
Review Resources:

Code repository and docs

Auditors:

Panda

Fedebianu

yAudit Term yearn v3 vault Review

Table of Contents

yAudit Term yearn v3 vault Review1

Table of Contentsa

Review Summaryb

Scopec

Code Evaluation Matrixd

Findings Explanatione

Critical Findingsf

High Findingsg

1. High - Return value shadowing in _validateAuctionExistence() breaks auction rate

invalidation mechanism

a

Medium Findingsh

Low Findingsi

Gas Saving Findingsj

1. Gas - Cache storage variablesa

2. Gas - Remove unused variablesb

Term yearn v3 vault

The Term Yearn V3 Vault is a Yearn-based vault that offers two options: users can deposit

liquidity to earn yield through Yearn vaults or use their liquidity to unlock Term tokens, which

would otherwise unlock later.

The contracts of the Term yearn v3 vault Repo were reviewed over three days. The code

review was performed by two auditors between 17th and 20th December 2024. The

repository was under active development during the review, but the review was limited to the

latest commit 99cd2b720c7b7c8c498d6238504b42315e06a8c2 for the Term yearn v3 vault

repo. The review focused particularly on changes made since the previous audit at commit

14faba9822bd0de06f970e9b57c84f1d844c281d.

The scope of the review consisted of the following contracts at the specific commit:

src

├── RepoTokenList.sol

├── RepoTokenUtils.sol

├── Strategy.sol

├── TermAuctionList.sol

├── TermDiscountRateAdapter.sol

├── TermVaultEventEmitter.sol

After the findings were presented to the Term yearn v3 vault team, fixes were made and

included in several PRs.

3. Gas - Unnecessary variable creationc

Informational Findingsk

1. Informational - Remove unnecessary return parameter in

validateAndInsertRepoToken()

a

Final remarksl

Review Summary

Scope

https://github.com/term-finance/yearn-v3-term-vault-contracts
https://github.com/term-finance/yearn-v3-term-vault-contracts/tree/99cd2b720c7b7c8c498d6238504b42315e06a8c2
https://github.com/term-finance/yearn-v3-term-vault-contracts/tree/14faba9822bd0de06f970e9b57c84f1d844c281d

This review is a code review to identify potential vulnerabilities in the code. The reviewers did

not investigate security practices or operational security and assumed that privileged

accounts could be trusted. The reviewers did not evaluate the security of the code relative to

a standard or specification. The review may not have identified all potential attack vectors or

areas of vulnerability.

yAudit and the auditors make no warranties regarding the security of the code and do not

warrant that the code is free from defects. yAudit and the auditors do not represent nor imply

to third parties that the code has been audited nor that the code is free from defects. By

deploying or using the code, Term yearn v3 vault and users of the contracts agree to use the

code at their own risk.

Category Mark Description

Access Control Good

The contracts implement proper access control

mechanisms with clear role separation and well-defined

permissions.

Mathematics Good No complex calculations that could lead to precision issues.

Complexity Good
The codebase maintains a reasonable level of complexity

with clear separation of concerns and modular design.

Libraries Good
The project uses well-tested and standard libraries, including

OpenZeppelin contracts, and implements them correctly.

Decentralization Good
The system maintains appropriate levels of decentralization

with minimal privileged operations.

Code stability Good

The codebase is stable with well-structured code and

consistent patterns throughout. Changes from the previous

audit were focused and purposeful.

Documentation Good
Code is well-documented with clear comments explaining

functionality and important considerations.

Code Evaluation Matrix

Category Mark Description

Monitoring Good
Appropriate events are emitted for key operations, allowing

for effective monitoring of contract activity.

Testing and

verification
Good

Comprehensive test suite covering core functionality and

edge cases. Good test coverage across the codebase.

Findings are broken down into sections by their respective impact:

Critical, High, Medium, Low impact

These are findings that range from attacks that may cause loss of funds, impact

control/ownership of the contracts, or cause any unintended consequences/actions

that are outside the scope of the requirements.

Gas savings

Findings that can improve the gas efficiency of the contracts.

Informational

Findings including recommendations and best practices.

None

_validateAuctionExistence() in TermDiscountRateAdapter.sol contains a critical implementation

error that causes it always to return false , regardless of whether the auction exists or not.

This makes it impossible to invalidate any auction rate through setAuctionRateValidator() .

Findings Explanation

Critical Findings

High Findings

1. High - Return value shadowing in _validateAuctionExistence() breaks auction

rate invalidation mechanism

_validateAuctionExistence() declares a named return variable auctionExists but then

shadows it with a local variable of the same name. This breaks setAuctionRateValidator()

functionality because auctionExists will always be false due to the above bug.

Since setAuctionRateValidator() will always revert, marking any auction rate as invalid is

impossible, even when necessary. This is particularly severe because _getDiscountRate()

relies on rateInvalid to determine which auction rate to use for pricing. Without the ability to

invalidate rates, the system must use potentially compromised or incorrect auction rates, as

there’s no way to exclude them from the pricing calculation. This could lead to incorrect

pricing and valuation throughout the system, potentially affecting all operations that rely on

these rates.

High. The auction rate invalidation mechanism is completely broken.

Correct the _validateAuctionExistence() implementation:

 function _validateAuctionExistence(AuctionMetadata[] memory auctionMetadata,

bytes32 termAuctionId) private view returns(bool auctionExists) {

 // Check if the termAuctionId exists in the metadata

- bool auctionExists;

 for (uint256 i = 0; i < auctionMetadata.length; i++) {

 if (auctionMetadata[i].termAuctionId == termAuctionId) {

 auctionExists = true;

 break;

 }

 }

 }

This can be seen as part of the compiler warnings; activate; deny_warnings as part of your

makefile to stop compilation on warnings and prevent such errors from happening again.

Technical Detai ls

Impact

Recommendation

https://github.com/term-finance/yearn-v3-term-vault-contracts/blob/99cd2b720c7b7c8c498d6238504b42315e06a8c2/src/TermDiscountRateAdapter.sol#L146
https://github.com/term-finance/yearn-v3-term-vault-contracts/blob/99cd2b720c7b7c8c498d6238504b42315e06a8c2/src/TermDiscountRateAdapter.sol#L68
https://github.com/term-finance/yearn-v3-term-vault-contracts/blob/99cd2b720c7b7c8c498d6238504b42315e06a8c2/src/TermDiscountRateAdapter.sol#L116
https://book.getfoundry.sh/reference/config/solidity-compiler#deny_warnings

Fix addressed in this PR (https://github.com/term-finance/yearn-v3-term-vault-

contracts/pull/6) and also changed function visibility to pure as recommended by the

compiler.

None

None

In Strategy.sol , multiple functions unnecessarily read strategyState repeatedly from storage,

resulting in higher gas costs.

Gas savings.

Cache storage variables.

Acknowledge. Won’t fix.

Developer Response

Medium Findings

Low Findings

Gas Saving Findings

1. Gas - Cache storage variables

Technical Detai ls

Impact

Recommendation

Developer Response

2. Gas - Remove unused variables

The following variables were created but never used.

File: Strategy.sol

576: ITermController prevTermController = strategyState.prevTermController;

577: ITermController currTermController = strategyState.currTermController;

578:

Strategy.sol#L576-L577

Gas savings.

Remove the variables.

Fixed as part of PR#7

The variable is not used and can be directly assigned at line 192.

File: Strategy.sol

178: ITermController newTermController = ITermController(newTermControllerAddr);

Strategy.sol#L178-L178

Technical Detai ls

Impact

Recommendation

Developer Response

3. Gas - Unnecessary variable creation

Technical Detai ls

https://github.com/term-finance/yearn-v3-term-vault-contracts/blob/b9fe6b648afe90b1cf22b4670c7793ae14b3a36f/src/Strategy.sol#L576-L577
https://github.com/term-finance/yearn-v3-term-vault-contracts/pull/7
https://github.com/term-finance/yearn-v3-term-vault-contracts/blob/b9fe6b648afe90b1cf22b4670c7793ae14b3a36f/src/Strategy.sol#L178-L178

Gas savings.

File: Strategy.sol

-178: ITermController newTermController =

ITermController(newTermControllerAddr);

-192: strategyState.currTermController = newTermController;

+192: strategyState.currTermController = ITermController(newTermControllerAddr);

Fixed as part of PR#7

Impact

Recommendation

Developer Response

Informational Findings

1. Informational - Remove unnecessary return parameter in

validateAndInsertRepoToken()

https://github.com/term-finance/yearn-v3-term-vault-contracts/pull/7

validateAndInsertRepoToken() returns a discountRate parameter that is never used by any

calling functions.

Informational.

Remove the unused discountRate return parameter.

 function validateAndInsertRepoToken(

 RepoTokenListData storage listData,

 ITermRepoToken repoToken,

 ITermDiscountRateAdapter discountRateAdapter,

 address asset

-) internal returns (bool validRepoToken, uint256 discountRate, uint256

redemptionTimestamp) {

+) internal returns (bool validRepoToken, uint256 redemptionTimestamp) {

- discountRate = listData.discountRates[address(repoToken)];

+ uint256 discountRate = listData.discountRates[address(repoToken)];

 if (discountRate != INVALID_AUCTION_RATE) {

 (redemptionTimestamp,,,) = repoToken.config();

 // skip matured repoTokens

 if (redemptionTimestamp < block.timestamp) {

- return (false, discountRate, redemptionTimestamp);

+ return (false, redemptionTimestamp);

 }

 uint256 oracleRate;

 try discountRateAdapter.getDiscountRate(address(repoToken)) returns (uint256

rate) {

 oracleRate = rate;

 } catch {}

 if (oracleRate != 0) {

 if (discountRate != oracleRate) {

Technical Detai ls

Impact

Recommendation

https://github.com/term-finance/yearn-v3-term-vault-contracts/blob/99cd2b720c7b7c8c498d6238504b42315e06a8c2/src/RepoTokenList.sol#L346

 listData.discountRates[address(repoToken)] = oracleRate;

 }

 }

 } else {

 try discountRateAdapter.getDiscountRate(address(repoToken)) returns (uint256

rate) {

 discountRate = rate == 0 ? ZERO_AUCTION_RATE : rate;

 } catch {

 discountRate = INVALID_AUCTION_RATE;

- return (false, discountRate, redemptionTimestamp);

+ return (false, redemptionTimestamp);

 }

 bool isRepoTokenValid;

 (isRepoTokenValid, redemptionTimestamp) = validateRepoToken(listData,

repoToken, asset);

 if (!isRepoTokenValid) {

- return (false, discountRate, redemptionTimestamp);

+ return (false, redemptionTimestamp);

 }

 insertSorted(listData, address(repoToken));

 listData.discountRates[address(repoToken)] = discountRate;

 }

- return (true, discountRate, redemptionTimestamp);

+ return (true, redemptionTimestamp);

 }

addressed https://github.com/term-finance/yearn-v3-term-vault-contracts/pull/7

Developer Response

Final remarks

The review examined the codebase changes implemented following Runtime Verification’s

formal verification audit. Overall, the fixes from the previous audit were successfully

implemented, and the codebase shows good maturity. During this review:

A critical variable shadowing bug was identified in the auction validation mechanism

Several gas optimization opportunities were discovered

Additional code quality improvements were suggested

While the codebase is generally well-structured and secure, we recommend addressing the

high-severity finding related to auction rate validation as soon as possible.

