
 

dHEDGE Buyback Protocol 
05/09/2024 

Trust 
Security 

 

 

 

Smart Contract Audit 

  



Trust Security  dHEDGE Buyback Protocol
  
  

Executive summary 
 

 

  

 

Findings 

Severity Total Open Fixed Acknowledged 

High 1 0 1 0 

Medium 2 0 2 0 

Low 0 0 0 0 

 

Centralization score 

 

 

Centralized                   Decentralized 

 

Signature  

Category Launch 
Platforms 

Audited file count 6 

Lines of Code 454 

Auditor MiloTruck 
SpicyMeatball 

Time period 16-26/08/24 

1, High

2, 
Medium

FINDINGS



Trust Security  dHEDGE Buyback Protocol
  
  

EXECUTIVE SUMMARY 1 

DOCUMENT PROPERTIES 3 

Versioning 3 

Contact 3 

INTRODUCTION 4 

Scope 4 

Repository details 4 

About Trust Security 4 

About the Auditors 5 

Disclaimer 5 

Methodology 5 

QUALITATIVE ANALYSIS 6 

FINDINGS 7 

High severity findings 7 
TRST-H-1: Out-of-order execution changes the tokens received on L2 7 

Medium severity findings 11 
TRST-M-1: Incorrect lastTokenToBuyPrice update in L2ComptrollerV2Base._redeem() 11 
TRST-M-2: L2ComptrollerV2Base.claim() cannot be called by contracts on L2 11 

Centralization risks 15 
TRST-CR-1: Owner risks 15 

 

  



Trust Security  dHEDGE Buyback Protocol
  
  

Document properties 
 

Versioning 
 

Version Date Description 

0.1 26/08/24 Client report 

0.2 31/08/24 Mitigation review 

0.3 05/09/24 Final Report 

 

Contact 
 

Trust 

trust@trust-security.xyz 

  



Trust Security  dHEDGE Buyback Protocol
  
  

Introduction 
 

Trust Security has conducted an audit at the customer's request. The audit is focused on 

uncovering security issues and additional bugs contained in the code defined in scope. Some 

additional recommendations have also been given when appropriate. 

 

Scope 
 

Changes to the following files in PR #21: 

• src/abstracts/L1ComptrollerV2Base.sol 

• src/abstracts/L2ComptrollerV2Base.sol 

• src/arb-stack/L1ComptrollerArb.sol 

• src/arb-stack/L2ComptrollerArb.sol 

• src/op-stack/v2/L1ComptrollerOPV2.sol 

• src/op-stack/v2/L2ComptrollerOPV2.sol 

 

Repository details 
 

• Repository URL: https://github.com/dhedge/buyback-contract 

• Commit hash: 9fed663d5697ffe8c755818a030625473d9571cb 

• Mitigation review commit hash: 712009e1643fb9f265edb2f2c8b94295961b5edd 

• Final Commit hash: 532b3d43a98d982fd56b7f9749a812af5e3e7770 

 

About Trust Security 
 

Trust Security has been established by top-end blockchain security researcher Trust, in order 

to provide high quality auditing services. Since its inception it has safeguarded over 30 clients 

through private services and over 30 additional projects through bug bounty submissions. 

 

  

https://github.com/dhedge/buyback-contract/pull/21
https://github.com/dhedge/buyback-contract


Trust Security  dHEDGE Buyback Protocol
  
  

About the Auditors 
 

MiloTruck is a blockchain security researcher who specializes in smart contract security. Since 

March 2022, he has competed in over 25 auditing contests on Code4rena and won several of 

them against the best auditors in the field. He has also found multiple critical bugs in live 

protocols on Immunefi and is an active judge on Code4rena. 

 

SpicyMeatball is a member of the Code4rena Pro League and has reported over 100 bugs in 

various DeFi protocols. 

 

Disclaimer 
 

Smart contracts are an experimental technology with many known and unknown risks. Trust 

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited 

code or any part of the deployment phase. 

Furthermore, it is known to all parties that changes to the audited code, including fixes of 

issues highlighted in this report, may introduce new issues and require further auditing. 

 

Methodology 
 

In general, the primary methodology used is manual auditing. The entire in-scope code has 

been deeply looked at and considered from different adversarial perspectives. Any additional 

dependencies on external code have also been reviewed. 



Trust Security  dHEDGE Buyback Protocol
  
  

Qualitative analysis 
 

Metric Rating Comments 
Code complexity 
 

Good 
 

Project kept code as 
simple as possible, 
reducing attack risks. 

Documentation 
 

Good 
 

Project is adequately 
documented. 

Best practices 
 

Excellent 
 

Project consistently 
adheres to best practices. 

Centralization risks 
 

Moderate  Project has some 
centralization risks. 

  



Trust Security  dHEDGE Buyback Protocol
  
  

Findings 
 

High severity findings 
 

TRST-H-1: Out-of-order execution changes the tokens received on L2 

• Category:  Logical flaws 

• Source: L2ComptrollerV2Base.sol 

• Status: Fixed 

Description 

In L2ComptrollerV2Base.redeemFromL1(), burnTokenAmount represents the remaining 

amount of tokens that a user can claim, based on how much tokens was burnt on L1:  

// The difference of both these variables tell us the claimable token amount in 

`tokenToBurn` denomination. 

uint256 burnTokenAmount = totalAmountBurntOnL1 - totalAmountClaimed; 

 

burnTokenAmount is passed to _redeem(), which means the function attempts to claim the 

entire remaining amount: 

// The reason we are using try-catch block is that we want to store the 

`totalAmountBurntOnL1` 

// regardless of the failure of the `_redeem` function. This allows for the depositor 

// to claim their share on L2 later. 

try this._redeem(tokenBurned, IPoolLogic(tokenToBuy), burnTokenAmount, receiver) 

returns ( 

    uint256 buyTokenAmount 

) { 
 

However, if a user makes multiple calls to L1ComptrollerV1Base.redeem() with a different 

tokenToBuy, burnTokenAmount or receiver, this could cause the tokens received on L2 to be 

different from what the user intended. 

Assume a user calls L1ComptrollerV1Base.redeem() twice with the same tokenToBurn: 

1. User calls L2ComptrollerV2Base.redeemFromL1() to send 1000 BY1 tokens to Alice: 

a. tokenToBuy as BY1, burnTokenAmount as 1000, receiver as Alice 

2. User calls L2ComptrollerV2Base.redeemFromL1() to send 1000 BY2 tokens to Bob: 

a. tokenToBuy as BY2, burnTokenAmount as 1000, receiver as Bob 

If both L1 to L2 transactions are received in order on L2: 

• In the first call to L2ComptrollerV2Base.redeemFromL1(): 

o totalAmountBurntOnL1 = 1000 

o burnTokenAmount = 1000 – 0 = 1000 

o Alice receives 1000 BY1 

• In the second call to L2ComptrollerV2Base.redeemFromL1(): 



Trust Security  dHEDGE Buyback Protocol
  
  

o totalAmountBurntOnL1 = 2000 

o burnTokenAmount = 2000 – 1000 = 1000 

o Bob receives 1000 BY2 

• As expected, Alice receives 1000 BY1 and Bob receives 1000 BY2 

However, assume the first L1 to L2 transaction fails and is not executed. When the second 

transaction is executed: 

• totalAmountBurntOnL1 = 2000 

• burnTokenAmount = 2000 – 0 = 0 

• Bob receives 2000 BY2 

Unexpectedly, Alice received nothing and Bob receives twice the amount of BY2 than intended. 

Therefore, when users make multiple calls to L2ComptrollerV2Base.redeemFromL1(), there is no 

guarantee that they will receive the specified amount of tokens on L2. 

Note that the same outcome occurs if the first L1 to L2 transaction was executed, but 

_redeem() reverted. 

Recommended mitigation 

Consider passing burnTokenAmount from L1 to L2 and redeeming it on L2, instead of the total 

remaining amount to be claimed. 

Add an amountBurntOnL1 parameter to L2ComptrollerV2Base.redeemFromL1(): 

  function redeemFromL1( 

      address tokenBurned, 

      address tokenToBuy, 

+     uint256 amountBurntOnL1 

      uint256 totalAmountBurntOnL1, 

      address l1Depositor, 

      address receiver 

  ) external whenNotPaused { 
 

When calling _redeem(), pass amountBurntOnL1 instead of burnTokenAmount: 

- try this._redeem(tokenBurned, IPoolLogic(tokenToBuy), burnTokenAmount, receiver) 

returns ( 

+ try this._redeem(tokenBurned, IPoolLogic(tokenToBuy), amountBurntOnL1, receiver) 

returns ( 

      uint256 buyTokenAmount 

  ) { 
 

In L1ComptrollerV1Base.redeem(), pass burnTokenAmount as the amount of tokens burnt for 

this call: 



Trust Security  dHEDGE Buyback Protocol
  
  

  // Send a cross chain message to `l2Comptroller` for releasing the buy tokens. 

  _sendMessage( 

      abi.encodeCall( 

          L2ComptrollerV2Base.redeemFromL1, 

-         (tokenToBurn, tokenToBuy, totalBurntAmount, msg.sender, receiver) 

+         (tokenToBurn, tokenToBuy, burnTokenAmount, totalBurntAmount, msg.sender, 

receiver) 

      ), 

      additionalData 

  ); 
 

Note that with this change, if _redeem() or an L1 to L2 transaction fails, users must call 

L2ComptrollerV2Base.claim() to receive their funds. 

Team response 

Fixed in PR #28. 

The purpose for providing a receiver field in the redeem function in the L1ComptrollerV2 

contract was simply to allow smart contract wallet users or similar as the same address may 

not be available on the destination chain. While not clearly written in the docs or in the 

contract comments, it's assumed that the receiver address is an address in control of the 

token burner (the caller of the redeem function). 

An easier approach is to remove l1depositor dependency altogether. Given that the 

L2Comptroller doesn't really care if the tokens have been burnt by the receiver or the 

l1depositor as long as the amount passed by the L1Comptroller is correct, this approach 

works. This means instead of storing the burnt amount of the l1depositor (which actually 

burnt the tokens), we store the amount for the receiver. 

Mitigation review 

We did consider this when thinking of potential mitigations, but with this approach, anyone 

can call L1ComptrollerV2Base.redeem() to redeem tokens on another's behalf. 

For example: 

• User calls L1ComptrollerV1Base.redeem() with tokenToBuy as BY1, receiver as Alice. 

• Assume the L1 -> L2 transaction fails, or is delayed. 

• Attacker calls L1ComptrollerV1Base.redeem() with tokenToBuy as BY2, receiver as 

Alice, and burnTokenAmount as 0. 

• This causes Alice to receive BY2 instead of BY1. 

I would recommend changing both L1ComptrollerV2Base and L2ComptrollerV2Base to store 

a mapping of depositor => receiver => tokenToBurn => amount. 

This ensures that a user can only trigger L2ComptrollerV2Base.redeemFromL1() for a receiver 

with tokens that he had burned. claim() can still called by the receiver address, but he has to 

pass the l1Depositor address. 

Team response 

Amended in PR #29. 

https://github.com/dhedge/buyback-contract/pull/28
https://github.com/dhedge/buyback-contract/pull/29


Trust Security  dHEDGE Buyback Protocol
  
  
Mitigation review 

Verified, the recommended fix was implemented. 

  



Trust Security  dHEDGE Buyback Protocol
  
  

Medium severity findings 
 

TRST-M-1: Incorrect lastTokenToBuyPrice update in L2ComptrollerV2Base._redeem() 
● Category:  Logical flaws 

● Source: L2ComptrollerV2Base.sol 

● Status: Fixed 

Description 

In L2ComptrollerV2Base._redeem(), when the new token price is larger than the previous 

token price, lastTokenToBuyPrice is updated as such: 

// Updating the buy token price for future checks. 

if (lastTokenToBuyPrice < tokenToBuyPrice) { 

    lastTokenToBuyPrice = tokenToBuyPrice; 

 

    emit BuyTokenPriceUpdated(tokenToBuy, tokenToBuyPrice); 

} 
 

However, since lastTokenToBuyPrice is a local variable, this statement does not actually 

update the contract’s state. 

As a result, the price check does not work as the token’s price will never increase. 

 

Recommended mitigation 

  // Updating the buy token price for future checks. 

  if (lastTokenToBuyPrice < tokenToBuyPrice) { 

-     lastTokenToBuyPrice = tokenToBuyPrice; 

+     buyTokenDetails[tokenToBuy].lastTokenToBuyPrice = tokenToBuyPrice; 

 

      emit BuyTokenPriceUpdated(tokenToBuy, tokenToBuyPrice); 

  } 
 

Team response 

Fixed in PR #27. 

Mitigation review 

Verified, the recommended fix was implemented. 

 

TRST-M-2: L2ComptrollerV2Base.claim() cannot be called by contracts on L2 
● Category:  Logical flaws 

● Source: L2ComptrollerV2Base.sol  

● Status: Fixed 

Description 

https://github.com/dhedge/buyback-contract/pull/27


Trust Security  dHEDGE Buyback Protocol
  
  
When L2ComptrollerV2Base.redeemFromL1() is called, the l1Depositor parameter contains 

the address that called L1ComptrollerV2Base.redeem(). This address is used as the depositor 

in the burnAndClaimDetails mapping: 

// Store the new total amount of tokens burnt on L1 and claimed against on L2. 

burnAndClaimDetails[l1Depositor][tokenBurned].totalAmountBurned = 

totalAmountBurntOnL1; 
 

If _redeem() or a previous L1 to L2 transaction failed, users can claim their tokens by calling 

L2ComptrollerV2Base.claim(). 

claim() takes msg.sender as the depositor address: 

// `totalAmountClaimed` is of the `tokenToBurn` denomination. 

uint256 totalAmountClaimed = 

burnAndClaimDetails[msg.sender][tokenBurned].totalAmountClaimed; 

uint256 totalAmountBurntOnL1 = 

burnAndClaimDetails[msg.sender][tokenBurned].totalAmountBurned; 
 

When EOAs call L1ComptrollerV2Base.redeem(), there is no issue as they have the same 

address on L1 and L2. 

However, if a contract on L1 calls L1ComptrollerV2Base.redeem() and _redeem() fails, it is 

impossible for them to call claim() on L2. This is because contracts usually do not have the 

same address across different chains. 

As a result, contracts that bridge tokens using the protocol will be unable to directly claim 

their funds on L2. 

Recommended mitigation 

If contracts are not meant to bridge tokens using the protocol, consider reverting in 

L1ComptrollerV2Base.redeem() if the caller is a contract. 

Otherwise, consider allowing users to specify an address to call claim() on their behalf on L2. 

In L1ComptrollerV2Base.redeem(), add a claimer parameter that is sent to L2: 



Trust Security  dHEDGE Buyback Protocol
  
  

    function redeem( 

        address tokenToBurn, 

        address tokenToBuy, 

        uint256 burnTokenAmount, 

        address receiver, 

+       address claimer, 

        bytes memory additionalData 

    ) public payable whenNotPaused whenL2ComptrollerSet { 

        // ... 

 

        // Send a cross chain message to `l2Comptroller` for releasing the buy tokens. 

        _sendMessage( 

            abi.encodeCall( 

                L2ComptrollerV2Base.redeemFromL1, 

-               (tokenToBurn, tokenToBuy, totalBurntAmount, msg.sender, receiver) 

+               (tokenToBurn, tokenToBuy, totalBurntAmount, msg.sender, receiver, 

claimer) 

            ), 

            additionalData 

        ); 
 

When L2ComptrollerV2Base.redeemFromL1() is called, store the claimer address in the 

burnAndClaimDetails mapping: 

   struct BurnAndClaimDetails { 

      uint256 totalAmountBurned; 

      uint256 totalAmountClaimed; 

+     address claimer; 

  } 
\ 

  // Store the new total amount of tokens burnt on L1 and claimed against on L2. 

  burnAndClaimDetails[l1Depositor][tokenBurned].totalAmountBurned = 

totalAmountBurntOnL1; 

+ burnAndClaimDetails[l1Depositor][tokenBurned].claimer = claimer; 
 

In claim(), allow the caller to be either the l1Depositor or claimer address: 

  function claim( 

      address tokenBurned, 

      IPoolLogic tokenToBuy, 

      uint256 burnTokenAmount, 

+     address l1Depositor, 

      address receiver 

  ) public whenNotPaused { 

+     address claimer = burnAndClaimDetails[l1Depositor][tokenBurned].claimer; 

+     if (msg.sender != l1Depositor && msg.sender != claimer) { 

+         revert NotL1DepositorOrClaimer(); 

+     } 



Trust Security  dHEDGE Buyback Protocol
  
  
Team response 

Fixed in PR #29. 

Mitigation review 

Verified, this issue has been fixed as the receiver address can now call claim().  

https://github.com/dhedge/buyback-contract/pull/29


Trust Security  dHEDGE Buyback Protocol
  
  

Centralization risks 
 

TRST-CR-1: Owner risks 
 

Due to the existence of an owner, the protocol should be considered fully centralized. The 

owner can cause a user to lose funds in numerous ways, for example, he can:  

• Misconfigure the price of burnt tokens on L2. 

• Not transfer tokens to the L2Comptroller contract, causing it to have insufficient 

liquidity. 

• Prevent users from receiving funds on L2 by: 

o Removing all tokens that can be bought from buyTokenDetails. 

o Changing the l1Comptroller address. 

o Changing chain-specific configuration values, such as 

crossDomainMessenger for Optimism. 

If the owner address is compromised and becomes malicious, it should be assumed that the 

protocol can be exploited. 

 

 

 


		2024-09-05T10:28:25+0300
	Trust




