
Public

SMART CONTRACT AUDIT REPORT

for

ALPHA FINANCE LAB

Prepared By: Shuxiao Wang

PeckShield
January 20, 2021

1/29 PeckShield Audit Report #: 2021-011

sxwang@peckshield.com

Public

Document Properties

Client Alpha Finance Lab
Title Smart Contract Audit Report
Target Alpha Homora V2
Version 1.0
Author Xuxian Jiang
Auditors Xuxian Jiang, Huaguo Shi
Reviewed by Jeff Liu
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 January 20, 2021 Xuxian Jiang Final Release
1.0-rc January 18, 2021 Xuxian Jiang Release Candidate
0.3 January 15, 2021 Xuxian Jiang Add More Findings #2
0.2 January 10, 2021 Xuxian Jiang Add More Findings #1
0.1 January 5, 2021 Xuxian Jiang Initial Draft

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Shuxiao Wang
Phone +86 173 6454 5338
Email contact@peckshield.com

2/29 PeckShield Audit Report #: 2021-011

Public

Contents

1 Introduction 4
1.1 About Alpha Homora V2 . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Proper Allowance Cancellation in HomoraBank::setCToken() 11
3.2 Improved Corner Cases in HomoraMath::sqrt() . 12
3.3 Tighter Restriction of ensureApprove() . 14
3.4 Improved Sanity Checks in BasicSpell::doTakeCollateral() 15
3.5 Immutable States If Only Set at Constructor() . 16
3.6 Better Slippage Control/Possible DoS in SushiswapSpellV1/UniswapV2SpellV1 Repay 17
3.7 Improved HouseHoldSpell::repayETH() . 19
3.8 Timely poke() in HomoraBank::resolveReserve() . 21
3.9 Lack of ETH-Related Handling in CurveSpellV1 . 23
3.10 Proper Handling of Old Borrows in HomoraBank::setCToken() 25

4 Conclusion 27

References 28

3/29 PeckShield Audit Report #: 2021-011

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the Alpha Homora
V2 protocol, we in the report outline our systematic approach to evaluate potential security issues in
the smart contract implementation, expose possible semantic inconsistencies between smart contract
code and design document, and provide additional suggestions or recommendations for improvement.
Our results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Alpha Homora V2

Alpha Homora is a leveraged yield farming and leveraged liquidity providing protocol launched on
Ethereum mainnet. It enables ETH lenders to earn high interest on ETH and the lending interest
rate comes from leveraged yield farmers (or liquidity providers) borrowing these ETH to yield farm
(or provide liquidity). From another perspective, yield farmers can get even higher farming APY and
trading fees APY from taking on leveraged yield farming positions. And liquidity providers can get even
higher trading fees APY from taking on leveraged liquidity providing positions. Alpha Homora V2 makes
a number of innovations from the earlier version by supporting multi-assets lending and borrowing,
multiple farming pools (e.g., Sushiswap, Uniswap, Balancer, Curve, etc), and BYOT (bring your own LP

tokens).
The basic information of Alpha Homora V2 is as follows:

Table 1.1: Basic Information of Alpha Homora V2

Item Description
Issuer Alpha Finance Lab

Website https://alphafinance.io/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report January 20, 2021

4/29 PeckShield Audit Report #: 2021-011

Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/AlphaFinanceLab/homora-v2 (17879ae)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/AlphaFinanceLab/homora-v2 (aac0ae7)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/29 PeckShield Audit Report #: 2021-011

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

6/29 PeckShield Audit Report #: 2021-011

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/29 PeckShield Audit Report #: 2021-011

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/29 PeckShield Audit Report #: 2021-011

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the Alpha Homora V2 implementation. During
the first phase of our audit, we study the smart contract source code and run our in-house static
code analyzer through the codebase. The purpose here is to statically identify known coding bugs,
and then manually verify (reject or confirm) issues reported by our tool. We further manually review
business logics, examine system operations, and place DeFi-related aspects under scrutiny to uncover
possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 6

Informational 2

Total 10

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/29 PeckShield Audit Report #: 2021-011

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 6 low-severity vulnerabilities, and 2 informational recommendations.

Table 2.1: Key Audit Findings of Alpha Homora V2 Protocol

ID Severity Title Category Status
PVE-001 Low Proper Allowance Cancellation in Homora-

Bank::setCToken()
Business Logic Resolved

PVE-002 Low Improved Corner Cases in Homora-
Math::sqrt()

Coding Practices Resolved

PVE-003 Low Tighter Restriction of ensureApprove() Security Features Resolved
PVE-004 Informational Improved Sanity Checks in Basic-

Spell::doTakeCollateral()
Coding Practices Resolved

PVE-005 Informational Immutable States If Only Set at Construc-
tor()

Coding Practices Resolved

PVE-006 Medium Better Slippage Control/Possible DoS in
SushiswapSpellV1/UniswapV2SpellV1 Repay

Time and State Resolved

PVE-007 Low Improved HouseHoldSpell::repayETH() Business Logic Resolved
PVE-008 Low Timely poke() in Homora-

Bank::resolveReserve()
Time and State Resolved

PVE-009 Low Lack of ETH-Related Handling in
CurveSpellV1()

Business Logic Resolved

PVE-010 Medium Proper Handling of Old Borrows in Homora-
Bank::setCToken()

Business Logic Resolved

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/29 PeckShield Audit Report #: 2021-011

Public

3 | Detailed Results

3.1 Proper Allowance Cancellation in
HomoraBank::setCToken()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: HomoraBank

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [4]

Description

The Alpha Homora V2 protocol is designed to seamlessly support CREAMv2 for lending. Accordingly,
it maintains a mapping from a supported token to its cToken counterpart. This mapping can be
modified through governance. For illustration, we show below the setCToken() routine that updates
the cToken contract address to a new one.

322 /// @dev Upgrade cToken contract address to a new address. Must be used with care!
323 /// @param token The underlying token for the bank.
324 /// @param cToken The address of the cToken smart contract.
325 f unc t i on setCToken (address token , address cToken) ex te rna l onlyGov {
326 Bank storage bank = banks [token] ;
327 r equ i r e (! cTokenInBank [cToken] , ’cToken already exists ’) ;
328 r equ i r e (bank . i s L i s t e d , ’bank not exists ’) ;
329 cTokenInBank [bank . cToken] = f a l s e ;
330 cTokenInBank [cToken] = t rue ;
331 IERC20 (bank . cToken) . s a f eApprove (cToken , 0) ;
332 IERC20 (token) . s a f eApprove (cToken , 0) ;
333 IERC20 (token) . s a f eApprove (cToken , u in t (−1)) ;
334 bank . cToken = cToken ;
335 emit SetCToken (token , cToken) ;
336 }

Listing 3.1: HomoraBank::setCToken()

11/29 PeckShield Audit Report #: 2021-011

Public

This routine has a basic logic in firstly validating the legitimacy of the given token and the new
cToken (lines 327− 328), then canceling previous allowance on the old cToken (line 331), next setting
up the allowance on the new cToken (lines 332−333), and finally saving the new mapping (line 334).

It comes to our attention that the cancellation of previous allowance has taken the wrong argu-
ments. In particular, the proper cancellation should be about token, i.e., IERC20(token).safeApprove(
bank.cToken, 0), instead of current IERC20(bank.cToken).safeApprove(cToken, 0).

Recommendation Properly cancel the allowance on the previous cToken when the mapping is
updated. An example revision is shown below. It should be mentioned that the setCToken() routine
also needs to take care of clearing the old debt balance, an issue we will elaborate on Section 3.10.

322 /// @dev Upgrade cToken contract address to a new address. Must be used with care!
323 /// @param token The underlying token for the bank.
324 /// @param cToken The address of the cToken smart contract.
325 f unc t i on setCToken (address token , address cToken) ex te rna l onlyGov {
326 Bank storage bank = banks [token] ;
327 r equ i r e (! cTokenInBank [cToken] , ’cToken already exists ’) ;
328 r equ i r e (bank . i s L i s t e d , ’bank not exists ’) ;
329 cTokenInBank [bank . cToken] = f a l s e ;
330 cTokenInBank [cToken] = t rue ;
331 IERC20 (token) . s a f eApprove (bank . cToken , 0) ;
332 IERC20 (token) . s a f eApprove (cToken , 0) ;
333 IERC20 (token) . s a f eApprove (cToken , u in t (−1)) ;
334 bank . cToken = cToken ;
335 emit SetCToken (token , cToken) ;
336 }

Listing 3.2: HomoraBank::setCToken()

Status This issue has been fixed as the affected setCToken() routine has been removed in the
following PR: 62.

3.2 Improved Corner Cases in HomoraMath::sqrt()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: HomoraMath

• Category: Coding Practices [7]

• CWE subcategory: CWE-561 [3]

Description

The Alpha Homora V2 protocol has developed the fair reserve notion to properly evaluate the valua-
tion of pool tokens (lptoken) of various liquidity pools, e.g., Uniswap, Sushiswap, Balancer, and Curve.

12/29 PeckShield Audit Report #: 2021-011

https://github.com/AlphaFinanceLab/homora-v2/pull/62

Public

The key idea is to obtain fair prices of associated assets, next safely compute backwards from fair
asset prices to fair asset reserves, and finally calculate the pool token price.

In the above computation, there is a constant need of calculating the integer square root of a
given number, i.e., the familiar sqrt() function. The sqrt() function, implemented in HomoraMath,
follows the Babylonian method for calculating the integer square root. Specifically, for a given x, we
need to find out the largest integer z such that z2 <= x.

20 f unc t i on s q r t (u in t x) i n t e r n a l pure re tu rn s (u in t y) {
21 u in t z = (x + 1) / 2 ;
22 y = x ;
23 whi le (z < y) {
24 y = z ;
25 z = (x / z + z) / 2 ;
26 }
27 }

Listing 3.3: HomoraMath::sqrt()

We show above current sqrt() implementation. The initial value of z to the iteration was given
as z = (x + 1)∕2, which results in an integer overflow when x = uint256(−1). In other words, the
overflow essentially sets z to zero, leading to a division by zero in the calculation of z = (x∕z+z)∕2
(line 25).

Note that this does not result in an incorrect return value from sqrt(), but does cause the function
to revert unnecessarily when the above corner case occurs. Meanwhile, it is worth mentioning that if
there is a divide by zero, the execution or the contract call will be thrown by executing the INVALID

opcode, which by design consumes all of the gas in the initiating call. This is different from REVERT

and has the undesirable result in causing unnecessary monetary loss.
To address this particular corner case, We suggest to change the initial value to z = x∕2 + 1,

making sqrt() well defined over its all possible inputs.

Recommendation Revise the above calculation to avoid the unnecessary integer overflow.

Status This issue has been fixed in the following PR (with a further optimized implementation):
63.

13/29 PeckShield Audit Report #: 2021-011

https://github.com/AlphaFinanceLab/homora-v2/pull/63

Public

3.3 Tighter Restriction of ensureApprove()

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: BasicSpell

• Category: Security Features [5]

• CWE subcategory: CWE-287 [1]

Description

In Alpha Homora V2, there are a number of Spell contracts that are designed to provide a consistent
interface to support a variety of liquidity pools, including Uniswap, Sushiswap, Balancer, and Curve

. These Spell contracts inherit from the same BasicSpell contract with the essential functionality
to interact with HomoraBank. (Note HomoraBank holds all collateral-related funds and maintains the
necessary solvency of open positions.)

During our analysis with the BasicSpell contract, we notice a helper routine, i.e., ensureApprove().
As the name indicates, it is designed to ensure that the Spell contract approves the given spender
to spend all of its tokens. For illustration, we show below its full implementation.

32 /// @dev Ensure that the spell approve the given spender to spend all of its tokens.
33 /// @param token The token to approve.
34 /// @param spender The spender to allow spending.
35 /// NOTE: This is safe because spell is never built to hold fund custody.
36 f unc t i on ensureApprove (address token , address spende r) pub l i c {
37 i f (! approved [token] [spende r]) {
38 IERC20 (token) . s a f eApprove (spender , u in t (−1)) ;
39 approved [token] [spende r] = t rue ;
40 }
41 }

Listing 3.4: BasicSpell :: ensureApprove()

It comes to our attention that this routine is defined as public, which means any one can invoke
it to add any one to be the spender. While the Spell contract is not holding any user funds, it is still
desirable to not expose unnecessary functionalities or properly restrict the caller of ensureApprove().
In fact, it is feasible to define the function private without affecting current functionality in any way.

Recommendation Define the ensureApprove() as private, instead of current public.

Status With the intention of making the ensureApprove() function public so others can call to
save users from spending gas, the team decides to keep as is.

14/29 PeckShield Audit Report #: 2021-011

Public

3.4 Improved Sanity Checks in BasicSpell::doTakeCollateral()

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: BasicSpell

• Category: Coding Practices [7]

• CWE subcategory: CWE-561 [3]

Description

As mentioned in Section 3.3, Alpha Homora V2 supports a number of Spell contracts with inheri-
tance from the same BasicSpell. To standardize the interaction with HomoraBank, BasicSpell defines
the following interfaces, i.e., doTransmit()/doTransmitETH(), doBorrow()/doRepay(), doPutCollateral()
/doTakeCollateral(), and doRefund()/doRefundETH().

While examining the defined interfaces, we notice the doTakeCollateral() implementation can
be improved. To elaborate, we show below its code snippet. The logic is rather straightforward in
making a call to take collateral tokens from the bank, i.e., HomoraBank.

108 /// @dev Internal call to take collateral tokens from the bank.
109 /// @param token The token to take back.
110 /// @param amount The amount to take back.
111 f unc t i on doTak eCo l l a t e r a l (address token , u in t amount) i n t e r n a l {
112 i f (amount > 0) {
113 i f (amount == u in t (−1)) {
114 (, , , amount) = bank . g e t P o s i t i o n I n f o (bank . POSITION_ID ()) ;
115 }
116 bank . t a k e C o l l a t e r a l (address (werc20) , u in t (token) , amount) ;
117 werc20 . burn (token , amount) ;
118 }
119 }

Listing 3.5: BasicSpell :: doTakeCollateral ()

When the given amount equals uint(-1), the doTakeCollateral() routine queries current collateral
size of the current position and then takes all back collateral tokens. Note that we can better validate
the given amount and filter out illegitimate requests. Specifically, any amount larger than the current
position’s collateralSize can be rejected (excluding uint(-1) that denotes collateralSize).

Recommendation Validate the given amount and filter out invalid requests.

Status Since the amount is also used in the following werc20.burn(token, amount) (line 117),
any unnecessarily large amount will be blocked. The team decides to keep as is.

15/29 PeckShield Audit Report #: 2021-011

Public

3.5 Immutable States If Only Set at Constructor()

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [7]

• CWE subcategory: CWE-561 [3]

Description

Since version 0.6.5, Solidity introduces the feature of declaring a state as immutable. An immutable

state variable can only be assigned during contract creation, but will remain constant throughout the
life-time of a deployed contract. The main benefit of declaring a state as immutable is that reading
the state is significantly cheaper than reading from regular storage, since it is not stored in storage
anymore. Instead, an immutable state will be directly inserted into the runtime code.

This feature is introduced based on the observation that the reading and writing of storage-based
contract states are gas-expensive. Therefore, it is always preferred if we can reduce, if not eliminate,
storage reading and writing as much as possible. Those state variables that are written only once
are candidates of immutable states under the condition that each fits the pattern, i.e., “a constant,
once assigned in the constructor, is read-only during the subsequent operation.”

In the following, we show the key state variables defined in SushiswapSpellV1. If there is no need
to dynamically update these key state variables, e.g., factory and router, they can be declared as
immutable for gas efficiency.

14 cont ract Sush i swapSpe l lV1 i s Ba s i c S p e l l {
15 us ing SafeMath f o r u in t ;
16 us ing HomoraMath f o r u in t ;

18 IUn i swapV2Factory pub l i c f a c t o r y ;
19 IUniswapV2Router02 pub l i c r o u t e r ;

21 . . .
22 }

Listing 3.6: SushiswapSpellV1.sol

Similarly, we can define the states factory and router in UniswapV2SpellV1 as immutable too.

Recommendation Revisit the state variable definition and make good use of immutable/constant
states.

Status This issue has been fixed in the following PR: 65.

16/29 PeckShield Audit Report #: 2021-011

https://github.com/AlphaFinanceLab/homora-v2/pull/65

Public

3.6 Better Slippage Control/Possible DoS in
SushiswapSpellV1/UniswapV2SpellV1 Repay

• ID: PVE-006

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Time and State [6]

• CWE subcategory: CWE-362 [2]

Description

As a leveraged yield farming and leveraged liquidity providing protocol, Alpha Homora V2 allows
users to borrow from the integrated CREAMv2 platform. The borrow position requires later repayment
before the user can take back the collateral. During our analysis on the repayment logic, we notice
the built-in slippage control can be improved.

For illustration, we show below the removeLiquidityInternal() routine from the SushiswapSpellV1

contract. This routine is tasked to remove liquidity from the supported Sushiswap pool. In order to
minimize the trade to meet the repayment requirement, it has an internal optimization logic (step 5
in lines 260 − 268) to convert one token to another (via swapTokensForExactTokens()).

229 f unc t i on r em o v e L i q u i d i t y I n t e r n a l (
230 address tokenA ,
231 address tokenB ,
232 RepayAmounts c a l l d a t a amt
233) i n t e r n a l {
234 address l p = g e tPa i r (tokenA , tokenB) ;
235 u in t p o s i t i o n I d = bank . POSITION_ID () ;

237 u in t amtARepay = amt . amtARepay ;
238 u in t amtBRepay = amt . amtBRepay ;
239 u in t amtLPRepay = amt . amtLPRepay ;

241 // 2. Compute repay amount if MAX_INT is supplied (max debt)
242 i f (amtARepay == u in t (−1)) {
243 amtARepay = bank . bo r rowBa lanceCur r en t (p o s i t i o n I d , tokenA) ;
244 }
245 i f (amtBRepay == u in t (−1)) {
246 amtBRepay = bank . bo r rowBa lanceCur r en t (p o s i t i o n I d , tokenB) ;
247 }
248 i f (amtLPRepay == u in t (−1)) {
249 amtLPRepay = bank . bo r rowBa lanceCur r en t (p o s i t i o n I d , l p) ;
250 }

252 // 3. Compute amount to actually remove
253 u in t amtLPToRemove = IERC20 (l p) . ba l anceOf (address (t h i s)) . sub (amt . amtLPWithdraw) ;

17/29 PeckShield Audit Report #: 2021-011

Public

255 // 4. Remove liquidity
256 (u in t amtA , u in t amtB) =
257 r o u t e r . r emov eL i q u i d i t y (tokenA , tokenB , amtLPToRemove , 0 , 0 , address (t h i s) , now) ;

259 // 5. MinimizeTrading to repay debt
260 i f (amtA < amtARepay && amtB >= amtBRepay) {
261 address [] memory path = new address [] (2) ;
262 (path [0] , path [1]) = (tokenB , tokenA) ;
263 r o u t e r . swapTokensForExactTokens (amtARepay . sub (amtA) , u in t (−1) , path , address (t h i s)

, now) ;
264 } e l s e i f (amtA >= amtARepay && amtB < amtBRepay) {
265 address [] memory path = new address [] (2) ;
266 (path [0] , path [1]) = (tokenA , tokenB) ;
267 r o u t e r . swapTokensForExactTokens (amtBRepay . sub (amtB) , u in t (−1) , path , address (t h i s)

, now) ;
268 }

270 // 6. Repay
271 doRepay (tokenA , amtARepay) ;
272 doRepay (tokenB , amtBRepay) ;
273 doRepay (lp , amtLPRepay) ;

275 // 7. Slippage control
276 r equ i r e (IERC20 (tokenA) . ba lanceOf (address (t h i s)) >= amt . amtAMin) ;
277 r equ i r e (IERC20 (tokenB) . ba lanceOf (address (t h i s)) >= amt . amtBMin) ;
278 r equ i r e (IERC20 (l p) . ba lanceOf (address (t h i s)) >= amt . amtLPWithdraw) ;

280 // 8. Refund leftover
281 doRefundETH () ;
282 doRefund (tokenA) ;
283 doRefund (tokenB) ;
284 doRefund (l p) ;
285 }

Listing 3.7: SushiswapSpellV1:: removeLiquidityInternal ()

Note that it operates on the AMM-backed pool and naturally leads to slippage. Further, it is possi-
ble to be externally influenced (e.g., by sandwiched attacks). Note that the internal optimization logic
to minimize the trade incorrectly computes the arguments to swapTokensForExactTokens(). Specifi-
cally, the conditional check should not validate against amtA < amtARepay && amtB >= amtBRepay (line
260) and amtA >= amtARepay && amtB < amtBRepay (line 264). Instead the comparison should be amtA <

amtADesired && amtB >= amtBDesired (line 260) and amtA >= amtADesired && amtB < amtBDesired (line
264). And accordingly, the intended token amount for conversion should be amtADesired.sub(amtA)

or amtBDesired.sub(amtB), instead of current amtARepay.sub(amtA) (line 263) or amtBRepay.sub(amtB)

(line 268).
Also that the external influence could exploit the built-in slippage control to foil legitimate repay-

ment. A similar issue also exists in adding liquidity to the pool. We need to emphasize that this is a
common issue plaguing current AMM-based DEX solutions. Specifically, a large trade may be sand-

18/29 PeckShield Audit Report #: 2021-011

Public

wiched by a preceding sell to reduce the market price, and a tailgating buy-back of the same amount
plus the trade amount. Such sandwiching behavior unfortunately causes a loss and brings a smaller
return as expected to the trading user. As a mitigation, Nevertheless, we need to acknowledge that
this is largely inherent to current blockchain infrastructure and there is still a need to continue the
search efforts for an effective defense.

Recommendation Develop an effective mitigation to the above sandwich attack to better
protect the interests of liquidity providers.

Status This issue has been fixed in the following PR: 60.

3.7 Improved HouseHoldSpell::repayETH()

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: HouseHoldSpell

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [4]

Description

Among the set of Spell contracts, HouseHoldSpell is an interesting one with minimal implementation
(see the code snippet below). However, it contains a full implementation that conforms to the
standard API interfaces to interact with HomoraBank, i.e., doTransmit()/doTransmitETH(), doBorrow()/
doRepay(), and doPutCollateral()/doTakeCollateral().

9 cont ract HouseHo ldSpe l l i s Ba s i c S p e l l {
10 cons t ruc to r (
11 IBank _bank ,
12 address _werc20 ,
13 address _weth
14) pub l i c Ba s i c S p e l l (_bank , _werc20 , _weth) {}

16 f unc t i on borrowETH(u in t amount) ex te rna l {
17 doBorrow (weth , amount) ;
18 doRefundETH () ;
19 }

21 f unc t i on borrow (address token , u in t amount) ex te rna l {
22 doBorrow (token , amount) ;
23 doRefund (token) ;
24 }

26 f unc t i on repayETH (u in t amount) ex te rna l payable {
27 doTransmitETH () ;

19/29 PeckShield Audit Report #: 2021-011

https://github.com/AlphaFinanceLab/homora-v2/pull/60

Public

28 doRepay (weth , amount) ;
29 }

31 f unc t i on r epay (address token , u in t amount) ex te rna l {
32 doTransmit (token , amount) ;
33 doRepay (token , IERC20 (token) . ba lanceOf (address (t h i s))) ;
34 }

36 f unc t i on p u t C o l l a t e r a l (address token , u in t amount) ex te rna l {
37 doTransmit (token , amount) ;
38 d oPu tCo l l a t e r a l (token , IERC20 (token) . ba lanceOf (address (t h i s))) ;
39 }

41 f unc t i on t a k e C o l l a t e r a l (address token , u in t amount) ex te rna l {
42 doTak eCo l l a t e r a l (token , amount) ;
43 doRefund (token) ;
44 }
45 }

Listing 3.8: HouseHoldSpell

It comes to our attention that the logic of repayETH() can be improved when the given amount
is less than the transferred msg.value. In this case, the remaining ETH, i.e., msg.value - amount, will
be left on the contract. A better solution will be to refund the remaining amount, if any, back to
the user.

Recommendation Revise the repayETH() logic to refund remaining ETH if any.

26 f unc t i on repayETH (u in t amount) ex te rna l payable {
27 doTransmitETH () ;
28 doRepay (weth , amount) ;
29 }
30 }

Listing 3.9: HouseHoldSpell::repayETH()

Status This issue has been fixed in the following PR: 66.

20/29 PeckShield Audit Report #: 2021-011

https://github.com/AlphaFinanceLab/homora-v2/pull/66

Public

3.8 Timely poke() in HomoraBank::resolveReserve()

• ID: PVE-008

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: HomoraBank

• Category: Time and State [6]

• CWE subcategory: CWE-362 [2]

Description

In Alpha Homora V2, the HomoraBank contract is designed to be the main entry for interaction with
users. In particular, one entry routine, i.e., execute(), takes user calls and dispatches to the designated
caster, which further invokes specified Spell contracts. This approach is flexible to accommodate
dynamic additions of new Spell contracts and other functionalities.

In the following, we examine the borrow() operation that allows farming users to take a leveraged
position in borrowing funds from the integrated CREAMv2. It emphasizes in its doBorrow() routine the
need of ensuring that cToken interest should be accrued up to this block before calling doBorrow().

415 /// @dev Borrow tokens from that bank. Must only be called while under execution.
416 /// @param token The token to borrow from the bank.
417 /// @param amount The amount of tokens to borrow.
418 f unc t i on borrow (address token , u in t amount) ex te rna l o v e r r i d e i nExec poke (token) {
419 Bank storage bank = banks [token] ;
420 r equ i r e (bank . i s L i s t e d , ’bank not exists ’) ;
421 Po s i t i o n storage pos = p o s i t i o n s [POSITION_ID] ;
422 u in t t o t a l S h a r e = bank . t o t a l S h a r e ;
423 u in t t o t a lDeb t = bank . t o t a lDeb t ;
424 u in t s ha r e = t o t a l S h a r e == 0 ? amount : amount . mul (t o t a l S h a r e) . d i v (t o t a lDeb t) ;
425 bank . t o t a l S h a r e = bank . t o t a l S h a r e . add (s ha r e) ;
426 u in t newShare = pos . debtShareOf [token] . add (s ha r e) ;
427 pos . debtShareOf [token] = newShare ;
428 i f (newShare > 0) {
429 pos . debtMap |= (1 « u in t (bank . i nd ex)) ;
430 }
431 IERC20 (token) . s a f eT r a n s f e r (msg . sender , doBorrow (token , amount)) ;
432 emit Borrow (POSITION_ID , msg . sender , token , amount , s h a r e) ;
433 }

Listing 3.10: HomoraBank::borrow()

523 /// @dev Internal function to perform borrow from the bank and return the amount
received.

524 /// @param token The token to perform borrow action.
525 /// @param amountCall The amount use in the transferFrom call.
526 /// NOTE: Caller must ensure that cToken interest was already accrued up to this block

.
527 f unc t i on doBorrow (address token , u in t amountCal l) i n t e r n a l r e tu rn s (u in t) {

21/29 PeckShield Audit Report #: 2021-011

Public

528 Bank storage bank = banks [token] ; // assume the input is already sanity checked.
529 u in t ba l a n c eBe f o r e = IERC20 (token) . ba lanceOf (address (t h i s)) ;
530 r equ i r e (ICErc20 (bank . cToken) . borrow (amountCa l l) == 0 , ’bad borrow ’) ;
531 u in t b a l a n c eA f t e r = IERC20 (token) . ba lanceOf (address (t h i s)) ;
532 bank . t o t a lDeb t = bank . t o t a lDeb t . add (amountCal l) ;
533 re tu rn b a l a n c eA f t e r . sub (ba l a n c eBe f o r e) ;
534 }

Listing 3.11: HomoraBank::doBorrow()

This is necessary as if the cToken interest is not accrued to the current block, the bank’s debt will
simply increase without HomoraBank knowing it. The may result in a slightly higher debt share (but
not much) for previous borrowers.

Meanwhile, we notice the presence of another routine resolveReserve() that is used to resolve
pendingReserve. This routine calls doBorrow(), but without accruing the cToken interest to the current
block!

157 /// @dev Trigger reserve resolve by borrowing the pending amount for reserve.
158 /// @param token The underlying token to trigger reserve resolve.
159 f unc t i on r e s o l v e R e s e r v e (address token) pub l i c l o c k {
160 Bank storage bank = banks [token] ;
161 r equ i r e (bank . i s L i s t e d , ’bank not exists ’) ;
162 u in t pend ingRese r v e = bank . pend ingRese r v e ;
163 bank . pend ingRese r v e = 0 ;
164 bank . r e s e r v e = bank . r e s e r v e . add (doBorrow (token , pend ingRese r v e)) ;
165 }

Listing 3.12: HomoraBank::removeLiquidityInternal()

Recommendation Revise the resolveReserve() routine by adding the poke() modifier. An
example revision is shown below:

157 /// @dev Trigger reserve resolve by borrowing the pending amount for reserve.
158 /// @param token The underlying token to trigger reserve resolve.
159 f unc t i on r e s o l v e R e s e r v e (address token) pub l i c l o c k poke (token) {
160 Bank storage bank = banks [token] ;
161 r equ i r e (bank . i s L i s t e d , ’bank not exists ’) ;
162 u in t pend ingRese r v e = bank . pend ingRese r v e ;
163 bank . pend ingRese r v e = 0 ;
164 bank . r e s e r v e = bank . r e s e r v e . add (doBorrow (token , pend ingRese r v e)) ;
165 }

Listing 3.13: Revised HomoraBank::removeLiquidityInternal()

Status This issue has been fixed in the following PR: 67.

22/29 PeckShield Audit Report #: 2021-011

https://github.com/AlphaFinanceLab/homora-v2/pull/67

Public

3.9 Lack of ETH-Related Handling in CurveSpellV1

• ID: PVE-009

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: CurveSpellV1

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [4]

Description

In Section 3.7, we have examined a specific HouseHoldSpell contract. In this section, we examine
another Spell contract, i.e., CurveSpellV1. This CurveSpellV1 contract aims to seamlessly support
farming with Curve pool tokens. Currently, there are more than 20 Curve pools that provide decent
yields from collected trading fees.

In the following, we show a specific addLiquidity2() routine that supports the liquidity addition for
pools with two underlying tokens. Note this routine is marked as payable, indicating the acceptance
of ETH. However, the internal logic does not transfer ETH to the corresponding Curve pool. There is
also no call to convert ETH into WETH. As a result, the current implementation is unable to support
ETH-related pools. Note that there are at least two ETH-related Curve pools: seth and steth.

64 /// @dev add liquidity for pools with 2 underlying tokens
65 f unc t i on a d dL i q u i d i t y 2 (
66 address lp ,
67 u in t [2] c a l l d a t a amtsUser ,
68 u in t amtLPUser ,
69 u in t [2] c a l l d a t a amtsBorrow ,
70 u in t amtLPBorrow ,
71 u in t minLPMint ,
72 u in t pid ,
73 u in t g i d
74) ex te rna l payable {
75 address poo l = getPoo l (l p) ;
76 r equ i r e (u lTokens [l p] . l ength == 2 , ’incorrect pool length ’) ;
77 r equ i r e (wgauge . ge tUnde r l y i ngToken (wgauge . encode Id (pid , g id , 0)) == lp , ’incorrect

underlying ’) ;
78 address [] memory tokens = ulTokens [l p] ;
79
80 // 0. Take out collateral
81 u in t p o s i t i o n I d = bank . POSITION_ID () ;
82 (, , u in t c o l l I d , u in t c o l l S i z e) = bank . g e t P o s i t i o n I n f o (p o s i t i o n I d) ;
83 i f (c o l l S i z e > 0) {
84 (u in t decodedPid , u in t decodedGid ,) = wgauge . decode Id (c o l l I d) ;
85 r equ i r e (decodedPid == p id && decodedGid == gid , ’incorrect coll id’) ;
86 bank . t a k e C o l l a t e r a l (address (wgauge) , c o l l I d , c o l l S i z e) ;
87 wgauge . burn (c o l l I d , c o l l S i z e) ;
88 }

23/29 PeckShield Audit Report #: 2021-011

Public

89
90 // 1. Ensure approve 2 underlying tokens
91 ensureApproveN (lp , 2) ;
92
93 // 2. Get user input amounts
94 f o r (u in t i = 0 ; i < 2 ; i++) doTransmit (tokens [i] , amtsUser [i]) ;
95 doTransmit (lp , amtLPUser) ;
96
97 // 3. Borrow specified amounts
98 f o r (u in t i = 0 ; i < 2 ; i++) doBorrow (tokens [i] , amtsBorrow [i]) ;
99 doBorrow (lp , amtLPBorrow) ;

100
101 // 4. add liquidity
102 u in t [2] memory supp l i edAmts ;
103 f o r (u in t i = 0 ; i < 2 ; i++) {
104 supp l i edAmts [i] = IERC20 (tokens [i]) . ba lanceOf (address (t h i s)) ;
105 }
106 ICu rvePoo l (poo l) . a d d_ l i q u i d i t y (supp l i edAmts , minLPMint) ;
107
108 // 5. Put collateral
109 u in t amount = IERC20 (l p) . ba lanceOf (address (t h i s)) ;
110 ensureApprove (lp , address (wgauge)) ;
111 u in t i d = wgauge . mint (p id , g id , amount) ;
112 bank . p u t C o l l a t e r a l (address (wgauge) , id , amount) ;
113
114 // 6. Refund
115 f o r (u in t i = 0 ; i < 2 ; i++) doRefund (tokens [i]) ;
116
117 // 7. Refund crv
118 doRefund (c r v) ;
119 }

Listing 3.14: CurveSpellV1:: addLiquidity2 ()

In addition, the corresponding removeLiquidity() counterparts do not need to be payable.

Recommendation Revise the above liquidity addition and removal logic to reflect the intended
purpose.

Status This issue has been fixed in the following PR: 69.

24/29 PeckShield Audit Report #: 2021-011

https://github.com/AlphaFinanceLab/homora-v2/pull/69

Public

3.10 Proper Handling of Old Borrows in
HomoraBank::setCToken()

• ID: PVE-010

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: HomoraBank

• Category: Business Logic [8]

• CWE subcategory: CWE-841 [4]

Description

In Section 3.1, we study the setCToken() routine and report an issue in canceling previous spending
allowance. In this section, we focus on the same routine and examine possible implications from this
routine.

To elaborate, we shown below the routine’s implementation. This routine allows for dynamic
upgrade of a cToken contract address to a new one. Note cTokens are a back-end unit of account
for the Compound/CREAMv2 protocol: When a user supplies cryptocurrency to the protocol, cTokens are
used to keep track of the funds that they have lent, as well as any interest earned.

322 /// @dev Upgrade cToken contract address to a new address. Must be used with care!
323 /// @param token The underlying token for the bank.
324 /// @param cToken The address of the cToken smart contract.
325 f unc t i on setCToken (address token , address cToken) ex te rna l onlyGov {
326 Bank storage bank = banks [token] ;
327 r equ i r e (! cTokenInBank [cToken] , ’cToken already exists ’) ;
328 r equ i r e (bank . i s L i s t e d , ’bank not exists ’) ;
329 cTokenInBank [bank . cToken] = f a l s e ;
330 cTokenInBank [cToken] = t rue ;
331 IERC20 (bank . cToken) . s a f eApprove (cToken , 0) ;
332 IERC20 (token) . s a f eApprove (cToken , 0) ;
333 IERC20 (token) . s a f eApprove (cToken , u in t (−1)) ;
334 bank . cToken = cToken ;
335 emit SetCToken (token , cToken) ;
336 }

Listing 3.15: HomoraBank::setCToken()

46 s t r u c t Bank {
47 bool i s L i s t e d ; // Whether this market exists.
48 u int8 i n d e x ; // Reverse look up index for this bank.
49 address cToken ; // The CToken to draw liquidity from.
50 u in t r e s e r v e ; // The reserve portion allocated to Homora protocol.
51 u in t pend ingRese r v e ; // The pending reserve portion waiting to be resolve.
52 u in t t o t a lDeb t ; // The last recorded total debt since last action.
53 u in t t o t a l S h a r e ; // The total debt share count across all open positions.

25/29 PeckShield Audit Report #: 2021-011

Public

54 }

Listing 3.16: The Bank Structure

When the cToken mapping is changed, the purpose is to redirect the drawing of liquidity from
another pool. However, the associated meta-data or states, especially totalDebt, reserve, and
pendingReserve, are not properly updated. With that, if a malicious actor simply calls accrue(), the
current totalDebt is reset to 0! This may potentially make this contract stop working as totalDebt

is used in both borrow() and repay() operations. Its denominator role leads to divide-by-zero error,
reverting these borrow() and repay() operations.

129 /// @dev Trigger interest accrual for the given bank.
130 /// @param token The underlying token to trigger the interest accrual.
131 f unc t i on acc rue (address token) pub l i c o v e r r i d e {
132 Bank storage bank = banks [token] ;
133 r equ i r e (bank . i s L i s t e d , ’bank not exists ’) ;
134 u in t t o t a lDeb t = bank . t o t a lDeb t ;
135 u in t debt = ICErc20 (bank . cToken) . bo r rowBa lanceCur r en t (address (t h i s)) ;
136 i f (debt > to t a lDeb t) {
137 u in t f e e = debt . sub (t o t a lDeb t) . mul (f eeBps) . d i v (10000) ;
138 bank . t o t a lDeb t = debt ;
139 bank . pend ingRese r v e = bank . pend ingRese r v e . add (f e e) ;
140 } e l s e i f (t o t a lDeb t != debt) {
141 // We should never reach here because CREAMv2 does not support *repayBorrowBehalf*
142 // functionality. We set bank.totalDebt = debt nonetheless to ensure consistency.

But do
143 // note that if *repayBorrowBehalf* exists , an attacker can maliciously deflate

debt
144 // share value and potentially make this contract stop working due to math

overflow.
145 bank . t o t a lDeb t = debt ;
146 }
147 }

Listing 3.17: HomoraBank::accrue()

Recommendation Properly handle previous borrows when calling setCToken to update new
cToken.

Status This issue has been fixed as the affected setCToken() routine has been removed in the
following PR: 62.

26/29 PeckShield Audit Report #: 2021-011

https://github.com/AlphaFinanceLab/homora-v2/pull/62

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Alpha Homora V2 protocol. The
system presents a clean and consistent design that makes it distinctive and valuable when compared
with current yield farming offerings. The current code base is well organized and those identified
issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

27/29 PeckShield Audit Report #: 2021-011

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization

(’Race Condition’). https://cwe.mitre.org/data/definitions/362.html.

[3] MITRE. CWE-561: Dead Code. https://cwe.mitre.org/data/definitions/561.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: 7PK - Time and State. https://cwe.mitre.org/data/definitions/

361.html.

[7] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[8] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

28/29 PeckShield Audit Report #: 2021-011

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/361.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html

Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

29/29 PeckShield Audit Report #: 2021-011

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Alpha Homora V2
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Proper Allowance Cancellation in HomoraBank::setCToken()
	Improved Corner Cases in HomoraMath::sqrt()
	Tighter Restriction of ensureApprove()
	Improved Sanity Checks in BasicSpell::doTakeCollateral()
	Immutable States If Only Set at Constructor()
	Better Slippage Control/Possible DoS in SushiswapSpellV1/UniswapV2SpellV1 Repay
	Improved HouseHoldSpell::repayETH()
	Timely poke() in HomoraBank::resolveReserve()
	Lack of ETH-Related Handling in CurveSpellV1
	Proper Handling of Old Borrows in HomoraBank::setCToken()

	Conclusion
	References

