RUNNING TIDE

The Global Ocean Health Company

Shellfish Ecosystem Services (Nitrogen Removal and Filtration) As Case Study for the Reykjavik Protocol Environmental Credit Generation Architecture

Daniel Codiga¹, Adam Baske¹, and Aaron Kornbluth²

¹Running Tide Technologies ²akorn environmental

NACE/MAS 2024 Providence, Rhode Island

- Global Ocean Health Company
- Design, implement, and quantify nature-based interventions to remove carbon, restore marine ecosystems, and revitalize coastal communities
- Multidisciplinary team of scientists, engineers, and maritime operators
- Headquarters Portland Maine, Iceland office, remote workforce

- Expert conservationists at nexus of science, policy, and outreach to benefit planet, wildlife, and people
- Responsibly managing, restoring, protecting natural resources including restorative aquaculture
- National footprint with Silver Spring, Maryland office

Today's talk

Oyster ecosystem services quantified: Broad Cove, Casco Bay Nitrogen removal Water filtration

Reykjavik Protocol - Environmental credits Parallels to Chesapeake Bay nutrient credit trading program

(All graphics by akorn environmental using PixIr AI Image Generator)

Shellfish Ecosystem Services

Benefits to people

Nutrient cycling and water filtration

Provisioning, **Regulating**, Supporting, Cultural

Broad Cove Casco Bay, Maine

Oyster restoration project (non-bioextractive)

- 500,000 planted Running Tide oysters
- Eastern oyster, diploid
 Crassostrea virginica
- On 4-acre lease: <1% area of cove

Goals of calculations

For **25-month project period**, calculate:

- Nitrogen removed from water column
- Water filtration potential

Use "conservative" empirical relations from mostlocal available measurements, and best-vetted literature results, to **demonstrate concepts**

Track contributions by:

- Each cohort (same year class and initial size)
- Each size range (across all cohorts)

Initial oyster characteristics: Sep 1, 2023

500,000 total, two main groups:

- 350,000 third-year, 2.5-3.5"
- 150,000 fourth-year, 3.5-5.5"

Number of oysters

(Two cohorts with same 3.5" initial size but different year classes – third and fourth years)

Calculation inputs

Growth rate: from Running Tide experience

Dry tissue weight and shell weight vs length: from Grizzle et al 2017

Percent nitrogen by weight, in tissue and shell: from Bigelow Labs measurements of Running Tide oysters (consistent with Reitsma et al., 2017)

Potential filtration rate as function of dry tissue weight and temperature: from zu Ermgassen et al., 2017 Methods considerations

Nitrogen removal

Variability and uncertainties

Largest contributions Dry tissue & shell weight as fcn of length Unknown mortality rate/events Smaller – percent N in tissue/shell

• Ground-truthing

Accurate field data on counts and sizes Main constraint is frequency of sampling

Water filtration

- Variability and uncertainties
 Largest contribution unknown extent of re-filtration
 Controlled by flow conditions
- Ground-truthing
 Generally requires custom field study

Generalizable

Has also been applied to Atlantic Surf Clams in upweller

Oyster growth results

Number oysters (all cohorts) by length range

Nitrogen Results: Individual oyster

Nitrogen

(total tissue

and shell)

[g]

About 50/50 N in tissue and shell (for most sizes)

Independently track cohorts with same initial size but different year class

500,000 oysters remove ~250 kg N from water column over 25 months

500,000 oysters remove ~250 kg N from water column over 25 months

How much nitrogen is that?

Oyster nitrogen removal

- 250 kg over 25 months
- Annualized rate <u>120 kg/year</u>

Broad Cove

- Long-term mean water column total nitrogen concentration ~0.2 mg/L (Running Tide data)
- Estimated volume 4.3 billion liters
- Standing stock water column nitrogen <u>approx. 860 kg</u>

500,000 oysters, on <1% area of Broad Cove seafloor, can: <u>remove 14% of cove water column</u> <u>nitrogen in a year</u>

Water Filtration Results: All oysters cumulatively

by cohort

500,000 oysters filter up to ~11 billion liters over 25 months

Water Filtration Results: All oysters cumulatively

by size

500,000 oysters filter up to ~11 billion liters over 25 months

How much filtration is that?

Oyster filtration

- 11 billion liters over 25 months
- Annualized rate <u>5.3 billion liters/year</u>

11 billion liters= 2.9 billion gallons= 4400 Olympic swimming pools

Broad Cove

- Strongly tidal, residence time on the order of days
- Estimated volume 4.3 billion liters

500,000 oysters, on <1% area of Broad Cove seafloor, can: <u>filter more than its volume in a year</u>

Summary: Broad Cove Oysters

Ecosystem services of 500,000 oysters

- 350,000 third-year, 2.5" 3.5"
- 150,000 fourth-year, 3.5" 5.5"

Calculations

- Based on empirical relations using most-local available measurements
- Track cohorts (same age & initial size)
- Also track by size range

Over 25 month period

- Remove ~250 kg N from water column Annually: ~120 kg N
 - ~14% nitrogen standing stock of cove
- Potentially filter ~11 billion liters Annually: ~5.3 billion liters More than cove volume

Example of interactive dashboard for client

RUNNING TIDE | Running Tide Technologies

Q. Search reports

Web-based, privately shared data portal

RUNNING TIDE | Running Tide Technologies Q Search reports ≡ SeaTrees: Broad Cove Oyster Restoration in Casco Bay, Maine, USA 命 **Oyster Water Oyster Nitrogen** Biodiversity: Continuous Water Biodiversity: eDNA Project Overview Gallery Removal Underwater Images Quality Monitoring Filtration Se Last updated: Next update: Water filtered by Billions of Billions of Olympic 500,000 Running Tide Jan 8. '24 Jan 9, '24 Liters Gallons swimming pools oysters in Broad Cove = = 0.85 0.23 340.80 since Sep 1, '23 as of Update cycle: Daily Jan 8, '24 (today) Methods Filtration rates of individual oysters are typically Billions of Liters
 Millions of Liters per Hour in the range of about 1-2 liters per hour (6-12 3 Before gallons per day) and can reach as high as 8 Today liters per hour (50 gallons per day) for short 10 per Hour periods, depending on the environment and size Liters 2 of the oyster. Filtration varies throughout the day depending on the amount of food particles Ъ Billions (in the water, the water flow conditions, and After 5 f Millions other factors. Oysters enter a state of dormancy when temperatures drop below a threshold temperature outside of the growing season of 0 0 April through October. The long-term average Jan 2024 Jul 2024 Jan 2025 Jul 2025 Credit: Chesapeake Bay Foundation rate of filtration increases with water

www.reykjavik-protocol.com

www.reykjavik-protocol.com

- Operational framework and process flow for environmental credit generation
- Roadmap to responsibly go from initial project design to credit sales, including roles of necessary third parties
- Supplier-led: nature-deployed environmental credit companies (to date, mainly carbon and biodiversity)

Aims:

- Solve structural issues in how credits are brought to market
- Identify and mitigate risks and uncertainties, conflicts of interest or perverse incentives

www.reykjavik-protocol.com

andes 🌔 😫 Brilliant Planet	Limenet GLITHOS BLiving Carbon
	Ioam COCUS MATI MittiLabs
Carboneg	
CREW CULtivo EARTHSHOT	Ponterra PULLTOREFRESH Crecapture
DEion the future forest compony	regiorganics «Rewind RUNNING TIDE
Orassroots ∭≿ InPlanet Katerī	💮 Seafields 👬 UNDO 🔍
Limenet G LITHOS (1) Living Carbon	YARD Stick

Currently at 60+ signatories and counting

- Operational framework and process flow for environmental credit generation
- Roadmap to responsibly go from initial project design to credit sales, including roles of necessary third parties
- Supplier-led: nature-deployed environmental credit companies (to date, mainly carbon and biodiversity)

Aims:

- Solve structural issues in how credits are brought to market
- Identify and mitigate risks and uncertainties, conflicts of interest or perverse incentives

Reykjavik Protocol

PRINCIPLES

Best- Available Science	Peer- > Reviewed Methodology	Env. and Social Assessment	Community Engagement	Permission , to Operate	Env. and Socio- Economic Baselines	Monitoring > and Mitigation >DO THE WC Plan	RK> Quantifying Impact	Auditable Data Package Data transparency	CREDIT
-------------------------------	------------------------------------	----------------------------------	-------------------------	-------------------------	---	---	---------------------------	---	--------

Reykjavik Protocol

PRINCIPLES

Value Available > Reviewed > Social Science Methodology Assessment Community Permission to Operate Permission to Operate Social Baselines Permission to Operate Social Baselines Permission to Operate Social Plan Pan Package Data Package Dat	Value Ava Chain Sci	est- ailable > Reviewed > ience Methodology	Env. and Social Assessment	Community Engagement	Permission to Operate	Socio- Economic Baselines	Monitoring > and Mitigation >DO THE WORK> Plan	Quantifying Impact	Auditable Data Package > Data transparency	CREDIT ISSUANCE	
--	------------------------	---	----------------------------------	-------------------------	--------------------------	---------------------------------	--	-----------------------	---	--------------------	--

Reykj	javik Protocol	PRINCIPLES		
Value Chain	Best- AvailablePeer- ReviewedEnv. and SocialScienceMethodologyAssessment	Community Permission Engagement to Operate	Env. and Socio- Economic Baselines	Auditable >Data Package > Data ISSUANCE transparency
RISK CO PARTIE	OUNTER- S			
	Indep. science Standards reviewers	Community Regulators	Auditors, verifiers, and third-party reviewers	Database / public ledger

Reyk	javik F	Protocol	PRINCIPLES				
Value Chain	Best- Available Science	Peer- Env Reviewed > So Methodology Asses	and cial ssment Community Permission Engagement to Operate	Env. and Socio- Economic Baselines	Quantifying > Auditable Impact > Data Package > CREDIT ISSUANCE transparency		
RISK CO PARTIE	OUNTER-						
	Indep. science reviewers	Standards s	Community Regulators	Auditors, verifiers, and third-party reviewers	Database / public ledger		
Parallels with Chesapeake Bay Nutrient Credit Trading Program (e.g., Weber et al. 2018)							
	Oyster BMP Expert Panel	(same) Others?	Watershed Associations State env. regulators	Oyster BMP Expert Panel (measurement protocol) Others?	VA DEQ NPS Nutrient Credit Registry RIBITS		

Summary and conclusions

- Demonstrated oyster nitrogen removal and filtration calculations
 - Method based on most-local available empirical data
 - Tracks cohorts and size ranges
 - Has also been applied to Atlantic surf clams
 - Web-based interactive data portal privately shared to client
- Broad Cove, Casco Bay, Maine: 500,000 oysters initially 2.5-5.5"
 - 4-acre lease occupying <1% cove seafloor
 - Annual nitrogen removal ~120 kg, ~14% of cove water column nitrogen
 - Annual filtration potential ~5.3 billion liters, more than total volume of cove
- Introduced Reykjavik Protocol
 - Environmental credit generation architecture
 - Identified parallels with existing program (Chesapeake Bay nutrient trading)
 - Potential role in broader application of shellfish ecosystem services credits

Questions?

dan.codiga@runningtide.com

References cited

- Grizzle, R. E., K. M. Ward, C. R. Peter, M. Cantwell, D. Katz, and J. Sullivan. 2017. Growth, morphometrics and nutrient content of farmed eastern oysters, Crassostrea virginica (Gmelin), in New Hampshire, USA. Aquaculture Research, 48(4):1525–1537, https://doi.org/10.1111/are.12988.
- Reitsma, J., D. C. Murphy, A. F. Archer, and R. H. York. 2017. Nitrogen extraction potential of wild and cultured bivalves harvested from nearshore waters of Cape Cod, USA. Marine Pollution Bulletin, 116(1–2):175–181, https://doi.org/10.1016/j.marpolbul.2016.12.072.
- Weber, M.A., Wainger, L.A., Parker, M., Hollady, T., 2018. The potential for nutrient credit trading or economic incentives to expand Maryland oyster aquaculture. Report to Maryland Sea Grant, Award#NA14OAR4170090. CBL Technical Report TS-71818, UMCES, Solomons, MD.
- zu Ermgassen, P., Hancock, B., DeAngelis, B., Greene, J., Schuster, E., Spalding, M., Brumbaugh, R. 2017. Setting objectives for oyster habitat restoration using ecosystem services: A manager's guide. The Nature Conservancy, Arlington VA. 76pp.