
Falcon Security Review
Pashov Audit Group

Conducted by: Ch_301, peanuts, zark, Udsen
February 17th 2025 - February 21st 2025



Contents
1. About Pashov Audit Group
2. Disclaimer
3. Introduction
4. About Falcon
5. Risk Classification

5.1. Impact
5.2. Likelihood
5.3. Action required for severity levels

6. Security Assessment Summary
7. Executive Summary
8. Findings

8.1. Medium Findings
[M-01] Last withdrawal can be DoSed
[M-02] Shares cannot be minted on a deposit attack

8.2. Low Findings
[L-01] Redistribution in redistributeLockedAmount()
may clash
[L-02] Incorrect event emission
[L-03] CooldownEnd pushed longer when
cooldownAssets() is called
[L-04] Low dollar price tokens can not be used as
collateral in ClassicMinterV1
[L-05] callerFundedMint() does not work with fee-on-
transfer tokens
[L-06] Restricted users can call the StakedUSDf::unstake
[L-07] Changing vestingPeriod corrupts totalAssets
returned value
[L-08] Inconsistent unstake behavior after cooldown
duration reduction
[L-09] Pausing StakingRewardsDistributor prevents
reward distribution
[L-10] Restricted users can bypass asset confiscation via
transfers

1

2

2

2

3

3

3
4
4

4

5

7

7

7

11

14

14

15

16

17

17

18

19

19

21

22



1. About Pashov Audit Group
Pashov Audit Group consists of multiple teams of some of the best smart contract
security researchers in the space. Having a combined reported security
vulnerabilities count of over 1000, the group strives to create the absolute very best
audit journey possible - although 100% security can never be guaranteed, we do
guarantee the best efforts of our experienced researchers for your blockchain
protocol. Check our previous work here or reach out on Twitter @pashovkrum.

2. Disclaimer
A smart contract security review can never verify the complete absence of
vulnerabilities. This is a time, resource and expertise bound effort where we try to
find as many vulnerabilities as possible. We can not guarantee 100% security after
the review or even if the review will find any problems with your smart contracts.
Subsequent security reviews, bug bounty programs and on-chain monitoring are
strongly recommended.

3. Introduction
A time-boxed security review of the falconfinance/falcon-contracts-evm
repository was done by Pashov Audit Group, with a focus on the security aspects
of the application's smart contracts implementation.

2

https://github.com/pashov/audits
https://twitter.com/pashovkrum


4. About Falcon
Falcon is a stablecoin system centered around USDf, a synthetic dollar ERC20
token, and sUSDf, an ERC4626 vault for staking USDf to earn yield, with
FalconPosition, a unique ERC721 NFT, enabling time-bound, boosted yield
positions. The platform also includes auxiliary contracts like FalconBundler for
streamlined transactions, PreCollateralizedMinter for minting USDf,
StakingRewardsDistributor for yield distribution, and USDfSilo for holding USDf
during staking cooldown.

5. Risk Classification

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

5.1. Impact

High - leads to a significant material loss of assets in the protocol or significantly
harms a group of users.
Medium - only a small amount of funds can be lost (such as leakage of value) or a
core functionality of the protocol is affected.
Low - can lead to any kind of unexpected behavior with some of the protocol's
functionalities that's not so critical.

3



5.2. Likelihood

High - attack path is possible with reasonable assumptions that mimic on-chain
conditions, and the cost of the attack is relatively low compared to the amount of
funds that can be stolen or lost.
Medium - only a conditionally incentivized attack vector, but still relatively
likely.
Low - has too many or too unlikely assumptions or requires a significant stake by
the attacker with little or no incentive.

5.3. Action required for severity levels

Critical - Must fix as soon as possible (if already deployed)
High - Must fix (before deployment if not already deployed)
Medium - Should fix
Low - Could fix

6. Security Assessment Summary
review commit hash - 9c34a242ae6c39e2054d5e3bb62e44328339aaa1

fixes review commit hash - ee3655c8f747718a2b95d99d78500d71c4841664

Scope

The following smart contracts were in scope of the audit:

ClassicMinterV1

FalconBundler

FalconPosition

PreCollateralizedMinter

StakedUSDf

StakingRewardsDistributor

USDf

USDfSilo

4

https://github.com/falconfinance/falcon-contracts-evm/tree/9c34a242ae6c39e2054d5e3bb62e44328339aaa1
https://github.com/falconfinance/falcon-contracts-evm/tree/ee3655c8f747718a2b95d99d78500d71c4841664


7. Executive Summary
Over the course of the security review, Ch_301, peanuts, zark, Udsen engaged with
Falcon to review Falcon. In this period of time a total of 12 issues were uncovered.

Protocol Summary
Protocol Name Falcon

Repository https://github.com/falconfinance/falcon-contracts-evm

Date February 17th 2025 - February 21st 2025

Protocol Type Stablecoin

Findings Count
Severity Amount

Medium 2

Low 10

Total Findings 12

5



Summary of Findings
ID Title Severity Status

[M-01] Last withdrawal can be DoSed Medium Acknowledged

[M-02] Shares cannot be minted on a deposit
attack Medium Resolved

[L-01]
Redistribution in
redistributeLockedAmount() may
clash

Low Acknowledged

[L-02] Incorrect event emission Low Resolved

[L-03] CooldownEnd pushed longer when
cooldownAssets() is called Low Acknowledged

[L-04] Low dollar price tokens can not be
used as collateral in ClassicMinterV1 Low Acknowledged

[L-05] callerFundedMint() does not work
with fee-on-transfer tokens Low Acknowledged

[L-06] Restricted users can call the
StakedUSDf::unstake Low Resolved

[L-07] Changing vestingPeriod corrupts
totalAssets returned value Low Resolved

[L-08] Inconsistent unstake behavior after
cooldown duration reduction Low Resolved

[L-09] Pausing StakingRewardsDistributor
prevents reward distribution Low Acknowledged

[L-10] Restricted users can bypass asset
confiscation via transfers Low Resolved

6



8. Findings

8.1. Medium Findings

[M-01] Last withdrawal can be DoSed

Severity
Impact: High

Likelihood: Low

Description
In StakedUSDf.sol , every withdrawal is performs a check ( _checkMinShares )
that enforces that if totalSupply()  is non-zero, it must be greater than
MIN_SHARES == 1e18 . This restriction creates a DoS vulnerability for the last
user attempting to withdraw their tokens.

An attacker can frontrun the last withdrawal transaction by depositing a small
amount, causing _checkMinShares  to revert the legitimate withdrawal. After
successfully executing the DoS, the attacker can then backrun their own
withdrawal, ensuring that the legitimate user remains unable to withdraw their
tokens indefinitely and at no cost.

7



function _withdraw(
        address caller,
        address receiver,
        address owner,
        uint256 assets,
        uint256 shares
    )
        internal
        override
    {
        _checkZeroAmount(assets);
        _checkZeroAmount(shares);
        _checkRestricted(caller);
        _checkRestricted(receiver);
        _checkRestricted(owner);

        super._withdraw(caller, receiver, owner, assets, shares);
        _checkMinShares(); // <@ audit
    }

The impact of this vulnerability is that an attacker can permanently prevent the
last user from withdrawing their funds by frontrunning with small deposits,
effectively locking the victim’s assets in the vault with no cost for any amount
of time he wants.

In order to PoC this issue, you are kindly requested to create a new file in
falcon-contracts-evm/test  folder, name it sUSDfLastWithdrawal.t.sol , and
paste the following smart contract inside. Then run forge test --mt
testDoSLastWithdrawal -v  to replicate the scenario:

8



// SPDX-License-Identifier: MIT
pragma solidity >=0.8.28;

import {MockERC20} from "./mocks/MockERC20.sol";
import {SigUtils} from "./utils/SigUtils.sol";
import {ClassicMinterV1} from "src/ClassicMinterV1.sol";
import {StakedUSDf} from "src/StakedUSDf.sol";

import {StakingRewardsDistributor} from "src/StakingRewardsDistributor.sol";
import {USDf} from "src/USDf.sol";
import {USDfSilo} from "src/USDfSilo.sol";
import {IStakedUSDf} from "src/interfaces/IStakedUSDf.sol";

import 
   {TransparentUpgradeableProxy} from "@openzeppelin/contracts/proxy/transparent/Trans
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Test, console2} from "forge-std/Test.sol";

contract sUSDfLastWithdrawal is Test {
    // State variables
    USDf public usdf;
    StakedUSDf public stakedUsdf;
    ClassicMinterV1 public minter;
    USDfSilo public silo;
    StakingRewardsDistributor public distributor;
    MockERC20 public token;

    // Test accounts
    address internal admin;
    address internal operator;
    address internal treasury;
    address internal user1;
    address internal attacker;
    address internal backendSigner;
    uint256 internal backendPrivateKey;

    // Constants
    bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
    bytes32 public constant REWARDER_ROLE = keccak256("REWARDER_ROLE");
    bytes32 public constant OPERATOR_ROLE = keccak256("OPERATOR_ROLE");

    // SigUtils
    SigUtils internal sigUtils;
    bytes32 internal classicMinterDomainSeparator;

    function setUp() public {
        // Setup test accounts
        admin = makeAddr("admin");
        operator = makeAddr("operator");
        treasury = makeAddr("treasury");
        user1 = makeAddr("user1");
        attacker = makeAddr("attacker");
        backendPrivateKey = 0x1234;
        backendSigner = vm.addr(backendPrivateKey);

        vm.startPrank(admin);

        // Deploy implementations
        USDf usdfImpl = new USDf();
        StakedUSDf stakedUsdfImpl = new StakedUSDf(treasury);

        // Initialize data for proxies
        bytes memory usdfData = abi.encodeWithSelector
          (USDf.initialize.selector, admin);

        // Deploy USDf proxy
        TransparentUpgradeableProxy usdfProxy = new TransparentUpgradeableProxy

9



          (address(usdfImpl), admin, usdfData);
        usdf = USDf(address(usdfProxy));

        silo = new USDfSilo(address(usdf));

        // Deploy mock token
        token = new MockERC20("Mock Token", "MTK");

        // Deploy StakedUSDf proxy
        bytes memory stakedUsdfData = abi.encodeWithSelector(
            StakedUSDf.initialize.selector,
            usdf,
            admin,
            silo,
            1 days, // vesting period
            1 days // 0 cooldown duration
        );
        TransparentUpgradeableProxy stakedUsdfProxy =
            new TransparentUpgradeableProxy(address
              (stakedUsdfImpl), admin, stakedUsdfData);
        stakedUsdf = StakedUSDf(address(stakedUsdfProxy));

        // Deploy StakingRewardsDistributor
        distributor = new StakingRewardsDistributor(stakedUsdf, IERC20(address
          (usdf)), admin, operator);

        // Deploy minter with treasury as fee recipient
        minter = new ClassicMinterV1(admin, address
          (usdf), treasury, backendSigner);

        // Setup basic roles
        usdf.grantRole(MINTER_ROLE, admin);
        usdf.grantRole(MINTER_ROLE, address(minter));

        // Grant REWARDER_ROLE to distributor
        stakedUsdf.grantRole(REWARDER_ROLE, address(distributor));

        stakedUsdf.setCooldownDuration(0); // NO COOLDOWN.

        // Mint `user1` and `attacker` some USDf.
        usdf.mint(address(distributor), 1000e18);
        usdf.mint(address(attacker), 2000e18);
        usdf.mint(address(user1), 2000e18);

        vm.stopPrank();
    }

    function testDoSLastWithdrawal() public {
        // User1 deposits into staking contract.
        vm.startPrank(user1);
        usdf.approve(address(stakedUsdf), 1000e18);
        console2.log("User1 deposits 1000e18 USDf.");
        stakedUsdf.deposit(1000e18, user1);
        vm.stopPrank();

        // At this point we can assume that times passes and only one depositor 
        // has remained on the vault, the last user who tries to withdraw fully out of
        // Attacker has seen the tx of user1 and will DoSed it with no cost.

        console2.log
          ("User1 submits transaction to withdraw fully out of the vault now.");

        // Here, attacker frontruns user1's full withdrawal by depositing just 
        // enough so `MinSharesViolation` error to be triggered.
        vm.startPrank(attacker);
        console2.log("Attacker frontruns him and deposit 0.5e18 USDf.");
        usdf.approve(address(stakedUsdf), 0.5e18);
        stakedUsdf.deposit(0.5e18, attacker);

10



        vm.stopPrank();

        // User1 is the last withdrawer and wants to withdraw fully but his 
        // withdraw will revert.
        vm.startPrank(user1);
        uint256 allShares = stakedUsdf.balanceOf(user1);
        console2.log
          ("User1 withdrawal is reverting due to `MinSharesViolation` error.");
        vm.expectRevert();
        stakedUsdf.redeem(allShares ,user1, user1);
        vm.stopPrank();

        // Attacker backruns the tx with his withdrawal and at no cost, he has 
        // effectivelly DoSed the withdraw of the last depositor of the vault with jus
        vm.startPrank(attacker);
        console2.log
          ("Attacker withdraws his 0.5e18 USDf and effectivelly has DoSed the last wit
        stakedUsdf.withdraw(0.5e18, attacker, attacker);
        vm.stopPrank();

        // The result is that the last user's withdrawal of the vault can be 
        // DoSed for ever and at no cost.
    }
}

Recommendations
Consider not checking the minimum shares upon withdrawals.

[M-02] Shares cannot be minted on a
deposit attack

Severity
Impact: High

Likelihood: Low

Description
When users deposit USDf into the stakedUSDf contract, they get back sUSDf.
The calculation follows ERC4626, as so:

function _convertToShares(    
    uint256assets,
    Math.Roundingrounding
  ) internal view virtual returns (uint256
        return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset
          (), totalAssets() + 1, rounding);
    }

11

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/8ab1f5acf958b937531cee87f99ae4c0242f0dee/contracts/token/ERC20/extensions/ERC4626Upgradeable.sol#L247


If the user deposits the first 100e18 USDf, he will get assets * totalSupply()
+ 1 / totalAssets() + 1  = 1e18 * (0+1) / (0+1) = 1e18 shares

There is a MIN_SHARES check during deposit to ensure that the shares cannot be
below 1e18.

function _checkMinShares() internal view {
        uint256 supply = totalSupply();
>       if (supply > 0 && supply < MIN_SHARES) {
            revert MinSharesViolation();
        }
    }

    function _deposit(      
      addresscaller,
      addressreceiver,
      uint256assets,
      uint256shares
    ) internal override {
        _checkZeroAmount(assets);
        _checkZeroAmount(shares);
        _checkRestricted(caller);
        _checkRestricted(receiver);

        super._deposit(caller, receiver, assets, shares);
        _checkMinShares();
    }

The issue with this check is that a malicious user can directly deposit 1e18
USDf inside the stakedUSDf contract before anyone calls deposit() , making
totalAssets() = 1e18  and totalSupply() = 0

When the shares are calculated, assets * totalSupply() + 1 /
totalAssets() + 1  , 1e18 * 1 / (1e18 + 1) = 1, and even if more assets are
deposited for the first time, eg 1e20, the shares returned will be less than 1e18,
which will invoke the ZeroAmount  error.

The test below describes the direct deposit attack, append under deposit.t.sol.

12

https://github.com/falconfinance/falcon-contracts-evm/blob/9c34a242ae6c39e2054d5e3bb62e44328339aaa1/src/StakedUSDf.sol#L219


function test2_deposit() public {
        // User deposits USDf directly into the stakedUSDf contract, resulting 
        // in "ZeroAmount" issue

        uint mintAmount = 1e25;

        vm.startPrank(user1);
        deal(address(usdf), user1, mintAmount);
        usdf.approve(address(stakedUSDf), mintAmount);
        // Directly deposit 1e18 worth of USDf before any `deposit()` is called
        usdf.transfer(address(stakedUSDf), 1e18);
        console2.log("USDF BALANCE of user:", usdf.balanceOf(address
          (stakedUSDf)));
        console2.log("SUSDF TOTALSUPPLY of user", stakedUSDf.totalSupply());
        // If this number is changed from 1e18 -> 1e25 , all will fail because 
        // of "MIN_SHARE_VIOLATION"
        stakedUSDf.deposit(1e18, user1);
        vm.stopPrank();
        console2.log("USDF BALANCE TREASURY:", usdf.balanceOf(address
          (stakedUSDf.TREASURY())));
        console2.log("USDF BALANCE in contract:", usdf.balanceOf(address
          (stakedUSDf)));
        console2.log("SUSDF TOTALSUPPLY in contract", stakedUSDf.totalSupply());

        console2.log("USDF BALANCE of user:", usdf.balanceOf(address(user1)));
        console2.log("SUSDF TOTALSUPPLY of user", stakedUSDf.balanceOf(user1));
    }

Recommendations
To ensure this doesn't happen, sweep all the assets inside the contract if
totalSupply() == 0 . Override the deposit function instead of the _deposit()
since in the deposit function will calculate previewDeposit()  before calling
_deposit() , which will return 0 for the above attack.

Append in stakedUSDf.sol:

     function deposit
       (uint256 assets, address receiver) public override returns (uint256) {
        if(IERC20(asset()).balanceOf(address(this)) != 0 && totalSupply
          () == 0) {
            SafeERC20.safeTransfer(IERC20(asset()), TREASURY,  IERC20(asset
              ()).balanceOf(address(this)));
        }
        super.deposit(assets, receiver);
     }

13



8.2. Low Findings

[L-01] Redistribution in
redistributeLockedAmount()  may clash

When stakedUSDf.redistributeLockedAmount()  is called, if burnShares  is
true, it will burn the shares of from  and call _updateVestingAmount  to
distribute USDf to all the shareholders.

function redistributeLockedAmount
   (address from, bool burnShares) external onlyRole(DEFAULT_ADMIN_ROLE) {
        // Redistribute only when `from` is restricted
        require(isRestricted[from], AddressNotRestricted(from));

        uint256 amountToDistribute = balanceOf(from);
        _checkZeroAmount(amountToDistribute);

        if (burnShares) {
            uint256 usdfToVest = previewRedeem(amountToDistribute);
>           _burn(from, amountToDistribute);
>           _updateVestingAmount(usdfToVest);
        } else {
            _transfer(from, TREASURY, amountToDistribute);
        }

        emit LockedAmountRedistributed(from, burnShares, amountToDistribute);
    }

The issue is that transferInRewards()  also uses the same
updateVestingAmount()  function

function transferInRewards(uint256 amount) external onlyRole(REWARDER_ROLE) {
        require(totalSupply() > 0, MinSharesViolation());

        _updateVestingAmount(amount);
        IERC20(asset()).safeTransferFrom(msg.sender, address(this), amount);
        emit RewardsReceived(amount);
    }

If vestingPeriod  > 0, then getUnvestedAmount()  needs to be zero for
_updateVestingAmount()  to work.

14



function _updateVestingAmount(uint256 newVestingAmount) internal {
        _checkZeroAmount(newVestingAmount);
        require(getUnvestedAmount() == 0, RewardsStillVesting());
        vestingAmount = newVestingAmount;
        lastDistributionTimestamp = uint40(block.timestamp);
    }

For example, if vestingPeriod  is 1 days, and the rewarder just transferred in
some rewards, the admin cannot call redistributeLockedAmount()  to
redistribute the burned sUSDf shares until 1 day later. Also, the admin cannot
call redistributeLockedAmount()  more than once within a vestingPeriod,
which is an issue if the admin intends to burn more than 1 user's sUSDf tokens
and distribute them.

Recommendations:

Consider removing the _updateVestingAmount()  function when burning
sUSDf shares so the USDf tokens in the contract is immediately distributed to
the share holders.

if (burnShares) {
            uint256 usdfToVest = previewRedeem(amountToDistribute);
            _burn(from, amountToDistribute);
-           _updateVestingAmount(usdfToVest);
        } else {

[L-02] Incorrect event emission
In FalconPosition::withdraw() , the function may be called by an authorized
user rather than the actual owner of the NFT staking position. However, the
emitted event PositionClosed  incorrectly assumes that msg.sender  is always
the owner of the staking position, leading to an inaccurate event emission
when the msg.sender  is an authorized address.

15



event PositionClosed(      
      uint256indexedtokenId,
      addressindexedowner,
      uint256principal,
      uint256duration
    );

    function withdraw(uint256 tokenId) external nonReentrant {
        _checkAuthorized(_ownerOf(tokenId), msg.sender, tokenId);

       // ...

        emit PositionClosed
        //(tokenId, msg.sender, totalAmount - tokensOwed, position.duration); // <@ au
        emit FeesCollected(tokenId, tokensOwed);
    }

Consider storing the actual owner of the staking position in memory and use it
in the event emission.

[L-03] CooldownEnd  pushed longer when
cooldownAssets()  is called

In StakedUSDf.sol , when a user initiates a withdrawal while the cooldown
mechanism is active, they must wait for cooldownDuration  before accessing
their assets. However, if the user calls cooldownAssets  again before the
cooldown period expires, all previously cooled-down assets are locked again
for a new cooldown period, resetting cooldownEnd  to block.timestamp  +
`cooldownDuration.

function cooldownAssets(      
      uint256assets,
      addressowner
    ) external ensureCooldownOn returns (uint256 shares
        cooldowns[owner].cooldownEnd = uint104
          (block.timestamp) + cooldownDuration;
        cooldowns[owner].underlyingAmount += uint152(assets);

        shares = super.withdraw(assets, address(silo), owner);
    }

The impact of this vulnerability is that users attempting to withdraw assets
may experience indefinite delays if they repeatedly call cooldownAssets , as
previously cooled-down assets will continue to be locked with each new
request. To prevent resetting the cooldown for previously unstaked assets,
modify the logic so that only newly added assets trigger a new cooldown,
while maintaining the original cooldown period for assets that were already
cooling down.

16



[L-04] Low dollar price tokens can not be
used as collateral in ClassicMinterV1

In the ClassicMinterV1::_mintAmount()  function, the calculation for minting
USDf  tokens uses a PRICE_SCALE  of 10_000 . This means that tokens with a
price lower than $0.00009  will not be able to be used since their price in 4
decimals scale will need to be >1  and Solidity doesn't support decimals
numbers. For example, a token whose price is $0.00009 , in 4 decimals its
price is 0.00009e4  which is equal to 0.9  and such a value can not be given to
the params.price  variable.

function _mintAmount(      
      uint256depositAmount,
      addresstoken,
      uint256price
    ) internal view returns (uint256
        uint256 collateralScale = 10 ** IERC20Metadata(token).decimals();
        uint256 scaledAmount = (depositAmount * price * _usdfScale);
        uint256 scaledPriceAmount = scaledAmount / PRICE_SCALE;
        return scaledPriceAmount / collateralScale;
    }

There is, actually, a lot of high market cap cryptocurrencies with such low
prices like Shiba, BitTorrent and more so to mitigate this issue, consider
increasing the precision scale of price from 1e4  to a bigger number like 1e8
or 1e18 .

[L-05] callerFundedMint()  does not work
with fee-on-transfer tokens

The ClassicMinterV1::callerFundedMint  function is used to mint USDf
tokens by depositing collateral tokens, after verifying signature of a
MintParams  message signed by the BACKEND_SIGNER_ROLE address  of the
protocol. After the signature verification  the collateral amount is
transferred to the treasury contract  as shown below:

// Transfer collateral to treasury
        IERC20(params.token).safeTransferFrom
          (params.caller, treasury, depositAmount);

17

https://coinmarketcap.com/currencies/shiba-inu/
https://coinmarketcap.com/currencies/bittorrent-new/


But the issue here is if the params.token (collateral)  is a fee on transfer
token then the deposited amount to the treasury will be less than the
depositAmount . But the USDf tokens  are minted on the depositAmount  itself
as shown below:

uint256 amountToMint = _mintAmount
          (depositAmount, params.token, params.price);

As a result the protocol will lose funds as less collateral tokens are deposited to
the treasury compared to the amount of USDf  minted to the recipient .

Hence it is recommended to calculate the actual transferred collateral
amount  to the ClassicMinterV1  contract and use that amount to calculate the
USDf token amount to mint .

[L-06] Restricted users can call the
StakedUSDf::unstake

In the StakedUSDf , if a user is restricted after he has called the
StakedUSDf::cooldownAssets , he is able to unstake his rewards after the
cooldown period is over since the StakedUSDf::unstake  does not check
whether the msg.sender  or the reciever  is restricted.

function unstake(address receiver) external {
        _checkZeroAddress(receiver);

        UserCooldown storage userCooldown = cooldowns[msg.sender];
        uint256 assets = userCooldown.underlyingAmount;

        require(block.timestamp >= userCooldown.cooldownEnd, CooldownNotEnded
          ());

        userCooldown.cooldownEnd = 0;
        userCooldown.underlyingAmount = 0;

        silo.withdraw(receiver, assets);
    }

Since the StakedUSDf::unstake  is called in the context of the StakedUSDf
contract, this allows the malicioius user to unstake his funds even after he is
tagged as restricted .

Hence recommended to check whether the msg.sender  and receiver  is
restricted in the StakedUSDf::unstake  execution and revert the transaction if

18



either of the users are in the restricted state.

[L-07] Changing vestingPeriod  corrupts
totalAssets  returned value

The StakedUSDf.sol  contract is a ERC4626 vault for staking USDf to accrue
yield, with linear vesting for reward deposits. the
StakingRewardsDistributor.sol  will trigger transferInRewards()  function
in StakedUSDf.sol  to transfer the reward and update the vesting amount.

In case the admin calls setVestingPeriod()  function to update the duration of
the vesting period and the getUnvestedAmount()  still returns a non-zero value.
it will corrupt the current reward vesting or it can lead to loss/profit to the
current stackers because the totalAssets()  function uses the returned value
from getUnvestedAmount()  which will be directly affected by any update to
vestingPeriod .

It also could lead to blocking multiple functions in StakedUSDf.sol  contract
e.g. deposit, mint, withdraw, redeem... these functions will revert with panic
arithmetic underflow or overflow.

Recommendations:

You can revert in case getUnvestedAmount() > 0

function _setVestingPeriod(uint32 newPeriod) internal {
        uint32 oldVestingPeriod = vestingPeriod;
        require(newPeriod <= MAX_VESTING_PERIOD, DurationExceedsMax());
        require(oldVestingPeriod != newPeriod, DurationNotChanged());
        require(newPeriod > 0 || cooldownDuration > 0, ExpectedCooldownOn()); 
+       require(getUnvestedAmount() == 0, ExpectedCooldownOn());

[L-08] Inconsistent unstake  behavior after
cooldown duration reduction

The StakedUSDf  contract allows users to initiate a cooldown period for their
staked assets (either shares or underlying assets) using the cooldownAssets  or
cooldownShares  functions. The unstake  function is then used to withdraw the

19



assets after the cooldown period has ended. The unstake  function includes the
following check:

require(block.timestamp >= userCooldown.cooldownEnd, CooldownNotEnded());

This correctly prevents withdrawals before the cooldownEnd timestamp . The
cooldownEnd is calculated as block.timestamp + cooldownDuration  when
cooldownAssets  or cooldownShares  is called.

The setCooldownDuration  function allows the DEFAULT_ADMIN_ROLE  to change
the cooldownDuration . If the cooldownDuration is set to 0  after a user has
initiated a cooldown, the user's cooldownEnd timestamp remains unchanged
(it's still in the future).

The issue is that the unstake  function does not consider the possibility of a
zero cooldownDuration . Even if the global cooldownDuration is set to 0, the
user who initiated a cooldown before the change is still forced to wait until
their original cooldownEnd timestamp. This creates inconsistent behavior:

Users who initiate a cooldown after cooldownDuration is set to 0  can
effectively withdraw immediately . Users who initiated a cooldown before
cooldownDuration  is set to 0 are still subject to the original cooldown period.
This inconsistency causes opportunity cost to the users who initiated the
cooldown before the cooldownDuration  was set to 0.

Recommendations:

The unstake function should be modified to account for the possibility of a
zero cooldownDuration. The simplest and most effective solution is to add an
additional check to the require statement:

require(block.timestamp >= userCooldown.cooldownEnd || (  
  block.timestamp>=userCooldown.cooldownEnd||

), "Cooldown not ended or duration is 0"

This modification ensures that:

If cooldownDuration is greater than 0, the original cooldown check
(block.timestamp >= userCooldown.cooldownEnd) is enforced. If
cooldownDuration is 0, the withdrawal is allowed regardless of the
userCooldown.cooldownEnd value.

20



[L-09] Pausing StakingRewardsDistributor
prevents reward distribution

The StakingRewardsDistributor  contract has a pause()  function, callable by
the PAUSER_ROLE , which halts the functionality of the transferInRewards
function. The transferInRewards  function in StakingRewardsDistributor  is
responsible for transferring rewards (USDf) to the StakedUSDf  contract. The
StakedUSDf  contract's transferInRewards  function, in turn, updates the
internal accounting to distribute those rewards to stakers.

function transferInRewards
      (uint256 _rewardsAmount) external whenNotPaused onlyRole(OPERATOR_ROLE) {
        USDF_TOKEN.approve(address(STAKING_VAULT), _rewardsAmount);
        STAKING_VAULT.transferInRewards(_rewardsAmount);
    }

If the StakingRewardsDistributor  is paused, the transferInRewards  function
cannot be called, and therefore no new rewards can be sent to the StakedUSDf
contract. However, users can still deposit USDf into the StakedUSDf  contract
even when the StakingRewardsDistributor  is paused.

This creates a situation where users deposit their USDf, expecting to earn
staking rewards, but receive no rewards because the distribution mechanism is
paused. Their funds are effectively locked in the StakedUSDf  contract (subject
to the cooldown period if enabled) without accruing any of the intended
benefits. This is unfair to users and represents a loss of opportunity cost. The
users are worse off than if they had simply held their USDf, or used it in other
DeFi protocols.

This affects the users whom have already deposited sUSDf  into the contract as
well. Their funds will be locked till the cooldownDuration  is over even though
they do not accrue any rewards.

The core issue is the lack of synchronization between the deposit functionality
of StakedUSDf  and the reward distribution mechanism of
StakingRewardsDistributor . Deposits are always allowed, but reward
distribution can be unilaterally paused.

A similar issue is found in the FalconPosition::withdraw  function since if the
duration is not supported  after user have minted into that duration  he is
unable to withdraw till the matureTimestamp is reached  even though the

21



depositRewards  can not be called during that period to accrue rewards on the
stakers. Hence this creates opportunity cost for the FalconPositoin minters
since they are locking their funds in the contract without any rewards in return
for that specific duration.

Recommendations:

There are several possible approaches to mitigate this issue:

1. Pause Deposits in StakedUSDf : The most direct solution is to also pause
deposits in the StakedUSDf  contract when the
StakingRewardsDistributor  is paused.

2. Inform Users: If pausing deposits is not desired, a clear warning should
be displayed in the user interface (and documentation) whenever the
StakingRewardsDistributor  is paused, informing users that they will not
receive rewards during this period.

[L-10] Restricted users can bypass asset
confiscation via transfers

The StakedUSDf  contract implements a restriction mechanism ( isRestricted
mapping) intended to prevent certain accounts from interacting with the
contract in specific ways. The redistributeLockedAmount  function is designed
to confiscate (either by burning or transferring to the treasury) the sUSDf
balance of a restricted account. This function is intended to be called by the
DEFAULT_ADMIN_ROLE .

22



function redistributeLockedAmount
      (address from, bool burnShares) external onlyRole(DEFAULT_ADMIN_ROLE) {
        // Redistribute only when `from` is restricted
        require(isRestricted[from], AddressNotRestricted(from));

        uint256 amountToDistribute = balanceOf(from);
        _checkZeroAmount(amountToDistribute);

        if (burnShares) {
            uint256 usdfToVest = previewRedeem(amountToDistribute);
            _burn(from, amountToDistribute);
            _updateVestingAmount(usdfToVest);
        } else {
            _transfer(from, TREASURY, amountToDistribute);
        }

        emit LockedAmountRedistributed(from, burnShares, amountToDistribute);
    }

However, the StakedUSDf  contract does not prevent restricted users from
transferring their sUSDf tokens to other accounts. The _transfer  function in
ERC20Upgradeable  (which StakedUSDf  inherits) only checks if the from  and
to  addresses are the zero address and if the sender has sufficient balance. It
does not check the isRestricted  status.

This means a restricted user can simply transfer their sUSDf tokens to a non-
restricted account before the redistributeLockedAmount  function is called by
the admin. This effectively bypasses the restriction and allows the user to
retain control of their assets, defeating the purpose of the
redistributeLockedAmount  mechanism.

The USDf  contract does have a similar restriction mechanism, and does
prevent transfers (via the USDf::_update  function) if either the sender or
receiver is restricted. This inconsistency between USDf  and StakedUSDf  is a
major source of the problem.

The most effective solution is to prevent restricted users from transferring their
sUSDf tokens. This can be achieved by overriding the transfer  and
transferFrom  functions in StakedUSDf  to include a check for the
isRestricted  status of both the from  and to  addresses, similar to how it's
done in USDf.sol .

23


