

Summary
 Audit Firm Guardian

 Prepared By Owen Thurm, Nicholas Chew, 0xCiphky, Michael Lett

 Client Firm Impermax

 Final Report Date August 8, 2025

Audit Summary

Impermax engaged Guardian to review the security of their Impermax V3 Tokenized Aerodrome

Positions. From the 30th of July to the 5th of August, a team of 4 auditors reviewed the source code

in scope. All findings have been recorded in the following report.

2

🔗 Blockchain network: Base

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 PoC test suite: https://github.com/GuardianOrg/impermax-v3-core-impermaxtokenizedaerodromeposition-team1 ,

https://github.com/GuardianOrg/impermax-v3-core-impermaxtokenizedaerodromeposition-team2 ,

https://github.com/GuardianOrg/impermax-v3-core-impermaxtokenizedaerodromeposition-fuzz

Confidence Ranking
Given the lack of critical issues detected and minimal code changes following the main review,

Guardian assigns a Confidence Ranking of 4 to the protocol. Guardian advises the protocol to

consider periodic review with future changes. For detailed understanding of the Guardian Confidence

Ranking, please see the rubric on the following page.

https://github.com/guardianaudits
https://github.com/GuardianOrg/impermax-v3-core-impermaxtokenizedaerodromeposition-team1
https://github.com/GuardianOrg/impermax-v3-core-impermaxtokenizedaerodromeposition-team2
https://github.com/GuardianOrg/impermax-v3-core-impermaxtokenizedaerodromeposition-team2
https://github.com/GuardianOrg/impermax-v3-core-impermaxtokenizedaerodromeposition-fuzz
https://github.com/GuardianOrg/impermax-v3-core-impermaxtokenizedaerodromeposition-fuzz

3

Confidence Ranking Definition and Recommendation Risk Profile
5: Very High Confidence Codebase is mature, clean, and secure. No High or

Critical vulnerabilities were found. Follows modern
best practices with high test coverage and
thoughtful design.

Recommendation: Code is highly secure at time of
audit. Low risk of latent critical issues.

0 High/Critical findings
and few Low/Medium
severity findings.

4: High Confidence Code is clean, well-structured, and adheres to best
practices. Only Low or Medium-severity issues were
discovered. Design patterns are sound, and test
coverage is reasonable. Small changes, such as
modifying rounding logic, may introduce new
vulnerabilities and should be carefully reviewed.

Recommendation: Suitable for deployment after
remediations; consider periodic review with
changes.

0 High/Critical findings.
Varied Low/Medium
severity findings.

3: Moderate Confidence Medium-severity and occasional High-severity
issues found. Code is functional, but there are
concerning areas (e.g., weak modularity, risky
patterns). No critical design flaws, though some
patterns could lead to issues in edge cases.

Recommendation: Address issues thoroughly and
consider a targeted follow-up audit depending on
code changes.

1 High finding and ≥ 3
Medium. Varied Low
severity findings.

2: Low Confidence Code shows frequent emergence of Critical/High
vulnerabilities (~2/week). Audit revealed recurring
anti-patterns, weak test coverage, or unclear logic.
These characteristics suggest a high likelihood of
latent issues.

Recommendation: Post-audit development and a
second audit cycle are strongly advised.

2-4 High/Critical findings
per engagement week.

1: Very Low Confidence Code has systemic issues. Multiple High/Critical
findings (≥5/week), poor security posture, and
design flaws that introduce compounding risks.
Safety cannot be assured.

Recommendation: Halt deployment and seek a
comprehensive re-audit after substantial
refactoring.

≥5 High/Critical findings
and overall systemic
flaws.

Guardian Confidence Ranking

Table of Contents

Project Information

Project Overview ………………………………………….…………………………….. 5

Audit Scope & Methodology .………………………………………………………….. 6
Smart Contract Risk Assessment

Invariants Assessed ……………………………………………..……….……………. 9

Findings & Resolutions …………..…………………………….…………………….. 11

Addendum

Disclaimer …………………………………………………………………..…………..… 23

About Guardian ………………………………..…………………………………………. 24

4

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

5

Project Name Impermax

Language Solidity

Codebase https://github.com/Impermax-Finance/impermax-v3-core

Commit(s) Initial commit: 9d9561e104f8aea60373bcdab46b6582f618a81e
Final commit: 8056dff0641b314884213c84ee4a1dace1d9ca97

Delivery Date August 8, 2025

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 0 0 0 0 0 0

 ● High 1 0 0 0 0 1

 ● Medium 2 0 0 1 0 1

 ● Low 6 0 0 6 0 0

 ● Info 2 0 0 1 0 1

https://github.com/Impermax-Finance/impermax-v3-core

Audit Scope & Methodology

6

Scope and details:

contract,source,total,comment
impermax-v3-core/contracts/extensions/TokenizedAeroCLPosition.sol,187,257,18
source count: {
 total: 257,
 source: 187,
 comment: 18,
 single: 12,
 block: 6,
 mixed: 2,
 empty: 54,
 todo: 0,
 blockEmpty: 0,
 commentToSourceRatio: 0.0962566844919786}

7

Vulnerability Classifications

Audit Scope & Methodology

Severity Impact: High Impact: Medium Impact: Low

Likelihood: High ● Critical ● High ● Medium

Likelihood: Medium ● High ● Medium ● Low

Likelihood: Low ● Medium ● Low ● Low

Impact
High Significant loss of assets in the protocol, significant harm to a group of users, or a core
. functionality of the protocol is disrupted.

Medium A small amount of funds can be lost or ancillary functionality of the protocol is affected.
. The user or protocol may experience reduced or delayed receipt of intended funds.

Low Can lead to any unexpected behavior with some of the protocol's functionalities that is
. notable but does not meet the criteria for a higher severity.

Likelihood
High The attack is possible with reasonable assumptions that mimic on-chain conditions,
. and the cost of the attack is relatively low compared to the amount gained or the
. disruption to the protocol.

Medium An attack vector that is only possible in uncommon cases or requires a large amount of
. capital to exercise relative to the amount gained or the disruption to the protocol.

Low Unlikely to ever occur in production.

8

Audit Scope & Methodology

Methodology

Guardian is the ultimate standard for Smart Contract security. An engagement with Guardian entails
the following:

● Two competing teams of Guardian security researchers performing an independent review.
● A dedicated fuzzing engineer to construct a comprehensive stateful fuzzing suite for the

project.
● An engagement lead security researcher coordinating the 2 teams, performing their own

analysis, relaying findings to the client, and orchestrating the testing/verification efforts.

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.

Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

 Invariants Assessed

9

During Guardian’s review of Impermax, fuzz-testing was performed on the protocol’s main
functionalities. Given the dynamic interactions and the potential for unforeseen edge cases
in the protocol, fuzz-testing was imperative to verify the integrity of several system
invariants.

Throughout the engagement the following invariants were assessed for a total of
10,000,000+ runs with a prepared fuzzing suite.

ID Description Tested Passed Remediation Run Count

AERO-01 Liquidity should be added to the pool
✅ ✅ ✅ 10M+

AERO-02 Tick lower must be less than tick upper ✅ ✅ ✅ 10M+

AERO-03 Swap should return non-zero output amount ✅ ❌ ✅ 10M+

LIQUI-01 After a successful call to
restructureBadDebt function, the position
should NOT be underwater.

✅ ✅ ✅ 10M+

BORROW-01 When borrowAmount is 0, borrowedBalance
should remain unchanged. ✅ ✅ ✅ 10M+

BORROW-02 After borrow the user's position is never
liquidatable ✅ ❌ ❌ 10M+

BORROW-03 After borrow the user's position is never
underwater ✅ ✅ ✅ 10M+

REDEEM-01 After a successful remove from collateral
call position should not be liquidatable. ✅ ✅ ✅ 10M+

REDEEM-02 After a successful remove from collateral
call position should not be underwater. ✅ ✅ ✅ 10M+

CLM-01 claimPositionV3: call to claim failed ✅ ❌ ❌ 10M+

Invariants Assessed

10

ID Description Tested Passed Remediation Run Count

CLAIM-01 After a successful claim position call
position should not be liquidatable. ✅ ❌ ❌ 10M+

CLAIM-02 After a successful claim position call
position should not be underwater. ✅ ✅ ✅ 10M+

SPLIT-01 Split should not revert with invalid token ID
when splitting 100% ✅ ❌ ✅ 10M+

COLL-01 TokenizedAeroCLPosition.redeem should
never revert ✅ ✅ ✅ 10M+

GLOBAL-01 There should never be a position that is
underwater but not liquidatable ✅ ✅ ✅ 10M+

GLOBAL-02 TokenizedAeroCLPosition should not hold
token0 or token1 ✅ ❌ ❌ 10M+

Findings & Resolutions

11

ID Title Category Severity Status

H-01 ETH Refund Can Revert Critical
Functions DoS ● High Resolved

M-01 Full Split Causes Revert Logical Error ● Medium Resolved

M-02 getPositionData Will Revert For
Certain Prices DoS ● Medium Acknowledged

L-01 Unclaimed Fees Are Lost After
mint Logical Error ● Low Acknowledged

L-02 Lack Of Slippage Protection MEV ● Low Acknowledged

L-03 ecrecover Allows Signature
Malleability Signatures ● Low Acknowledged

L-04 Unclaimed Dust After split Warning ● Low Acknowledged

L-05 Rewards Cannot Be Claimed By
EOA

Unexpected
Behavior ● Low Acknowledged

L-06 Unused Tokens Not Returned Logical Error ● Low Acknowledged

I-01 Naming Convention For
_addGauge Informational ● Info Resolved

I-02 Gas Optimization For
nonReentrant Modifier Gas Optimization ● Info Acknowledged

H-01 | ETH Refund Can Revert Critical Functions

Description

The increaseLiquidity function in the TokenizedAeroCLPosition contract allows users to add liquidity
to an existing position.

It does so by withdrawing the user’s position from the gauge, calling increaseLiquidity on the
NonfungiblePositionManager with the original and additional amounts, and then redepositing the
position.

However, the NonfungiblePositionManager’s increaseLiquidity function ends by calling refundETH,
which sends any residual ETH in the contract back to msg.sender. In this context, msg.sender is the
TokenizedAeroCLPosition contract itself.

Since the contract lacks a fallback function, the refund fails and causes the entire transaction to
revert.

A malicious actor could exploit this by sending a small amount of ETH to the
NonfungiblePositionManager contract before a increaseLiquidity call, ensuring that the refundETH
call fails and reverts the transaction.

The same issue exists in the split function, which also calls mint on the
NonfungiblePositionManager, triggering a similar refund.

This is more critical since split is used in liquidation flows—meaning an attacker could block or delay
liquidations by intentionally triggering a refund failure.

Recommendation

Consider adding a fallback function to ensure the contract can safely receive ETH refunds and avoid
unexpected reverts.

Resolution

Impermax Team: The issue was resolved in commit 1f6e4b3.

12

Category Severity Location Status

DoS ● High TokenizedAeroCLPosition.sol: 167 Resolved

https://github.com/Impermax-Finance/impermax-v3-core/commit/1f6e4b37cb932221ee72ff661fafb35252d62232

M-01 | Full Split Causes Revert

Description

The split function allows users to split their position by a specified percentage, with 100% being the
maximum.

However, if a user attempts a full (100%) split, the decreaseAndMint function in the
NfpmAeroInteractions library burns the original tokenId, since no liquidity remains in the original
position.

The issue arises when the split function subsequently attempts to redeposit the now-burned tokenId
into the gauge.

This causes a revert, making a full split impossible. Additionally, because the original token is burned
without claiming any pending fees from the gauge, those rewards are lost for the user.

A similar issue occurs when a user passes in 0% to split — the function attempts to mint a new
position with no liquidity, which results in the new NFT never being minted.

Recommendation

Prevent 0% and 100% splits by modifying the logic to require percentage > 0 & percentage < 1e18, or
alternatively, add checks to ensure fees are claimed and that the original token is not redeposited
after being burned.

Resolution

Impermax Team: The issue was resolved in commit 9d9a4ee.

13

Category Severity Location Status

Logical Error ● Medium TokenizedAeroCLPosition.sol: 167 Resolved

https://github.com/Impermax-Finance/impermax-v3-core/commit/9d9a4ee9f7490fc53b466e9576511421ca643962

M-02 | getPositionData Will Revert For Certain Prices

Description

The getPositionData function is intended to return price and liquidity information for a given
position.

It computes values such as currentPrice, lowestPrice, and highestPrice using the current price and a
user-defined safety margin. These values are constrained using the safe160 helper to ensure they fit
within a uint160.

However, in certain token pairs where the price can near the maximum limit representable in
Uniswap V3, the computed highestPrice can overflow the uint160 range.

When this occurs, the safe160 check will revert the transaction, even though the position itself
remains valid within Uniswap.

This is particularly problematic because getPositionData is used in several critical functions,
including liquidation checks. A revert in this context could block or delay important protocol
operations.

Recommendation

Ensure newly added token pairs do not result in price ranges exceeding the uint160 max, as this can
disrupt core functions.

Resolution

Impermax Team: Acknowledged.

14

Category Severity Location Status

DoS ● Medium TokenizedAeroCLPosition.sol: 108 Acknowledged

L-01 | Unclaimed Fees Are Lost After mint

Description

When mint is called, it deposits into the gauge, which triggers a collection of any accrued LP fees.
These fees are transferred to TokenizedAeroCLPosition.

However, unless the caller explicitly invokes skim, these tokens remain unclaimed and can be taken
by anyone.

As a result, the user who called mint may unintentionally forfeit their accrued LP fees if they do not
immediately follow up with a skim.

Recommendation

Consider calling skim(msg.sender) at the end of the mint function.

Resolution

Impermax Team: Acknowledged.

15

Category Severity Location Status

Logical Error ● Low TokenizedAeroCLPosition.sol: 133 Acknowledged

L-02 | Lack Of Slippage Protection

Description

The increaseLiquidity function enables users to add liquidity to their existing position. However, both
amount0Min and amount1Min are hardcoded to zero, meaning no slippage protection is applied
during the minting process. This exposes users to unfavorable price movements or MEV attacks.

The same issue exists in the split function, which reduces a position by a specified percentage and
mints a new position with the withdrawn liquidity. Here too, amount0Min and amount1Min are set to
zero, exposing users to similar risks.

Recommendation

Consider adding slippage protection by allowing user-defined amount0Min and amount1Min values
or by setting reasonable minimum thresholds to reduce the risk of poor execution or MEV
exploitation.

Resolution

Impermax Team: Acknowledged.

16

Category Severity Location Status

MEV ● Low NfpmAeroInteractions.sol: 49 Acknowledged

L-03 | ecrecover Allows Signature Malleability

Description

ImpermaxERC721.sol uses vanilla ecrecover for signer recovery, which is susceptible to malleability
due to signature variations.

This does not cause any immediate damage since the signed permit itself does not change.
However, this should still be considered for improvement.

Recommendation

Consider using OpenZeppelin's ECDSA library for signer recovery to mitigate malleability risks.

Resolution

Impermax Team: Acknowledged.

17

Category Severity Location Status

Signatures ● Low ImpermaxERC721.sol: 160 Acknowledged

L-04 | Unclaimed Dust After split

Description

split removes some liquidity from the current LP position and mints a new one. Due to Aero rounding
during minting, small residual (dust) token amounts can remain in the TokenizedAeroCLPosition
contract.

These residual tokens left behind can be skimmed by anyone, If not reclaimed, the owner of the
original position loses these tokens.

Recommendation

Considering calling skim to the position owner after split.

Resolution

Impermax Team: Acknowledged.

18

Category Severity Location Status

Warning ● Low TokenizedAeroCLPosition.sol: 167 Acknowledged

L-05 | Rewards Cannot Be Claimed By EOA

Description

In the claim function, _checkAuthorizedCollateral obtains owner of the tokenId from the Collateral
contract:

This assumes that every user holding the wrapper NFT will deposit into the Collateral contract. If the
wrapper NFT is still in a EOA wallet or separate contract, then the ownerOf call will revert. This
blocks anyone from calling claim when the wrapper NFT is not being used as collateral.

Recommendation

Consider if this is expected behavior and document this risk for users.

Resolution

Impermax Team: Acknowledged.

19

Category Severity Location Status

Unexpected Behavior ● Low TokenizedAeroCLPosition.sol: 215 Acknowledged

address collateral = _requireOwned(tokenId);

address owner = IERC721(collateral).ownerOf(tokenId);

L-06 | Unused Tokens Not Returned

Description

The increaseLiquidity function in the TokenizedAeroCLPosition contract allows users to add liquidity
to an existing position. The user must first transfer token0 and token1 to the contract, then call
increaseLiquidity.

The function withdraws the user’s position from the gauge, attempts to increase its liquidity using
the transferred amounts, and then redeposits the position.

However, if the provided token amounts are unbalanced, the actual liquidity added may use only part
of the transferred tokens.

Any remaining tokens stay in the contract without being returned to the user. These leftover tokens
can later be claimed by anyone through the skim function, resulting in a potential loss of funds for
the user.

Recommendation

Consider modifying increaseLiquidity to automatically return unused tokens to the user. Alternatively,
clearly document this behaviour and ensure users are advised to call skim immediately after
increaseLiquidity to recover any remaining tokens.

Resolution

Impermax Team: Acknowledged.

20

Category Severity Location Status

Logical Error ● Low TokenizedAeroCLPosition.sol: 190 Acknowledged

I-01 | Naming Convention For _addGauge

Description

The function _addGauge is declared external but is named with a leading underscore, a convention
usually reserved for private or internal functions.

Recommendation

Rename _addGauge to addGauge to align with standard Solidity conventions.

Resolution

Impermax Team: Resolved.

21

Category Severity Location Status

Informational ● Info TokenizedAeroCLPosition.sol: 232 Resolved

I-02 | Gas Optimization For nonReentrant Modifier

Description

The nonReentrant modifier in TokenizedAeroCLPosition.sol currently relies on a bool flag
(_notEntered) to prevent reentrancy.

However, this approach incurs high gas costs because each call involves a storage write from zero
to nonzero (and vice versa).

Recommendation

Update the nonReentrant modifier to use a uint256 two-state pattern (as recommended by
OpenZeppelin), which avoids zero-value writes and reduces gas usage by approximately
10,000–15,000 per call.

Resolution

Impermax Team: Acknowledged.

22

Category Severity Location Status

Gas Optimization ● Info TokenizedAeroCLPosition.sol: 262 Acknowledged

// storage

uint256 private constant _NOT_ENTERED = 1;

uint256 private constant _ENTERED = 2;

uint256 private _status;

// in your constructor or initialize:

_status = _NOT_ENTERED;

// modifier

modifier nonReentrant() {

require(_status = _ENTERED, "Impermax: REENTERED");

_status = _ENTERED;

_;

_status = _NOT_ENTERED;

}

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

23

About Guardian

Founded in 2022 by DeFi experts, Guardian is a leading audit firm in the DeFi smart contract space.
With every audit report, Guardian upholds best-in-class security while achieving our mission to
relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

24

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

