
Maverick AMM

Maverick Research Team

March 2023

1 Introduction

Maverick AMM is a range-based AMM where LPs can choose to have their liquidity
automatically move to stay near the price. This liquidity movement increases capital
efficiency and allows LPs to make directional bets on price while still collecting fee.

In order to provide liquidity in Maverick, LPs make two choices:

• Which range of prices to LP in

• How their liquidity should shift in price as price shifts

LPs can select between four Modes when adding their liquidity:

• Mode Right - liquidity moves with price as price increases, but doesn’t move
when price decreases

• Mode Left - liquidity moves with price as price decreases, but doesn’t move
when price increases

• Mode Both - liquidity moves with price as it increases and decreases

• Mode Static - liquidity does not move

This document explains how liquidity is added to the smart contract and how liq-
uidity is moved when LPs select one of the three movement Modes.

2 Bins

The smallest available price range is a “bin”. The bin spacing is a configurable pa-
rameter that is set when a pool is initialized. A typical bin spacing for a volatile asset
pair is 2%.

A bin has a lower price of pl and an upper price of pu . The swap invariant for a
bin is

L2 =
(
B + Lp

pu

)(
A+L

p
pl

)
, (1)

where B is the amount of base token in the bin and A is the amount of quote token
in the bin.

Page 1 of 10

2.1 Bin Structure

The AMM smart contract stores the following properties for each bin:

• binID - Unique ID of the bin

• reserveA - Quantity of quote tokens in the bin

• reserveB - Quantity of base tokens in the bin

• kind - One of STATIC, RIGHT, LEFT, BOTH,

• lowerTick - Defined as lowerTick = st i ck log1.0001(pl), where st i ck ∈ N>0 is
the tick spacing of the pool

• mergeId - ID of bin that this bin has merged in to

• totalSupply - Quantity of LP tokens that have been minted for this bin

• mergeBinBalance - Quantity of mergeID bin LP tokens this bin has a claim to
(only non-zero when bin has been merged)

• balances - LP token balance for each Position NFT ID

2.2 Adding Liquidity to a Bin

A user can choose to add liquidity to a bin that is either all quote, all base, or a mix
of base and quote. When adding liquidity, the user cannot change the price, so they
must add base and/or quote in the same proportion that the bin already contains.

When a user becomes an LP by adding liquidity, LP tokens are minted and incre-
ment the bin’s totalSupply amount. The number of LP tokens (newSupply) that
are minted is calculated by expressing the base and/or quote being added as a per-
centage of the bin’s existing reserves and multiplying that by the currenttotalSupply
of LP tokens.

There are several possible states that a bin might be in when an LP adds liquidity.
Table 1 summarizes how many LP tokens are minted depending on the state.

To add liquidity to Maverick, an LP will first mint a free NFT Position. The NFT
Position has a unique ID and this ID is what is associated with a user’s LP token
balance. Users can choose to mint a new Position at any time, but one Position is
sufficient to store all of the LP token balances across all bins and pools in which an
LP is participating.

2.3 Moving and Merging Bins

Non-static bins (i.e., bins with a kind property of RIGHT, LEFT, or BOTH) may move
right or left with price as traders swap with the pool. When this happens, thelowerTick
value of the bin changes. The new lowerTick value is set to the new tick position of
the bin.

If a non-static bin moves to a tick where there is already another bin of the same
kind, the contract executes a merge procedure described below. At the end of that

Page 2 of 10

Table 1: Number of LP tokens newSupply minted for a contribution of a new quote
tokens and/or b new base tokens to the bin. a or b has to be non-zero.

p < pl pl < p < pu p > pu

reserveA == 0,
reserveB == 0

a max{a,b} b

reserveA == 0,
reserveB > 0

- - b totalSupply
reserveB

reserveA > 0,
reserveB == 0

a totalSupply
reserveA - -

reserveA > 0,
reserveB > 0

a > 0, b > 0
- min

{
a totalSupply

reserveA , b totalSupply
reserveB

}
-

reserveA > 0,
reserveB > 0
a > 0, b == 0

- a totalSupply
reserveA

-

reserveA > 0,
reserveB > 0
a == 0, b > 0

- b totalSupply
reserveB

-

procedure, only one of the two bins will still be “active” and the other bin’s reserve
will be transferred to that active bin. As described in the next section, the non-active,
“merged” bin, will still exist and will still be the binID the user references to with-
draw their liquidity.

As part of the movement/swapping procedure, the contract ensures that there
will never be two active bins of the same kind at the same lowerTick value. When
a bin is moved, the contract checks to see if there would be more than one active bin
of the same kind at the same lowerTick. If there would be, then a merge procedure
happens: the mergeId of merged bin is updated with the binID of the bin that is
active at this tick.

For the sake of discussion, consider an example where the contract is merging
bin with binID= im into bin with binID= ia . Bins can only merge when they only
hold either all base or all quote. For this example, assume both bins are all quote.
Table 2 summarizes the state of these two bins before and after the merge.

The notable aspect of this process is that the merged bin now holds an LP to-
ken balance of mergeBinBalance in the active bin, but the LP balances, which
track the LP balance of each user in each bin, have remained the same. The ac-
tive bin now has a totalSupply of LP tokens equal to its original balance and the
mergeBinBalance that the merged bin now holds in it. The last row of the table

Page 3 of 10

Table 2: State change of two bins as they merge together.

binID im pre merge ia pre merge im post merge ia post merge

reserveA am aa 0 aa +am

reserveB 0 0 0 0
lowerTick tm ta ta ta

mergeId - - ia -
totalSupply LPm LPa LPm LPa +LPa

am
aa

mergeBinBalance - - LPa
am
aa

-
balances[user] balm bala balm bala

balances[0] 0 0 0 LPa
am
aa

shows that, in the binID = ia bin, the LP token balance of any merged bins gets
stored in index 0. This is a special reserved index value that no user will be assigned.

Tracking the balances this way makes merges computationally tractable on chain
because it means that the contract does not have to iterate through all LPs’ positions
to update balances on a merge. Instead, as discussed in the next section, the LPs still
claim their LP tokens on the original, now-merged, bin, and the contract recursively
traverses merged bins to get to the active bin where the reserves are all held.

The mechanisms that cause a bin to move are related to the time-weighted-
average-price (TWAP) and are discussed in the Pool section.

2.4 Removing Liquidity

An LP can remove liquidity from a bin by passing to the contract their NFT Position
ID, the bin’s binID, and the amount of LP balance they want to remove from that bin.

For an active bin, the process is straightforward. The contract checks to make
sure the Position has at least the amount of LP balance the user is trying to withdraw.
If the balance is sufficient, the bin disperses a pro-rata amount of reserve out back
to the user:

Aout = amount

totalSupply
reserveA, (2)

Bout = amount

totalSupply
reserveB. (3)

For a merged bin, the process is similar, but the calculation is recursive. Contin-
uing the example from Table 2, say an LP in the merged bin, binID = im wants to
remove amount of their LP balance from that now-merged bin. That merged bin no
longer has any reserves directly associated with it. But it does possess an LP balance
in the active bin with binID= ia and those balances correspond to reserve amounts,

Aia = mergeBinBalancem
totalSupplya

reserveAa, (4)

Bia = mergeBinBalancem
totalSupplya

reserveBa. (5)

Page 4 of 10

The LP is removing amount from bin binID= im . So the net amount the user will
receive is

Aout = amount

totalSupplym

mergeBinBalancem
totalSupplya

reserveAa, (6)

Bout = amount

totalSupplym

mergeBinBalancem
totalSupplya

reserveBa. (7)

A user must first call migrateBinsUpStack for any binIDs that the user wants
to remove that are merged more than one level deep. The migrate function will
move the bins up the linked list of merged bins until each migrated bin is point-
ing to an active bin. As part of that function, mergeBinBalance of the bins being
migrated will be updated along with the balances of the bin that was the head bin,
i.e. balances[0] of the old head bin.

3 Pool

Pools are created permissionlessly by any user and that first user has the option of
configuring the pool parameters.

3.1 Data Structure

A pool is parameterized by:

• fee — the proportion of swap that stays in the pool, e.g., 0.1%

• tickSpacing — the width of a bin on a geometric grid of 1 basis point ticks
where bin width = 1.0001tickSpacing

• lookback — TWAP look back in seconds, default is 3 hours

• tokenA — quote token in the pool

• tokenB — base token in the pool

A pool tracks the following state elements:

• state.activeBin — lowest tick of the set of bins that contain the current
price

• state.status — lock signal to protect against reentrancy

• state.binCounter — highest binID that has been initialized

• state.protocolFeeRatio — the proportion of the swap fee that is retained
by the Maverick protocol

• binPositions — mapping from (lowerTick, kind) to active binId if a bin
exists at that (lowerTick, kind)

Page 5 of 10

• binMap — bit mask of which ticks have active bins and which kinds of bins are
in those ticks

• bins — list of bin objects indexed by binId

• binBalanceA — the sum A reserves in all active bins

• binBalanceB — the sum B reserves in all active bins

3.1.1 binMap

The binMap is multilevel data structure designed for efficient bin look-ups. Concep-
tually, the binMap is a collection of four-bit nybbles at every possible tick position
with each bit representing one of the four bin kinds (STATIC, RIGHT, LEFT, BOTH).
In order to reduce memory usage, however, a sparse data structure is used that only
maintains a minimal collection of 256-bit words (holding 64 nybbles representing
64 ticks), which are indexed with a simple 32-bit-integer-to-word hashmap. Only
non-zero words are kept in the hashmap.

Fast look-ups can be made “up” or “down” relative to a reference tick position
by computing the index of the current word and offset from the reference tick po-
sition (index, offset = divmod(tick, 64)). If the index is not present in the
hashmap, then the index is incremented (up) or decremented (down) until an ac-
tive word is found, or an iteration limit is reached. If an active word is found, then
the position of the least-significant bit (up) or most-significant bit (down) is used to
determine both the bin kind and the tick position. If the active index matches the
reference index, then the most-significant- or least-significant-bit search is done rel-
ative to the reference-tick offset.

3.2 Swapping

3.2.1 Callback Mechanics

Swapping is callback-based, which allows users to “flash swap” such that they can
collect the proceeds of their swap before they have to transmit what they owe to the
contract. Users can swap by specifying either the exact amount they want to receive
of a given token or the exact amount they want to swap in.

The contract will disburse the proceeds to the user. In calling a swap on the
pool, the user had to provide a callback function. To pay the contract what it is owed
for the swap, the contract will call the user-provided callback, which will need to
transmit the user’s tokens to the contract in order for the transaction to complete.

3.2.2 Swapping in a Bin

For any given position in price, there can be up to 4 active bins. To compute a swap
efficiently, the contract first determines the amount of reserve for all bins present
at the current price. Then the swap computation is performed on this aggregate
amount of reserve. After the swap is complete, the input and output token amounts

Page 6 of 10

for the aggregate swap amount are distributed to each of the participating bins in
proportion to the bin’s reserve amounts.

The process is as follows:

1. Lookup in binMap the bins that are active at the current price. This set of bins
is I , where the number of bins is at most 4, |I | ≤ 4

2. Compute the total aggregate A and B amounts in these bins —

A = ∑
i∈I

Ai , B = ∑
i∈I

Bi (8)

3. Compute the aggregate liquidity by solving this quadratic for L

0 =
(√

pl

pu
−1

)
L2 +

(
Ap
pu

+B
p

pl

)
L+ AB (9)

4. Compute sqrt price,
p

P
p

P = A+L
p

pl

B +L/
p

pu
(10)

5. Extract fee from the token balance coming in and set that aside as either A f ee

or B f ee

6. Extract the protocol fee from the total fee

Apr otocol = A f eestate.protocolFeeRatio (11)

Bpr otocol = B f eestate.protocolFeeRatio (12)

7. Use the identities to compute ∆A and ∆B

∆
p

P = ∆A

L
(13)

∆
1p
P

= ∆B

L
(14)

8. Apportion these amounts to the active bins

Ai ,new = Ai + Ai

A

(
∆A+ A f ee − Apr otocol

)
(15)

Bi ,new = Bi + Bi

B

(
∆B +B f ee −Bpr otocol

)
(16)

9. Increment the binBalanceA and binBalanceB balances with ∆A + A f ee −
Apr otocol and ∆B +B f ee −Bpr otocol , respectively

10. Update TWAP with the new ending price of the swap

At the end of the swap, the binBalanceA and binBalanceB balances will reflect
the sum A and B balances across all bins. The amount of protocol fee set aside is not
explicitly tracked. Instead, the protocol fee is the difference between the ERC20 A
and B balances and the bin balances.

Page 7 of 10

3.2.3 Rounding

The contract is designed to round appropriately in order to remain solvent with re-
spect to the pool’s balance according to tokenA and tokenB ERC20 contracts. In
particular, the contract must ensure that

• The token balances according to the ERC20 contracts is always greater than or
equal to both the binBalance and the sum of the bin’s reserves

• The binBalance is greater than or equal to the sum of the bins’ reserves

∑
i
reserveAi ≤ binBalanceA≤ ERC A (17)∑

i
reserveBi ≤ binBalanceB≤ ERCB (18)

3.2.4 Swapping Through Ticks

A swap may be large enough that it will swap an entire bin. If this happens, the
swap-in-a-bin process described above will be repeated again for the next adjacent
bin set with any remaining assets that are remaining to be swapped.

3.3 Moving Bins and TWAP

The contract tracks the TWAP of the pool by registering the price of the pool at the
end of each swap, but the value is overwritten for swaps in the same block. The
TWAP is stored in the log price domain and, ultimately, the pool only needs to know
which tick the TWAP is in because that dictates when non-static bins move left or
right with the price.

After a swap, the contract checks to see if any bins need to be moved. If so, then
the move proceeds. Within a block, no time passes between operations, so the TWAP
will also not change for the duration of the block. Because of this, no bins will move
beyond the first swap in a block, as any subsequent checks for movement will find
the bins already in line with the TWAP. In other words, all movement checks within a
block are governed by the TWAP change that occurred in the previous block. These
mechanisms mean that a swapper cannot move liquidity using a swap inside of a
single block. This makes the movement robust to large inner-block flash swap oper-
ations that may significantly move the price.

That is, in the case of a large two-step flash swap that moved the price up and
then back down inside the block, none of the dynamic liquidity bins would move
in response and the TWAP would be unaffected by the large price excursion. For
liquidity to move, a swapper would have to leave their capital on chain for at least
one block period, which would leave that liquidity exposed to arbitrageurs, thereby
discouraging any such toxic liquidity movement manipulations.

Finally, when an LP starts a pool, they have the option to choose the TWAP look-
back period. Longer periods further blunt any liquidity manipulation attack surface.
The suggested default liquidity lookback period for a pool is 3 hours.

Notation:

Page 8 of 10

• tc — lowerTick of the bin that contains the current price

• tp — lowerTick of the bin that contains the previous price

• tt w ap,c — lowerTick of the bin that contains the current TWAP

• tt w ap,p — lowerTick of the bin that contains the previous TWAP

• tbi n,c — lowerTick of the moving bin after the move

• tbi n,p — lowerTick of the moving bin before the move

The movement conditions are

• If tc == tp and tt w ap,c == tt w ap,p no bins move

• Only bins within one tick of price or exactly the previous TWAP will move;
other bins stay “stranded” until the price moves within one bin of their posi-
tion

• The target right-most tick whereRIGHTorBOTHbins will move to is targetr i g ht =
min{tc −1, tt w ap,c }

• All RIGHT and BOTH bins from min{tp − 1, tt w ap,p } to targetr i g ht − 1 will be
moved to targetr i g ht

• The target left-most tick where LEFT or BOTH bins will move to is targetle f t =
max{tc +1, tt w ap,c }

• All LEFT and BOTH bins from max{tp +1, tt w ap,p } down to targetle f t +1 will be
moved left to targetle f t

Page 9 of 10

Figure 1: Example situations where a bin would move right.

Page 10 of 10

