
Security Assessment

Betfin High Low Contracts
CertiK Assessed on Sept 30th, 2024

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

3 Medium 3 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

2 Minor 2 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

1 Informational 1 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY BETFIN HIGH LOW CONTRACTS

CertiK Assessed on Sept 30th, 2024

Betfin High Low Contracts

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 09/30/2024

KEY COMPONENTS

N/A

CODEBASE
hilo-contract

View All in Codebase Page

COMMITS
Initial: 3c20e9f280625d0fe07b9e45c50b7b0ac5f3b747

Updated1: ad183550821acc7887fb22aad19d9c8b2791969e

Updated2: 8177facfb1cf5cc7f9e5472c87e83939a38e72bc

View All in Codebase Page

6
Total Findings

6
Resolved

0
Mitigated

0
Partially Resolved

0
Acknowledged

0
Declined

https://github.com/betfinio/hilo-contract
https://github.com/betfinio/hilo-contract/tree/3c20e9f280625d0fe07b9e45c50b7b0ac5f3b747
https://github.com/betfinio/hilo-contract/tree/ad183550821acc7887fb22aad19d9c8b2791969e
https://github.com/betfinio/hilo-contract/tree/8177facfb1cf5cc7f9e5472c87e83939a38e72bc

TABLE OF CONTENTS BETFIN HIGH LOW CONTRACTS

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

External Dependencies

Findings

HLB-04 : Potential Depletion of LINK Funds of Subscription Account Due to Repeated Small Bets

HLT-02 : Enhanced Security Through Increased Block Confirmations in Chainlink VRF Requests on Polygon
Network

HLU-01 : Compiler Error

HLB-01 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

HLB-03 : Discrepancy in Random Number Range and Betting Threshold in `fulfillRandomWords` Function

HLB-02 : Security Risk Due to Presence of Test Function `FulfillRandomWords()`

Optimizations

HIG-01 : Variables That Could Be Declared as Immutable

HLT-01 : State Variable Should Be Declared Constant

Appendix

Disclaimer

TABLE OF CONTENTS BETFIN HIGH LOW CONTRACTS

CODEBASE BETFIN HIGH LOW CONTRACTS

Repository

hilo-contract

Commit

Initial: 3c20e9f280625d0fe07b9e45c50b7b0ac5f3b747

Updated1: ad183550821acc7887fb22aad19d9c8b2791969e

Updated2: 8177facfb1cf5cc7f9e5472c87e83939a38e72bc

Final: cea0df2e46eeb1a8da260efcf08c3a05ff88a39e

CODEBASE BETFIN HIGH LOW CONTRACTS

https://github.com/betfinio/hilo-contract
https://github.com/betfinio/hilo-contract/tree/3c20e9f280625d0fe07b9e45c50b7b0ac5f3b747
https://github.com/betfinio/hilo-contract/tree/ad183550821acc7887fb22aad19d9c8b2791969e
https://github.com/betfinio/hilo-contract/tree/8177facfb1cf5cc7f9e5472c87e83939a38e72bc
https://github.com/betfinio/hilo-contract/tree/cea0df2e46eeb1a8da260efcf08c3a05ff88a39e

AUDIT SCOPE BETFIN HIGH LOW CONTRACTS

10 files audited 4 files with Resolved findings 6 files without findings

ID Repo File SHA256 Checksum

HLB
betfinio/hilo-

contract
src/HighLow.sol

ffee20416332ae73a5073682103171aaba651

aa07cb455e962ebdf6051f3e5f6

HIG
betfinio/hilo-

contract
src/HighLowBet.sol

9d99fe639db31642363144dcae20839b96330

b0c54fd7d6c01305a62322abd0e

HLU
betfinio/hilo-

contract
src/HighLow.sol

efe0e84bdcc585dbfe856cee1d51a4270cb2ce

98d59b63f4b1ec48015fe24d7c

HLT
betfinio/hilo-

contract
src/HighLow.sol

face8cf7ee69964834192e8cd65bd56b9ca32b

c84380d212724c6db04a72ab05

HIH
betfinio/hilo-

contract
src/HighLowBet.sol

f20344c277c6d82b4fa24beed851512e445e2

8640eb69c9c4f3cd0fe6b76ccf3

HLH
betfinio/hilo-

contract
src/HighLow.sol

d1c500df8ab597265eecf6066426c59a47134

d937f26f6ef3c45cb0d6c2ecd4b

HIL
betfinio/hilo-

contract
src/HighLowBet.sol

f20344c277c6d82b4fa24beed851512e445e2

8640eb69c9c4f3cd0fe6b76ccf3

HIO
betfinio/hilo-

contract
src/HighLowBet.sol

f20344c277c6d82b4fa24beed851512e445e2

8640eb69c9c4f3cd0fe6b76ccf3

HLI
betfinio/hilo-

contract
src/HighLow.sol

e54c022d7f74ff8b2b444f0956385d1e7f26590

4e0d8dc3b6f6dbec2eca6c554

HIW
betfinio/hilo-

contract
src/HighLowBet.sol

f20344c277c6d82b4fa24beed851512e445e2

8640eb69c9c4f3cd0fe6b76ccf3

AUDIT SCOPE BETFIN HIGH LOW CONTRACTS

APPROACH & METHODS BETFIN HIGH LOW CONTRACTS

This report has been prepared for Betfin.io to discover issues and vulnerabilities in the source code of the Betfin High Low

Contracts project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Formal Verification, Manual Review, and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BETFIN HIGH LOW CONTRACTS

REVIEW NOTES BETFIN HIGH LOW CONTRACTS

Overview

The Betfin.io project facilitates a betting game where players place bets on two sides in each bet. Once a bet is placed, the

VRF oracle service generates a random number to determine whether the player wins. The contract manages player bets,

reserves funds for payouts, and ensures secure fund transfers.

External Dependencies

In Betfin.io, the project relies on a few external contracts or addresses to fulfill the needs of its business logic.

The following are third dependencies contracts used within the Dice and DiceBet contracts:

openzeppelin : including AccessControl , ReentrancyGuard , IERC20 , SafeERC20 and Ownable ;

chainlink : including VRFCoordinatorV2_5 and VRFConsumerBaseV2Plus .

It is assumed that these contracts or addresses are trusted and properly implemented within the entire project.

The team utilizes the subscription method of the Chainlink VRF service to generate random numbers. It is assumed that the

subscriptionId in the project is always valid and maintains a sufficient balance to fund requests from consumer contracts.

REVIEW NOTES BETFIN HIGH LOW CONTRACTS

FINDINGS BETFIN HIGH LOW CONTRACTS

This report has been prepared to discover issues and vulnerabilities for Betfin High Low Contracts. Through this audit, we

have uncovered 6 issues ranging from different severity levels. Utilizing the techniques of Formal Verification, Manual Review

& Static Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

HLB-04
Potential Depletion Of LINK Funds Of Subscription Account

Due To Repeated Small Bets

Design

Issue
Medium Resolved

HLT-02
Enhanced Security Through Increased Block Confirmations

In Chainlink VRF Requests On Polygon Network

Design

Issue
Medium Resolved

HLU-01 Compiler Error
Coding

Issue
Medium Resolved

HLB-01 Unchecked ERC-20 transfer() / transferFrom() Call
Volatile

Code
Minor Resolved

HLB-03
Discrepancy In Random Number Range And Betting

Threshold In fulfillRandomWords Function

Logical

Issue
Minor Resolved

HLB-02
Security Risk Due To Presence Of Test Function

FulfillRandomWords()

Logical

Issue
Informational Resolved

FINDINGS BETFIN HIGH LOW CONTRACTS

6
Total Findings

0
Critical

0
Major

3
Medium

2
Minor

1
Informational

HLB-04 POTENTIAL DEPLETION OF LINK FUNDS OF
SUBSCRIPTION ACCOUNT DUE TO REPEATED SMALL
BETS

Category Severity Location Status

Design Issue Medium src/HighLow.sol (09/06-3c20e9): 28~33 Resolved

Description

The HighLow contract uses Chainlink VRF v2.5 to generate random numbers for its gambling game. Each request for a

random number incurs a fee, payable in LINK tokens, from the contract's subscription account with Chainlink.

The game's payout structure can multiply the bet amount by up to 10,000 times, significantly leveraging the potential

payouts.

 function getPossibleWin(

 uint256 _threshold,

 bool _side,

 uint256 _amount

) public pure returns (uint256) {

 require(_threshold > 0 && _threshold < 10000, "D04");

 // Calculate mulplier according to the success percentage

 if (!_side) {

 return (10000 * _amount) / _threshold;

 } else {

 return (10000 * _amount) / (10000 - _threshold);

 }

 }

A malicious actor could exploit this by deploying an attack contract that repeatedly places a large number of bets with very

small amounts. Each bet triggers a VRF request, incurring a LINK fee deducted from the subscription account. By flooding

the contract with numerous small bets, an attacker could rapidly deplete the LINK funds in the subscription account. If the

subscription fees are not replenished within 24 hours after depletion, the pending random number requests will expire. This

expiry blocks the resolution of bets, consequently locking the reserved funds from the Staking contract in the HighLow

contract indefinitely.

The auditing team would like to confirm with the team whether the current implementation is intended.

Recommendation

The auditing team would like to confirm with the team whether the current implementation is intended.

HLB-04 BETFIN HIGH LOW CONTRACTS

Alleviation

[Betfin Team, 09/19/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/hilo-

contract/commit/0cb63c1dd392cc8addce029ee44dd03b8b18a655.

[CertiK, 09/20/2024]:

It's noted that when placeBet() checks whether the token amount meets the MIN_BET , it uses amount (the value

decoded from calldata) for comparison. However, based on the code context, amount lacks precision and represents only a

numerical value. Therefore, we suggest using _amount , which includes precision, instead of amount .

164 (address player, uint256 amount, uint256 _threshold, bool _side) = abi

165 .decode(_data, (address, uint256, uint256, bool));

166 //revert if player is not the same

167 require(player == _player, "D02");

168 //revert if amount is not whole

169 require(amount * 10 ** 18 == _amount, "D03");

170

171 @> require(amount >= MIN_BET, "D08");

[Betfin Team, 09/20/2024]:

Issue acknowledged. The team resolved this issue in the commit hash cccc083c5d19a632180275ecc889ed7f40d1cd09.

[CertiK, 09/26/2024]:

The team mitigated this issue by restricting the minimum bet amount to 1000 BET and changes were reflected in the commit

cccc083c5d19a632180275ecc889ed7f40d1cd09. Besides, it's also recommended the team to keep enough funds in the

subscription account to pay the Chainlink fee, ensuring all the requests can be handled.

HLB-04 BETFIN HIGH LOW CONTRACTS

https://github.com/betfinio/hilo-contract/commit/0cb63c1dd392cc8addce029ee44dd03b8b18a655
https://github.com/betfinio/hilo-contract/commit/cccc083c5d19a632180275ecc889ed7f40d1cd09
https://github.com/betfinio/hilo-contract/commit/cccc083c5d19a632180275ecc889ed7f40d1cd09

HLT-02 ENHANCED SECURITY THROUGH INCREASED BLOCK
CONFIRMATIONS IN CHAINLINK VRF REQUESTS ON
POLYGON NETWORK

Category Severity Location Status

Design Issue Medium src/HighLow.sol (09/25-8177fa): 38 Resolved

Description

The requestConfirmations constant in the HighLow contract is set at 3. This parameter specifies the minimum number of

block confirmations that Chainlink's VRF (Verifiable Random Function) service should wait before delivering randomness.

This setting is crucial due to the occurrence of chain reorganizations, a scenario where blocks and their transactions are

rearranged, leading to potential changes in the block content. This issue is particularly relevant for applications deployed on

Polygon, an Ethereum scaling solution that utilizes a Proof of Stake (PoS) consensus mechanism. On Polygon, multiple

validators may propose blocks at the same block height simultaneously. Network delays can result in these blocks being

received at different times by different nodes, creating temporary forks. Observations from Forked Blocks indicate that there

are over five reorganizations daily, with some extending beyond 3 blocks in depth. Given that BetFin is active on Polygon,

there's a potential risk that the outcome of a HighLow game could change. Specifically, if the transaction requesting

randomness from the VRF is shifted to another block due to a reorg, the resulting randomness—and consequently the

game's outcome—could be altered.

 uint16 public constant requestConfirmations = 3;

Recommendation

It's recommended to set a larger requestConfirmations value. For example, the value could be set based on the average

depth of reorganizations observed, plus a buffer to account for deeper than usual reorgs.

Alleviation

[Betfin Team, 09/27/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/hilo-

contract/commit/cea0df2e46eeb1a8da260efcf08c3a05ff88a39e.

HLT-02 BETFIN HIGH LOW CONTRACTS

https://polygonscan.com/blocks_forked
https://github.com/betfinio/hilo-contract/commit/cea0df2e46eeb1a8da260efcf08c3a05ff88a39e

HLU-01 COMPILER ERROR

Category Severity Location Status

Coding Issue Medium src/HighLow.sol (09/20-ad1835): 163 Resolved

Description

In the recent commit ad183550821acc7887fb22aad19d9c8b2791969e, the team removed the AccessControl inheritance

from the HighLow contract. Consequently, this modification led to a compilation failure due to an "Undeclared identifier"

error concerning the _msgSender() function.

28 contract Dice is VRFConsumerBaseV2Plus, GameInterface, ReentrancyGuard {

158 function placeBet(

159 address _player,

160 uint256 _amount,

161 bytes calldata _data

162) external override returns (address betAddress) {

163 @> require(address(core) == _msgSender(), "D05");

This error arises because the _msgSender() function, typically available through the AccessControl or Context classes

in OpenZeppelin's libraries, is no longer inherited, thus it's unrecognized in the current contract's scope.

Recommendation

It's recommended to change the _msgSender() to msg.sender in the placeBet function of Dice contract.

Alleviation

[Betfin Team, 09/20/2024]:

Issue acknowledged. The team resolved this issue in the commit hash cccc083c5d19a632180275ecc889ed7f40d1cd09 by

changing the _msgSender() to msg.sender .

HLU-01 BETFIN HIGH LOW CONTRACTS

https://github.com/betfinio/hilo-contract/tree/ad183550821acc7887fb22aad19d9c8b2791969e
https://github.com/betfinio/hilo-contract/commit/cccc083c5d19a632180275ecc889ed7f40d1cd09

HLB-01 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile Code Minor src/HighLow.sol (09/06-3c20e9): 157, 213~216 Resolved

Description

The return values of the transfer() and transferFrom() calls in the smart contract are not checked. Some ERC-20

tokens' transfer functions return no values, while others return a bool value, they should be handled with care. If a function

returns false instead of reverting upon failure, an unchecked failed transfer could be mistakenly considered successful in

the contract.

Recommendation

It is advised to use the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and

transferFrom() functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[Betfin Team, 09/20/2024]:

Issue acknowledged. The team resolved this issue in the commit hash cccc083c5d19a632180275ecc889ed7f40d1cd09 by

checking the return value after transferring ERC-20 tokens.

HLB-01 BETFIN HIGH LOW CONTRACTS

https://github.com/betfinio/hilo-contract/commit/cccc083c5d19a632180275ecc889ed7f40d1cd09

HLB-03 DISCREPANCY IN RANDOM NUMBER RANGE AND
BETTING THRESHOLD IN fulfillRandomWords FUNCTION

Category Severity Location Status

Logical Issue Minor src/HighLow.sol (09/06-3c20e9): 136, 195 Resolved

Description

The issue in the fulfillRandomWords function of the HighLow contract stems from a discrepancy between the range of

generated random numbers and the range of the betting threshold, particularly when a player opts to bet on a higher

outcome (side is true).

The random number (value) produced by the function falls within the range of [1, 9999], as determined by the modulo

operation (random % 9999) + 1 .

 if ((value > threshold) == side) {

 amount = getPossibleWin(threshold, side, bet.getAmount());

 }

Players are allowed to set a threshold for their bets within the same range, [1, 9999]. For a bet on a higher outcome to

win, the generated random number (value) must exceed the threshold .

However, if a player selects the maximum threshold of 9999 and bets on the number being higher, winning is impossible.

This is due to the maximum possible random number also being 9999. Consequently, there are no numbers within the range

[1, 9999] that surpass 9999. This results in an unfair game condition where bets placed on the highest possible threshold

(9999) with the expectation of a higher result are invariably destined to lose.

Recommendation

It's recommended to change the random number generation to cover a slightly broader range, such as [1, 10000], ensuring

that a bet on a threshold of 9999 with side set to true has a potential to win.

Alleviation

[Betfin Team, 09/20/2024]:

Issue acknowledged. The team partially resolved this issue in the commit hash

352f43311a1895ffc2a433545206e694f8c1b86f by changing the random number range to [1, 10000].

[CertiK, 09/23/2024]:

In the current design, where the range of random numbers is [1, 10000], players can employ a strategy to ensure a winning

probability of 99.99%. For instance, a player could set the threshold to 1 for a 'High' bet, which guarantees a win if the

random number falls between 2 and 10000. Similarly, setting the threshold to 9999 for a 'Low' bet ensures a win if the

HLB-03 BETFIN HIGH LOW CONTRACTS

https://github.com/betfinio/hilo-contract/commit/352f43311a1895ffc2a433545206e694f8c1b86f

random number is between 1 and 9999. When the probability of winning is this high, at 99.99%, the player receives a payout

of BetAmount * 10000/9999. Although the profit per bet is small, it guarantees that the player does not lose money and can

repeatedly place bets to accumulate profits. We would like to confirm if this design aligns with the intended outcome.

[Betfin Team, 09/25/2024]:

Issue acknowledged. The team resolved this issue in the commit hash 8177facfb1cf5cc7f9e5472c87e83939a38e72bc by

changing the threshold range to [100, 9900].

[CertiK, 09/26/2024]:

The team updated the code to slightly decrease the edge probability and changes were reflected in the commit

8177facfb1cf5cc7f9e5472c87e83939a38e72bc.

HLB-03 BETFIN HIGH LOW CONTRACTS

https://github.com/betfinio/hilo-contract/commit/8177facfb1cf5cc7f9e5472c87e83939a38e72bc
https://github.com/betfinio/hilo-contract/commit/8177facfb1cf5cc7f9e5472c87e83939a38e72bc

HLB-02 SECURITY RISK DUE TO PRESENCE OF TEST FUNCTION
FulfillRandomWords()

Category Severity Location Status

Logical Issue Informational src/HighLow.sol (09/06-3c20e9): 88~91 Resolved

Description

The function FulfillRandomWords() found in the Dice contract is marked for testing purposes, intended to simulate the

behavior of the fulfillRandomWords callback from the Chainlink VRF (Verifiable Random Function) service. This function

allows manual input of random numbers for testing how the contract reacts to different random outcomes.

Keeping such a function in the production version of the contract, especially without appropriate access controls, poses a

significant security risk. Malicious actors could exploit this function to manipulate game outcomes by providing selected

random values, leading to potential loss of funds or unfair advantages.

 /* For Test Purpose - will be removed when deployment */

 // Public function to test fulfillRandomWords

 function FulfillRandomWords(

 uint256 requestId,

 uint256[] calldata randomWords

) public {

 fulfillRandomWords(requestId, randomWords);

 }

Recommendation

It is recommended to remove the FulfillRandomWords() function from the production environment.

Alleviation

[Betfin Team, 09/20/2024]:

Issue Acknowledged. The team resolved this issue in the commit hash 0cb63c1dd392cc8addce029ee44dd03b8b18a655 by

removing the FulfillRandomWords() function.

HLB-02 BETFIN HIGH LOW CONTRACTS

https://github.com/betfinio/hilo-contract/commit/0cb63c1dd392cc8addce029ee44dd03b8b18a655

OPTIMIZATIONS BETFIN HIGH LOW CONTRACTS

ID Title Category Severity Status

HIG-01 Variables That Could Be Declared As Immutable Gas Optimization Optimization Resolved

HLT-01 State Variable Should Be Declared Constant Gas Optimization Optimization Resolved

OPTIMIZATIONS BETFIN HIGH LOW CONTRACTS

https://acc.audit.certikpowered.info/project/ebde1df0-694f-11ef-888f-234f7869341f/report/new?fid=1725376276084
https://acc.audit.certikpowered.info/project/ebde1df0-694f-11ef-888f-234f7869341f/report/new?fid=1727329078491

HIG-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas Optimization Optimization src/HighLowBet.sol (09/06-3c20e9): 8, 9, 10 Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

[Betfin Team, 09/20/2024]:

Issue Acknowledged. The team resolved this issue in the commit hash ad183550821acc7887fb22aad19d9c8b2791969e by

declaring the variables as immutable .

HIG-01 BETFIN HIGH LOW CONTRACTS

https://github.com/betfinio/hilo-contract/commit/ad183550821acc7887fb22aad19d9c8b2791969e

HLT-01 STATE VARIABLE SHOULD BE DECLARED CONSTANT

Category Severity Location Status

Gas Optimization Optimization src/HighLow.sol (09/25-8177fa): 41, 42 Resolved

Description

State variables that never change should be declared as constant to save gas.

42 uint256 public MAX_THRESHOLD = 9900;

MAX_THRESHOLD should be declared constant .

41 uint256 public MIN_THRESHOLD = 100;

MIN_THRESHOLD should be declared constant .

Recommendation

We recommend adding the constant attribute to state variables that never change.

Alleviation

[Betfin Team, 09/27/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/hilo-

contract/commit/b483166f37cd0e5121bdad0bd17abe15e3005bae.

HLT-01 BETFIN HIGH LOW CONTRACTS

https://github.com/betfinio/hilo-contract/commit/b483166f37cd0e5121bdad0bd17abe15e3005bae

APPENDIX BETFIN HIGH LOW CONTRACTS

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX BETFIN HIGH LOW CONTRACTS

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER BETFIN HIGH LOW CONTRACTS

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BETFIN HIGH LOW CONTRACTS

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Betfin High Low Contracts Security Assessment CertiK Assessed on Sept 30th, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

