
Mimic v3-core code review

by Nicolás Venturo (nicolas.venturo@gmail.com)

This document contains a review of smart contracts developed by Mimic Finance. Their source code can be

found in the v3-core GitHub repository.

The review was conducted on commit 53c2a5159d515f9a458b01d367ead3f2c670ddf2 , from October 31st,

2023. The contracts under review were Relayer , Authorizer and SmartVault .

Relayer

Strong suggestions

• In L99 setSmartVaultCollector forbids a collector being the zero address. However, on L73 a zero

address is used to signal a smart vault wishes to use the default collector. This means that once a smart

vault sets any collector, it is impossible to revert to the default mechanism. Remove L99, or alternatively

add a clearSmartVaultCollector function.

• In L237 task execution halts if a task call fails and continueIfFailed is not set. However, the

taskResults return value does not indicate which tasks were skipped: the last array values will be left

uninitialized. While it is possible to determine which tasks were called and which were not, this logic can

be a bit convoluted and error-prone (e.g. if continueIfFailed is not set, then the first failed task was

executed but the following ones were not). Return a second numeric value with the number of tasks that

were actually called, or alternatively add a called flag to the TaskResult struct.

• In L227 task is validated by calling hasPermissions on the smart vault. Current smart vaults return

true if the task has any single permission over them, meaning that granting permissions to an account

has the implicit side effect of allowing it to spend the smart vault's gas. Remove hasPermissions (or

rename it to e.g. hasAnyPermission), and instead of calling that in L227 call a new isTaskAllowed

function or similar. Note that this can be made backwards compatible with existing smart vaults by calling

into a new task registry contract instead of the smart vaults themselves.

Comments on the _execute function

The main purpose of the relayer is to call other contracts associated with a smart vault via _execute , paying

the smart vault's collector for the gas spent. No issues were found in this function, but it is important to point

out that there are many moving pieces here, and small refactors could easily lead to issues. It would be good

to document or otherwise bring attention to the following points, hopefully reducing the likelihood of errors in

the future.

• L227 is the only validation that is made on task , by checking that the smart vault that will pay for the

gas is somehow related to it. It might not be immediately obvious that this check is critical since the smart

vault is not referenced again in the _execute function (only inside _payTransasctionGasToRelayer).

• The logic in _payTransactionGasToRelayer is relatively complicated, and as a result a critical property

is difficult to prove: the relayer never sends any funds in excess of the smart vault's balance, i.e. amount

mailto:nicolas.venturo@gmail.com
mailto:nicolas.venturo@gmail.com
https://www.mimic.fi/
https://www.mimic.fi/
https://github.com/mimic-fi/v3-core
https://github.com/mimic-fi/v3-core
https://github.com/mimic-fi/v3-core
https://github.com/mimic-fi/v3-core
https://github.com/mimic-fi/v3-core/blob/53c2a5159d515f9a458b01d367ead3f2c670ddf2
https://github.com/mimic-fi/v3-core/blob/53c2a5159d515f9a458b01d367ead3f2c670ddf2
https://github.com/mimic-fi/v3-core/blob/53c2a5159d515f9a458b01d367ead3f2c670ddf2
https://github.com/mimic-fi/v3-core/blob/53c2a5159d515f9a458b01d367ead3f2c670ddf2
https://github.com/mimic-fi/v3-core/blob/53c2a5159d515f9a458b01d367ead3f2c670ddf2/packages/relayer/contracts/Relayer.sol
https://github.com/mimic-fi/v3-core/blob/53c2a5159d515f9a458b01d367ead3f2c670ddf2/packages/relayer/contracts/Relayer.sol
https://github.com/mimic-fi/v3-core/blob/53c2a5159d515f9a458b01d367ead3f2c670ddf2/packages/relayer/contracts/Relayer.sol
https://github.com/mimic-fi/v3-core/blob/master/packages/authorizer/contracts/Authorizer.sol
https://github.com/mimic-fi/v3-core/blob/master/packages/authorizer/contracts/Authorizer.sol
https://github.com/mimic-fi/v3-core/blob/master/packages/authorizer/contracts/Authorizer.sol
https://github.com/mimic-fi/v3-core/blob/master/packages/smart-vault/contracts/SmartVault.sol
https://github.com/mimic-fi/v3-core/blob/master/packages/smart-vault/contracts/SmartVault.sol
https://github.com/mimic-fi/v3-core/blob/master/packages/smart-vault/contracts/SmartVault.sol

- quota <= balance . If this did not hold, the owner would be able to steal funds by setting arbitrarily

large values for maxQuota .

• In L231 there's a raw call to task with no value. If task were an EOA, this would succeed but achieve

nothing, a false positive that might be difficult to detect. This is correctly but indirectly prevented by L224,

where smartVault is called on task , which will revert unless task is a contract.

• The relayer itself should never have permissions over anything, since it can be made to call (almost)

arbitrary contracts. There's some mitigation in the fact that task must provide a meaningful return value

for smartVault , but it'd still be good to make sure that relayers are not given any special treatment.

• Related to the comment above, the relayer is a sort of special account as it is expected to hold native

tokens. These could be trivially stolen by any executor if value was sent in the call in L231.

• Similarly, any tokens held by the relayer could be stolen by transferring them in L231. This is prevented

as it is expected that a token contract will revert when the smartVault function is called on them, which

is a side-effect of the intended behavior (checking that the smart vault will pay for the gas of a call to

task).

Minor comments

• The gas spent in emitting the TaskExecuted event is not repaid, as gasleft is called before it (to

compute gasUsed). The cost of the event could be non-negligible if either data or result are long.

• On L258 the quota variable is left uninitialized if balance < amount and the else branch is taken.

Solidity initializes variables to their default value (0 for numeric values), but it'd be good to do this

explicitly.

• There's an unnecessary command to disable solhint on L240, likely a remnant from a previous refactor.

Authorizer

Strong suggestions

• The functions hasPermissions(who, where) and hasPermission(who, where, what) look very similar

and can easily lead to errors that would be undetected by most tests. Rename hasPermissions to

hasAnyPermission , or remove it.

Comments on the permission scheme

The system seems to trade a large amount of complexity for little gain in terms of usability. This added

complexity makes it hard to verify correctness, and at times introduces difficulty when attempting to

understand basic behavior.

An example of this is the authorize function, with arguments who , where , what and params , plus a

how variable. This calls _authenticate with some values, which in turn calls isAuthorized .

isAuthorized also has who , where , what and how parameters, but none of these four values are the

same as the ones with the same names in the original authorize call context. It is easy to get lost and to

have to resort to note-taking to follow what is going on, greatly reducing the reader's confidence in their own

understanding.

Another function that is hard to follow is _evalParams , with the if statement in L257 being very logic-

dense. Once unrolled, certain aspects of this check remain puzzling. Examples are the scenario in which

params is longer than how , but then all further params must equal Op.NONE , or the one in which how is

longer than params causing some arguments to not be evaluated.

The benefits provided by this scheme are also quite limited and don't provide a lot of functionality. Parameter

evaluation is limited to uints, making other types (including ints) cumbersome to use. This required the

introduction of the AuthorizedHelpers contract, which provides multiple conversion functions, but is itself

very error-prone.

Additionally, even if type support was not an issue, the operations that _evalParam can evaluate are quite

limited. Examples of common use cases that are not possible to implement using this scheme include

comparisons between parameters (e.g. two paramters must be the same, or one must be larger than

another), comparisons to some global state (e.g. a timestamp must be in the future), and frequency

restrictions (e.g. a permission can only be used once a week).

The system as a whole would likely benefit from reduced complexity in Authorizer , with the removal of the

generic _evalParams and the introduction of specialized checks where required (e.g. in authorize).

Permissions that require conditions on the parameters of the function call can be more cleanly implemented

by introducing permissioned contracts with ad-hoc checks that restrict their behavior.

SmartVault

Strong suggestions

• In L76 the constructor does not call the _disableInitializers function. This is not an issue as the

parent contract Authorized already calls it, but changes to either Authorized or the inheritance tree

could easily result in the initializers not being disabled on the implementation contract. Add this missing

call, since as of v5.0.0 of the OpenZeppelin library disabling initializers multiple times is not an error.

• The hasPermissions function is error-prone and easy to misuse. Rename it to hasAnyPermission or

remove it entirely.

Minor comments

• In L106 __SmartVault_init_unchained ignores its first parameter, making the reader wonder why it's

there in the first place. It can be safely removed.

• In L206 the delegate call can trivially override all of the other security mechanisms in the contract,

including disabling the reentrancy guard, withdrawing funds, upgrading the contract, and even do things

that are otherwise not possible, such as changing the authorizer. This makes the permission to call

execute much more powerful than any of the other permissions, and results in _validateConnector

being a critical safeguard and overrideConnectorCheck very dangerous.

• While pause does correctly prevent calls to all state changing functions, including execute , it does not

prevent contract upgrades. This behavior must be explicitly included in the upgrade mechanism.

• Most functions are non-reentrant, but this seems unnecessary as all of them are quite simple and trivially

follow the checks-effects-interactions pattern.

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/625fb3c2b2696f1747ba2e72d1e1113066e6c177/contracts/proxy/utils/Initializable.sol#L199
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/625fb3c2b2696f1747ba2e72d1e1113066e6c177/contracts/proxy/utils/Initializable.sol#L199

