
Term Finance

Smart Contract Changes (May 2024)
Security Assessment Report

Version: 2.1

May, 2024

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Scope . 3Approach . 3Coverage Limitations . 3Findings Summary . 4
Detailed Findings 5

Summary of Findings 6No Ability To Revoke ADMIN_ROLE, DEVOPS_ROLE or SPECIALIST_ROLE 7Miscellaneous General Comments . 8
A Test Suite 10

B Vulnerability Severity Classification 11

1

Smart Contract Changes (May 2024) Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Term Finance smartcontracts. The review focused solely on the security aspects of the Solidity implementation of the contract,though general recommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Term Finance smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Term Finance smart contracts.

Overview

Term Finance is a non-custodial fixed-rate liquidity protocol modelled on tri-party repo arrangements commonin traditional finance.
Liquidity suppliers and takers arematched through a uniqueweekly auction processwhere liquidity takers submitbids and suppliers submit offers to the protocol, which then determines an interest rate that clears the market.
Bidders who bid more than the clearing rate receive liquidity and lenders asking less than the clearing rate supplyit.

Page | 2

Smart Contract Changes (May 2024) Security Assessment Summary

Security Assessment Summary

Scope

The scope of this time-boxed review was strictly limited to the code changes related to the following PRs:
• PR 1259

• PR 1261

• PR 1263

• PR 1294

• PR 1312

• PR 1289

• PR 1292

• PR 1299

• PR 1309

• PR 1311

Note: third party libraries and dependencies, such as OpenZeppelin, were excluded from the scope of this assessment.

Approach

The review was conducted on the files hosted on the term-finance repository at commit 93d0dd7.
Retesting was conducted on individual PRs (refer to "Resolution" section of each finding), which were then sub-sequently merged to term-finance-contracts repository at commit c97dd99 (release 0.9.0).
The manual review focused on identifying issues associated with the business logic implementation of the con-tracts. This includes their internal interactions, intended functionality and correct implementation with respectto the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memorylayout).
Additionally, the manual review process focused on identifying vulnerabilities related to known Solidity anti-patterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correct visibilityspecifiers.
For a more detailed, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team also utilised the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Coverage Limitations

Due to a time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and anyrelated functionality, where majority of critical and high risk vulnerabilities were identified.
Page | 3

https://github.com/term-finance/term-finance
https://github.com/term-finance/term-finance/tree/93d0dd7399fd1142f4c5b3b4dacd7d07a2ebc45d
https://github.com/term-finance/term-finance-contracts/
https://github.com/term-finance/term-finance-contracts/commit/c97dd99a5b187a48e72354715e7a040e372362b8
https://github.com/term-finance/term-finance-contracts/releases/tag/0.9.0
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Smart Contract Changes (May 2024) Findings Summary

Findings Summary

The testing team identified a total of 2 issues during this assessment. Categorised by their severity:
• Low: 1 issue.
• Informational: 1 issue.

Page | 4

Smart Contract Changes (May 2024) Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Term Finance smart con-tracts. Each vulnerability has a severity classification which is determined from the likelihood and impact of eachissue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
TRM4-01 No Ability To Revoke ADMIN_ROLE, DEVOPS_ROLE or SPECIALIST_ROLE Low Resolved

TRM4-02 Miscellaneous General Comments Informational Closed

6

Smart Contract Changes (May 2024) Detailed Findings

TRM4-
01

No Ability To Revoke ADMIN_ROLE, DEVOPS_ROLE or SPECIALIST_ROLE

Asset TermController.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

There is currently no way to remove ADMIN_ROLE , DEVOPS_ROLE or SPECIALIST_ROLE permission once it was assignedto an external address.
SPECIALIST_ROLE is granted to addresses via grantMintExposureAccess() in order to enable minting rights, but thereis no equivalent function to revoke them.
Note, CONTROLLER_ADMIN_ROLE has updateControllerAdminWallet() function that allows to update controller admin
wallet address, while also revoking CONTROLLER_ADMIN_ROLE permission from previously set address.
The same should be possible for all other roles that grant permissions to external addresses.

Recommendations

Implement relevant functions to revoke roles and permissions assigned to external addresses.

Resolution

The issue has been resolved in PR-1324 - revokeMintExposureAccess() has been added to enable revoking
SPECIALIST_ROLE permission.

Page | 7

https://github.com/term-finance/term-finance/pull/1324

Smart Contract Changes (May 2024) Detailed Findings

TRM4-
02

Miscellaneous General Comments

Asset contracts/*

Status Closed: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Nested inheritance
Related Asset(s): TermRepoToken.sol
ERC20PermitUpgradeable is also already ERC20Upgradeable , as such the explicit inheritance on line [25] is notnecessary.

2. Input address validation
Related Asset(s): TermRepoToken.sol, TermInitializer.sol

In TermRepoToken , there are no checks in the initialize() function to ensure the address type variables of
TermRepoTokenConfig are not set to 0x0 .
Additionally, as there are no setter function for config , consider implementing it (callable by admin only), tocater for situations where it needs to be updated due to manual entry mistakes.
In TermInitializer , consider introducing a check for 0x0 addresses in setupTerm() for all address type vari-
ables passed in to all pairTermContracts() .
Currently, in case of a mistake, it’s impossible to update the paired addresses as the pairTermContracts() func-tion can only be called once.

3. No checks for zero amount

Related Asset(s): TermRepoServicer.sol
There are no checks in submitRepurchasePayment() to ensure the amount variable is not zero.
Implement similar checks as it was done in PR-1294.

4. No negative price checks
Related Asset(s): TermPriceConsumerV3WithSequencer.sol
Checks for negative prices are not implemented in the same fashion as they are in TermPriceConsumerV3 viaPR-1309.
Ensure the same changes are implemented in TermPriceConsumerV3WithSequencer .

5. Redundant checks
Related Asset(s): TermPriceConsumerV3.sol, TermPriceConsumerV3WithSequencer.sol

In TermPriceConsumerV3 on line [252], the fallbackPrice > 0 check is unnecessary as it’s already in the else
section of if (fallbackPrice <= 0) { ... } else { ... } , which infers the same outcome.
Note, the same issue is present in TermPriceConsumerV3WithSequencer.sol .

Page | 8

https://github.com/term-finance/term-finance/pull/1294/files#diff-619d2523a1b98b769ee1df857b8f4f12d74a7c4923280a48a88b88a202e98418R261
https://github.com/term-finance/term-finance/pull/1309/

Smart Contract Changes (May 2024) Detailed Findings

6. _getLatestPrice() may return stale prices
Related Asset(s): TermPriceConsumerV3.sol, TermPriceConsumerV3WithSequencer.sol

The _getLatestPrice() always returns a price, even if extremely stale (either from primary or a fallback oracle).
As such usdValueOfTokens() may produce outdated results.
Ensure this is understood and, if deemed feasible, consider reverting if the returned price is beyond an acceptablestaleness threshold.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The comments above have been acknowledged by the development team, and relevant changes actioned in the fol-lowing PR’s:
• Oracle related changes: PR-1326
• Zero amount checks: PR-1327
• Input address validation: PR-1325

Page | 9

https://github.com/term-finance/term-finance/pull/1326
https://github.com/term-finance/term-finance/pull/1327
https://github.com/term-finance/term-finance/pull/1325

Smart Contract Changes (May 2024) Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The brownie framework was used to perform these tests and the output is given below.

Launching 'ganache-cli --chain.vmErrorsOnRPCResponse true --server.port 8545 --miner.blockGasLimit 12000000 --wallet.totalAccounts
20 --hardfork istanbul --wallet.mnemonic brownie --wallet.defaultBalance 1000000'...↪→

tests/test_TermAuction.py [5%]
tests/test_TermAuctionBidLocker.py [25%]
tests/test_TermAuctionOfferLocker.py [44%]
tests/test_TermController.py ... [48%]
tests/test_TermEventEmitter.py . [49%]
tests/test_TermInitializer.py .. [51%]
tests/test_TermPriceConsumerV3.py ... [54%]
tests/test_TermRepoCollateralManager.py [60%]
tests/test_TermRepoLocker.py ... [64%]
tests/test_TermRepoRolloverManager.py [75%]
tests/test_TermRepoServicer.pyx... [86%]
tests/test_TermRepoToken.py [96%]
tests/test_poc_repurchase.py . [97%]
tests/test_poc_rolloverCollateral.py . [98%]
tests/test_poc_rolloverToTwoAuctions.py . [100%]

================= 87 passed, 1 xfailed, 2106 warnings in 165.09s (0:02:45) ==================

Page | 10

Smart Contract Changes (May 2024) Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 11

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	No Ability To Revoke ADMIN_ROLE, DEVOPS_ROLE or SPECIALIST_ROLE
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

