
BetFin
Lottery

Ackee Blockchain Security

25.3.2025

https://ackeeblockchain.com

Contents
1. Document Revisions. 3

2. Overview . 4

2.1. Ackee Blockchain Security . 4

2.2. Audit Methodology . 5

2.3. Finding Classification . 6

2.4. Review Team . 8

2.5. Disclaimer . 8

3. Executive Summary. 9

Revision 1.0. 9

Revision 1.1. 11

4. Findings Summary . 12

Report Revision 1.0 . 15

Revision Team . 15

System Overview. 15

Trust Model . 15

Fuzzing. 16

Findings . 16

Report Revision 1.1 . 53

Revision Team . 53

System Overview . 53

Appendix A: How to cite . 54

Appendix B: Wake Findings . 55

B.1. Fuzzing. 55

B.2. Detectors . 57

Ackee Blockchain Security 2 of 59

1. Document Revisions
1.0 Final Report 12.03.2025

1.1 Fix Review 25.03.2025

Ackee Blockchain Security 3 of 59

2. Overview
This document presents our findings in reviewed contracts.

2.1. Ackee Blockchain Security
Ackee Blockchain Security is an in-house team of security researchers

performing security audits focusing on manual code reviews with extensive

fuzz testing for Ethereum and Solana. Ackee is trusted by top-tier

organizations in web3, securing protocols including Lido, Safe, and Axelar.

We develop open-source security and developer tooling Wake for Ethereum

and Trident for Solana, supported by grants from Coinbase and the Solana

Foundation. Wake and Trident help auditors in the manual review process to

discover hardly recognizable edge-case vulnerabilities.

Our team teaches about blockchain security at the Czech Technical

University in Prague, led by our co-founder and CEO, Josef Gattermayer, Ph.D.

As the official educational partners of the Solana Foundation, we run the

School of Solana and the Solana Auditors Bootcamp.

Ackee’s mission is to build a stronger blockchain community by sharing our

knowledge.

Ackee Blockchain a.s.

Rohanske nabrezi 717/4

186 00 Prague, Czech Republic

https://ackee.xyz

hello@ackee.xyz

Ackee Blockchain Security 4 of 59

https://github.com/Ackee-Blockchain/wake
https://github.com/Ackee-Blockchain/trident
https://ackee.xyz/school-of-solana
https://ackee.xyz/solana-auditors-bootcamp
https://ackee.xyz
mailto:hello@ackee.xyz

2.2. Audit Methodology
1. Verification of technical specification

The audit scope is confirmed with the client, and auditors are onboarded

to the project. Provided documentation is reviewed and compared to the

audited system.

2. Tool-based analysis

A deep check with Solidity static analysis tool Wake in companion with

Solidity (Wake) extension is performed, flagging potential vulnerabilities

for further analysis early in the process.

3. Manual code review

Auditors manually check the code line by line, identifying vulnerabilities

and code quality issues. The main focus is on recognizing potential edge

cases and project-specific risks.

4. Local deployment and hacking

Contracts are deployed in a local Wake environment, where targeted

attempts to exploit vulnerabilities are made. The contracts' resilience

against various attack vectors is evaluated.

5. Unit and fuzz testing

Unit tests are run to verify expected system behavior. Additional unit or

fuzz tests may be written using Wake framework if any coverage gaps are

identified. The goal is to verify the system’s stability under real-world

conditions and ensure robustness against both expected and unexpected

inputs.

Ackee Blockchain Security 5 of 59

https://getwake.io
https://marketplace.visualstudio.com/items?itemName=AckeeBlockchain.tools-for-solidity
https://getwake.io
https://getwake.io

2.3. Finding Classification
A Severity rating of each finding is determined as a synthesis of two sub-

ratings: Impact and Likelihood. It ranges from Informational to Critical.

If we have found a scenario in which an issue is exploitable, it will be assigned

an impact rating of High, Medium, or Low, based on the direness of the

consequences it has on the system. If we haven’t found a way, or the issue is

only exploitable given a change in configuration (system settings or

parameters, such as deployment scripts, compiler configurations, using multi-

signature wallets for owners, etc.) or given a change in the codebase, then it

will be assigned an impact rating of Warning or Info.

Low to High impact issues also have a Likelihood, which measures the

probability of exploitability during runtime.

The full definitions are as follows:

Severity

Likelihood

High Medium Low N/A

Impact

High Critical High Medium -

Medium High Medium Low -

Low Medium Low Low -

Warning - - - Warning

Info - - - Info

Table 1. Severity of findings

Ackee Blockchain Security 6 of 59

Impact

• High - Code that activates the issue will lead to undefined or catastrophic

consequences for the system.

• Medium - Code that activates the issue will result in consequences of

serious substance.

• Low - Code that activates the issue will have outcomes on the system that

are either recoverable or don’t jeopardize its regular functioning.

• Warning - The issue cannot be exploited given the current code and/or

configuration, but could be a security vulnerability if these were to

change slightly. If we haven’t found a way to exploit the issue given the

time constraints, it might be marked as a "Warning" or higher, based on our

best estimate of whether it is currently exploitable.

• Info - The issue is on the borderline between code quality and security.

Examples include insufficient logging for critical operations. Another

example is that the issue would be security-related if code or

configuration was to change.

Likelihood

• High - The issue is exploitable by virtually anyone under virtually any

circumstance.

• Medium - Exploiting the issue currently requires non-trivial preconditions.

• Low - Exploiting the issue requires strict preconditions.

Ackee Blockchain Security 7 of 59

2.4. Review Team
The following table lists all contributors to this report. For authors of the

specific revision, see the “Revision team” section in the respective “Report

revision” chapter.

Member’s Name Position

Michal Převrátil Lead Auditor

Naoki Yoshida Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

2.5. Disclaimer
We’ve put our best effort to find all vulnerabilities in the system, however our

findings shouldn’t be considered as a complete list of all existing issues. The

statements made in this document should not be interpreted as investment

or legal advice, nor should its authors be held accountable for decisions made

based on them.

Ackee Blockchain Security 8 of 59

3. Executive Summary
BetFin Lottery is a blockchain-based lottery game that allows users to place

bets with BET tokens on combinations of numbers and symbols. The winning

selections are determined through Chainlink VRF's verifiable random function.

The protocol incorporates a jackpot mechanism that accumulates a portion

of all wagered tokens, creating additional incentives for players who match all

winning selections.

Revision 1.0
BetFin engaged Ackee Blockchain Security to perform a security review of

the BetFin protocol with a total time donation of 15 engineering days in a

period between February 26 and March 12, 2025, with Michal Převrátil as the

lead auditor. 5 engineering days were dedicated to manually-guided

differential fuzzing using the Wake testing framework.

The audit was performed on the commit b8662d0[1] with the scope being all

Solidity files inside the src directory.

A kick-off meeting with BetFin was held to provide a code walkthrough and

discuss technical details, which made the review process more efficient. As

there was no technical specification or documentation during the audit

period, we reviewed the project based on our understanding of the protocol

and information provided by BetFin.

We began our audit with a manual review of the codebase in parallel with

manually-guided differential fuzzing using the Wake testing framework. The

fuzzing yielded the I6 finding. We concluded our review with static analysis

tools, including Wake, which yielded the I9 and I10 findings.

During the review, we paid special attention to:

Ackee Blockchain Security 9 of 59

https://docs.chain.link/vrf
https://getwake.io
https://getwake.io
https://getwake.io

• ensuring randomly selected numbers and symbols of winning tickets are

uniformly distributed with no correlations;

• verifying access controls are properly applied;

• preventing reentrancy attacks;

• ensuring tokens cannot be locked inside the contracts;

• preventing denial-of-service attacks;

• optimizing code efficiency; and

• avoiding common issues such as data validation.

Our review resulted in 21 findings, ranging from Info to High severity. The most

severe finding, H1, highlights concerns about the unsustainability of the

current design, which either forces BetFin to pay for costly transactions

vulnerable to griefing attacks or leaves significant amounts of tokens locked

inside the contracts.

The code quality is overall good, but multiple changes can improve readability

(I1, I9, I10). The codebase contains multiple checks validating the same

property in different ways, ensuring system correctness. The code avoids

using inline assembly.

The codebase could be improved in terms of gas optimization, with the most

notable inefficiency being described in the I3 finding, saving up to 50% of gas

costs for users placing and claiming bets.

Ackee Blockchain Security recommends BetFin:

• avoid building invariants around the fact that all tickets must be claimed

before unlocking the remaining BET tokens;

• be cautious when designing permissionless batch operations to avoid

griefing attacks;

Ackee Blockchain Security 10 of 59

• strictly follow standards such as ERC-721; and

• address reported findings.

See Report Revision 1.0 for the system overview and trust model.

Revision 1.1
BetFin engaged Ackee Blockchain Security to perform a fix review of the

findings from the previous revision. The review was performed on the commit

3333d36
[2].

19 out of 21 findings were fixed, I2 was partially fixed, and H1 was

acknowledged with a fix planned for implementation outside the scope of

this revision.

See Report Revision 1.1 for the description of the changes made in this

revision.

[1] full commit hash: b8662d0fca5376a197b18380c93722418d08227f

[2] full commit hash: 3333d3668657c36839b9f6d7619d9e81851e1bbb

Ackee Blockchain Security 11 of 59

https://eips.ethereum.org/EIPS/eip-721

4. Findings Summary
The following section summarizes findings we identified during our review.

Unless overridden for purposes of readability, each finding contains:

• Description

• Exploit scenario (if severity is low or higher)

• Recommendation

• Fix (if applicable).

Summary of findings:

Critical High Medium Low Warning Info Total

0 1 4 2 4 10 21

Table 2. Findings Count by Severity

Findings in detail:

Finding title Severity Reported Status

H1: Unsustainable claiming

of all bets

High 1.0 Acknowledged

M1: Griefing on placing bets Medium 1.0 Fixed

M2: Griefing on claiming

multiple bets

Medium 1.0 Fixed

M3: Missing owner check in
tokenURI

Medium 1.0 Fixed

M4: Unintended ERC-721

tokens can be permanently

locked in MultiBet contract

Medium 1.0 Fixed

Ackee Blockchain Security 12 of 59

Finding title Severity Reported Status

L1: Griefing on refunding

bets

Low 1.0 Fixed

L2: Tokens rounding

imprecision

Low 1.0 Fixed

W1: Tickets can be edited

after round is closed

Warning 1.0 Fixed

W2: Bets list lacks public

accessibility for user

verification

Warning 1.0 Fixed

W3: setResult does not

include jackpot additional

rewards

Warning 1.0 Fixed

W4: TicketSold event emits

cumulative amount instead

of individual ticket value

Warning 1.0 Fixed

I1: Explicit getters can be

replaced with public state

variables

Info 1.0 Fixed

I2: Unclear parameter

naming in round creation

Info 1.0 Partially fixed

I3: Inefficient placing of bets Info 1.0 Fixed

I4: Unnecessary inheritance

of ERC721URIStorage

extension

Info 1.0 Fixed

Ackee Blockchain Security 13 of 59

Finding title Severity Reported Status

I5: Replace role-based

access control with direct

contract reference checks

for critical functions

Info 1.0 Fixed

I6: Misleading event name Info 1.0 Fixed

I7: Unused state variable Info 1.0 Fixed

I8: Typographical error in

error message description

Info 1.0 Fixed

I9: Variables can be

immutable

Info 1.0 Fixed

I10: Unused using-for

directives

Info 1.0 Fixed

Table 3. Table of Findings

Ackee Blockchain Security 14 of 59

Report Revision 1.0

Revision Team

Member’s Name Position

Michal Převrátil Lead Auditor

Naoki Yoshida Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

System Overview
BetFin Lottery is a simple lottery game that allows users to bet on numbers

and a symbol. Users can place any number of bets, with each bet containing

multiple tickets (1-9). Each ticket represents a single set of 5 numbers (1-25)

and a symbol (1-5). The symbol unlocks additional rewards if the ticket is

winning and the bet holding the ticket has at least 3 tickets.

The lottery uses Chainlink VRF to select the winning ticket, guaranteeing the

randomness of the results. The protocol uses BET tokens for ticket payments

and rewards. A portion of the received BET tokens is accumulated as an

additional jackpot, which is only claimable if a player guesses all 5 numbers

and the symbol correctly.

Multiple betting rounds can coexist, but it is assumed the round deadlines will

never be the same. The contracts are not expected to be deployed behind a

proxy.

Trust Model
Players must trust BetFin to provide BET tokens for the rewards and the

jackpot. Players must also trust that the BET token is minted and distributed

correctly, as it is used for ticket payments and rewards distribution.

Ackee Blockchain Security 15 of 59

https://docs.chain.link/vrf

Chainlink VRF is trusted to provide true randomness for the winning ticket

selection.

Fuzzing
A manually-guided differential stateful fuzz test was developed during the

review to test the correctness and robustness of the system. The fuzz test

employs fork testing technique to test the system with external contracts

exactly as they are deployed in the deployment environment. This is crucial

to detect any potential integration issues.

The differential fuzz test keeps its own Python state. Assertions are used to

verify the Python state against the on-chain state in contracts.

The fuzzing focused on the following aspects:

• betting round state transitions (creation, active, finished, refunding);

• bet data consistency throughout lottery operations;

• randomness fulfillment and result processing;

• reward calculation and distribution mechanisms;

• refund process integrity;

• jackpot processing and additional reward distribution;

• token balances across all states and operations.

The list of all implemented execution flows and invariants is available in

Appendix B.

Findings
The following section presents the list of findings discovered in this revision.

For the complete list of all findings, Go back to Findings Summary

Ackee Blockchain Security 16 of 59

H1: Unsustainable claiming of all bets

High severity issue

Impact: High Likelihood: Medium

Target: Lottery.sol Type: N/A

Description

The Lottery contract reserves BET tokens from the associated staking

contract to cover payouts of winning tickets. The remaining BET tokens are

returned to the staking contract once all tickets are claimed.

Under the assumption that one ticket is always placed in each bet, on

average approximately 92% of opened bets will not be winning. Non-winning

bets provide no motivation for users to claim them.

However, due to the design of the Lottery contract, all tickets must be

claimed to avoid locking a significant amount of BET tokens in the contract.

As a consequence, the majority of opened bets must be claimed by BetFin.

Claiming approximately 550 bets consumes 30M gas units, which is the block

gas limit of the Polygon mainnet.

Exploit scenario

Given the configuration of the Lottery contract, claiming of remaining bets

may become unsustainable for BetFin. Additionally, malicious actors can

execute griefing attacks to prevent BetFin from claiming the remaining bets,

see finding M2.

Recommendation

Consider redesigning the protocol to payout winning bets directly from the

staking contract, effictively removing the requirement to claim all bets.

Ackee Blockchain Security 17 of 59

Alternatively, introduce a new feature to motivate users to claim their bets.

Acknowledgment 1.1

The finding is expected to be resolved by providing motivation for users to

claim their bets. However, the exact solution is out of scope of this audit.

Go back to Findings Summary

Ackee Blockchain Security 18 of 59

M1: Griefing on placing bets

Medium severity issue

Impact: High Likelihood: Low

Target: Lottery.sol Type: Griefing

Description

Each lottery round allows only one registered ticket with given numbers and

symbol. Placing new bets with tickets costs BET tokens. However, editing

existing tickets is possible at the cost of consumed gas only.

This creates a possibility for griefing attacks resulting in denial of service for

other players.

Exploit scenario

Bob has a placed ticket in the current round.

Alice wants to place a new ticket with unique numbers {1, 2, 3, 4, 5} and

symbol 3.

Bob sees Alice’s transaction in the mempool and submits a new transaction,

changing his ticket to {1, 2, 3, 4, 5} and symbol 3.

By paying a higher gas price, Bob frontruns Alice’s transaction and prevents

her from placing her bet.

Recommendation

Consider charging a fee in the form of BET tokens for editing tickets to

discourage griefing attacks.

Alternatively, consider removing the editing functionality.

Ackee Blockchain Security 19 of 59

Fix 1.1

The issue was fixed by implementing a 10% BET token fee of the current

round’s ticket price for editing tickets.

Go back to Findings Summary

Ackee Blockchain Security 20 of 59

M2: Griefing on claiming multiple bets

Medium severity issue

Impact: High Likelihood: Low

Target: Lottery.sol Type: Griefing

Description

After the winning numbers are drawn, anyone can claim any unclaimed bets

with tickets using the claim function in the Lottery contract. To claim multiple

bets at once, users can use the claimAll function.

Since the bets can be claimed by anyone, malicious actors can exploit this for

griefing attacks.

This issue is even more severe in the context of the H1 finding.

Exploit scenario

BetFin submits a transaction to claim all remaining unclaimed bets. Bob sees

the transaction in the mempool and submits a new transaction to claim the

last bet from the list to be claimed by BetFin. Bob pays a higher gas price to

frontrun BetFin’s transaction.

BetFin’s transaction reverts, consuming a significant amount of gas since all

bets are successfully claimed except the last one.

Recommendation

Skip claiming a given bet if it is already claimed in the claimAll function.

Fix 1.1

The issue was fixed by following the recommendation.

Ackee Blockchain Security 21 of 59

Go back to Findings Summary

Ackee Blockchain Security 22 of 59

M3: Missing owner check in tokenURI

Medium severity issue

Impact: Medium Likelihood: Medium

Target: Lottery.sol Type: Standards

violation

Description

Listing 1. Excerpt from Lottery

356 function tokenURI(uint256 tokenId) public view virtual override(ERC721,
 ERC721URIStorage) returns (string memory) {
357 return string.concat(uri, "/", Strings.toString(tokenId), ".json");
358 }

The tokenURI function lacks the _requireOwned() check that verifies token

existence. While the direct impact is limited, this implementation violates the

ERC-721 specification, which explicitly requires that tokenURI must revert if

the token does not exist.

Exploit scenario

Alice creates a marketplace dApp that integrates with this Lottery contract.

When Bob queries the tokenURI function for a non-existent token ID, the

function returns a URI instead of reverting as required by the ERC-721

specification. Alice’s marketplace incorrectly displays this token as valid.

Charlie, relying on this information, attempts to interact with the non-

existent token, resulting in failed transactions and a poor user experience.

Additionally, third-party indexers may incorrectly catalog non-existent

tokens, causing inconsistencies across the ecosystem.

Ackee Blockchain Security 23 of 59

https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721

Recommendation

Add the _requireOwned() check at the beginning of the tokenURI function to

enforce token existence verification and comply with the ERC-721 standard.

Fix 1.1

The issue was fixed by following the recommendation.

Go back to Findings Summary

Ackee Blockchain Security 24 of 59

https://eips.ethereum.org/EIPS/eip-721

M4: Unintended ERC-721 tokens can be
permanently locked in MultiBet contract

Medium severity issue

Impact: High Likelihood: Low

Target: MultiBet.sol Type: Data validation

Description

Listing 2. Excerpt from MultiBet

42 function onERC721Received(address, address, uint256, bytes calldata) external
 pure override returns (bytes4) {
43 return IERC721Receiver.onERC721Received.selector;
44 }

The MultiBet contract implements functionality to receive any ERC-721 token.

While this function is intended for receiving BetFin Pass tokens used for

permission control in the Core contract, the implementation lacks validation

of the token contract address.

As a result, any ERC-721 token sent to this contract will be permanently

locked without a recovery mechanism.

Exploit scenario

Alice sends an unintended ERC-721 token to the MultiBet contract. The token

becomes permanently locked in the contract with no recovery mechanism.

Recommendation

Either:

• implement token address validation to accept only BetFin Pass tokens; or

Ackee Blockchain Security 25 of 59

https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721

• add a privileged recovery function for ERC-721 tokens.

Fix 1.1

The issue was fixed by only accepting BetFin Pass tokens in the

onERC721Received function.

Go back to Findings Summary

Ackee Blockchain Security 26 of 59

https://eips.ethereum.org/EIPS/eip-721

L1: Griefing on refunding bets

Low severity issue

Impact: Medium Likelihood: Low

Target: LotteryRound.sol Type: Griefing

Description

Each lottery round may be refunded if randomness from Chainlink VRF is not

requested within a given time window or if the response is not received within

a given time window.

Anyone can permissionlessly refund any number of bets, sending BET tokens

paid for the bets back to their owners.

Bets can be refunded in batches, given the offset in the array and the

number of bets to refund. Refunding already refunded bets reverts the

transaction.

This design allows a griefing attack on refunding bets, as described in the

following scenario.

Exploit scenario

BetFin sends a transaction refunding 100 bets. Bob sees the transaction in

the mempool and submits a new transaction refunding only the last bet from

the list. Bob pays a higher gas price to frontrun BetFin’s transaction.

BetFin’s transaction reverts, consuming a significant amount of gas since all

bets are successfully processed until the last one, which has already been

refunded.

Ackee Blockchain Security 27 of 59

Recommendation

Skip refunding a given bet if it is already refunded in the LotteryRound.refund

function.

Fix 1.1

The issue was fixed by following the recommendation.

Go back to Findings Summary

Ackee Blockchain Security 28 of 59

L2: Tokens rounding imprecision

Low severity issue

Impact: Low Likelihood: Low

Target: LotteryRound.sol Type: Arithmetics

Description

Each LotteryRound contract collects BET tokens from users for placing bets.

4% of the collected tokens is used as an additional jackpot while the rest is

sent to the associated staking contract.

Listing 3. Excerpt from LotteryRound.processJackpot

197 // calculate 4% of bets
198 uint256 jackpot = ticketsCount * ticketPrice * 4 / 100;
199 // send jackpot to lottery
200 require(IERC20(lottery.getToken()).transfer(address(lottery), jackpot),
 "LR11");

Remaining tokens are sent when claiming a given bet.

Listing 4. Excerpt from LotteryRound.claim

344 // calculate amount to send
345 uint256 amountToSend = ticketPrice * bet.getTicketsCount() * 96 / 100;
346 // send tokens - 4% to staking
347 IERC20(lottery.getToken()).transfer(lottery.getStaking(), amountToSend);

The current approach requires claiming all bets and having the ticket price as

a multiple of 25 to avoid locked tokens in the LotteryRound contract.

Exploit scenario

BetFin sets the ticket price to 33 BET tokens. 100 tickets are sold in the

current round, and 3300 BET tokens are collected.

Ackee Blockchain Security 29 of 59

The processJackpot function is called and 132 BET tokens are added to the

jackpot.

When claiming a bet with a single ticket, 33 * 96 // 100 = 31 BET tokens are

sent to the staking contract. Assuming all bets contain a single ticket, a total

amount of 3100 BET tokens are sent to the staking contract.

100 BET tokens are now permanently locked in the LotteryRound contract.

Recommendation

Send the remaining 96% of the collected tokens in the processJackpot

function and calculate the amount based on the difference between the

total collected tokens and the jackpot.

Fix 1.1

The issue was fixed by following the recommendation.

Go back to Findings Summary

Ackee Blockchain Security 30 of 59

W1: Tickets can be edited after round is closed

Impact: Warning Likelihood: N/A

Target: LotteryRound.sol Type: Logic error

Description

After placing a lottery bet, the owner of the bet can edit tickets in the bet.

Editing the tickets should only be possible before the round is closed.

Listing 5. Excerpt from LotteryRound.editTickets

126 // check if round is closed
127 require(status == 1, "LR02");

The round closed check is made using the status variable. However, the status

variable is not updated when the round is closed. Instead, the getStatus

function returns the correct status based on the current timestamp using

the isOpen function.

Listing 6. Excerpt from LotteryRound.getStatus

333 if (!isOpen() && status == 1) {
334 return 5;
335 }

Editing tickets is possible after the round is closed but before the

randomness from Chainlink VRF is requested. This makes it a non-security

issue.

Recommendation

Use the getStatus function to check if the round is closed.

Ackee Blockchain Security 31 of 59

Fix 1.1

The issue was fixed by following the recommendation.

Go back to Findings Summary

Ackee Blockchain Security 32 of 59

W2: Bets list lacks public accessibility for user
verification

Impact: Warning Likelihood: N/A

Target: LotteryRound.sol Type: Function

visibility

Description

Listing 7. Excerpt from LotteryRound

54 address[] private bets;

The bets list in the LotteryRound contract is marked as private, preventing

direct access to this data. The contract lacks view functions that expose this

information.

Users interacting with the refund function require an index in the bets list as a

parameter. Without visibility into the bets list, users cannot verify their

position or confirm refund eligibility.

Recommendation

Implement one of these solutions:

• add a view function to expose information from the bets list; or

• change the bets list visibility to public.

Fix 1.1

The bets list visibility was changed to public.

Go back to Findings Summary

Ackee Blockchain Security 33 of 59

W3: setResult does not include jackpot additional
rewards

Impact: Warning Likelihood: N/A

Target: Lottery.sol Type: Logic error

Description

Listing 8. Excerpt from Lottery._claim

323 if (winAmount > 0) {
324 if (jackpot) {
325 // transfer jackpot to player
326 token.transfer(bet.getPlayer(), winAmount +
 additionalJackpot);
327 // emit Jackpot event
328 emit JackpotWon(roundAddress, additionalJackpot);
329 // reset additional jackpot
330 additionalJackpot = 0;
331 } else {
332 // transfer win amount to player
333 token.transfer(bet.getPlayer(), winAmount);
334 }
335 }
336 // set bet result and status
337 bet.setResult(winAmount);
338 // increase claimed amount
339 claimedByRound[roundAddress] += winAmount;
340 // increment claimed tickets
341 bool allClaimed = round.claim(betAddress);
342 // check if all tickets are claimed
343 if (allClaimed) {
344 // transfer back to staking = initial amount - claimed amount
345 uint256 toSend = amount * MAX_SHARES -
 claimedByRound[roundAddress];
346 // transfer to staking
347 token.transfer(address(staking), toSend);
348 }
349 emit TicketClaimed(betAddress, winAmount);

When a jackpot occurs with additional rewards, there is a discrepancy

Ackee Blockchain Security 34 of 59

between the displayed and received amounts. The ERC-721 token

representing the bet displays the initial result amount, while users receive

additional tokens from the jackpot rewards.

The TicketClaimed event omits information about these additional jackpot

rewards, preventing off-chain systems from accurately tracking the total

amount received by users.

Recommendation

Implement the following:

• include the additional jackpot rewards in the TicketClaimed event; and

• update the token metadata to reflect the total reward amount, including

jackpot bonuses.

Fix 1.1

The issue was fixed by following the recommendation.

Go back to Findings Summary

Ackee Blockchain Security 35 of 59

https://eips.ethereum.org/EIPS/eip-721

W4: TicketSold event emits cumulative amount
instead of individual ticket value

Impact: Warning Likelihood: N/A

Target: LotteryRound.sol Type: Arithmetics

Description

The Lottery.placeBet function returns the address of the bet contract.

Listing 9. Excerpt from LotteryRound.registerBet

113 // update ticket counter
114 ticketsCount += count;
115 // update bet counter
116 betsCount++;
117 // push bet to bets
118 bets.push(_bet);
119 // check balance of round - should not happen, but anyway
120 require(IERC20(lottery.getToken()).balanceOf(address(this)) >=
 ticketsCount * ticketPrice, "LR04");
121 // emit event
122 emit TicketSold(_bet, ticketsCount * ticketPrice);

The LotteryRound.TicketSold(address indexed bet, uint256 amount) event is

the only event that includes information about the bet. However, the amount

parameter represents the product of the round ticket price and the round

total sold ticket amount, rather than the individual ticket value. This design

makes tracking specific ticket sales difficult.

This issue becomes particularly problematic when using the MultiBet

contract, as the placeBet return value is not utilized. In such cases, identifying

the corresponding bet contract address requires either tracking the event

emission order or calculating the total sold amount, which increases the

complexity of integration with external systems.

Ackee Blockchain Security 36 of 59

Recommendation

Implement one of these solutions:

• emit a new event that includes the individual bet value and bet contract

address;

• modify the TicketSold event to include both the individual ticket value and

cumulative amount; or

• document this behavior in the protocol’s technical documentation.

Fix 1.1

The issue was fixed by emitting the current bet value instead of the

cumulative amount in the TicketSold event.

Go back to Findings Summary

Ackee Blockchain Security 37 of 59

I1: Explicit getters can be replaced with public
state variables

Impact: Info Likelihood: N/A

Target: Lottery.sol, LotteryBet.sol,

LotteryRound.sol

Type: Code quality

Description

The codebase contains explicit getter functions that return state variable

values. These functions can be replaced with public state variables, which

automatically generate equivalent getter functions.

In the LotteryBet contract:

Listing 10. Excerpt from LotteryBet

54 function getPlayer() external view override returns (address) {
55 return player;
56 }

Listing 11. Excerpt from LotteryBet

61 function getAmount() external view override returns (uint256) {
62 return amount;
63 }

In the LotteryRound contract:

Listing 12. Excerpt from LotteryRound

253 function getTicketsCount() external view returns (uint256) {
254 return ticketsCount;
255 }

Ackee Blockchain Security 38 of 59

Listing 13. Excerpt from LotteryRound

257 function getBetsCount() external view returns (uint256) {
258 return betsCount;
259 }

Listing 14. Excerpt from LotteryRound

261 function getFinish() external view returns (uint256) {
262 return finish;
263 }

Replacing these explicit getters with public state variables would improve

code readability.

Recommendation

Replace explicit getter functions with public state variables where

appropriate. For example:

// Instead of:
address private player;
function getPlayer() external view returns (address) {
 return player;
}

// Use:
address public player;

Fix 1.1

The explicit getters were replaced with public state variables where possible.

Due to interface compatibility requirements, some getters were retained.

Go back to Findings Summary

Ackee Blockchain Security 39 of 59

I2: Unclear parameter naming in round creation

Impact: Info Likelihood: N/A

Target: Lottery.sol Type: Code quality

Description

The Lottery contract implements a createRound function that initiates a new

lottery round. The function accepts a single parameter named _timestamp,

which represents the end time of the round.

Listing 15. Excerpt from Lottery

142 function createRound(uint256 _timestamp) external onlyRole(SERVICE) returns
 (address) {

The same variable name is also used in the RoundCreated event.

Listing 16. Excerpt from Lottery

66 event RoundCreated(address indexed round, uint256 indexed timestamp);

The parameter name _timestamp lacks specificity, as it does not indicate that

it represents the round’s end time.

Recommendation

Rename the _timestamp parameter to _endTimestamp or _roundEndTime to clearly

indicate its purpose.

Partial solution 1.1

The _timestamp parameter in the createRound function was renamed to _finish.

The timestamp parameter in the RoundCreated event was kept as is.

Ackee Blockchain Security 40 of 59

Go back to Findings Summary

Ackee Blockchain Security 41 of 59

I3: Inefficient placing of bets

Impact: Info Likelihood: N/A

Target: Lottery.sol Type: Gas optimization

Description

The Lottery contract creates a new instance of the LotteryBet contract for

each bet placement.

Listing 17. Excerpt from Lottery.placeBet

126 // create bet contract
127 LotteryBet bet = new LotteryBet(_player, amount, address(this), tokenId,
 _round);

This approach is inefficient as it requires deploying a new contract for each

bet, resulting in higher gas costs. Implementation of OpenZeppelin’s Clones

library would reduce the gas costs by up to 50%.

Recommendation

Implement a cloning mechanism for the LotteryBet contract using a singleton

pattern:

• modify immutable variables in the LotteryBet contract to be mutable;

• create an initialize function in the LotteryBet contract with the current

constructor logic;

• add a new check to the initialize function ensuring it can only be called

once;

• petrify the LotteryBet singleton in its constructor (optional);

• modify the Lottery constructor to accept a LotteryBet singleton address;

• implement OpenZeppelin’s Clones library in the placeBet function to clone

Ackee Blockchain Security 42 of 59

the singleton and call initialize on the clone; and

• add a setLotteryBetImplementation function in the Lottery contract,

restricted to SERVICE calls (optional).

Fix 1.1

The issue was fixed by following the recommendation.

Go back to Findings Summary

Ackee Blockchain Security 43 of 59

I4: Unnecessary inheritance of ERC721URIStorage
extension

Impact: Info Likelihood: N/A

Target: ERC721URIStorage Type: Configuration

Description

The contract inherits the ERC721URIStorage extension from OpenZeppelin but

does not utilize any of its functionality. This inheritance unnecessarily

increases the contract’s bytecode size and deployment cost.

The contract implements its own token URI logic, making the ERC721URIStorage

extension redundant.

Recommendation

Remove the ERC721URIStorage extension inheritance and update the

Lottery.supportsInterface function accordingly.

Fix 1.1

The issue was fixed by removing the ERC721URIStorage base contract

inheritance.

Go back to Findings Summary

Ackee Blockchain Security 44 of 59

I5: Replace role-based access control with direct
contract reference checks for critical functions

Impact: Info Likelihood: N/A

Target: Lottery.sol Type: Trust model

Description

The current design of the Lottery contract creates a significant security

vulnerability in case of DEFAULT_ADMIN_ROLE compromise. An attacker with

DEFAULT_ADMIN_ROLE privileges can drain all tokens from the lottery contract.

The attack sequence is as follows:

1. The attacker grants both CORE and SERVICE roles to controlled accounts;

2. using the compromised CORE role, places bets without transferring tokens

to the contract;

3. uses the compromised SERVICE role to interrupt the randomness fulfillment

process;

4. claims refunds for fraudulent bets, draining legitimate user funds; and

5. extracts all remaining tokens from the Lottery contract.

This implementation violates the principle of least privilege and introduces

unnecessary centralization risk.

Recommendation

Replace role-based access control with direct sender verification for critical

functions since the Core contract address is set at construction time and

remains immutable.

Implement direct address comparison (require(msg.sender == coreContract,

"Only Core can call")) for functions involving token transfers. This ensures

Ackee Blockchain Security 45 of 59

that core payment verification remains secure even if role-based access

control is compromised.

Fix 1.1

The CORE role was removed, and the Core contract address was used for

placeBet function access control.

Go back to Findings Summary

Ackee Blockchain Security 46 of 59

I6: Misleading event name

Impact: Info Likelihood: N/A

Target: Lottery.sol Type: Logic error

Description

Listing 18. Excerpt from Lottery

162 function removeConsumer(address _round) external onlyRole(SERVICE) {
163 require(rounds[_round], "LT02");
164 uint256 status = LotteryRound(_round).getStatus();
165 require(status == 4 || status == 6, "LT13");
166 coordinator.removeConsumer(subscriptionId, address(_round));
167 emit RoundFinished(_round);
168 }

The removeConsumer function in the Lottery contract emits a RoundFinished

event.

The function succeeds only when the round is finished or refunding has

started. However, the main functionality is only to remove a consumer from

the round.

This discrepancy between the event name and the function’s actual behavior

may mislead developers, off-chain monitoring systems, and users who rely on

these events.

Recommendation

Implement one of these solutions:

• rename the event to accurately reflect the function’s purpose, such as

ConsumerRemoved or ConsumerCleanup;

• create a new event that accurately describes the function’s behavior; or

Ackee Blockchain Security 47 of 59

• document this event emission pattern in the codebase.

Fix 1.1

The issue was fixed by renaming the RoundFinished event to RoundRemoved.

Go back to Findings Summary

Ackee Blockchain Security 48 of 59

I7: Unused state variable

Impact: Info Likelihood: N/A

Target: Lottery.sol Type: Unused code

Description

Listing 19. Excerpt from Lottery

54 CoreInterface private core;

The Lottery.core state variable is never used after being set in the

constructor.

Recommendation

Either:

• remove the state variable; or

• use the state variable (as suggested in I5).

Fix 1.1

The core state variable is now used according to the I5 recommendation.

Go back to Findings Summary

Ackee Blockchain Security 49 of 59

I8: Typographical error in error message
description

Impact: Info Likelihood: N/A

Target: LotteryRound.sol Type: Code quality

Description

The LotteryRound contract contains a typographical error in its custom error

message.

Listing 20. Excerpt from LotteryRound.sol

27 * LR12: invalidat round status to request

The error message uses the non-existent word "invalidat" instead of "invalid".

Recommendation

Replace "invalidat" with "invalid" in the error message.

Fix 1.1

The typo was fixed.

Go back to Findings Summary

Ackee Blockchain Security 50 of 59

I9: Variables can be immutable

Impact: Info Likelihood: N/A

Target: Lottery.sol, MultiBet.sol Type: Code quality

Description

The codebase contains multiple variables that can be made immutable. These

variables are assigned only once during contract deployment and never

modified afterward. Additionally, none of the contracts is expected to be

deployed behind a proxy.

See Appendix B for the complete list of affected variables.

Recommendation

Declare the variables as immutable.

Fix 1.1

All of the variables were declared as immutable.

Go back to Findings Summary

Ackee Blockchain Security 51 of 59

I10: Unused using-for directives

Impact: Info Likelihood: N/A

Target: Lottery.sol, LotteryRound.sol Type: Code quality

Description

The codebase contains two using-for directives of the SafeERC20 library

without any usage. Since the code only interacts with the BET ERC-20 token

which is fully compliant, it is safe not to use the library and remove the using-

for directives.

See Appendix B for the complete list of affected using-for directives.

Recommendation

Remove the unused using-for directives.

Fix 1.1

The unused using-for directives were removed.

Go back to Findings Summary

Ackee Blockchain Security 52 of 59

https://eips.ethereum.org/EIPS/eip-20

Report Revision 1.1

Revision Team

Member’s Name Position

Michal Převrátil Lead Auditor

Naoki Yoshida Auditor

Josef Gattermayer, Ph.D. Audit Supervisor

System Overview
This revision implements the fixes for previously identified findings and

removes the round deadline postponement feature from the system.

Ackee Blockchain Security 53 of 59

Appendix A: How to cite
Please cite this document as:

Ackee Blockchain Security, BetFin: Lottery, 25.3.2025.

Ackee Blockchain Security 54 of 59

https://ackee.xyz/

Appendix B: Wake Findings
This section lists the outputs from the Wake framework used for testing and

static analysis during the audit.

B.1. Fuzzing
The following table lists all implemented execution flows in the Wake fuzzing

framework.

ID Flow Added

F1 Creating a new lottery round 1.0

F2 Editing tickets 1.0

F3 Transferring lottery tickets between addresses 1.0

F4 Updating the finish timestamp 1.0

F5 Setting and updating ticket prices 1.0

F6 Placing multiple bets via the MultiBet contract 1.0

F7 Placing bets through partner integrations 1.0

F8 Requesting randomness 1.0

F9 Fulfilling randomness via Chainlink VRF 1.0

F10 Processing the jackpot 1.0

F11 Claiming rewards 1.0

F12 Recovering from failed or stuck rounds 1.0

F13 Initiating the refund process for a round 1.0

F14 Executing refunds 1.0

Table 4. Wake fuzzing flows

The following table lists the invariants checked after each flow.

Ackee Blockchain Security 55 of 59

https://getwake.io
https://getwake.io

ID Invariant Added Status

IV1 Lottery view functions return expected

values across all states

1.0 Success

IV2 Round view functions return expected values

across all states

1.0 Success

IV3 Round status transitions follow the expected

state machine

1.0 Success

IV4 Bet view functions return expected values

across all states

1.0 Success

IV5 Bet data remains consistent throughout

lottery operations

1.0 Fail (W3)

IV6 Claimable rewards are correctly calculated

based on winning tickets

1.0 Success

IV7 Accounts' and contracts' ERC20 token

balances reconcile correctly after all lottery

operations

1.0 Success

IV8 Accounts' and contracts' native token

balances reconcile correctly after all lottery

operations

1.0 Success

IV9 Event emission correctness and consistency 1.0 Fail (I6)

Table 5. Wake fuzzing invariants

Ackee Blockchain Security 56 of 59

B.2. Detectors
wake detect unused-using-for

╭─ [WARNING][LOW] Unused contract in using-for directive [unused-using-for] ───╮
│ 37 * LT13: Invalid round status to remove │
│ 38 */ │
│ 39 contract Lottery is GameInterface, AccessControl, ERC721, ERC721Enumera │
│ ❱ 40 using SafeERC20 for IERC20; │
│ 41 │
│ 42 bytes32 public constant SERVICE = keccak256("SERVICE"); │
│ 43 bytes32 public constant ROUND = keccak256("ROUND"); │
╰─ src/Lottery.sol ──╯

╭─ [WARNING][LOW] Unused contract in using-for directive [unused-using-for] ─╮
│ 29 * LR14: could not recover funds - conditions are not met │
│ 30 */ │
│ 31 contract LotteryRound is VRFConsumerBaseV2Plus { │
│ ❱ 32 using SafeERC20 for IERC20; │
│ 33 │
│ 34 uint256 public constant REQUEST_PERIOD = 1 hours; │
│ 35 uint256 public constant RECOVER_PERIOD = 36 hours; │
╰─ src/LotteryRound.sol ───╯

Figure 1. Unused using-for directives

Ackee Blockchain Security 57 of 59

wake detect variable-can-be-immutable

╭─ [INFO][HIGH] Variable can be immutable [variable-can-be-immutable] ─╮
│ 50 uint256 private immutable created; │
│ 51 IVRFCoordinatorV2Plus private immutable coordinator; │
│ 52 bytes32 private immutable keyHash; │
│ ❱ 53 StakingInterface private staking; │
│ 54 CoreInterface private core; │
│ 55 ERC20 private token; │
╰─ src/Lottery.sol ──╯

╭─ [INFO][HIGH] Variable can be immutable [variable-can-be-immutable] ─╮
│ 51 IVRFCoordinatorV2Plus private immutable coordinator; │
│ 52 bytes32 private immutable keyHash; │
│ 53 StakingInterface private staking; │
│ ❱ 54 CoreInterface private core; │
│ 55 ERC20 private token; │
│ 56 │
│ 57 uint256 public additionalJackpot; │
╰─ src/Lottery.sol ──╯

╭─ [INFO][HIGH] Variable can be immutable [variable-can-be-immutable] ─╮
│ 52 bytes32 private immutable keyHash; │
│ 53 StakingInterface private staking; │
│ 54 CoreInterface private core; │
│ ❱ 55 ERC20 private token; │
│ 56 │
│ 57 uint256 public additionalJackpot; │
│ 58 uint256 public subscriptionId; │
╰─ src/Lottery.sol ──╯

╭─ [INFO][HIGH] Variable can be immutable [variable-can-be-immutable] ─╮
│ 10 * MB01 - invalid length of input data │
│ 11 */ │
│ 12 contract MultiBet is IERC721Receiver { │
│ ❱ 13 Token public token; │
│ 14 address public core; │
│ 15 │
│ 16 constructor(address _token, address _core) { │
╰─ src/MultiBet.sol ───╯

╭─ [INFO][HIGH] Variable can be immutable [variable-can-be-immutable] ─╮
│ 11 */ │
│ 12 contract MultiBet is IERC721Receiver { │
│ 13 Token public token; │
│ ❱ 14 address public core; │
│ 15 │
│ 16 constructor(address _token, address _core) { │
│ 17 token = Token(_token); │
╰─ src/MultiBet.sol ───╯

Figure 2. Variables that can be made immutable

Ackee Blockchain Security 58 of 59

Thank You

Ackee Blockchain a.s.

Rohanske nabrezi 717/4
186 00 Prague
Czech Republic

hello@ackee.xyz

	BetFin: Lottery
	Contents
	1. Document Revisions
	2. Overview
	2.1. Ackee Blockchain Security
	2.2. Audit Methodology
	2.3. Finding Classification
	2.4. Review Team
	2.5. Disclaimer

	3. Executive Summary
	Revision 1.0
	Revision 1.1

	4. Findings Summary
	Report Revision 1.0
	Revision Team
	System Overview
	Trust Model
	Fuzzing
	Findings

	Report Revision 1.1
	Revision Team
	System Overview

	Appendix A: How to cite
	Appendix B: Wake Findings
	B.1. Fuzzing
	B.2. Detectors

