
Security Assessment

Betfin Stones Contracts
CertiK Assessed on Sept 23rd, 2024

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

0 Major
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

1 Medium 1 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

6 Minor 5 Resolved, 1 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

1 Informational 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY BETFIN STONES CONTRACTS

CertiK Assessed on Sept 23rd, 2024

Betfin Stones Contracts

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Gaming

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 09/23/2024

KEY COMPONENTS

N/A

CODEBASE
stones-contract

View All in Codebase Page

COMMITS
14edb33c8ce4ab611d1108b1cb5c2c6c5a508d33

83e8acd0fbddb32013d25935ef348c756f06ae76

f34c8aad90de30685af23c0293e9e0926be3d493

View All in Codebase Page

8
Total Findings

6
Resolved

0
Mitigated

0
Partially Resolved

2
Acknowledged

0
Declined

https://github.com/betfinio/stones-contract
https://github.com/betfinio/stones-contract/blob/14edb33c8ce4ab611d1108b1cb5c2c6c5a508d33
https://github.com/betfinio/stones-contract/blob/83e8acd0fbddb32013d25935ef348c756f06ae76
https://github.com/betfinio/stones-contract/tree/f34c8aad90de30685af23c0293e9e0926be3d493

TABLE OF CONTENTS BETFIN STONES CONTRACTS

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

External Dependencies

Findings

STO-02 : Inconsistent Fee Status May Permanently Lock Fees in the Contract

SBB-03 : Missing Emit Events

SRC-01 : Missing Zero Address Validation

STE-01 : Check-Effects-Interactions Pattern Violation

STO-03 : External Call Inside Loop

STO-04 : Third-Party Dependency Usage

STO-05 : Repeated and Inconsistent Error Message

STO-01 : Unpredictable `block.timestamp` in `getCurrentRound()` Function

Optimizations

SBB-01 : Variables That Could Be Declared as Immutable

STO-07 : Code redundancy

Appendix

Disclaimer

TABLE OF CONTENTS BETFIN STONES CONTRACTS

CODEBASE BETFIN STONES CONTRACTS

Repository

stones-contract

Commit

14edb33c8ce4ab611d1108b1cb5c2c6c5a508d33

83e8acd0fbddb32013d25935ef348c756f06ae76

f34c8aad90de30685af23c0293e9e0926be3d493

CODEBASE BETFIN STONES CONTRACTS

https://github.com/betfinio/stones-contract
https://github.com/betfinio/stones-contract/blob/14edb33c8ce4ab611d1108b1cb5c2c6c5a508d33
https://github.com/betfinio/stones-contract/blob/83e8acd0fbddb32013d25935ef348c756f06ae76
https://github.com/betfinio/stones-contract/tree/f34c8aad90de30685af23c0293e9e0926be3d493

AUDIT SCOPE BETFIN STONES CONTRACTS

6 files audited 6 files without findings

ID Repo File SHA256 Checksum

STO
betfinio/stones-

contract
Stones.sol

1ef30ac3de9605a0fcf6ef3e36b25813f94d286

d62d67037312f5d3b13d0639d

SBB
betfinio/stones-

contract
StonesBet.sol

ed6e26d7cdb1289a35203e5bc5993904fdc04

4a0da26ad30d811899ce467978f

STN
betfinio/stones-

contract
Stones.sol

654cd506b16739f162af16fa03cf2b93a2c158f

03eee2e78cef0a1b4a9e192e3

SBU
betfinio/stones-

contract
StonesBet.sol

46f428f4d833521f2753052f05eb02cfcce7c26

983ccd35d1ff964b13dbf2a9b

STE
betfinio/stones-

contract
src/Stones.sol

0f8abccf0bf5310f96f45147c3f6970252f45d81

bc4288fec50ab35e483aef8a

SBH
betfinio/stones-

contract
src/StonesBet.sol

46f428f4d833521f2753052f05eb02cfcce7c26

983ccd35d1ff964b13dbf2a9b

AUDIT SCOPE BETFIN STONES CONTRACTS

APPROACH & METHODS BETFIN STONES CONTRACTS

This report has been prepared for Betfin to discover issues and vulnerabilities in the source code of the Betfin Stones

Contracts project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Formal Verification, Manual Review, and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BETFIN STONES CONTRACTS

REVIEW NOTES BETFIN STONES CONTRACTS

Overview

The Betfin Stones project facilitates a betting game where players place bets on different sides in each round. After all bets

are placed, VRF oracle service is used to determine a random winner. The contract manages bet placement, bank updates,

winner determination, and payout distribution.

External Dependencies

In Betfin Stones, the project relies on a few external contracts or addresses to fulfill the needs of its business logic.

The following are third dependencies contracts used within the Stones and StonesBet contracts:

openzeppelin : including ReentrancyGuard , IERC20 , SafeERC20 and Ownable ;

chainlink : including VRFCoordinatorV2_5 and VRFConsumerBaseV2Plus .

It is assumed that these contracts or addresses are trusted and properly implemented within the entire project.

The team utilizes the subscription method of the Chainlink VRF service to generate random numbers. It is assumed that the

subscriptionId in the project is always valid and maintains a sufficient balance to fund requests from consumer contracts.

REVIEW NOTES BETFIN STONES CONTRACTS

FINDINGS BETFIN STONES CONTRACTS

This report has been prepared to discover issues and vulnerabilities for Betfin Stones Contracts. Through this audit, we have

uncovered 8 issues ranging from different severity levels. Utilizing the techniques of Formal Verification, Manual Review &

Static Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

STO-02
Inconsistent Fee Status May Permanently Lock

Fees In The Contract
Design Issue Medium Resolved

SBB-03 Missing Emit Events Inconsistency Minor Resolved

SRC-01 Missing Zero Address Validation Volatile Code Minor Resolved

STE-01 Check-Effects-Interactions Pattern Violation Coding Style Minor Resolved

STO-03 External Call Inside Loop
Denial of

Service
Minor Resolved

STO-04 Third-Party Dependency Usage Design Issue Minor Acknowledged

STO-05 Repeated And Inconsistent Error Message Inconsistency Minor Resolved

STO-01
Unpredictable block.timestamp In

getCurrentRound() Function
Design Issue Informational Acknowledged

FINDINGS BETFIN STONES CONTRACTS

8
Total Findings

0
Critical

0
Major

1
Medium

6
Minor

1
Informational

STO-02 INCONSISTENT FEE STATUS MAY PERMANENTLY LOCK
FEES IN THE CONTRACT

Category Severity Location Status

Design Issue Medium Stones.sol (08/29-Stones-6ddc86): 253~255 Resolved

Description

Before core calls placeBet() function, it will determine whether to charge a fee based on getFeeType() in the Stones

contract. In core, when getFeeType()==0 , the fee is charged and totalAmount will be deducted from the fee before being

transferred to the Stones contract. When getFeeType==1 , totalAmount is fully transferred to the Stones contract.

In this contract, the result of the getFeeType() function is 1 , indicating no fee is charged. However, in the

executeResult() function, roundBank (the total amount of tokens for a specified round) is deducted from the fee before

calculating winAmount and bonusAmount . We would like to confirm with the team if this is the intended design. If so, the

fee amount will be locked in the contract.

Proof of Concept

The POC shows that there would be 3.6% bet tokens locked in the game contract.

STO-02 BETFIN STONES CONTRACTS

 function testFullfill_sameUser() public {

 uint256 round = stones.getCurrentRound();

 placeBet(alice, 1000, 1, round);

 placeBet(alice, 1000, 2, round);

 placeBet(alice, 1000, 3, round);

 placeBet(alice, 1000, 4, round);

 placeBet(alice, 1000, 5, round);

 assertEq(stones.roundStatus(round), 0);

 vm.warp(block.timestamp + 1 days);

 getRequest(5);

 stones.roll(round);

 assertEq(stones.roundStatus(round), 1);

 uint256[] memory result = new uint256[](1);

 result[0] = uint256(1);

 vm.startPrank(stones.vrfCoordinator());

 stones.rawFulfillRandomWords(5, result);

 assertEq(stones.roundWinnerSide(round), 1);

 assertEq(stones.roundStatus(round), 2);

 console2.log("balance in stones is %d", token.balanceOf(address(stones)));

 vm.expectEmit(address(token));

 emit Transfer(address(stones), alice, 4820 ether);

 assertEq(stones.roundStatus(round), 2);

 stones.executeResult(round);

 assertEq(stones.roundStatus(round), 3);

 vm.expectRevert(bytes("ST03"));

 stones.executeResult(round);

 console2.log("balance in stones is %d", token.balanceOf(address(stones)));

 }

Test resuluts:

STO-02 BETFIN STONES CONTRACTS

% forge test --mt testFullfill_sameUser -vv

[⠆] Compiling...

[⠰] Compiling 3 files with 0.8.19

[⠔] Solc 0.8.19 finished in 4.17s

Compiler run successful!

Ran 1 test for test/Stones.t.sol:StonesTest

[PASS] testFullfill_sameUser() (gas: 3349797)

Logs:

 balance in stones is 5000000000000000000000

 balance in stones is 180000000000000000000

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 6.58ms (1.47ms CPU

time)

Ran 1 test suite in 146.94ms (6.58ms CPU time): 1 tests passed, 0 failed, 0 skipped

(1 total tests)

Recommendation

It is recommended to ensure the correct fee status is set or to transfer the appropriate amount of tokens to the contract.

Alleviation

[Betfin Team, 09/06/2024]:

Issue acknowledged. The team resolved this issue in the commit hash fdd5e3f70c293f833c2a4851330a0ecdf39c930a by

changing the fee status to charging status and the fee will be deducted in the core contract.

STO-02 BETFIN STONES CONTRACTS

https://github.com/betfinio/stones-contract/commit/fdd5e3f70c293f833c2a4851330a0ecdf39c930a

SBB-03 MISSING EMIT EVENTS

Category Severity Location Status

Inconsistency Minor StonesBet.sol (08/29-StonesBet-6ddc86): 71~73, 75~77 Resolved

Description

The smart contract contains one or more state changes that do not emit events to communicate the changes outside the

blockchain, which can lead to difficulties in tracking or verifying these changes and may affect the contract's transparency

and auditability.

71 function setStatus(uint256 _status) public onlyOwner {

72 status = _status;

73 }

75 function setResult(uint256 _result) public onlyOwner {

76 result = _result;

77 }

Recommendation

It is suggested to declare and emit corresponding events for all the essential state variables that are possible to be changed

during runtime.

Alleviation

[Betfin Team, 09/06/2024]:

Issue acknowledged. The team resolved this issue in the commit hash 4f0603c3728013b2b14fc5692c3dde781a8e61e5 by

adding corresponding events for the status variables setting functions.

SBB-03 BETFIN STONES CONTRACTS

https://github.com/betfinio/stones-contract/commit/4f0603c3728013b2b14fc5692c3dde781a8e61e5

SRC-01 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

Stones.sol (08/29-Stones-6ddc86): 81~82, 85; StonesBet.sol (08/29-Sto

nesBet-6ddc86): 21, 22
Resolved

Description

Addresses are not validated before assignment or external calls, potentially allowing the use of zero addresses and leading

to unexpected behavior or vulnerabilities. For example, transferring tokens to a zero address can result in a permanent loss

of those tokens.

In the Stones contract, the following provided addresses in constructor function are not zero-checked before being

used.

 constructor(

 uint256 _subscriptionId,

 address _core,

 address _staking,

 ...

 address _admin

) VRFConsumerBaseV2Plus(_vrfCoordinator) {

 ...

 }

In the StonesBet contract, the following provided addresses in constructor function are not zero-checked before being

used.

 constructor(

 address _player,

 address _game,

 ...

) {

 ...

 }

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

SRC-01 BETFIN STONES CONTRACTS

[Betfin Team, 09/06/2024]:

Issue acknowledged. The team resolved this issue in the commit hash 8da986afbb1bf165142fa46bf996e3e312e7e7e4 by

adding the zero-check for input addresses in the constructor functions.

SRC-01 BETFIN STONES CONTRACTS

https://github.com/betfinio/stones-contract/commit/8da986afbb1bf165142fa46bf996e3e312e7e7e4

STE-01 CHECK-EFFECTS-INTERACTIONS PATTERN VIOLATION

Category Severity Location Status

Coding Style Minor Stones.sol (09/10-Stones-761475): 254 Resolved

Description

This Checks-Effects-Interactions Pattern is a best practice for writing secure smart contracts that involves performing all state

changes before making any external function calls.

External call(s)

254 IERC20(token).safeTransfer(bet.getPlayer(), result);

State variables written after the call(s)

255 betSettled[address(bet)] = true;

256 distributedInRound[round] += result;

The executeResult() function is used to transfer tokens to winners, this pattern could help prevent a user from exploiting

unintended flow patterns.

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[Betfin Team, 09/13/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/stones-

contract/commit/1d6fdd0675c2f4d952a9604a79dca084f8403880.

STE-01 BETFIN STONES CONTRACTS

https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/stable/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/betfinio/stones-contract/commit/1d6fdd0675c2f4d952a9604a79dca084f8403880

STO-03 EXTERNAL CALL INSIDE LOOP

Category Severity Location Status

Denial of Service Minor Stones.sol (08/29-Stones-6ddc86): 193~243 Resolved

Description

External call token.safetransfer() is made inside a for loop. This may lead to a denial-of-service attack. If any of the

calls fail, the entire loop will revert, causing all tokens deposited within this round to be locked in the contract.

 function executeResult(uint256 round) public {

 ...

 for (uint256 i = 0; i < betsCount; i++) {

 // related calculations

 ...

 IERC20(address(staking.getToken())).safeTransfer(

 bet.getPlayer(),

 winAmount + bonusAmount

);

 }

 // get all other bets

 ...

 }

Recommendation

It is advised to refactor the code to move external calls outside the loop, or use alternative patterns such as the "Withdrawal

Pattern" to minimize the risk of denial-of-service attacks and improve the overall security of the smart contract.

Alleviation

[Betfin Team, 09/06/2024]: The team added a check function to check balance of Stones contract if it has enough funds

before sending. But even if it revert, all we do is send some tokens to Stones contract to resolve the problem.

[CertiK, 09/09/2024]

In the for loop, the contract distributes winAmount and bonusAmount to each winner, but the current roundBank

reflects the deduction of fee and the bonusBank . To ensure correct implementation and guarantee that the contract has

sufficient tokens to distribute to the winners during the loop, we recommend verifying that

IERC20(token).balanceOf(address(this)) >= roundBank + bonusBank .

Additionally, it's noted that the executeResult function in the Stones contract possesses a vulnerability related to

potential out-of-gas errors due to unlimited bet processing within a single transaction. This issue stems from the lack of

STO-03 BETFIN STONES CONTRACTS

https://docs.soliditylang.org/en/v0.8.7/common-patterns.html#withdrawal-from-contracts

constraints on the number of bets per round, which can lead to excessive gas consumption when the function tries to

process an extremely high number of bets.

 uint256 allBetsCount = roundBets[round].length;

 for (uint256 i = 0; i < allBetsCount; i++) {

 StonesBet bet = roundBets[round][i];

 // skip if winner side

 if (bet.getSide() == side) continue;

 // set bet status

 bet.setStatus(3);

 bet.renounceOwnership();

 }

Specifically, if roundBets[round].length is very large, the cumulative gas required to execute executeResult may

exceed the block gas limit, causing the transaction to fail with an out-of-gas error. This not only prevents the distribution of

winnings but also leaves the game's state in limbo if the round cannot be successfully concluded.

It's recommended to refactor the contract to consider the potential out-of-gas error.

[Betfin Team, 09/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/stones-

contract/commit/76147503d0ceb4c6aae6225f56ce99fa88accb4f.

STO-03 BETFIN STONES CONTRACTS

https://github.com/betfinio/stones-contract/commit/76147503d0ceb4c6aae6225f56ce99fa88accb4f

STO-04 THIRD-PARTY DEPENDENCY USAGE

Category Severity Location Status

Design Issue Minor Stones.sol (08/29-Stones-6ddc86): 50, 51 Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assumes their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

50 StakingInterface public immutable staking;

The contract Stones interacts with third party contract with StakingInterface interface via staking .

51 CoreInterface public immutable core;

The contract Stones interacts with third party contract with CoreInterface interface via core .

STO-04 BETFIN STONES CONTRACTS

 uint256 private immutable created;

 uint256 private immutable subscriptionId;

 address public immutable vrfCoordinator;

 bytes32 public immutable keyHash;

 uint32 private constant callbackGasLimit = 2_500_000;

 uint16 public constant requestConfirmations = 3;

 uint32 private constant numWords = 1;

 constructor(

 uint256 _subscriptionId,

 address _core,

 address _staking,

 address _vrfCoordinator,

 bytes32 _keyHash,

 address _admin

) VRFConsumerBaseV2Plus(_vrfCoordinator) {

 // validation for vrf coordinator is not needed because it is already

validated in the VRFConsumerBaseV2Plus contract

 vrfCoordinator = _vrfCoordinator;

 keyHash = _keyHash;

 subscriptionId = _subscriptionId;

 core = CoreInterface(_core);

 require(core.isStaking(_staking), "ST06");

 staking = StakingInterface(_staking);

 created = block.timestamp;

 _grantRole(DEFAULT_ADMIN_ROLE, _admin);

 }

Since they are immutable or constant, the project team needs to ensure that the vrfCoordinator is always callable, and

that the keyHash and subscriptionId are always valid, as well as that the callbackGasLimit is sufficient to execute

the rawFulfillRandomWords() callback.

In particular, the project team needs to prevent the risk of request failures caused by an invalid subscriptionId . It means

the project team need to ensure that the request sent by calling requestRandomWords() in each round correctly triggers the

callback.

Recommendation

The auditors understood that the business logic requires interaction with third parties. It is recommended for the team to

constantly monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[Betfin Team, 09/06/2024]:

Issue Acknowledged. The team decided not to change the current codebase and will monitor the third parties.

STO-04 BETFIN STONES CONTRACTS

STO-05 REPEATED AND INCONSISTENT ERROR MESSAGE

Category Severity Location Status

Inconsistency Minor Stones.sol (08/29-Stones-6ddc86): 23 Resolved

Description

Error codes ST05 and ST06 are repeated. Additionally, the ST06 code is inconsistent with the corresponding code in the

constructor function. The code in the require statement checks the status of the provided _staking instead of the

transfer operation.

 constructor(

 ...

) VRFConsumerBaseV2Plus(_vrfCoordinator) {

 ...

 require(core.isStaking(_staking), "ST06");

 ...

 }

Recommendation

It is recommended to use appropriate error codes and update the error messages to accurately reflect the function's behavior

for clarity.

Alleviation

[Betfin Team, 09/06/2024]:

Issue acknowledged. The team resolved this issue in the commit hash 8da986afbb1bf165142fa46bf996e3e312e7e7e4 by

correcting the error messages in the contracts.

STO-05 BETFIN STONES CONTRACTS

https://github.com/betfinio/stones-contract/commit/8da986afbb1bf165142fa46bf996e3e312e7e7e4

STO-01 UNPREDICTABLE block.timestamp IN getCurrentRound()

FUNCTION

Category Severity Location Status

Design Issue Informational Stones.sol (08/29-Stones-6ddc86): 112 Acknowledged

Description

The getCurrentRound() function calculates the current round based on the current block.timestamp , and its result is

compared with the _round provided in the calldata. However, the block.timestamp at the time of transaction execution is

unpredictable.

Recommendation

We would like to check with the team if there is a strategy to ensure that when a user places a bet, the current round

matches the expected round, i.e., the _round specified in the calldata.

Alleviation

[Betfin Team, 09/06/2024]:

Issue Acknowledged. The team confirmed the current implementation is correct and users should place matched bet round.

STO-01 BETFIN STONES CONTRACTS

OPTIMIZATIONS BETFIN STONES CONTRACTS

ID Title Category Severity Status

SBB-01 Variables That Could Be Declared As Immutable Gas Optimization Optimization Resolved

STO-07 Code Redundancy Gas Optimization Optimization Resolved

OPTIMIZATIONS BETFIN STONES CONTRACTS

https://acc.audit.certikpowered.info/project/00aa5cc0-6479-11ef-b183-311df1282fb6/report/new?fid=1724899444102
https://acc.audit.certikpowered.info/project/00aa5cc0-6479-11ef-b183-311df1282fb6/report/new?fid=1725934781789

SBB-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas Optimization Optimization StonesBet.sol (08/29-StonesBet-6ddc86): 18 Resolved

Description

Immutable state variables can be assigned during contract creation but will remain constant throughout the lifetime of a

deployed contract. A big advantage of immutable variables is that reading them is significantly cheaper than reading from

regular state variables since they will not be stored in storage.

The side variable assigned in the constructor can be declared as immutable .

 uint256 private side;

 constructor(

 ...

 uint256 _side

) {

 ...

 side = _side;

 }

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

[Betfin Team, 09/06/2024]:

Issue acknowledged. The team resolved this issue in the commit hash 14edb33c8ce4ab611d1108b1cb5c2c6c5a508d33 by

declaring the specified variable as immutable .

SBB-01 BETFIN STONES CONTRACTS

https://github.com/betfinio/stones-contract/commit/14edb33c8ce4ab611d1108b1cb5c2c6c5a508d33

STO-07 CODE REDUNDANCY

Category Severity Location Status

Gas Optimization Optimization Stones.sol (09/06-Stones-14edb3): 226, 241 Resolved

Description

Since the Stones contract is hard to compromise, so the owner of the StonesBet contract is protected, with state

modifications in the StonesBet contract only occurring within specific functions of the Stones contract, the

bet.renounceOwnership() function is not necessary to mitigate centralization risk in this case.

In addition, since the access control and timelock mechanisms are not used in this contract, removing the relevant code can

reduce the gas cost of the contract.

Recommendation

It is recommended to remove the redundant codes to save gas.

Alleviation

[Betfin Team, 09/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash: https://github.com/betfinio/stones-

contract/commit/15afd8fe36c6fefb28e5cbfc6f685047a3d005dd

STO-07 BETFIN STONES CONTRACTS

https://github.com/betfinio/stones-contract/commit/15afd8fe36c6fefb28e5cbfc6f685047a3d005dd

APPENDIX BETFIN STONES CONTRACTS

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Denial of

Service

Denial of Service findings indicate that an attacker may prevent the program from operating correctly

or responding to legitimate requests.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX BETFIN STONES CONTRACTS

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER BETFIN STONES CONTRACTS

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BETFIN STONES CONTRACTS

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Betfin Stones Contracts Security Assessment CertiK Assessed on Sept 23rd, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

