
Project: AGS Finance Protocol
Website: https://ags.finance
Platform: Astar Network
Language: Solidity
Date: May 10th, 2022

https://ags.finance

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 14

Audit Findings …………………………………………………………………………………… 15

Conclusion ………………………………………………………………………………………. 19

Our Methodology ………………………………………………………………………………... 20

Disclaimers ………………………………………………………………………………………. 22

Appendix

● Code Flow Diagram ……………………………………………………………………... 23

● Slither Results Log ………………………………………………………………………. 28

● Solidity static analysis ….……………………………………………………………….. 32

● Solhint Linter …………………………………………………………………….……….. 39

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the AGS Finance team to perform the Security audit of
the AGS Finance Protocol smart contracts code. The audit has been performed using
manual analysis as well as using automated software tools. This report presents all the
findings regarding the audit performed on May 10th, 2022.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
The AGS Finance Contracts have functions like safeAgsTransfer, delegateBySig,

getPriorVotes, withdrawAll, harvest, setTreasury, safeAgsTransfer, emergencyWithdraw,

leaveStaking, createPair, allPairsLength, getAmountsOut, quote, etc.

Audit scope

Name Code Review and Security Analysis Report for
AGS Finance Protocol Smart Contracts

Platform Astar / Solidity

File 1 AgsRouter.sol

File 1 MD5 Hash DBD0DDCA78C5BFFC84C384345AE1C7C3

File 2 AgsFactory.sol

File 2 MD5 Hash 599A3543BF3EC943FA16361FC705DB5C

File 3 MasterGrimace.sol

File 3 MD5 Hash 25880AD1D7252F826EF6E997EDF04399

File 4 AgsVault.sol

File 4 MD5 Hash 1635ED38C5F796EE544465813D0C3EC2

File 5 SyrupBar.sol

File 5 MD5 Hash 2CBD197D511776808B4A945A2CAC62E3

Audit Date May 10th, 2022

https://blockscout.com/astar/address/0xd14CF52c8fea176002eeB2D9C0866c794516776c/contracts
https://blockscout.com/astar/address/0x6A6a541FFb214ca228A58c27bD61b5A099Dc82CC/contracts
https://blockscout.com/astar/address/0xE22BA3140A64a3e27a1eEf6697FF8Be17747901c/contracts
https://blockscout.com/astar/address/0xE22BA3140A64a3e27a1eEf6697FF8Be17747901c/contracts
https://blockscout.com/astar/address/0xE2Ad699719a4a02b1F0f328204335B4aa9e87755/contracts

Claimed Smart Contract Features

Claimed Feature Detail Our Observation

File 1 AgsRouter.sol
● AgsRouter has functions like: receive, addLiquidity,

removeLiquidity, swapTokensForExactTokens,etc.

YES, This is valid.

File 2 AgsFactory.sol
● AgsFactory has functions like: allPairsLength,

createPair, setFeeTo, setFeeToSetter.

YES, This is valid.

File 3 MasterGrimace.sol
● NFT Boost Rate: 1%

● Bonus Multiplier: 1

YES, This is valid.
Owner authorized wallet
can set some percentage
value and we suggest
handling the private key of
that wallet securely.

File 4 AgsVault.sol
● Maximum Performance Fee: 5%

● Maximum Call Fee: 1%

● Maximum Withdraw Fee: 1%

● Maximum Withdraw Fee Period: 3 Days

● Performance Fee: 2%

● Call Fee: 0.25%

● Withdraw Fee: 0.1%

● Withdraw Fee Period: 3 Days

YES, This is valid.
Owner authorized wallet
can set some percentage
value and we suggest
handling the private key of
that wallet securely.

File 5 SyrupBar.sol
● Name: SyrupBar Token

● Symbol: SYRUP

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Secured”. This token contract does contain owner control, which does not make it fully
decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 0 high, 0 medium and 3 low and some very low level issues.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability N/A
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Passed
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Moderated

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
This audit scope has 5 smart contract files. Smart contracts contain Libraries, Smart

contracts, inherits and Interfaces. This is a compact and well written smart contract.

The libraries in the AGS Finance Protocol are part of its logical algorithm. A library is a

different type of smart contract that contains reusable code. Once deployed on the

blockchain (only once), it is assigned a specific address and its properties / methods can

be reused many times by other contracts in the AGS Finance Protocol.

The AGS Finance team has not provided unit test scripts, which would have helped to

determine the integrity of the code in an automated way.

Code parts are well commented on smart contracts.

Documentation

We were given an AGS Finance Protocol smart contract code in the form of a blockscout

astar weblink. The hash of that code is mentioned above in the table.

As mentioned above, code parts are well commented. So it is easy to quickly understand

the programming flow as well as complex code logic. Comments are very helpful in

understanding the overall architecture of the protocol.

Another source of information was its official website https://ags.finance which provided

rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contracts infrastructure that are

based on well known industry standard open source projects.

Apart from libraries, its functions are used in external smart contract calls.

https://ags.finance

AS-IS overview

AgsRouter.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 ensure modifier Passed No Issue
3 receive external Passed No Issue
4 _addLiquidity internal Passed No Issue
5 addLiquidity external Passed No Issue
6 addLiquidityETH external Passed No Issue
7 removeLiquidity write Passed No Issue
8 removeLiquidityETH write Passed No Issue
9 removeLiquidityWithPermit external Passed No Issue

10 removeLiquidityETHWithP
ermit

external Passed No Issue

11 removeLiquidityETHSuppo
rtingFeeOnTransferTokens

external Passed No Issue

12 removeLiquidityETHWithP
ermitSupportingFeeOnTran
sferTokens

external Passed No Issue

13 _swap internal Passed No Issue
14 swapExactTokensForToken

s
external Passed No Issue

15 swapTokensForExactToken
s

external Passed No Issue

16 swapExactETHForTokens external Passed No Issue
17 swapTokensForExactETH external Passed No Issue
18 swapExactTokensForETH external Passed No Issue
19 swapETHForExactTokens external Passed No Issue
20 _swapSupportingFeeOnTr

ansferTokens
internal Passed No Issue

21 swapExactTokensForToken
sSupportingFeeOnTransfer
Tokens

internal Passed No Issue

22 swapExactETHForTokensS
upportingFeeOnTransferTo
kens

external Passed No Issue

23 swapExactTokensForETHS
upportingFeeOnTransferTo
kens

external Passed No Issue

24 quote write Passed No Issue
25 getAmountOut write Passed No Issue
26 getAmountIn write Passed No Issue
27 getAmountsOut read Passed No Issue
28 getAmountsIn read Passed No Issue

AgsFactory.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 allPairsLength external Passed No Issue
3 createPair external Passed No Issue
4 setFeeTo external Passed No Issue
5 setFeeToSetter external Passed No Issue

MasterGrimace.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 onlyWhitelisted modifier Passed No Issue
8 isWhitelist read Passed No Issue
9 setWhitelist external access only Owner No Issue

10 disableWhitelist external access only Owner No Issue
11 nonDuplicated modifier Passed No Issue
12 nonContract modifier Passed No Issue
13 getBoost read Passed No Issue
14 getSlots read Passed No Issue
15 getTokenIds read Passed No Issue
16 poolLength external Passed No Issue
17 getMultiplier write Passed No Issue
18 pendingAgs external Passed No Issue
19 add write Critical operation

lacks event log,
Function input

parameters lack of
check

Refer Audit
Findings

20 set write Critical operation
lacks event log

Refer Audit
Findings

21 updateStakingPool internal Passed No Issue
22 depositNFT write Passed No Issue
23 withdrawNFT write Passed No Issue
24 massUpdatePools write Critical operation

lacks event log,
Infinite loop

No Issue

25 updatePool write Critical operation
lacks event log

Refer Audit
Findings

26 deposit write Passed No Issue
27 withdraw write Passed No Issue
28 enterStaking write Passed No Issue
29 leaveStaking write Passed No Issue
30 emergencyWithdraw write Passed No Issue
31 safeAgsTransfer internal Passed No Issue
32 updateEmissionRate write access only Owner No Issue
33 setNftController write Function input

parameters lack of
check

Refer Audit
Findings

34 setNftBoostRate write access only Owner No Issue
35 flipWhitelistAll write access only Owner No Issue
36 setEnableNFTBoost external access only Owner No Issue
37 dev write Function input

parameters lack of
check

Refer Audit
Findings

38 setStartBlock external access only Owner No Issue

AgsVault.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only Owner No Issue
5 transferOwnership write access only Owner No Issue
6 _transferOwnership internal Passed No Issue
7 paused read Passed No Issue
8 whenNotPaused modifier Passed No Issue
9 whenPaused modifier Passed No Issue

10 _pause internal Passed No Issue
11 _unpause internal Passed No Issue
12 onlyAdmin modifier Passed No Issue
13 notContract modifier Passed No Issue
14 deposit external Passed No Issue
15 withdrawAll external Passed No Issue
16 harvest external Passed No Issue
17 setAdmin external access only Owner No Issue
18 setTreasury external access only Owner No Issue
19 setPerformanceFee external access only Admin No Issue
20 setCallFee external access only Admin No Issue
21 setWithdrawFee external access only Admin No Issue
22 setWithdrawFeePeriod external access only Admin No Issue
23 emergencyWithdraw external access only Admin No Issue

24 inCaseTokensGetStuck external access only Admin No Issue
25 pause external access only Admin No Issue
26 unpause external access only Admin No Issue
27 calculateHarvestCakeRew

ards
external Passed No Issue

28 calculateTotalPendingCake
Rewards

external Passed No Issue

29 getPricePerFullShare external Passed No Issue
30 withdraw write Passed No Issue
31 available read Passed No Issue
32 balanceOf read Passed No Issue
33 _earn internal Passed No Issue
34 _isContract internal Passed No Issue

SyrupBar.sol
Functions

Sl. Functions Type Observation Conclusion

1 constructor write Passed No Issue
2 getOwner external Passed No Issue
3 name write Passed No Issue
4 decimals write Passed No Issue
5 symbol write Passed No Issue
6 totalSupply write Passed No Issue
7 balanceOf write Passed No Issue
8 transfer write Passed No Issue
9 allowance write Passed No Issue

10 approve write Passed No Issue
11 transferFrom write Passed No Issue
12 increaseAllowance write Passed No Issue
13 decreaseAllowance write Passed No Issue
14 mint write access only Owner No Issue
15 _transfer internal Passed No Issue
16 _mint internal Passed No Issue
17 _burn internal Passed No Issue
18 _approve internal Passed No Issue
19 _burnFrom internal Passed No Issue
20 mint external Unlimited minting Refer Audit

Findings
21 burn external access only Owner No Issue
22 safeAgsTransfer external access only Owner No Issue
23 delegates external Passed No Issue
24 delegate external Passed No Issue
25 delegateBySig external Passed No Issue
26 getCurrentVotes external Passed No Issue
27 getPriorVotes external Infinite Loop Refer Audit

Findings

28 _delegate internal Passed No Issue
29 _moveDelegates internal Passed No Issue
30 _writeCheckpoint internal Passed No Issue
31 safe32 internal Passed No Issue
32 getChainId internal Passed No Issue

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical Severity

No Critical severity vulnerabilities were found.

High Severity

No High severity vulnerabilities were found.

Medium

No Medium severity vulnerabilities were found.

Low

(1) Infinite Loop:

SyrupBar.sol
In the getPriorVotes function, if the upper value is too high than lower, then it will consume

a lot of gas. It may possibly hit the block gas limit.

Resolution: The nCheckpoints should be kept limited, so it does not execute a lot of code

blocks.

MasterGrimace.sol
In below functions ,for loops do not have pid length limit , which costs more gas :

massUpdatePools.

Resolution: Upper limit should have a certain limit in for loops.

(2) Critical operation lacks event log: MasterGrimace.sol
Missing event log for:

● add

● set

● updatePool

● depositNFT

● withdrawNFT

Resolution: Write an event log for listed events.

(3) Function input parameters lack of check: MasterGrimace.sol
Variable validation is not performed in below functions:

● add

● setNftController

● dev

Resolution: We advise to put validation like integer type variables should be greater than

0 and address type variables should not be address(0).

Very Low / Informational / Best practices:

(1) Unlimited minting: SyrupBar.sol
Owner can mint unlimited tokens.

Resolution: We suggest putting a minting limit.

(2) Solidity version: SyrupBar.sol, MasterGrimace.sol, AgsVault.sol
Using the latest solidity will prevent any compiler-level bugs.

Resolution: We suggest using the latest solidity version.

(3) Immutable variables:

These variable values are set in the constructor & will be unchanged.

SyrupBar.sol
● ags

MasterGrimace.sol
● agsToken

● syrup

Resolution: We suggest setting these variables as immutable.

(4) Other Programming Issue: SyrupBar.sol

Warning: Documentation tag on non-public state variables will be disallowed in 0.7.0. You

will need to use the @dev tag explicitly.

Resolution: We suggest replacing /// @notice with /// @dev.

Centralization

This smart contract has some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● mint: SyrupBar owner can create `_amount` token to `_to` Must only be called by

the owner (MasterChef).

● burn: SyrupBar owner can burn token from account.

● safeAgsTransfer: SyrupBar owner can safe ags transfer function, just in case if

rounding error causes pool to not have enough AGSs.

● setAdmin: AgsVault owner can set admin address.

● setTreasury: AgsVault owner can set treasury address.

● setPerformanceFee: AgsVault admin can set performance fees.

● setCallFee: AgsVault admin can set call fees.

● setWithdrawFee: AgsVault admin can set withdrawal fees.

● setWithdrawFeePeriod: AgsVault admin can set withdrawal fee period.

● emergencyWithdraw: AgsVault admin can withdraw unexpected tokens sent to the

Cake Vault.

● pause: AgsVault admin can trigger a stopped state.

● unpause: AgsVault admin can return to normal state.

● add: MasterGrimace owner can add a new lp to the pool.

● set: MasterGrimace owner can update the given pool's AGS allocation point and

deposit fee.

● updateEmissionRate: MasterGrimace owner can update emission rate.

● setNftController: MasterGrimace owner can set NFT controller address.

● setNftBoostRate: MasterGrimace owner can set NFT boostrate.

● flipWhitelistAll: MasterGrimace owner can flip whitelist all.

● setEnableNFTBoost: MasterGrimace owner can enable NFT Boost status.

● dev: MasterGrimace owner can update dev address by the previous dev.

● setStartBlock: MasterGrimace owner can set start block value.

To make the smart contract 100% decentralized, we suggest renouncing ownership in the

smart contract once its function is completed.

Conclusion

We were given a contract code in the form of files. And we have used all possible tests

based on given objects as files. We have not observed any major issues in the smart

contracts. So, the smart contracts are ready for the mainnet deployment.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix
Code Flow Diagram - AGS Finance Protocol

AgsRouter Diagram

AgsFactory Diagram

MasterGrimace Diagram

AgsVault Diagram

SyrupBar Diagram

Slither Results Log

Slither log >> AgsRouter.sol

Slither log >> AgsFactory.sol

Slither log >> MasterGrimace.sol

Slither log >> AgsVault.sol

Slither log >> SyrupBar.sol

Solidity Static Analysis

AgsRouter.sol

AgsFactory.sol

MasterGrimace.sol

AgsVault.sol

SyrupBar.sol

Solhint Linter

AgsRouter.sol

AgsRouter.sol:3:1: Error: Compiler version =0.6.12 does not satisfy
the r semver requirement
AgsRouter.sol:11:45: Error: Avoid using low level calls.
AgsRouter.sol:12:76: Error: Use double quotes for string literals
AgsRouter.sol:17:45: Error: Avoid using low level calls.
AgsRouter.sol:18:76: Error: Use double quotes for string literals
AgsRouter.sol:23:45: Error: Avoid using low level calls.
AgsRouter.sol:24:76: Error: Use double quotes for string literals
AgsRouter.sol:28:27: Error: Avoid using low level calls.
AgsRouter.sol:29:26: Error: Use double quotes for string literals
AgsRouter.sol:36:5: Error: Function name must be in mixedCase
AgsRouter.sol:186:5: Error: Function name must be in mixedCase
AgsRouter.sol:193:35: Error: Use double quotes for string literals
AgsRouter.sol:197:35: Error: Use double quotes for string literals
AgsRouter.sol:201:49: Error: Use double quotes for string literals
AgsRouter.sol:221:5: Error: Function name must be in mixedCase
AgsRouter.sol:222:5: Error: Function name must be in mixedCase
AgsRouter.sol:239:5: Error: Function name must be in mixedCase
AgsRouter.sol:263:35: Error: Use double quotes for string literals
AgsRouter.sol:265:39: Error: Use double quotes for string literals
AgsRouter.sol:289:30: Error: Use double quotes for string literals
AgsRouter.sol:290:47: Error: Use double quotes for string literals
AgsRouter.sol:296:31: Error: Use double quotes for string literals
AgsRouter.sol:297:50: Error: Use double quotes for string literals
AgsRouter.sol:306:32: Error: Use double quotes for string literals
AgsRouter.sol:307:50: Error: Use double quotes for string literals
AgsRouter.sol:315:35: Error: Use double quotes for string literals
AgsRouter.sol:326:35: Error: Use double quotes for string literals
AgsRouter.sol:365:39: Error: Variable name must be in mixedCase
AgsRouter.sol:368:29: Error: Avoid to make time-based decisions in
your business logic
AgsRouter.sol:368:46: Error: Use double quotes for string literals
AgsRouter.sol:372:35: Error: Variable name must be in mixedCase
AgsRouter.sol:400:55: Error: Use double quotes for string literals
AgsRouter.sol:405:55: Error: Use double quotes for string literals
AgsRouter.sol:466:40: Error: Use double quotes for string literals
AgsRouter.sol:467:40: Error: Use double quotes for string literals
AgsRouter.sol:581:62: Error: Use double quotes for string literals
AgsRouter.sol:595:44: Error: Use double quotes for string literals
AgsRouter.sol:609:34: Error: Use double quotes for string literals
AgsRouter.sol:611:62: Error: Use double quotes for string literals
AgsRouter.sol:623:48: Error: Use double quotes for string literals
AgsRouter.sol:625:44: Error: Use double quotes for string literals
AgsRouter.sol:640:48: Error: Use double quotes for string literals
AgsRouter.sol:642:62: Error: Use double quotes for string literals
AgsRouter.sol:658:34: Error: Use double quotes for string literals
AgsRouter.sol:660:42: Error: Use double quotes for string literals
AgsRouter.sol:702:13: Error: Use double quotes for string literals
AgsRouter.sol:717:34: Error: Use double quotes for string literals
AgsRouter.sol:725:13: Error: Use double quotes for string literals

AgsRouter.sol:740:48: Error: Use double quotes for string literals
AgsRouter.sol:746:44: Error: Use double quotes for string literals

AgsFactory.sol

AgsFactory.sol:3:1: Error: Compiler version =0.6.12 does not satisfy
the r semver requirement
AgsFactory.sol:37:5: Error: Function name must be in mixedCase
AgsFactory.sol:38:5: Error: Function name must be in mixedCase
AgsFactory.sol:55:5: Error: Function name must be in mixedCase
AgsFactory.sol:98:35: Error: Use double quotes for string literals
AgsFactory.sol:102:35: Error: Use double quotes for string literals
AgsFactory.sol:106:49: Error: Use double quotes for string literals
AgsFactory.sol:113:37: Error: Constant name must be in capitalized
SNAKE_CASE
AgsFactory.sol:113:44: Error: Use double quotes for string literals
AgsFactory.sol:114:37: Error: Constant name must be in capitalized
SNAKE_CASE
AgsFactory.sol:114:46: Error: Use double quotes for string literals
AgsFactory.sol:115:36: Error: Constant name must be in capitalized
SNAKE_CASE
AgsFactory.sol:128:26: Error: Code contains empty blocks
AgsFactory.sol:196:5: Error: Explicitly mark visibility of state
AgsFactory.sol:249:35: Error: Use double quotes for string literals
AgsFactory.sol:251:39: Error: Use double quotes for string literals
AgsFactory.sol:252:56: Error: Use double quotes for string literals
AgsFactory.sol:255:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases
AgsFactory.sol:255:18: Error: Code contains empty blocks

MasterGrimace.sol

MasterGrimace.sol:3:1: Error: Compiler version 0.6.12 does not
satisfy the r semver requirement
MasterGrimace.sol:20:28: Error: Code contains empty blocks
MasterGrimace.sol:70:41: Error: Use double quotes for string literals
MasterGrimace.sol:98:41: Error: Use double quotes for string literals
MasterGrimace.sol:225:25: Error: Use double quotes for string
literals
MasterGrimace.sol:241:26: Error: Use double quotes for string
literals
MasterGrimace.sol:284:29: Error: Use double quotes for string
literals
MasterGrimace.sol:302:26: Error: Use double quotes for string
literals
MasterGrimace.sol:342:26: Error: Use double quotes for string
literals
MasterGrimace.sol:437:50: Error: Use double quotes for string
literals
MasterGrimace.sol:440:58: Error: Use double quotes for string
literals
MasterGrimace.sol:441:26: Error: Use double quotes for string

literals
MasterGrimace.sol:463:43: Error: Use double quotes for string
literals
MasterGrimace.sol:496:59: Error: Use double quotes for string
literals
MasterGrimace.sol:511:49: Error: Use double quotes for string
literals
MasterGrimace.sol:521:37: Error: Use double quotes for string
literals
MasterGrimace.sol:689:13: Error: Use double quotes for string
literals
MasterGrimace.sol:710:13: Error: Use double quotes for string
literals
MasterGrimace.sol:726:69: Error: Use double quotes for string
literals
MasterGrimace.sol:730:53: Error: Use double quotes for string
literals
MasterGrimace.sol:981:21: Error: Avoid to use tx.origin

AgsVault.sol

AgsVault.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the
r semver requirement
AgsVault.sol:872:31: Error: Avoid to use tx.origin
AgsVault.sol:895:34: Error: Avoid to make time-based decisions in
your business logic
AgsVault.sol:900:35: Error: Avoid to make time-based decisions in
your business logic
AgsVault.sol:904:58: Error: Avoid to make time-based decisions in
your business logic
AgsVault.sol:930:29: Error: Avoid to make time-based decisions in
your business logic
AgsVault.sol:1083:13: Error: Avoid to make time-based decisions in
your business logic
AgsVault.sol:1095:35: Error: Avoid to make time-based decisions in
your business logic
AgsVault.sol:1135:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

SyrupBar.sol

SyrupBar.sol:3:1: Error: Compiler version 0.6.12 does not satisfy the
r semver requirement
SyrupBar.sol:124:28: Error: Code contains empty blocks
SyrupBar.sol:174:41: Error: Use double quotes for string literals
SyrupBar.sol:202:41: Error: Use double quotes for string literals
SyrupBar.sol:235:25: Error: Use double quotes for string literals
SyrupBar.sol:251:26: Error: Use double quotes for string literals
SyrupBar.sol:294:29: Error: Use double quotes for string literals
SyrupBar.sol:312:26: Error: Use double quotes for string literals
SyrupBar.sol:352:26: Error: Use double quotes for string literals
SyrupBar.sol:447:50: Error: Use double quotes for string literals

SyrupBar.sol:450:58: Error: Use double quotes for string literals
SyrupBar.sol:451:26: Error: Use double quotes for string literals
SyrupBar.sol:473:43: Error: Use double quotes for string literals
SyrupBar.sol:506:59: Error: Use double quotes for string literals
SyrupBar.sol:521:49: Error: Use double quotes for string literals
SyrupBar.sol:531:37: Error: Use double quotes for string literals
SyrupBar.sol:704:59: Error: Use double quotes for string literals
SyrupBar.sol:744:69: Error: Use double quotes for string literals
SyrupBar.sol:781:39: Error: Use double quotes for string literals
SyrupBar.sol:782:42: Error: Use double quotes for string literals
SyrupBar.sol:784:59: Error: Use double quotes for string literals
SyrupBar.sol:816:40: Error: Use double quotes for string literals
SyrupBar.sol:818:61: Error: Use double quotes for string literals
SyrupBar.sol:841:38: Error: Use double quotes for string literals
SyrupBar.sol:842:40: Error: Use double quotes for string literals
SyrupBar.sol:859:60: Error: Use double quotes for string literals
SyrupBar.sol:997:17: Error: Avoid to make time-based decisions in
your business logic
SyrupBar.sol:1120:9: Error: Avoid using inline assembly. It is
acceptable only in rare cases

Overall Software analysis result:
These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

