

 requestConfirmations: 3,

 callbackGasLimit: 2_500_000,

 numWords: 6,

 extraArgs:

VRFV2PlusClient._argsToBytes(VRFV2PlusClient.ExtraArgsV1({ nativePayment: true }))

 })

Recommendation

It's recommended to set a larger requestConfirmations value. For example, the value could be set based on the average

depth of reorganizations observed, plus a buffer to account for deeper than usual reorgs.

Alleviation

[Betfin, 01/13/2025]

The team resolved this issue by setting the requestConfirmations to 20 in the commit

LRT-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/d87e4fb4c120f38d080b1a65278178e7e7642773/src/LotteryRound.sol#L173-L173
https://polygonscan.com/blocks_forked
https://github.com/betfinio/lottery-contract/tree/d705061cb1f8e3cb95efe2d623fc6694095979c9

d705061cb1f8e3cb95efe2d623fc6694095979c9.

LRT-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d705061cb1f8e3cb95efe2d623fc6694095979c9

LBB-03 INVALID USE OF ACCESS CONTROL MODIFIER

Category Severity Location Status

Logical

Issue
Informational

LotteryBet.sol (9583befb88b5201579685f15649573ac54a6bf5b):

140~148
Resolved

Description

The functions marked as 'view' or 'pure' are unnecessarily restricted by the 'restrict' modifier. These functions are designed to

be read-only, meaning they do not modify the state on the blockchain. However, they are restricted so that only a specific

address can call them.

It's important to note that even private state variables can be read off-chain, rendering the access restriction on these

functions ineffective.

Recommendation

We recommend that access restrictions are not used on view' or pure' functions, as they do not improve security for

read-only operations. Instead, these getter functions should be made public to allow transparency and follow best practice. If

there is sensitive information that should not be disclosed, the way in which this data is managed and stored should be

reconsidered, as restricting access in this way does not provide effective security.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by removing the access control of view functions in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LBB-03 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L140-L148
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LIB-02 THE NORMAL EXPECTED VALUE (MATHEMATICAL
EXPECTATION) OF THE LOTTERY GAME TO IS
APPROXIMATELY 0.71 × ticketPrice

Category Severity Location Status

Design

Issue
Informational

Library.sol (9583befb88b5201579685f15649573ac54a6bf5

b): 48
Acknowledged

Description

The team corrected the calculation and updated the payout design in the commit

d5305559fa99aa12ec0b5efe19317e51b926f843. The new max shares is , and the

mathematical expectation of one ticket is around .

When we exclude the jackpot reward (as its amount is unpredictable and depends on the number of participants), the

expected value (mathematical expectation) of the game for a player is approximately 0.62 times the ticket price. This

means that, on average, a player receives about 62% of what they pay for the ticket.

Detailed Derivation:

1. Game Setup:

Each ticket consists of:

Numbers: Exactly 5 distinct numbers chosen out of 25 possible numbers (1 through 25).

Symbol: One number chosen out of 5 possible symbols (1 through 5).

Therefore, the total number of unique tickets is:

The winning ticket is chosen uniformly at random from these 265,650 possibilities.

2. Matching Criteria: For a given player's ticket , where is the chosen 5-number set and the chosen symbol,

we consider the probability that the winning ticket shares exactly matching numbers with and possibly

the same symbol .

The number of ways to choose the winning 5-number combination out of 25 is

The probability distribution for matching exactly of the player's chosen 5 numbers is given by:

LIB-02 BETFIN LOTTERY CONTRACTS

188, 500 × ticketP rice

0.71 × ticketP rice

Total Tickets = ​ ×(
5

25
) 5 = 53,130 × 5 = 265,650.

(S, s) S s

(W ,w) k S

s

​ =(5
25) 53,130.

k

P (k matches) = ​

​(5
25)

​ ⋅ ​(
k

5) (5−k
20)

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Library.sol#L48-L48
https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

Here:

 is the number of ways to choose which numbers from the player's 5 are in the winner.

 is the number of ways to choose the remaining numbers from the 20 not

chosen by the player.

Let's compute these probabilities:

For :

For :

For :

For :

For :

For :

These probabilities sum to 1 and match the standard hypergeometric distribution checks.

3. Symbol Match Probability: The symbol is chosen uniformly from 1 to 5. The probability that the winning symbol

matches the player's symbol is:

4. Payout Coefficients: From the code, assuming symbolUnlocked = true , the coefficient structure is:

LIB-02 BETFIN LOTTERY CONTRACTS

​(
k

5) k

​(5−k
20) 5 − k

k = 0

P (k = 0) = ​ =
​(5

25)

​ ​(0
5)(5

20)
​ ≈

53,130
1 ⋅ 15,504

0.2918

k = 1

P (k = 1) = ​ =
​(5

25)

​(1
5)(4

20)
​ ≈

53,130
5 ⋅ 4,845

0.4560

k = 2

P (k = 2) = ​ =
​(5

25)

​ ​(2
5)(3

20)
​ ≈

53,130
10 ⋅ 1,140

0.2146

k = 3

P (k = 3) = ​ =
​(5

25)

​ ​(3
5)(2

20)
​ ≈

53,130
10 ⋅ 190

0.0358

k = 4

P (k = 4) = ​ =
​(5

25)

​ ​(4
5)(1

20)
​ ≈

53,130
5 ⋅ 20

0.0019

k = 5

P (k = 5) = ​ =
​(5

25)

​ ​(5
5)(0

20)
​ ≈

53,130
1 ⋅ 1

0.0000188

P (symbol match) = ​ =
5
1

0.2.

For :

With symbol match: 33,334

Without symbol match: 13,334

For :

With symbol match: 334

Without symbol match: 40

For :

With symbol match: 5

Without symbol match: 1

For :

With symbol match: 1

Without symbol match: 0

For , no payout.

5. Expected Coefficient Calculation:

Let’s calculate the expected coefficient by summing over all possible (k) values, taking into account symbol matching:

For :

Expected coefficient contribution:

For :

Expected coefficient:

For :

Expected coefficient:

LIB-02 BETFIN LOTTERY CONTRACTS

k = 5

k = 4

k = 3

k = 2

k < 2

k = 5

= P (k = 5)[P (symbol match) ⋅ 33,334 + P (no match) ⋅ 13,334] = 0.0000188[0.2 ⋅
33,334 + 0.8 ⋅ 13,334] ≈ 0.326

k = 4

= 0.0019[0.2 ⋅ 334 + 0.8 ⋅ 40] ≈ 0.186.

k = 3

= 0.0358[0.2 ⋅ 5 + 0.8 ⋅ 1] ≈ 0.0644.

For :

Expected coefficient:

For or , no payout, so contribution = 0.

Summing all contributions:

This is our expected coefficient.

6. Expected Value of the Game: Since the payoff is:

the expected payoff (mathematical expectation) is:

This means if you pay for a ticket, your expected return is about .

Recommendation

We would like to confirm with the if this design is intended.

Alleviation

[Betfin, 12/17/2024]

This design is intended. We may increase payout in future, but now is OK.

[Betfin, 12/23/2024]

The team corrected the calculation and updated the payout design in the commit

d5305559fa99aa12ec0b5efe19317e51b926f843. The new max shares is , and the

mathematical expectation of one ticket is around .

LIB-02 BETFIN LOTTERY CONTRACTS

k = 2

= 0.2146[0.2 ⋅ 1 + 0.8 ⋅ 0] = 0.0429.

k = 1 k = 0

0.326(k = 5) + 0.186(k = 4) + 0.0644(k = 3) + 0.0429(k = 2) ≈ 0.6193.

Payoff = ticketPrice × coefficient,

E[Payoff] = ticketPrice × 0.619.

x 0.62x

188, 500 × ticketP rice

0.71 × ticketP rice

https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

LOS-02 USER CAN PLACE BET WITH ZERO TICKETS AND ZERO
AMOUNT

Category Severity Location Status

Design Issue Informational src/Lottery.sol (01/13/2025-d70506): 90~94 Resolved

Description

A vulnerability exists in the Lottery contract’s placeBet() function allowing a user to submit a bet with zero tickets (_count

== 0) and zero amount (amount == 0). Due to the logic checks, this bet does not revert and still mints an NFT ticket to the

user.

 function placeBet(

 address,

 uint256 amount,

 bytes calldata data

)

 external

 override

 onlyRole(CORE)

 returns (address betAddress)

 {

 ...

 // validate count

 require(_count == _tickets.length, "LT01");

 ...

 // validate amount

 require(amount == price * _count, "LT03");

 ...

 }

The potential impacts of this issue could be:

Users can create “empty” bets at no cost.

The system mints an NFT for each zero-cost bet.

This could allow an attacker or user to flood the system with meaningless bets/NFTs.

Recommendation

Add a new require statement ensuring nonzero tickets or nonzero amount (or both).

LOS-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/d705061cb1f8e3cb95efe2d623fc6694095979c9/src/Lottery.sol#L90-L94

Alleviation

[Betfin, 01/15/2024]

The team resolved this issue in the commit 29971fd3dede51fe689e4274cf00848cb0af589b.

LOS-02 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/29971fd3dede51fe689e4274cf00848cb0af589b

LOT-01 POTENTIAL MISCALCULATION OF THE MAX_SHARES

Category Severity Location Status

Magic

Numbers
Informational

Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5b):

43
Resolved

Description

The MAX_SHARES is larger than the maximum amount of money the host needs to prepare for rewards (164,570).

 uint256 public constant MAX_SHARES = 213_770;

Each ticket consists of:

A symbol from 1 to 5 (inclusive).

A combination of exactly 5 distinct numbers chosen from a set of 25 possible numbers.

Thus, the total number of unique tickets is:

Number of Combinations for Each Match Count:

Count = 5: To get all 5 correct, you must choose exactly the winner's 5 numbers:

Count = 4: Choose 4 of the winner’s 5 numbers and 1 from the 20 non-winning:

Count = 3: Choose 3 of the winner’s 5 and 2 from the 20 non-winning:

Count = 2: Choose 2 of the winner’s 5 and 3 from the 20 non-winning:

LOT-01 BETFIN LOTTERY CONTRACTS

×(
5

25
) 5 = 53,130 × 5 = 265,650 unique tickets.

​ ​ =(
5
5

)(
0

20
) 1 set of numbers.

​ ​ =(
4
5

)(
1

20
) 5 × 20 = 100 sets of numbers.

​ ​ =(
3
5

)(
2

20
) 10 × 190 = 1,900 sets of numbers.

​ ​ =(
2
5

)(
3

20
) 10 × 1,140 = 11,400 sets.

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L43-L43

Count = 1:

Count = 0:

Calculating the Payout for Each Category:

Count = 5 matches:

Numbers: 1 set

Symbol variants: 5 tickets total

1 correct symbol: 33,334

4 incorrect symbol: 4 × 13,334 = 53,336

Total for 5-match: 33,334 + 53,336 = 86,670

Count = 4 matches:

100 sets

Each set of numbers (5 symbol variants):

1 correct symbol: 334

4 incorrect symbol: 4 × 40 = 160

Total per set = 334 + 160 = 494. For 100 sets: 100 × 494 = 49,400

Count = 3 matches:

1,900 sets

Each set (5 symbols):

1 correct symbol: 5

4 incorrect symbol: 4 × 1 = 4

Total per set = 5 + 4 = 9. For 1,900 sets: 1,900 × 9 = 17,100

Count = 2 matches:

LOT-01 BETFIN LOTTERY CONTRACTS

​ ​ =(
1
5

)(
4

20
) 5 × 4,845 = 24,225 sets.

​ ​ =(
0
5

)(
5

20
) 1 × 15,504 = 15,504 sets.

11,400 sets

Each set (5 symbols):

1 correct symbol: 1

4 incorrect symbol: 0 each

Total per set = 1. For 11,400 sets: 11,400 × 1 = 11,400

Count = 1 matches:

No reward.

Count = 0 matches:

No reward.

Summing All Rewards:

Thus, total coefficient sum = 164,570.

The maximum amount of money the host needs to prepare for rewards (beyond the initial ticket revenue) is:

Recommendation

We would like to know if it's intended and if the team designed that some additional jackpot reward will come from the

ticketPrice * MAX_SHARES . It's also okay that the team set an extra buffer to ensure a safety margin beyond the strict

mathematical maximum.

Alleviation

[Betfin, 12/18/2024]

Thank you for your concern - here is the table we used to calculate max shares needed to cover all possible jackpots

[Certik, 12/18/2024]

Thanks for the update. We have some questions about the number of winners in the table. We would like to know how the

team designed the winners for 3+1, 3, and 2+1.

To our understanding of current design, the winners for 3+1, 3 and 2+1 should be like

LOT-01 BETFIN LOTTERY CONTRACTS

(5-match total) + (4-match total) + (3-match total) + (2-match total) =
86,670 + 49,400 + 17,100 + 11,400

​164,570 × ticketPrice

[Betfin, 12/23/2024]

The team corrected the calculation and updated the payout design in the commit

d5305559fa99aa12ec0b5efe19317e51b926f843. The new max shares is , and the

mathematical expectation of one ticket is around .

LOT-01 BETFIN LOTTERY CONTRACTS

1 × ​ ​ =(
3
5

)(
2

20
) 10 × 190 = 1,900 sets of numbers.

4 × ​ ​ =(
3
5

)(
2

20
) 4 × 10 × 190 = 7,600 sets of numbers.

1 × ​ ​ =(
2
5

)(
3

20
) 10 × 1,140 = 11,400 sets of numbers.

188, 500 × ticketP rice

0.71 × ticketP rice

https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

LOT-09 LOCAL VARIABLE SHADOWING

Category Severity Location Status

Coding

Style
Informational

Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5b): 24

7
Resolved

Description

A local variable is shadowing another component defined elsewhere. This means that when the contract accesses the

variable by its name, it will use the one defined locally, not the one defined in the other place. The use of the variable may

lead to unexpected results and unintended behavior.

247 (uint8 symbol, uint32 numbers) = round.winTicket();

Local variable symbol in Lottery._claim shadows:

Function symbol in ERC721

Function symbol in IERC721Metadata

Recommendation

It is recommended to remove or rename the local variable that shadows another definition to prevent potential issues and

maintain the expected behavior of the smart contract.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by changing the modifier name to _symbol in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LOT-09 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L247-L247
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LOY-01 NO LOGIC TO CANCEL THE SUBSCRIPTION AND
WITHDRAW THE REMAINING FUNDS FROM CHAINLINK
SUBSCRIPTION

Category Severity Location Status

Design Issue Informational src/Lottery.sol (01/06/2025-d87e4f): 82 Resolved

Description

During the Lottery contract's initialization, a new Chainlink VRF subscription is created, and then funds can be deposited

into this subscription to pay for randomness requests. However, there is no function to cancel the Chainlink VRF subscription

in case the project is terminated or needs to withdraw unused funds.

 constructor(

 ...

)

 ERC721("Betfin Lottery Ticket", "BLT")

 {

 ...

 subscriptionId = coordinator.createSubscription();

 ...

 }

Without the ability to cancel the subscription, any remaining LINK or native tokens in the subscription will remain locked,

leading to the loss of unutilized funds.

Recommendation

The team can implement a function that allows the admin or service role to cancel the Chainlink VRF subscription and

withdraw the remaining LINK tokens and native tokens.

 function cancelSubscription(address receivingWallet) external onlyOwner {

 // Cancel the subscription and send the remaining funds to a wallet address.

 s_vrfCoordinator.cancelSubscription(s_subscriptionId, receivingWallet);

 s_subscriptionId = 0;

 }

Additionally, we recommend the team add sufficient unit tests to cover this kind of edge cases.

Alleviation

LOY-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/d87e4fb4c120f38d080b1a65278178e7e7642773/src/Lottery.sol#L82-L82

[Betfin, 01/13/2025]

The team resolved this issue by adding logic of canceling the subscription in the commit

d705061cb1f8e3cb95efe2d623fc6694095979c9.

LOY-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/tree/d705061cb1f8e3cb95efe2d623fc6694095979c9

LRB-06 UNUSED FUNCTION

Category Severity Location Status

Coding

Issue
Informational

LotteryRound.sol (9583befb88b5201579685f15649573ac54a6bf

5b): 234
Resolved

Description

The external function setWinTicket is never used.

 function setWinTicket(Library.Ticket memory _winTicket) external onlyOwner {

 winTicket = _winTicket;

 }

Recommendation

Consider removing the unused function.

Alleviation

[Betfin, 12/17/2024]

The team resolved this issue by removing unused functions in the commit 6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LRB-06 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L234-L234
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

MBB-01 PURPOSE OF MultiBet CONTRACT

Category Severity Location Status

Design Issue Informational src/MultiBet.sol (01/19/2025-29971f): 12 Acknowledged

Description

The MultiBet contract appears to serve as a universal gateway for placing bets across multiple games. However, in

certain games, the contract itself acts as the player. Since the contract lacks a function to withdraw rewards, any winnings

would be inaccessible and locked in the contract.

Recommendation

We would like to understand the purpose of the MultiBet contract.

Alleviation

[Betfin, 01/20/2025]

Correct, multibet serves as gateway for placing bets and as you may noticed all new contract games accept player address

in encoded data as player. This allow US to make bets for players and provided player address in encoded data will be

recipient of bet and player who will get rewards.

[CertiK, 01/20/2025]

The existing MultiBet function is suitable for the Lottery game; however, it might not be compatible with other games

provided by Betfin, in which the player's address is not included in the encoded data.

MBB-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/29971fd3dede51fe689e4274cf00848cb0af589b/src/MultiBet.sol#L12-L12

SRC-03 THIRD-PARTY DEPENDENCY USAGE

Category Severity Location Status

Design

Issue
Informational

Lottery.sol (9583befb88b5201579685f15649573ac54a6bf5b):

47, 49, 50; LotteryRound.sol (9583befb88b5201579685f15649

573ac54a6bf5b): 37, 45; interfaces/CoreInterface.sol (9583bef

b88b5201579685f15649573ac54a6bf5b): 4~10; interfaces/Sta

kingInterface.sol (9583befb88b5201579685f15649573ac54a6

bf5b): 4~22

Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assumes their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

45 Lottery private lottery;

The contract LotteryRound interacts with third party contract with StakingInterface interface via lottery .

49 StakingInterface private staking;

The contract Lottery interacts with third party contract with StakingInterface interface via staking .

37 IVRFCoordinatorV2Plus private immutable coordinator;

The contract LotteryRound interacts with third party contract with IVRFCoordinatorV2Plus interface via

coordinator .

50 CoreInterface private core;

The contract Lottery interacts with third party contract with CoreInterface interface via core .

47 IVRFCoordinatorV2Plus private immutable coordinator;

The contract Lottery interacts with third party contract with IVRFCoordinatorV2Plus interface via coordinator .

SRC-03 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L47-L47
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L49-L49
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L50-L50
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L37-L37
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L45-L45
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/interfaces/CoreInterface.sol#L4-L10
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/interfaces/StakingInterface.sol#L4-L22

Recommendation

The auditors understood that the business logic requires interaction with third parties. item_output is recommended for the

team to constantly monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[Betfin, 12/17/2024]

Issue acknowledged.

SRC-03 BETFIN LOTTERY CONTRACTS

SRC-04 SOLIDITY VERSION 0.8.23 WON'T WORK FOR ALL CHAINS
DUE TO MCOPY

Category Severity Location Status

Design

Issue
Informational

Library.sol (9583befb88b5201579685f15649573ac54a6bf5b): 2; Lott

ery.sol (9583befb88b5201579685f15649573ac54a6bf5b): 2; Lottery

Bet.sol (9583befb88b5201579685f15649573ac54a6bf5b): 2; Lottery

Round.sol (9583befb88b5201579685f15649573ac54a6bf5b): 2; Tok

en.sol (9583befb88b5201579685f15649573ac54a6bf5b): 2; interfac

es/BetInterface.sol (9583befb88b5201579685f15649573ac54a6bf5

b): 2; interfaces/CoreInterface.sol (9583befb88b5201579685f15649

573ac54a6bf5b): 2; interfaces/GameInterface.sol (9583befb88b520

1579685f15649573ac54a6bf5b): 2; interfaces/PartnerInterface.sol

(9583befb88b5201579685f15649573ac54a6bf5b): 2; interfaces/Pas

sInterface.sol (9583befb88b5201579685f15649573ac54a6bf5b): 2; i

nterfaces/StakingInterface.sol (9583befb88b5201579685f15649573

ac54a6bf5b): 2

Resolved

Description

Since Solidity Release 0.8.23, MCOPY opcode is introduced. However, this may not be compatible with all chains and L2s.

As a result, the compatibility of the code could be affected.

Recommendation

Please check whether targeted chains support the specification EIP-5656: MCOPY - Memory Copying Instruction . If the

chain does not support EIP-5656, the team can consider setting the Solidity compile flag --evm-version to an earlier EVM

version. For example, paris does not contain either PUSH0 or MCOPY opcodes. Alternatively, use a compiler version that is

strictly less than 0.8.20.

Alleviation

[Betfin, 12/17/2024]

We only deploy on Polygon and Polygon Amoy that supports this EIP-5656.

SRC-04 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Library.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Lottery.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/Token.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/interfaces/BetInterface.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/interfaces/CoreInterface.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/interfaces/GameInterface.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/interfaces/PartnerInterface.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/interfaces/PassInterface.sol#L2-L2
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/interfaces/StakingInterface.sol#L2-L2

OPTIMIZATIONS BETFIN LOTTERY CONTRACTS

ID Title Category Severity Status

LBB-01 Cache Array Length Coding Issue Optimization Resolved

LRB-01 Costly Operations Inside A Loop Coding Issue Optimization Resolved

LRH-03 Potential Optimization To The Shuffle Loops Gas Optimization Optimization Resolved

SRC-01 Variables That Could Be Declared As Immutable Gas Optimization Optimization Resolved

OPTIMIZATIONS BETFIN LOTTERY CONTRACTS

https://acc.audit.certikpowered.info/project/4bd133f0-b3ec-11ef-83af-8ffb397f2801/report/new?fid=1733515198681
https://acc.audit.certikpowered.info/project/4bd133f0-b3ec-11ef-83af-8ffb397f2801/report/new?fid=1733515198679
https://acc.audit.certikpowered.info/project/4bd133f0-b3ec-11ef-83af-8ffb397f2801/report/new?fid=1734993511923
https://acc.audit.certikpowered.info/project/4bd133f0-b3ec-11ef-83af-8ffb397f2801/report/new?fid=1733515197795

LBB-01 CACHE ARRAY LENGTH

Category Severity Location Status

Coding

Issue
Optimization

LotteryBet.sol (9583befb88b5201579685f15649573ac54a6bf5b):

108, 149
Resolved

Description

Detects for loops that use length member of some storage array in their loop condition and don't modify item_output.

Recommendation

Cache the lengths of storage arrays if they are used and not modified in for loops.

Alleviation

[Betfin, 12/17/2024]

The team attempted to optimize the code by using the global variable ticketsCount in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

[Certik, 12/17/2024]

We want to remind the team that reading a global variable is more gas-consuming than reading a local variable.

[Betfin, 12/23/2024]

The team optimized the code in the commit d5305559fa99aa12ec0b5efe19317e51b926f843.

LBB-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L108-L108
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L149-L149
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2
https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

LRB-01 COSTLY OPERATIONS INSIDE A LOOP

Category Severity Location Status

Coding

Issue
Optimization

LotteryRound.sol (9583befb88b5201579685f15649573ac54a6bf5

b): 90~110
Resolved

Description

Costly operations inside a loop might waste gas, so optimizations are justified.

104 ticketsCount++;

Recommendation

Use a local variable to hold the loop computation result.

Alleviation

[Betfin, 12/17/2024]

The team optimized the code by using local variable in the commit 6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

LRB-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L90-L110
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2

LRH-03 POTENTIAL OPTIMIZATION TO THE SHUFFLE LOOPS

Category Severity Location Status

Gas Optimization Optimization LotteryRound.sol (12/20/2024-d53055): 225 Resolved

Description

Since we only need the first 5 numbers from a random permutation of 25 numbers, we don't need to shuffle the entire array.

After 5 iterations, the position of those first 5 elements will not change anymore because because the Fisher–Yates algorithm

only swaps the current index i with some index >= i .

 // Shuffle the pool using Fisher-Yates algorithm

 for (uint32 i = 0; i < 25; i++) {

 uint256 randomIndex = uint256(_randomWords[i % _randomWords.length] %

(25 - i)) + i;

 // Swap the numbers

 (pool[i], pool[randomIndex]) = (pool[randomIndex], pool[i]);

 }

 // Select the first 5 numbers

 uint32 numbers = 0;

 for (uint256 i = 0; i < 5; i++) {

 numbers |= (uint32(1) << pool[i]);

 }

Recommendation

Therefore, we can stop shuffling after the 5th iteration.

Alleviation

[Betfin, 01/02/2025]

The team optimized the code in the commit d87e4fb4c120f38d080b1a65278178e7e7642773.

LRH-03 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/d5305559fa99aa12ec0b5efe19317e51b926f843/src/LotteryRound.sol#L225-L225
https://github.com/betfinio/lottery-contract/tree/d87e4fb4c120f38d080b1a65278178e7e7642773

SRC-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas

Optimization
Optimization

LotteryBet.sol (9583befb88b5201579685f15649573ac54a6bf5

b): 20; LotteryRound.sol (9583befb88b5201579685f15649573a

c54a6bf5b): 46

Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

[Betfin, 12/17/2024]

The team partially optimized the code by modifying the round to immutable variable in the commit

6fb2f9851d8a19194f917f6073c3d0365d52d2e2.

[Certik, 12/17/2024]

The ticketPrice in the LotteryRound also can be declared these variables as immutable.

[Betfin, 12/23/2024]

The team optimized the code in the commit d5305559fa99aa12ec0b5efe19317e51b926f843.

SRC-01 BETFIN LOTTERY CONTRACTS

https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryBet.sol#L20-L20
https://github.com/betfinio/lottery-contract/blob/9583befb88b5201579685f15649573ac54a6bf5b/src/LotteryRound.sol#L46-L46
https://github.com/betfinio/lottery-contract/tree/6fb2f9851d8a19194f917f6073c3d0365d52d2e2
https://github.com/betfinio/lottery-contract/tree/d5305559fa99aa12ec0b5efe19317e51b926f843/src

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied formal verification to prove

that important functions in the smart contracts adhere to their expected behaviors.

Considered Functions And Scope

In the following, we provide a description of the properties that have been used in this audit. They are grouped according to

the type of contract they apply to.

Verification of contracts derived from AccessControl v4.4

We verified properties of the public interface of contracts that provide an AccessControl-v4.4 compatible API. This involves:

The hasRole function, which returns true if an account has been granted a specific role .

The getRoleAdmin function, which returns the admin role that controls a specific role .

The grantRole and revokeRole functions, which are used for granting a role to an account and revoking a

role from an account , respectively.

The renounceRole function, which allows the calling account to revoke a role from itself.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

accesscontrol-hasrole-succeed-always hasRole Function Always Succeeds

accesscontrol-getroleadmin-succeed-always getRoleAdmin Function Always Succeeds

accesscontrol-getroleadmin-change-state getRoleAdmin Function Does Not Change State

accesscontrol-default-admin-role AccessControl Default Admin Role Invariance

accesscontrol-renouncerole-succeed-role-renouncing renounceRole Successfully Renounces Role

accesscontrol-hasrole-change-state hasRole Function Does Not Change State

accesscontrol-renouncerole-revert-not-sender
renounceRole Reverts When Caller Is Not the Confirmation

Address

accesscontrol-revokerole-correct-role-revoking revokeRole Correctly Revokes Role

accesscontrol-grantrole-correct-role-granting grantRole Correctly Grants Role

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Verification Results

For the following contracts, formal verification established that each of the properties that were in scope of this audit (see

scope) are valid:

Detailed Results For Contract LotteryBet (src/LotteryBet.sol) In Commit
658e27289934d7901953a1f1fd0625fd1e5d3c3b

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-succeed-always True

accesscontrol-hasrole-change-state True

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-succeed-role-renouncing True

accesscontrol-renouncerole-revert-not-sender True

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results For Contract LotteryBet (src/LotteryBet.sol) In Commit
441e2c66e1fc0540549cb0ec15f05d9043a17651

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-change-state True

accesscontrol-hasrole-succeed-always True

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-change-state True

accesscontrol-getroleadmin-succeed-always True

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-succeed-role-renouncing True

accesscontrol-renouncerole-revert-not-sender True

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results For Contract LotteryBet (src/LotteryBet.sol) In Commit
29971fd3dede51fe689e4274cf00848cb0af589b

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-succeed-role-renouncing True

accesscontrol-renouncerole-revert-not-sender True

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-change-state True

accesscontrol-hasrole-succeed-always True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results For Contract LotteryBet (src/LotteryBet.sol) In Commit
d705061cb1f8e3cb95efe2d623fc6694095979c9

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-succeed-always True

accesscontrol-hasrole-change-state True

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-revert-not-sender True

accesscontrol-renouncerole-succeed-role-renouncing True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results For Contract LotteryBet (src/LotteryBet.sol) In Commit
d87e4fb4c120f38d080b1a65278178e7e7642773

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-succeed-always True

accesscontrol-hasrole-change-state True

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-revert-not-sender True

accesscontrol-renouncerole-succeed-role-renouncing True

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Detailed Results For Contract LotteryBet (src/LotteryBet.sol) In Commit
d5305559fa99aa12ec0b5efe19317e51b926f843

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-succeed-always True

accesscontrol-hasrole-change-state True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-succeed-role-renouncing True

accesscontrol-renouncerole-revert-not-sender True

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results For Contract LotteryBet (src/LotteryBet.sol) In Commit
6fb2f9851d8a19194f917f6073c3d0365d52d2e2

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-change-state True

accesscontrol-hasrole-succeed-always True

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-revert-not-sender True

accesscontrol-renouncerole-succeed-role-renouncing True

Detailed Results For Contract LotteryBet (src/LotteryBet.sol) In Commit
9583befb88b5201579685f15649573ac54a6bf5b

Verification of contracts derived from AccessControl v4.4

Detailed Results for Function getRoleAdmin

Property Name Final Result Remarks

accesscontrol-getroleadmin-succeed-always True

accesscontrol-getroleadmin-change-state True

Detailed Results for Function DEFAULT_ADMIN_ROLE

Property Name Final Result Remarks

accesscontrol-default-admin-role True

Detailed Results for Function renounceRole

Property Name Final Result Remarks

accesscontrol-renouncerole-succeed-role-renouncing True

accesscontrol-renouncerole-revert-not-sender True

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

Detailed Results for Function hasRole

Property Name Final Result Remarks

accesscontrol-hasrole-change-state True

accesscontrol-hasrole-succeed-always True

Detailed Results for Function grantRole

Property Name Final Result Remarks

accesscontrol-grantrole-correct-role-granting True

Detailed Results for Function revokeRole

Property Name Final Result Remarks

accesscontrol-revokerole-correct-role-revoking True

FORMAL VERIFICATION BETFIN LOTTERY CONTRACTS

APPENDIX BETFIN LOTTERY CONTRACTS

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Magic

Numbers

Magic Number findings refer to numeric literals that are expressed in the code in their raw format, but

should instead be declared as constants to improve readability and maintainability.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

Details on Formal Verification

Some Solidity smart contracts from this project have been formally verified. Each such contract was compiled into a

mathematical model that reflects all its possible behaviors with respect to the property. The model takes into account the

semantics of the Solidity instructions found in the contract. All verification results that we report are based on that model.

The following assumptions and simplifications apply to our model:

APPENDIX BETFIN LOTTERY CONTRACTS

Certain low-level calls and inline assembly are not supported and may lead to a contract not being formally verified.

We model the semantics of the Solidity source code and not the semantics of the EVM bytecode in a compiled

contract.

Formalism for property specifications

All properties are expressed in a behavioral interface specification language that CertiK has developed for Solidity, which

allows us to specify the behavior of each function in terms of the contract state and its parameters and return values, as well

as contract properties that are maintained by every observable state transition. Observable state transitions occur when the

contract’s external interface is invoked and the invocation does not revert, and when the contract’s Ether balance is changed

by the EVM due to another contract’s “self-destruct” invocation. The specification language has the usual Boolean

connectives, as well as the operator \old (used to denote the state of a variable before a state transition), and several

types of specification clause:

Apart from the Boolean connectives and the modal operators "always" (written []) and "eventually" (written <>), we use

the following predicates to reason about the validity of atomic propositions. They are evaluated on the contract's state

whenever a discrete time step occurs:

requires [cond] - the condition cond , which refers to a function’s parameters, return values, and contract state

variables, must hold when a function is invoked in order for it to exhibit a specified behavior.

ensures [cond] - the condition cond , which refers to a function’s parameters, return values, and both \old and

current contract state variables, is guaranteed to hold when a function returns if the corresponding requires condition

held when it was invoked.

invariant [cond] - the condition cond , which refers only to contract state variables, is guaranteed to hold at

every observable contract state.

constraint [cond] - the condition cond , which refers to both \old and current contract state variables, is

guaranteed to hold at every observable contract state except for the initial state after construction (because there is

no previous state); constraints are used to restrict how contract state can change over time.

Description of the Analyzed AccessControl-v4.4 Properties

Properties related to function hasRole

accesscontrol-hasrole-change-state

The hasRole function must not change any state variables.

Specification:

assignable \nothing;

accesscontrol-hasrole-succeed-always

The hasRole function must always succeed, assuming that its execution does not run out of gas.

APPENDIX BETFIN LOTTERY CONTRACTS

Specification:

reverts_only_when false;

Properties related to function getRoleAdmin

accesscontrol-getroleadmin-change-state

The getRoleAdmin function must not change any state variables.

Specification:

assignable \nothing;

accesscontrol-getroleadmin-succeed-always

The getRoleAdmin function must always succeed, assuming that its execution does not run out of gas.

Specification:

reverts_only_when false;

Properties related to function DEFAULT_ADMIN_ROLE

accesscontrol-default-admin-role

The default admin role must be invariant, ensuring consistent access control management.

Specification:

invariant DEFAULT_ADMIN_ROLE() == 0x00;

Properties related to function renounceRole

accesscontrol-renouncerole-revert-not-sender

The renounceRole function must revert if the caller is not the same as account .

Specification:

reverts_when account != msg.sender;

accesscontrol-renouncerole-succeed-role-renouncing

After execution, renounceRole must ensure the caller no longer has the renounced role.

APPENDIX BETFIN LOTTERY CONTRACTS

Specification:

ensures !hasRole(role, account);

Properties related to function revokeRole

accesscontrol-revokerole-correct-role-revoking

After execution, revokeRole must ensure the specified account no longer has the revoked role.

Specification:

ensures !hasRole(role, account);

Properties related to function grantRole

accesscontrol-grantrole-correct-role-granting

After execution, grantRole must ensure the specified account has the granted role.

Specification:

ensures hasRole(role, account);

APPENDIX BETFIN LOTTERY CONTRACTS

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER BETFIN LOTTERY CONTRACTS

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BETFIN LOTTERY CONTRACTS

Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Betfin Lottery Contracts Security Assessment CertiK Assessed on Jan 28th, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

