
Security Assessment

Marblex
CertiK Assessed on Aug 10th, 2023

Executive Summary

Highlighted Centralization Risks

Transfers can be paused Privileged role can mint tokens Has blacklist/whitelist

Vulnerability Summary

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

2 Major 2 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

5 Minor 3 Resolved, 1 Partially Resolved, 1 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

SUMMARY MARBLEX

CertiK Assessed on Aug 10th, 2023

Marblex

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

ERC-20

ECOSYSTEM

Aurora (AURORA) |

Binance Smart Chain

(BSC) | Klaytn (KLAY)

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 08/10/2023

KEY COMPONENTS

N/A

CODEBASE

https://github.com/MarblexAudit/MBXToken-ERC20

View All in Codebase Page

COMMITS

base: 7f5f5149e143f97b5ef728d43287325534a70005

update 1: d4302c2d89369e99b154b4c3cee7f7cb727878f0

update 2: 4fc55ab894fbab42c5ab7926abb26036169fa758

View All in Codebase Page

11
Total Findings

7
Resolved

0
Mitigated

1
Partially Resolved

3
Acknowledged

0
Declined

3 Informational 3 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY MARBLEX

TABLE OF CONTENTS MARBLEX

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Dependencies

Assumptions

MBXToken.sol

Recommendations

Findings

MBM-01 : Lack of Access Control

MBX-04 : Centralization Risks in MBXToken.sol

MBX-05 : Initial Token Distribution

MBT-02 : Potential Reentrancy Attack (Out-of-Order Events)

MBX-10 : Unchecked ERC-20 `transfer()`/`transferFrom()` Call

TFM-01 : Potential Locked Blockchain Native Tokens

TFM-02 : Destination of `execute()` Can Be Any Address

TFM-03 : Missing Zero Address Validation

IMB-01 : Unused Event

MBX-06 : Unnecessary Use of `super` Keyword

MBX-11 : Consider Added Checks with `notFrozen` Modifier

Optimizations

MBT-01 : Functions Equivalent to Compiler-Generated Getters

MBX-02 : Unnecessary Requirements

MBX-07 : Redundant References and Use of Modifier Checks

MBX-08 : Declaration of Specific Access Control Functions

MBX-09 : Modifier `notFrozen` Can Be Refactored for Gas Optimization During Deployment

MSW-01 : Variables That Could Be Declared as Immutable

MSW-02 : Inefficient Memory Parameter

Appendix

TABLE OF CONTENTS MARBLEX

Disclaimer

TABLE OF CONTENTS MARBLEX

CODEBASE MARBLEX

Repository

https://github.com/MarblexAudit/MBXToken-ERC20

Commit

base: 7f5f5149e143f97b5ef728d43287325534a70005

update 1: d4302c2d89369e99b154b4c3cee7f7cb727878f0

update 2: 4fc55ab894fbab42c5ab7926abb26036169fa758

update 3: 9b9a373daff6c3fb066050a3a275458905486f40

update4: 1acafc443daac7fbdaeed3337e5025d1a1717661

CODEBASE MARBLEX

AUDIT SCOPE MARBLEX

4 files audited 2 files with Acknowledged findings 1 file with Partially Resolved findings 1 file without findings

ID File SHA256 Checksum

MBX MBXToken.sol
fdb9f05ddf22acdf3ddf5da4d6bd089147409b3

ce400142232031ca33c186ee8

MSW MultiSigWallet.sol
19da476a7c5aed0fd0c34722d6f0b8c8159c88

b839a4c52c5e516cdef4eb81de

TFM TokenForwarder.sol
c67c77292adf5e8dd33b8d8894384eefddec5

d04818dfc41c6d5ccbde8e8be9e

ERC ERC2771.sol
1c70a7577c53e9c227747eb7dbb7597726bd

827d12f8b75c2471c92cacfef6ca

AUDIT SCOPE MARBLEX

APPROACH & METHODS MARBLEX

This report has been prepared for Marblex to discover issues and vulnerabilities in the source code of the Marblex project as

well as any contract dependencies that were not part of an officially recognized library. A comprehensive examination has

been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS MARBLEX

DEPENDENCIES MARBLEX

Assumptions

Within the scope of the audit, assumptions are made about the intended behavior of the protocol in order to inspect

consequences based on those behaviors. Assumptions made within the scope of this audit include:

MBXToken.sol

The trustedForwarder to be used with the MBXToken contract is the in-scope contract TokenForwarder of file

TokenForwarder.sol .

The MultiSigWallet is to be used with the privileged roles of the MBXToken contract.

Recommendations

We recommend constantly monitoring the third parties involved to mitigate any side effects that may occur when unexpected

changes are introduced. Additionally, we recommend all out-of-scope dependencies are carefully vetted to ensure they

function as intended. Last, we recommend all assumptions about the behavior of the project are thoroughly reviewed and, if

the assumptions do not match the intention of the protocol, documenting the intended behavior for review.

DEPENDENCIES MARBLEX

FINDINGS MARBLEX

This report has been prepared to discover issues and vulnerabilities for Marblex. Through this audit, we have uncovered 11

issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to complement

rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

MBM-01 Lack Of Access Control
Access Control, Logical

Issue
Critical Resolved

MBX-04
Centralization Risks In

MBXToken.Sol
Centralization Major Acknowledged

MBX-05 Initial Token Distribution Centralization Major Acknowledged

MBT-02
Potential Reentrancy Attack (Out-Of-

Order Events)
Concurrency Minor Partially Resolved

MBX-10
Unchecked ERC-20 transfer() /

transferFrom() Call
Volatile Code Minor Acknowledged

TFM-01
Potential Locked Blockchain Native

Tokens
Logical Issue Minor Resolved

TFM-02
Destination Of execute() Can Be

Any Address
Access Control Minor Resolved

TFM-03 Missing Zero Address Validation Volatile Code Minor Resolved

IMB-01 Unused Event Coding Issue Informational Resolved

MBX-06
Unnecessary Use Of super

Keyword
Coding Style Informational Resolved

MBX-11
Consider Added Checks With

notFrozen Modifier
Coding Style Informational Resolved

FINDINGS MARBLEX

11
Total Findings

1
Critical

2
Major

0
Medium

5
Minor

3
Informational

MBM-01 LACK OF ACCESS CONTROL

Category Severity Location Status

Access Control, Logical Issue Critical MBXToken.sol (update1): 153~156 Resolved

Description

The changes made in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0 introduce a lack of access control on a

critically privileged function:

function grantRole(bytes32 role, address account) public override(AccessControl,

IAccessControl) {

 _beforeSetRole(role, account, true);

 super._grantRole(role, account);

 }

This introduction allows anyone to call the function grantRole() because the override calls super._grantRole() instead

of super.grantRole() . Since the external super.grantRole() is where the access protection is located, this function can

now be called by anyone. In turn, anyone can take on the MINTER_ROLE and PAUSER_ROLE .

Recommendation

We recommend calling super.grantRole() instead of super._grantRole() to include the proper protection on the

function override.

Alleviation

[CertiK] : The team made changes resolving the finding in commit 4fc55ab894fbab42c5ab7926abb26036169fa758.

MBM-01 MARBLEX

MBX-04 CENTRALIZATION RISKS IN MBXTOKEN.SOL

Category Severity Location Status

Centralization Major
MBXToken.sol (base): 50, 59, 95~96, 103~104, 108, 134, 14

2, 156~157, 171, 186~187, 204
Acknowledged

Description

In the contract MBXToken the role _owner has authority over the functions shown in the diagram below.

Additionally, the _owner has authority over the following functions:

transferOwnership()

Any compromise to the _owner account may allow the hacker to take advantage of this authority and

set the trustedForwarder to one that contains malicious logic in updating the _msgSender() within the

MBXToken contract, possibly allowing for the stealing of funds from users;

freeze any account to prevent user interaction with their funds;

add accounts to the MINTER_ROLE allowing these accounts to mint any amount of tokens to any address;

add accounts to the PAUSER_ROLE allowing these accounts to pause any functionality in the contract that includes

the modifier whenNotPaused , including

all transfer functions

all approval functions

all burning functions

remove accounts from the MINTER_ROLE or PAUSER_ROLE preventing the intended use of these roles;

withdraw any ERC20 or ERC721 token sent to the contract;

transfer the following privileged roles to one account through acceptOwnership() , giving all access control to one

malicious authority

_owner

DEFAULT_ADMIN_ROLE

MINTER_ROLE

PAUSER_ROLE

MBX-04 MARBLEX

Authenticated Role

Function

Function

Internal CallsFunction

Function
External Calls

Function State Variables

Function

Internal Calls

External Calls

Function External Calls

_owner

emergencyWithdrawERC721

addMinter

addPauser

setForwarder

setFreeze

setFreezeMany

emergencyWithdrawERC20

IERC721.transferFrom

_grantRole

_beforeGrant

forwarder.isContract

frozenAccount

IERC20.transfer

In the contract MBXToken the role DEFAULT_ADMIN_ROLE has authority over the following functions:

grantRole()

revokeRole()

revokeMinter()

revokePauser()

Any compromise to the DEFAULT_ADMIN_ROLE account may allow the hacker to take advantage of this authority and give

access to the MINTER_ROLE or PAUSER_ROLE , allowing any amount of tokens to be minted to any account or pausing the

contract to prevent interaction. Additionally, the attacker may use the authority to remove a legitimate account's ability to

pause the contract during malicious takeover.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

MBX-04 MARBLEX

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the privileged roles or removing the function can be considered fully resolved.

Renounce the all privilege and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

[CertiK] : The team states they plan to deploy the token on BSC as a bridged token for their MBX Token currently

deployed on Klaytn at the following address.

Klaytn MBX Token: 0xd068c52d81f4409b9502da926ace3301cc41f623

They further state that only their bridge contract will be given the MINTER_ROLE , and that the initial minted amount on deploy

will be 0.

The team made updates mitigating some of the centralization related risk, by removing functions

emergencyWithdrawERC721() and emergencyWithdrawERC20() , in commit

MBX-04 MARBLEX

1acafc443daac7fbdaeed3337e5025d1a1717661.

MBX-04 MARBLEX

MBX-05 INITIAL TOKEN DISTRIBUTION

Category Severity Location Status

Centralization Major MBXToken.sol (base): 43~44 Acknowledged

Description

All of the MBXToken are sent to the contract deployer when deploying the contract, where the deployer specifies the amount

to be minted. This could be a centralization risk as the deployer can distribute tokens without obtaining the consensus of the

community. Any compromise to the deployer account that holds undistributed tokens may allow the attacker to steal and sell

tokens on the market, resulting in severe damage to the project.

Recommendation

We recommend transparency regarding the initial token distribution process. The token distribution plan should be published

in a public location that the community can access. The team should also make an effort to restrict the access of the private

key. A multi-signature (e.g. ⅔, ⅗) wallet can be used to prevent a single point of failure due to the private key compromise.

Additionally, the team can lock up a portion of tokens, release them with a vesting schedule for long-term success, and

deanonymize project teams with a third-party KYC provider to create greater accountability.

Alleviation

[CertiK] : The team states they plan to deploy the contract with a mint amount of 0.

MBX-05 MARBLEX

MBT-02 POTENTIAL REENTRANCY ATTACK (OUT-OF-ORDER

EVENTS)

Category Severity Location Status

Concurrency Minor
MultiSigWallet.sol (base): 101, 104; TokenForwarder.sol (base):

39~41, 61
Partially Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

This finding is considered minor because the reentrancy only causes out-of-order events.

External call(s)

101 (bool success,) = transaction.to.call{value: transaction.value}(

transaction.data);

Events emitted after the call(s)

104 emit ExecuteTransaction(msg.sender, _txIndex);

External call(s)

39 (bool success, bytes memory returndata) = req.to.call{gas: req.gas,

 value: req.value}(

40 abi.encodePacked(req.data, req.from)

41);

Events emitted after the call(s)

61 emit MetaTransactionExecuted(req.from, req.to, req.data);

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

MBT-02 MARBLEX

attack.

Alleviation

[CertiK] : The team made changes partially resolving the finding in commit

d4302c2d89369e99b154b4c3cee7f7cb727878f0.

Check-effect-interaction pattern is still violated in the function cited within the MultiSigWallet contract. It is noted that the

function cited is privileged, making it unlikely reentrancy will be accomplished.

The team states they acknowledge the remaining issue and plan to make changes in the future which will not be included

presently.

MBT-02 MARBLEX

MBX-10 UNCHECKED ERC-20 transfer() / transferFrom() CALL

Category Severity Location Status

Volatile Code Minor MBXToken.sol (base): 135 Acknowledged

Description

The return values of the transfer() and transferFrom() calls in the smart contract are not checked. Some ERC-20

tokens' transfer functions return no values, while others return a bool value, they should be handled with care. If a function

returns false instead of reverting upon failure, an unchecked failed transfer could be mistakenly considered successful in

the contract.

135 IERC20(token).transfer(to, amount);

Recommendation

We recommend using the OpenZeppelin's SafeERC20.sol implementation to interact with the transfer() and

transferFrom() functions of external ERC-20 tokens. The OpenZeppelin implementation checks for the existence of a

return value and reverts if false is returned, making it compatible with all ERC-20 token implementations.

Alleviation

[CertiK] : The team acknowledges the finding and opts not to change the current version.

MBX-10 MARBLEX

TFM-01 POTENTIAL LOCKED BLOCKCHAIN NATIVE TOKENS

Category Severity Location Status

Logical Issue Minor TokenForwarder.sol (base): 33~34 Resolved

Description

Function execute() of contract TokenForwarder is payable, but there is no check that the included msg.value matches

the input req.value . As a result, one of the following scenarios could occur:

req.value is 0, but a positive msg.value is included, resulting in native tokens left in the contract.

If the contract does retain any native tokens, either through the scenario above, or by any other means, then a user

can provide a valid signed message that they create, with req.value specified as the amount left in the contract. In

this case, the caller of execute() does not have to provide a msg.value , and whatever is left in the contract will

be sent wherever the caller specified with their signed message.

Recommendation

We recommend requiring that the msg.value matches the req.value .

Alleviation

[CertiK] : The team made changes resolving the finding in commits

d4302c2d89369e99b154b4c3cee7f7cb727878f0

4fc55ab894fbab42c5ab7926abb26036169fa758

9b9a373daff6c3fb066050a3a275458905486f40

TFM-01 MARBLEX

TFM-02 DESTINATION OF execute() CAN BE ANY ADDRESS

Category Severity Location Status

Access Control Minor TokenForwarder.sol (base): 39~41 Resolved

Description

The main use case of TokenForwarder appears to be its role as the trustedForwarder address used in the ERC2771

inheritance of the MBXToken contract. If there are no other use cases of this contract, consider setting the destination

address for the low-level call in the function execute() upon deployment of the contract, instead of letting the user

determine the destination.

With its current set up, users can sign any message for any req.to destination, and the contract will execute the call to that

destination.

Recommendation

We recommend considering the restriction of the potential interactions that can take place with the TokenForwarder

contract, if its only intended use is with the MBXToken contract.

Alleviation

[CertiK] : The team made changes resolving the finding in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0.

TFM-02 MARBLEX

TFM-03 MISSING ZERO ADDRESS VALIDATION

Category Severity Location Status

Volatile Code Minor TokenForwarder.sol (base): 39 Resolved

Description

The to address is not validated before assignment or external calls, potentially allowing the use of the zero address and

leading to unexpected behavior or vulnerabilities. For example, transferring tokens to a zero address can result in a

permanent loss of those tokens.

Recommendation

We recommend adding a check that the passed-in address in execute() is not address(0) to prevent unexpected errors.

Alleviation

[CertiK] : The team made changes resolving this finding in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0.

TFM-03 MARBLEX

IMB-01 UNUSED EVENT

Category Severity Location Status

Coding Issue Informational interfaces/IMBXToken.sol (base): 7 Resolved

Description

Some events are never emitted, which can lead to confusion and code maintainability issues.

7 event SetStatus(bool enableERC2612, bool enableERC2771);

SetStatus is declared in IMBXToken but never emitted.

Recommendation

We recommend removing the unused event or emitting it in the intended functions to improve code clarity and maintainability.

Alleviation

[CertiK] : The team made changes resolving the finding in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0.

IMB-01 MARBLEX

MBX-06 UNNECESSARY USE OF super KEYWORD

Category Severity Location Status

Coding

Style
Informational

MBXToken.sol (base): 53~54, 62~63, 75~76, 88~89, 97~98, 105

~106
Resolved

Description

In the locations cited, the function called is inherited by the contract and can be referenced directly, without the use of the

keyword super .

Recommendation

We recommend removing the unnecessary use of super .

Alleviation

[CertiK] : The team made changes resolving the finding in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0.

MBX-06 MARBLEX

MBX-11 CONSIDER ADDED CHECKS WITH notFrozen MODIFIER

Category Severity Location Status

Coding Style Informational MBXToken.sol (base): 220~221, 271~272, 279~280 Resolved

Description

The current implementation of the MBXToken only ensures that tokens cannot be transferred from an account that has

been frozen. There are no checks on msg.sender (potentially distinct from _msgSender() , or the to account, all of which

may be different addresses.

If tokens are transferred to a frozen account, then tokens that were previously in circulation become temporarily

unavailable, while the account they were transferred to is left frozen.

In functions permit() and _approve() , the spender address is not checked to ensure the address is not frozen.

This may allow a frozen account to send the owner's tokens to maliciously.

The _msgSender() executing any function call may be a frozen account. If a user has previously given approval to

an account that becomes frozen, then the frozen account can still use the approval to transfer the tokens to any

destination address. Additionally, a frozen msg.sender account can still use a valid signature in the permit()

function on behalf of a non-frozen account.

In cases where the tokenForwarder contract is used to relay an address for _msgSender() that is distinct from the

msg.sender interacting, then the _msgSender() can be a frozen account and still make calls to functions

transferFrom() and permit() as described above.

Recommendation

If the above is intended behavior of the protocol, no action is needed, and upon confirmation, the finding will be resolved.

Otherwise, we recommend considering the addition of the modifier notFrozen() for addresses to , msg.sender , and

_msgSender() (in the case where msg.sender and _msgSender() are distinct from one another).

Alleviation

[CertiK] : The team notes that the added checks do not fit the needs of the protocol, so the finding is resolved.

MBX-11 MARBLEX

OPTIMIZATIONS MARBLEX

ID Title Category Severity Status

MBT-01
Functions Equivalent To Compiler-

Generated Getters

Gas Optimization,

Code Optimization
Optimization Acknowledged

MBX-02 Unnecessary Requirements
Gas Optimization,

Code Optimization
Optimization Resolved

MBX-07
Redundant References And Use Of

Modifier Checks

Gas Optimization,

Code Optimization
Optimization Partially Resolved

MBX-08
Declaration Of Specific Access

Control Functions

Gas Optimization,

Code Optimization
Optimization Resolved

MBX-09

Modifier notFrozen Can Be

Refactored For Gas Optimization

During Deployment

Gas Optimization Optimization Resolved

MSW-01
Variables That Could Be Declared As

Immutable
Gas Optimization Optimization Resolved

MSW-02 Inefficient Memory Parameter Inconsistency Optimization Resolved

OPTIMIZATIONS MARBLEX

MBT-01 FUNCTIONS EQUIVALENT TO COMPILER-GENERATED

GETTERS

Category Severity Location Status

Gas Optimization, Code

Optimization
Optimization

MBXToken.sol (base): 243~244; MultiSigWall

et.sol (base): 126~127
Acknowledged

Description

MBXToken.sol

Function getNonce() returns super.nonces(from) , where from is a user-provided input.

The mapping nonces has a compiler-generated getter function which returns the same output.

MultiSigWallet.sol

Function getTransaction() returns the same information that is returned from directly referencing the compiler-generated

getter function for the transactions array.

Recommendation

We recommend relying on the compiler-generated getter functions to reference the respective return values, and removing

the functions getNonce() and getTransaction() from their respective contracts.

Alleviation

[CertiK] : The team acknowledges the finding and opts not to make changes to their current version.

They further state that the getNonce() function is a wrapper for another project's interface.

MBT-01 MARBLEX

MBX-02 UNNECESSARY REQUIREMENTS

Category Severity Location Status

Gas Optimization, Code

Optimization
Optimization

MBXToken.sol (base): 157~158, 297~29

8
Resolved

Description

Function acceptOwnership() overridden in MBXToken includes a requirement that pendingOwner() is not

address(0) . However, it is not possible for address(0) to call this function directly, and the TokenForwarder

contract that may be used to change the return value of _msgSender() cannot send address(0) as the source

address. This is because the recovered signer of the ForwardRequest is checked in the ECDSA library to be a

nonzero address, and reverts if this is the case. Consequently, the check that the pendingOwner() is not

address(0) is unnecessary and can be removed.

Internal function _beforeGrant() requires that the input role is not the DEFAULT_ADMIN_ROLE , however, this

internal function is only called in functions addMinter() and addPauser() where the role is either

MINTER_ROLE or PAUSER_ROLE respectively. Consequently, the check that the role is not the

DEFAULT_ADMIN_ROLE is unnecessary and can be removed.

Recommendation

We recommend removing the unneeded requirements.

If the recommendation of finding MBX-08 is followed regarding the use of _beforeGrant() in functions addMinter() and

addPauser() , then the check to DEFAULT_ADMIN_ROLE is no longer unnecessary and should remain in the function as a

valid check.

Alleviation

[CertiK] : The team made changes resolving the finding in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0.

MBX-02 MARBLEX

MBX-07 REDUNDANT REFERENCES AND USE OF MODIFIER

CHECKS

Category Severity Location Status

Gas Optimization, Code

Optimization
Optimization

MBXToken.sol (base): 220~221, 259~260, 2

71~272, 272~273, 279~280, 280~281
Partially Resolved

Description

Hooks _beforeTokenApprove() and _beforeTokenTransfer() are both used to add the same checks that the from

address is not frozen (modifier notFrozen), and that the contract is not paused (modifier whenNotPaused). There are

some functions in which both modifiers are called more than once on the same input.

Inherited function transferFrom() uses both hooks because _spendAllowance() calls function _approve()

which is overridden to include _beforeTokenApprove() , and because internal _transfer() is called which

includes _beforeTokenTransfer() ;

Function permit() is overridden to include modifiers notFrozen and whenNotPaused , and its inherited logic calls

internal function _approve()

Inherited function burnFrom() uses both hooks because _spendAllowance() calls function _approve() which is

overridden to include _beforeTokenApprove() , and because internal _burn() includes

_beforeTokenTransfer() ;

Internal function _beforeTokenApprove() also includes a reference to super._beforeTokenTransfer() in the body of the

function. This references the inherited logic of the _beforeTokenTransfer() function, which also includes a check that the

contract is not paused . The reference to super._beforeTokenTransfer() is unnecessary in the body of the

_beforeTokenApprove() function.

In the override of _beforeTokenTransfer() within the MBXToken contract, there is also a reference to

super._beforeTokenTransfer() . Since this logic includes a check that the contract is not paused, it is not necessary to

include the modifier whenNotPaused in the override of the _beforeTokenTransfer() function.

Recommendation

We recommend reworking the logic so that each check is only made once. One solution could be to remove the

whenNotPaused modifier from the hook _beforeTokenTransfer() , and to remove the _beforeTokenApprove() hook and

replace with modifiers in each of the following external functions:

approve()

increaseAllowance()

MBX-07 MARBLEX

decreaseAllowance()

In doing so, all approval functionality will still include the same checks, and the permit() , transferFrom() , and

burnFrom() functions will now only include the check once.

Alleviation

[CertiK] : The team made changes which partially resolve the finding in commit

d4302c2d89369e99b154b4c3cee7f7cb727878f0.

Namely, the function _beforeTokenTransfer() was streamlined to only include a check to whenNotPaused once and

_beforeTokenApprove() (renamed _beforeTokenTransaction()) now references the override of

_beforeTokenTransfer() .

However, the functions transferFrom() , permit() , and burnFrom() still include the checks multiple times because of

the reasons cited in the description of the finding.

MBX-07 MARBLEX

MBX-08 DECLARATION OF SPECIFIC ACCESS CONTROL

FUNCTIONS

Category Severity Location Status

Gas Optimization, Code

Optimization
Optimization

MBXToken.sol (base): 50~51, 59~60, 73~74, 86~8

7, 95~96, 103~104, 230~231, 235~236
Resolved

Description

The contract MBXToken has a code size that exceeds the limit of 24576 bytes. It is noted that there are several functions

added which call existing inherited functions from AccessControlEnumerable with hardcoded input:

addMinter()

addPauser()

renounceMinter()

renouncePauser()

revokeMinter()

revokePauser()

isMinter()

isPauser()

Functions renounceMinter() , renouncePauser() , revokeMinter() , revokePauser() , isMinter() , and

isPauser() appear unneeded. The MINTER_ROLE and PAUSER_ROLE values are public and include compiler-generated

getter functions. These getter functions can be used to return the bytes32 value representing each role, and then these roles

can be used as input, along with the desired account address in functions renounceRole() , revokeRole() , and

hasRole() respectively.

The bytes32 value of MINTER_ROLE is 0x9f2df0fed2c77648de5860a4cc508cd0818c85b8b8a1ab4ceeef8d981c8956a6.

The bytes32 value of PAUSER_ROLE is 0x65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a

Functions addMinter() and addPauser() include other checks through call to internal _beforeGrant() before calling

_grantRole() . However, it is noted that DEFAULT_ADMIN_ROLE can still directly call function grantRole() to bypass these

checks. Since the owner of the contract is necessarily also a DEFAULT_ADMIN_ROLE based on the logic of the contract, this

makes the addition of the checks in addMinter() and addPauser() functions ineffectual.

Recommendation

We recommend reducing the size and complexity of the codebase by removing the unneeded functions. Consider removing

functions renounceMinter() , renouncePauser() , revokeMinter() , revokePauser() , isMinter() , and

MBX-08 MARBLEX

isPauser() , and relying on the inherited functions instead.

Consider removing functions addMinter() and addPauser() replacing with an override of function grantRole() which

adds the checks in _beforeGrant() and then calls super.grantRole() . This will ensure that the DEFAULT_ADMIN_ROLE

and the _owner adhere to the _beforeGrant() checks while reducing the code size.

If there is a reason for including the functions that pertains to the use of the trustedForwarder or the MultiSigWallet ,

please provide documentation on the necessity of the functions listed above.

Alleviation

[CertiK] : The team made changes which resolve the finding in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0.

MBX-08 MARBLEX

MBX-09 MODIFIER notFrozen CAN BE REFACTORED FOR GAS

OPTIMIZATION DURING DEPLOYMENT

Category Severity Location Status

Gas Optimization Optimization MBXToken.sol (base): 28~29 Resolved

Description

The modifier notFrozen() can be reconstructed to save gas during deployment by calling an internal view function instead

of directly calling a require statement. See an example of this implementation in the following OpenZeppelin contract:

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol#L46.

Code explicitly written in modifiers is copied in all other function instances in which the modifier is used within the contract. In

turn, the overall size of the contract is increased. This can be prevented by instead using an internal view function for the

required check, as is demonstrated in the link above.

Note, however, that function calls in which this is used may cost a slight extra amount in gas each time if this revision is

made.

Recommendation

We recommend considering the refactoring of the modifier notFrozen() to call an internal view function with the require

logic incorporated to save gas during deployment of the logic contract.

Alleviation

[CertiK] : The team made changes resolving the finding in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0.

MBX-09 MARBLEX

MSW-01 VARIABLES THAT COULD BE DECLARED AS IMMUTABLE

Category Severity Location Status

Gas Optimization Optimization MultiSigWallet.sol (base): 15 Resolved

Description

The linked variables assigned in the constructor can be declared as immutable . Immutable state variables can be assigned

during contract creation but will remain constant throughout the lifetime of a deployed contract. A big advantage of immutable

variables is that reading them is significantly cheaper than reading from regular state variables since they will not be stored in

storage.

Recommendation

We recommend declaring these variables as immutable. Please note that the immutable keyword only works in Solidity

version v0.6.5 and up.

Alleviation

[CertiK] : The team made changes resolving the finding in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0.

MSW-01 MARBLEX

MSW-02 INEFFICIENT MEMORY PARAMETER

Category Severity Location Status

Inconsistency Optimization MultiSigWallet.sol (base): 75 Resolved

Description

One or more parameters with memory data location are never modified in their functions and those functions are never

called internally within the contract. Thus, their data location can be changed to calldata to avoid the gas consumption

copying from calldata to memory.

75 function submitTransaction(address _to, uint256 _value, bytes memory _data)

public onlyOwner {

submitTransaction has memory location parameters: _data .

Recommendation

We recommend changing the parameter's data location to calldata to save gas.

For Solidity versions prior to 0.6.9, since public functions are not allowed to have calldata parameters, the function

visibility also needs to be changed to external .

For Solidity versions prior to 0.5.0, since parameter data location is implicit, changing the function visibility to

external will change the parameter's data location to calldata as well.

Alleviation

[CertiK] : The team made changes resolving the finding in commit d4302c2d89369e99b154b4c3cee7f7cb727878f0.

MSW-02 MARBLEX

APPENDIX MARBLEX

Finding Categories

Categories Description

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more

optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Concurrency
Concurrency findings are about issues that cause unexpected or unsafe interleaving of code

executions.

Access Control Access Control findings are about security vulnerabilities that make protected assets unsafe.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX MARBLEX

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER MARBLEX

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER MARBLEX

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Marblex Security Assessment CertiK Assessed on Aug 10th, 2023 Copyright © CertiK

