
Prepared for

Falcon

Prepared by
Katerina Belotskaia
Juchang Lee
Zellic

March 7, 2025

Falcon Finance
Smart Contract Security Assessment

Falcon Finance Smart Contract Security Assessment March 7, 2025

Contents About Zellic 4

1. Overview 4

1.1. Executive Summary 5

1.2. Goals of the Assessment 5

1.3. Non-goals and Limitations 5

1.4. Results 5

2. Introduction 6

2.1. About Falcon Finance 7

2.2. Methodology 7

2.3. Scope 9

2.4. Project Overview 9

2.5. Project Timeline 10

3. Detailed Findings 10

3.1. Incorrect maturityFeeGrowthX128may lead tomiscalculated rewards 11

3.2. Function _cleanupMaturedBucketsmay run out of gas 13

3.3. The rescueTokens does not validate that the token does not match USDf token 15

3.4. Function updateDurationSettings allows resetting totalLiquidity and fee-
GrowthX128 17

3.5. Account restrictions can be bypassed in StakedUSDf contract 19

3.6. The setVestingPeriodmay relock previously released assets 21

Zellic © 2025 ← Back to Contents Page 2 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

4. Discussion 22

4.1. The initialization of StakedUSDfmay fail 23

4.2. The vestingPeriod and cooldownDuration can be set to zero simultaneously 24

5. ThreatModel 24

5.1. Module: ClassicMinterV1.sol 25

5.2. Module: FalconBundler.sol 27

5.3. Module: FalconPosition.sol 28

5.4. Module: PreCollateralizedMinter.sol 31

5.5. Module: StakedUSDf.sol 33

5.6. Module: USDfSilo.sol 37

6. Assessment Results 38

6.1. Disclaimer 39

Zellic © 2025 ← Back to Contents Page 3 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2025 ← Back to Contents Page 4 of 39

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

Falcon Finance Smart Contract Security Assessment March 7, 2025

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Falcon fromFebruary 11th to February 17th, 2025. During
this engagement, Zellic reviewed Falcon Finance's code for security vulnerabilities, design issues,
and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are there any vulnerabilities that could result in unexpectedminting or burning of USDf?
• Are there any scenarios where a user could inadvertently lock their funds in staking
positions that are excessively long or otherwise unrecoverable?

• Are there any bugs where users may receive greater yield than intended against their
proportional share of the staked value?

• Are there any bugs that would prevent users from withdrawing their assets from the
staking contracts oncematured?

• Are there any bugs or implementation errors that deviate from the expected standards
that could result in integration issues and potentially loss of funds with external
protocols?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped Falcon Finance contracts, we discovered six findings. No
critical issues were found. One finding was of medium impact, one was of low impact, and the

Zellic © 2025 ← Back to Contents Page 5 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

remaining findings were informational in nature.

Additionally, Zellic recorded itsnotesandobservations fromtheassessment for thebenefitofFalcon
in the Discussion section (4. ↗).

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 0

■ Medium 1

■ Low 1

■ Informational 4

Zellic © 2025 ← Back to Contents Page 6 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

2. Introduction 2.1. About Falcon Finance

Falcon contributed the following description of Falcon Finance:

Falcon Finance is a next-generation synthetic dollar protocol. Preserving users’ multi-assets
with industry-competitive yields across any market conditions, it sets a new standard in the
industry, alongwith transparency, security, and institutional-grade riskmanagement.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect

Zellic © 2025 ← Back to Contents Page 7 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped contracts itself. These observations — found in the Discussion
(4. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2025 ← Back to Contents Page 8 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

2.3. Scope

The engagement involved a review of the following targets:

Falcon Finance Contracts

Type Solidity

Platform EVM-compatible

Target falcon-contracts-evm

Repository https://github.com/falconfinance/falcon-contracts-evm ↗

Version d082d36019a0fda922f65740528a1d5a249cec20

Programs src/*

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of 1.2 person-weeks. The assess-
ment was conducted by two consultants over the course of five calendar days.

Zellic © 2025 ← Back to Contents Page 9 of 39

https://github.com/falconfinance/falcon-contracts-evm

Falcon Finance Smart Contract Security Assessment March 7, 2025

Contact Information

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Katerina Belotskaia
Engineer
kate@zellic.io ↗

Juchang Lee
Engineer
lee@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

February 11, 2025 Start of primary review period

February 11, 2025 Kick-off call

February 17, 2025 End of primary review period

Zellic © 2025 ← Back to Contents Page 10 of 39

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:kate@zellic.io
mailto:lee@zellic.io

Falcon Finance Smart Contract Security Assessment March 7, 2025

3. Detailed Findings 3.1. Incorrect maturityFeeGrowthX128may lead tomiscalculated rewards

Target FalconPosition

Category CodingMistakes Severity Medium

Likelihood High Impact Medium

Description

The maturityFeeGrowthX128mapping is used to store the current fee growth at maturity time for a
specific duration supported by the contract.

function mature(uint256 duration, uint256 timestamp) public {
// Round timestamp to days to match mint behavior
timestamp = (timestamp / 1 days) * 1 days;
require(timestamp <= block.timestamp, ImmaturePosition());

// Iterate through supported durations
MaturityBucket storage bucket = maturityBuckets[duration][timestamp];

if (bucket.totalLiquidity > 0) {
// Snapshot current fee growth for this duration
maturityFeeGrowthX128[timestamp]

= _durationInfo[duration].feeGrowthX128;
[...]
}

}

Additionally, maturityFeeGrowthX128 is utilized for reward calculations for positions locked for a
certain duration and associated with a specific maturityTime.

function _unrealizedRewards(Position memory position)
internal view returns (uint256, uint256) {
uint256 currentFeeGrowth;

// If position is matured, use the snapshotted fee growth
if (block.timestamp >= position.maturityTime) {

currentFeeGrowth = maturityFeeGrowthX128[position.maturityTime];
[...]
uint256 feeGrowthDeltaX128 = currentFeeGrowth
- position.feeGrowthInsideLastX128;
return ((position.principal * feeGrowthDeltaX128) >> 128,

Zellic © 2025 ← Back to Contents Page 11 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

currentFeeGrowth);
}

The issue arises when the contract supports multiple durations, as over time, positions with
different durations can share the samematurity time.

Impact

The maturityFeeGrowthX128 value for a specific timestamp can be overwritten by the
feeGrowthX128 value corresponding to a different duration.

As a result, in the _unrealizedRewards function, an incorrect maturityFeeGrowthX128 snapshot
may be used, containing fee-growth data for a duration unrelated to the given position.
Consequently, this functionmay return an incorrect reward amount, which could be either higher
or lower than expected.

Recommendations

We recommendmodifying the maturityFeeGrowthX128mapping to store values not only by
timestamp but also by duration. This changewould ensure that fee-growth data is accurately
maintained for each duration separately, preventing unintended overwrites and ensuring correct
reward calculations.

Remediation

This issue has been acknowledged by Falcon, and a fix was implemented in commit 9c34a242 ↗.

Zellic © 2025 ← Back to Contents Page 12 of 39

https://github.com/falconfinance/falcon-contracts-evm/commit/9c34a242ae6c39e2054d5e3bb62e44328339aaa1

Falcon Finance Smart Contract Security Assessment March 7, 2025

3.2. Function _cleanupMaturedBucketsmay run out of gas

Target FalconPosition

Category CodingMistakes Severity Low

Likelihood Low Impact Low

Description

The _cleanupMaturedBuckets functionmay run out of gas if toomany days have elapsed since the
last lastMatured update.

function _cleanupMaturedBuckets(uint256 duration) internal {
uint256 lastMatured = lastMaturedDate[duration];
uint256 currentDate = (block.timestamp / 1 days) * 1 days;

// [...]

for (uint256 date = lastMatured; date <= currentDate; date += 1 days) {
MaturityBucket storage bucket = maturityBuckets[duration][date];
if (bucket.totalLiquidity > 0) {

mature(duration, date);
}

}

// [...]
}

Impact

If the last lastMatured update was too long ago, the function using _cleanupMaturedBuckets (i.e.,
depositReward) may revert due to an out-of-gas error.

Recommendations

To prevent excessive looping, impose amaximum loop limit to restrict the number of loops.

Zellic © 2025 ← Back to Contents Page 13 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Remediation

This issue has been acknowledged by Falcon.

Falcon provided the following response:

In the real world wewill be calling depositRewards on a daily basis.

Zellic © 2025 ← Back to Contents Page 14 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

3.3. The rescueTokens does not validate that the token does not match USDf to-
ken

Target StakingRewardsDistributor

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

The StakingRewardsDistributor contract is designed to hold USDf tokens until they are transferred
as rewards to the STAKING_VAULT contract. However, this contract also supports the
rescueTokens function, which allowswithdrawingmistakenly transferred tokens or native tokens.

The issue is that there is no validation in rescueTokens to ensure that the withdrawn token is not
USDf. As a result, reward tokens can also bewithdrawn using this function.

function rescueTokens(
address _token,
address _to,
uint256 _amount

)
external
nonReentrant
onlyRole(DEFAULT_ADMIN_ROLE)

{
// [...]

if (_token == _ETH_ADDRESS) {
// [...]

} else {
IERC20(_token).safeTransfer(_to, _amount);

}

// [...]
}

Impact

The reward USDf tokens can be unintentionally withdrawn from the contract, potentially affecting
the reward-distributionmechanism.

Zellic © 2025 ← Back to Contents Page 15 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Recommendations

Add a validation check in the rescueTokens function to ensure that _token does not match the
address of USDf token, preventing reward-tokenwithdrawals.

Remediation

This issue has been acknowledged by Falcon.

Falcon provided the following response:

We believe this is an intentional design choice. The ability for the admin to withdraw any to-
kens, including USDf, provides necessary flexibility for emergency situations or when funds
need to be reallocated. This admin privilege is part of our trustmodel andwill be clearly docu-
mented for users. Since the function is protected by theDEFAULT_ADMIN_ROLE, only trusted
administrators can execute it, mitigating the risk of misuse.

Zellic © 2025 ← Back to Contents Page 16 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

3.4. Function updateDurationSettings allows resetting totalLiquidity and
feeGrowthX128

Target FalconPosition

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

The FalconPosition contract supports different staking durations, and using the
updateDurationSettings function, a caller with the DEFAULT_ADMIN_ROLE can enable a new
duration or disable an already supported one.

If the provided duration is not yet supported, the _durationInfomapping will be updatedwith a
new DurationInfo object, initializing totalLiquidity and feeGrowthX128 to zero. The
totalLiquidity variable tracks the current immature liquidity for the specified duration, while
feeGrowthX128 serves as an accumulator for fees per duration.

function updateDurationSettings(
uint256 duration,
bool isSupported,
bool mintEnabled

)
external
onlyRole(DEFAULT_ADMIN_ROLE)

{
// If duration wasn't previously supported, require mintEnabled to be false
if (!_durationInfo[duration].isSupported && isSupported) {

require(duration > 0, InvalidDuration());
_durationInfo[duration] =

DurationInfo({isSupported: true, mintEnabled: mintEnabled,
totalLiquidity: 0, feeGrowthX128: 0});
} else {

_durationInfo[duration].isSupported = isSupported;
_durationInfo[duration].mintEnabled = mintEnabled;

}

emit DurationUpdated(duration, isSupported, mintEnabled);
}

However, if the updateDurationSettings function is used to temporarily disable a specified

Zellic © 2025 ← Back to Contents Page 17 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

duration and enable it again, the existing totalLiquidity and feeGrowthX128 values will be reset
to zero.

Impact

Resetting totalLiquidity and feeGrowthX128 to zero will lock withdrawal and reward-collection
functionalities for all currently immature positions associated with the specified duration, making
these actions impossible to perform. However, since this function is controlled by a
DEFAULT_ADMIN_ROLE and is not intended to be used for disabling previously activated durations,
the impact of this issue is classified as Informational.

Recommendations

We recommend adding a verification step to check whether the duration has been previously
supported and ensuring that existing totalLiquidity and feeGrowthX128 values are not reset
when temporarily disabling a duration.

Remediation

This issue has been acknowledged by Falcon, and a fix was implemented in commit 82d42cb8 ↗.

Zellic © 2025 ← Back to Contents Page 18 of 39

https://github.com/falconfinance/falcon-contracts-evm/commit/82d42cb8fc577bcff494156a124a5268df1146db

Falcon Finance Smart Contract Security Assessment March 7, 2025

3.5. Account restrictions can be bypassed in StakedUSDf contract

Target StakedUSDf

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

The StakedUSDf contract is an ERC-4626 vault implementation that supports account restrictions
for the owners of sUSDf share tokens, preventing these accounts from depositing or withdrawing
assets. However, since sUSDf tokens are transferable and the contract does not verify whether the
initiator of a token transfer is currently restricted, this allows for effectively bypassing these
restrictions.

function _deposit(address caller, address receiver, uint256 assets,
uint256 shares) internal override {
[...]
_checkRestricted(caller);
_checkRestricted(receiver);
[...]

}

function _withdraw(address caller, address receiver, address owner,
uint256 assets, uint256 shares)
internal
override

{
[...]
_checkRestricted(caller);
_checkRestricted(receiver);
_checkRestricted(owner);
[...]

}

Impact

Restricted accountsmay still transfer sUSDf tokens, which could allow them to bypass withdrawal
restrictions. However, since there is no intention or plan to restrict transfers of sUSDf tokens for
compliance or operational purposes, the impact of this issue is classified as Informational.

Zellic © 2025 ← Back to Contents Page 19 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Recommendations

We recommend implementing a validation check within the transfer logic to ensure that restricted
accounts cannot initiate token transfers.

Remediation

This issue has been acknowledged by Falcon, and a fix was implemented in commit 88d224fa ↗.

Zellic © 2025 ← Back to Contents Page 20 of 39

https://github.com/falconfinance/falcon-contracts-evm/commit/88d224fafdf117ddd8c40c8a3abf9a7cc4eb85f4

Falcon Finance Smart Contract Security Assessment March 7, 2025

3.6. The setVestingPeriodmay relock previously released assets

Target StakedUSDf

Category Business Logic Severity Informational

Likelihood N/A Impact Informational

Description

The setVestingPeriod function in the StakedUSDf contract allows changing the vestingPeriod
duration, but it does not verify whether the current unvested amount is zero.

As a result, if the vesting period is increased, a portion of previously released assetsmay become
locked again.

function _setVestingPeriod(uint32 newPeriod) internal {
uint32 oldVestingPeriod = vestingPeriod;
require(newPeriod <= MAX_VESTING_PERIOD, DurationExceedsMax());
require(oldVestingPeriod != newPeriod, DurationNotChanged());
require(newPeriod > 0 || cooldownDuration > 0, ExpectedCooldownOn()); // if
period is 0, cooldown must be on

vestingPeriod = newPeriod;
emit VestingPeriodUpdated(oldVestingPeriod, newPeriod);

}

function getUnvestedAmount() public view returns (uint256) {
uint256 timeSinceLastDistribution = uint40(block.timestamp)
- lastDistributionTimestamp;
if (timeSinceLastDistribution >= vestingPeriod) {

return 0;
}
uint256 deltaT;
unchecked {

deltaT = (vestingPeriod - timeSinceLastDistribution);
}
return (deltaT * vestingAmount) / vestingPeriod;

}

Zellic © 2025 ← Back to Contents Page 21 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Impact

If assets were already withdrawn before the vesting period increase, the totalAssets calculation
will be incorrect, leading to potential discrepancies in the system's accounting. However, since this
function is controlled by a DEFAULT_ADMIN_ROLE and is intended to be used only for reducing the
vesting duration, the impact of this issue is classified as Informational.

Recommendations

Implement a verification check in the setVestingPeriod function to ensure that the current
unvested amount is zero before allowing changes to the vesting period.

Remediation

This issue has been acknowledged by Falcon, and a fix was implemented in commit 4a5ce0b9 ↗.

Zellic © 2025 ← Back to Contents Page 22 of 39

https://github.com/falconfinance/falcon-contracts-evm/commit/4a5ce0b9960c02fae4cddc47243eaf88d4f13d02

Falcon Finance Smart Contract Security Assessment March 7, 2025

4. Discussion The purpose of this section is to documentmiscellaneous observations that wemade during the
assessment. These discussion notes are not necessarily security related and do not convey that
we are suggesting a code change.

4.1. The initialization of StakedUSDfmay fail

The USDfSilo contract's initialize function calls to set the _stakingVault address using
silo_.setStakingVault().

However, since setStakingVault can be invoked by any caller before the initialization, this may
lead to a failed contract initialization.

contract StakedUSDf is IStakedUSDf, AccessControlUpgradeable,
ERC20PermitUpgradeable, ERC4626Upgradeable {
// [...]
function initialize(

IERC20 usdf,
address admin,
USDfSilo silo_,
uint32 initialVesting,
uint24 initialCooldown

)
external
initializer

{
// [...]

silo = silo_;
silo_.setStakingVault();

}
// [...]

}

contract USDfSilo {
// [...]
constructor(address usdf) {

_USDF = IERC20(usdf);
}
// [...]
function setStakingVault() external {

require(_stakingVault == address(0), AlreadySet());
_stakingVault = msg.sender;

}

Zellic © 2025 ← Back to Contents Page 23 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

// [...]
}

Falcon provided the following response:

we already deployed the contracts successfully and the issue is not relevant anymore.

4.2. ThevestingPeriodandcooldownDurationcanbeset to zerosimultaneously

In the StakedUSDf contract, the _setVestingPeriod function includes a validation check to ensure
that either the new vestingPeriod or the current cooldownDuration is nonzero. However, the
setCooldownDuration function lacks a similar verification.

As a result, it is possible for both vestingPeriod and cooldownDuration to be set to zero
simultaneously. However, it is expected that if vestingPeriod is set to zero, the cooldown
mechanism should remain active. We recommend adding the relevant validation check to
setCooldownDuration.

Falcon provided the following response:

This configuration is controlled by trusted administrators, and we have appropriate gover-
nance processes in place to ensure that any changes to these parameters are thoroughly con-
sidered.

Zellic © 2025 ← Back to Contents Page 24 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

5. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in the contracts and created a written threat model for some critical functions. A
threat model documents a given function’s externally controllable inputs and how an attacker
could leverage each input to cause harm.

Not all functions in the audit scopemay have beenmodeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

5.1. Module: ClassicMinterV1.sol

Function: callerFundedMint(MintParams params, uint256 depositAmount,
bytes signature)

This functionmints an amount of USDf tokens for the recipient, calculated based on the token price.

Inputs

• params

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Struct of MintParams that has information for minting.

• depositAmount

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Amount of tokens to deposit.

• signature

• Control: Fully controlled by the caller.
• Constraints: The address recovered using the generated hash and
corresponding signaturemust possess the MINTER_ROLE.

• Impact: Bytes of signature.

Branches and code coverage

Intended branches

• Check if the caller is equal to params.caller.

Test coverage
• Check if depositAmount is not zero.

Test coverage
• Check if depositAmount is smaller than params.maxAmount.

Zellic © 2025 ← Back to Contents Page 25 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Test coverage
• Check if params.recipient is not the zero address.

Test coverage
• Check if params.expiry is bigger than block.timestamp to confirm the transaction is
not expired.

Test coverage
• Check that the nonce has not been used before.

Test coverage
• Check if the recovered address using the signature has BACKEND_SIGNER_ROLE.

Test coverage
• Transfer collateral to treasury.

Test coverage
• Calculatemint amount with precise scaling andmint an amount of USDf.

Test coverage

Negative behavior

• If the caller is not equal to params.caller, the transaction will be reverted.

Negative test
• If depositAmount is zero, the transaction will be reverted.

Negative test
• If depositAmount is bigger than or equal to params.maxAmount, the transaction will be
reverted.

Negative test
• If params.recipient is the zero address, the transaction will be reverted.

Negative test
• If params.expiry is smaller than or equal to block.timestamp, the transaction will be
reverted.

Negative test
• If the nonce has been used before, the transaction will be reverted.

Negative test
• If the recovered address using the signature does not have BACKEND_SIGNER_ROLE, the
transaction will be reverted.

Negative test

Zellic © 2025 ← Back to Contents Page 26 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

5.2. Module: FalconBundler.sol

Function: stakeToFalconPosition(uint256 amount, uint256 duration, ad-
dress recipient)

This function stakes existing USDf directly to the FalconPosition contract.

Inputs

• amount

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Amount of USDf to stake.

• duration

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Duration of staking for the FalconPosition contract.

• recipient

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Address for receiving staking position NFT.

Branches and code coverage

Intended branches

• Check if the amount is not zero.

Test coverage
• Check if the recipient is not the zero address.

Test coverage
• Transfer USDf from the caller.

Test coverage
• Stake USDf and receive sUSDf.

Test coverage
• Call FalconPosition's mint function tomint position NFT.

Test coverage
• Transfer position NFT to the recipient.

Zellic © 2025 ← Back to Contents Page 27 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Test coverage

Negative behavior

• If the amount is zero, the transaction will be reverted.

Negative test
• If the recipient is the zero address, the transaction will be reverted.

Negative test

5.3. Module: FalconPosition.sol

Function: collect(uint256 tokenId)

This function collects accrued fees for the position.

Inputs

• tokenId

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: ID of position NFT.

Branches and code coverage

Intended branches

• Check if yield collection is enabled.

Test coverage
• Update position with accrued fees.

Test coverage
• Transfer tokensOwed to the caller.

Test coverage

Negative behavior

• If yield collection is not enabled, the transaction will be reverted.

Negative test

Zellic © 2025 ← Back to Contents Page 28 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Function: mature(uint256 duration, uint256 timestamp)

This functionmatures positions for a specific timestamp.

Inputs

• duration

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Duration of staking in seconds.

• timestamp

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Maturity timestamp to process.

Branches and code coverage

Intended branches

• Round down the timestamp and check if the timestamp is smaller than or equal to
block.timestamp.

Test coverage
• Snapshot current fee growth for the duration.

Test coverage
• Mature the position if it hasn't beenmatured yet.

Test coverage

Negative behavior

• If rounded-down timestamp is bigger than block.timestamp, the transaction will be
reverted.

Negative test

Function: mint(uint256 principal, uint256 duration)

This function creates a new staking position.

Inputs

• principal

Zellic © 2025 ← Back to Contents Page 29 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Amount of sUSDf to stake.

• duration

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Duration of staking in seconds.

Branches and code coverage

Intended branches

• Check if the principal is bigger than zero.

Test coverage
• Check if the duration is supported.

Test coverage
• Check if the duration is enabled for mint.

Test coverage
• Update duration liquidity for tracking.

Test coverage
• Create position and transfer principal from the caller to the contract.

Test coverage
• Mint NFT to the caller.

Test coverage

Negative behavior

• If the principal is smaller than or equal to zero, the transaction will be reverted.

Negative test
• If the duration is not supported, the transaction will be reverted.

Negative test
• If the duration is not enabled, the transaction will be reverted.

Negative test

Function: withdraw(uint256 tokenId)

This function withdraws principal after maturity.

Zellic © 2025 ← Back to Contents Page 30 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Inputs

• tokenId

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: ID of position NFT.

Branches and code coverage

Intended branches

• Check if the owner of position NFT is the caller.

Test coverage
• Check if the position duration hasmatured.

Test coverage
• If the position has not matured, call mature tomature the position.

Test coverage
• Collect any remaining fees and calculate the total amount of principal plus tokenOwed.

Test coverage
• Burn NFT and transfer the totalAmount to the caller.

Test coverage

Negative behavior

• If the owner of position NFT is not the caller, the transaction will be reverted.

Negative test
• If the position duration is immature, the transaction will be reverted.

Negative test

5.4. Module: PreCollateralizedMinter.sol

Function: preCollateralizedMint(MintParams params, bytes signature)

This functionmints an amount of USDf tokens to the recipient with a signature.

Inputs

• params

• Control: Fully controlled by the caller.

Zellic © 2025 ← Back to Contents Page 31 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

• Constraints: N/A.
• Impact: Struct of MintParams that has information for minting.

• signature

• Control: Fully controlled by the caller.
• Constraints: The address recovered using the generated hash and
corresponding signaturemust possess the MINTER_ROLE.

• Impact: Bytes of signature.

Branches and code coverage

Intended branches

• Check if params.collateralRef is not zero.

Test coverage
• Check if params.amount is bigger than zero.

Test coverage
• Check if params.recipient is not the zero address.

Test coverage
• Check if params.expiry is bigger than block.timestamp.

Test coverage
• Check if params.nonce is not used.

Test coverage
• Build signature with MintParams for verification.

Test coverage
• Check if the recovered address using the signature has MINTER_ROLE.

Test coverage
• Mint an amount of params.amountUSDf for params.recipient.

Test coverage

Negative behavior

• If params.collateralRef is zero, the transaction will be reverted.

Negative test
• If params.amount is not bigger than zero, the transaction will be reverted.

Negative test
• If params.recipient is the zero address, the transaction will be reverted.

Negative test

Zellic © 2025 ← Back to Contents Page 32 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

• If params.expiry is not bigger than block.timestamp, the transaction will be reverted.

Negative test
• If params.nonce is used, the transaction will be reverted.

Negative test
• If the recovered address using the signature does not have MINTER_ROLE, the
transaction will be reverted.

Negative test

5.5. Module: StakedUSDf.sol

Function: cooldownAssets(uint256 assets, address owner)

This function withdraws assets with a cooldown period.

Inputs

• assets

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Amount of assets to withdraw.

• owner

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Address of the owner of assets.

Branches and code coverage

Intended branches

• Set owner's cooldownEnd to current block.timestamp plus cooldownDuration.

Test coverage
• Add owner's underlyingAmount amount of assets.

Test coverage
• Call parent's withdrawal for silo, which receives withdrawals.

Test coverage

Zellic © 2025 ← Back to Contents Page 33 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Function: cooldownShares(uint256 shares, address owner)

This function redeems shares with a cooldown period.

Inputs

• shares

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Amount of shares to redeem.

• owner

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Address of the owner of shares.

Branches and code coverage

Intended branches

• Call parent's redemption for silo, which receives redemptions.

Test coverage
• Set the owner's cooldownEnd to the current block.timestamp and cooldownDuration.

Test coverage
• Add the owner's underlyingAmount amount of assets that return redemptions.

Test coverage

Function: redeem(uint256 shares, address receiver, address owner)

This function overrides the redeem function of ERC-4626 and can be called when the cooldown is
off.

Inputs

• shares

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Amount of shares to be redeemed.

• receiver

Zellic © 2025 ← Back to Contents Page 34 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Address of the receiver whowill receive the redeemed assets.

• owner

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Owner's address of the vault shares to be burned for the withdrawal.

Branches and code coverage

Intended branches

• Check if the cooldown is off.

Test coverage
• Call parent's redeem function.

Test coverage

Negative behavior

• If the cooldown is not off, the transaction will be reverted.

Negative test

Function: unstake(address receiver)

This function unstakes assets after the cooldown period ends.

Inputs

• receiver

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Address to receive the assets.

Branches and code coverage

Intended branches

• Check that the receiver is not the zero address.

Test coverage

Zellic © 2025 ← Back to Contents Page 35 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

• Check that the caller's cooldown period has ended.

Test coverage
• Set caller's cooldown and underlyingAmount to zero.

Test coverage
• Call silo's withdraw function to withdraw assets with the amount of underlyingAmount.

Test coverage

Negative behavior

• If the receiver is the zero address, the transaction will be reverted.

Negative test
• If the caller's cooldown period has not ended, the transaction will be reverted.

Negative test

Function: withdraw(uint256 assets, address receiver, address owner)

This function overrides the withdraw function of ERC-4626 and can be called when the cooldown
is off.

Inputs

• assets

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Amount of assets to bewithdrawn.

• receiver

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Address of the receiver whowill receive the withdrawn shares.

• owner

• Control: Fully controlled by the caller.
• Constraints: N/A.
• Impact: Owner's address of the vault shares to be burned for the withdrawal.

Branches and code coverage

Intended branches

Zellic © 2025 ← Back to Contents Page 36 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

• Check if cooldown is off.

Test coverage
• Call parent's withdraw function.

Test coverage

Negative behavior

• If cooldown is not off, the transaction will be reverted.

Negative test

5.6. Module: USDfSilo.sol

Function: setStakingVault()

This function sets the caller of this function as the _stakingVault address if it has not been set
before. The _stakingVault address can call the withdraw function to withdraw _USDF tokens from
this contract.

Function: withdraw(address to, uint256 amount)

This function allows _stakingVault to withdraw _USDF tokens from this contract.

Inputs

• to

• Control: Full control.
• Constraints: N/A.
• Impact: The address of the receiver of _USDF tokens.

• amount

• Control: Full control.
• Constraints: N/A.
• Impact: Amount of _USDF tokens to bewithdrawn.

Branches and code coverage

Negative behavior

• Caller is not a _stakingVault.

Negative test

Zellic © 2025 ← Back to Contents Page 37 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

Function call analysis

• this._USDF.transfer(to, amount)

• What is controllable? to and amount.
• If the return value is controllable, how is it used and how can it go wrong?
N/A.

• What happens if it reverts, reenters or does other unusual control flow?
Reverts if the _USDF balance of this contract is less than the provided amounts.

Zellic © 2025 ← Back to Contents Page 38 of 39

Falcon Finance Smart Contract Security Assessment March 7, 2025

6. Assessment Results At the time of our assessment, the reviewed codewas deployed to the EthereumMainnet.

During our assessment on the scoped Falcon Finance contracts, we discovered six findings. No
critical issues were found. One finding was of medium impact, one was of low impact, and the
remaining findings were informational in nature.

6.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2025 ← Back to Contents Page 39 of 39

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About Falcon Finance
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Incorrect maturityFeeGrowthX128 may lead to miscalculated rewards
	Function _cleanupMaturedBuckets may run out of gas
	The rescueTokens does not validate that the token does not match USDf token
	Function updateDurationSettings allows resetting totalLiquidity and feeGrowthX128
	Account restrictions can be bypassed in StakedUSDf contract
	The setVestingPeriod may relock previously released assets

	Discussion
	The initialization of StakedUSDf may fail
	The vestingPeriod and cooldownDuration can be set to zero simultaneously

	Threat Model
	Module: ClassicMinterV1.sol
	Module: FalconBundler.sol
	Module: FalconPosition.sol
	Module: PreCollateralizedMinter.sol
	Module: StakedUSDf.sol
	Module: USDfSilo.sol

	Assessment Results
	Disclaimer

