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Running Tide is a carbon removal company with a goal to partner with 
nature to rebalance the carbon cycle. The IPCC has acknowledged 
the necessity of scalable carbon removal strategies in the effort to 
mitigate rising global temperatures. The ocean is a massive carbon 
sink, and is certain to play a vital role in any carbon removal pathway. 
In order to quantify our carbon removal deployments, we combine 
bespoke verification hardware with novel and modular fit-for-purpose 
models to create a conservative and statistically meaningful estimate 
of the carbon removed on a deployment-by deployment basis. This is 
how we model and verify the ocean surface transport of our material.

Verification hardware fleet:

We also send out our camera buoys, which send back GPS, sea 
surface temperature, and images of a subsample of the deployed 
material. The GPS and imaged data are ingested into our models and 
used to calibrate and validate our estimates of carbon removed.  

Tuning our models:

Estimates of terminal location of material on seafloor: The output 
of the model runs are not only used to assess how much deployed 
carbon was sequestered, but also to estimate the amount of novel 
carbon introduced into the benthos. These estimates, along with 
comprehensive field experiments studying the degradation of 
Running Tide’s carbon removal material in a benthic environment 
(see poster CM34A-1158 for more details) are used to assess the 
environmental impact of a carbon removal deployment. 

Abstract: It has become generally accepted that modeling will play a primary role in 
the monitoring, reporting, and verification (MRV) work necessary for successful and 
transparent marine carbon removal projects. While many of the models proposed 
for such work have been developed and validated over the course of the last 
several decades, the development of oceanographic modeling tools that deliver the 
scalability, specificity, and transparency required for MRV is still in its nascency. 
The MRV framework at Running Tide is an iterative system consisting of global 
ocean general circulation models, specific empirical and process-based models 
(e.g. macroalgal growth and Lagrangian drift simulations), and observations via a 
suite of in-situ sensors, including a first-of-its-kind open-ocean macroalgal growth 
observation platform. Our framework incorporates novel approaches to data 
integration using standard optimization techniques to guide parameterization and 
improvement of our models over time. Here, we describe in detail some of our data 
integration techniques, and demonstrate the capacity for model learning. In addition 
to discussing the use cases of such model infrastructure for carbon removal MRV, 
we will also highlight how this framework is integrated into our environmental and 
ecological exposures work.

Duration of material floating:

Implementation of gradient descent optimization: The total velocity vector 
field used to force our Lagrangian simulator can be written as ut = αh(t)uh + 
αs(t)us + αw(t)uw where ut, uh, us, uw denote total, HYCOM, Stokes drift, and 
windage surface currents, respectively, and αh(t), αs(t), and αw(t) are the time 
dependent weights applied to each of the velocity fields. The weight parameters 
are discretized in time and our model tuning optimizes these weights for the 
lowest error fit against our trajectory buoys. Our optimization algorithm is an 
implementation of a gradient descent, or steepest descent, (Polyak, 1987), a 
widely used optimization algorithm that finds the local minima of a differentiable 
loss or error function. It achieves this by computing all partial derivatives of the 
error function and moving the parameter space in the direction of steepest 
descent until the minimum is found, i.e. where the gradient of the error function 
approaches zero.

Camera buoy

GPS buoy wave buoy

With every carbon removal deployment, 
we deploy a fleet of verification 
hardware to drift with and monitor the 
deployed material. This includes a 
number of GPS buoys, which are 
designed to respond similarly to ocean 
currents and waves as the deployed 
material.

To simulate the movement of 
material on the surface, we use 
a Lagrangian simulator (Kehl et 
al., 2023) that weights ocean 
currents, waves, and wind 
reanalysis data to get the most 
accurate fit between modeled 
and observed trajectories. We’ve 
developed and implemented a 
gradient descent algorithm 
(bottom middle panel) that 
iteratively decreases the error 
between the modeled and 
observations and can reliably 
replicate the paths traveled by 
our GPS buoys.

After the appropriate weights 
have been identified through 
gradient descent, we apply a 
stochastic dispersion parameter 
that best fits the spread of the 
GPS buoys. This parameter 
accounts for small scale 
dynamics unresolved by the 
velocity fields used to force the 
Lagrangian simulator. 

The RMSE between modeled 
and observed trajectories as a 
function of iteration of the 
optimization scheme. With 
each iteration, RMSE 
decreases until the error has 
reached a local minima. The 
best fit trajectories are plotted 
below.

The float time of our carbon removal material is primarily dependent on four 
parameters: form factor, coating recipe, moisture content, and sea surface 
temperature (SST). Material float times are measured in two ways: laboratory 
tests and via our in-situ camera buoys. The data from each source can be fit to 
an exponential decay curve, the parameters of which are varied to produce a 
collection of float time curves that are fed into our quantification model. The 
images are processed to measure the fraction of biomass in the sample that 
remains floating on the surface. In order to compute floating fraction, we 
automatically segment each biomass within the image using a convolutional 
neural network model and compute the 
2-dimensional pixel area for each detected 
biomass.                                                        
There is considerable variability between the 
two curves, most likely due to differences in 
measurement technique as well as moisture 
content and SST, but more testing is needed 
to fully map the sensitivity of float time curves 
to such parameters.

Once all parameters have been 
appropriately fit and the float time 
curves have been generated, we 
run a Monte Carlo ensemble of 
1,000 runs that introduce 
perturbations to the material float 
times and to the alpha values 
computed through model tuning. 
This additional variability is 
introduced to account for any 
dynamics not captured in the 
model, particularly the lateral 
transport of material as it sinks to 
the seafloor. 

From each Monte Carlo 
simulation, we compute the 
fraction of the deployed material 
that was successfully sequestered 
below 1,000 m depth, and 
additionally we compute the 
spatial density of organic carbon 
introduced to the benthic region. 
We then report the median 
fractional value of the carbon 
sequestered which, throughout 
our 2023 deployment season, was 

Above: the terminal locations of 
simulated material. Different colored 
dots represent results from different 
Monte Carlo runs. Black lines are 
observations.
Below: average estimates of novel 
carbon introduced into the benthos. 

approximately 93-97%. The average maximum density of novel 
carbon introduced into the benthos is estimated to be on the order of 
tens of grams of carbon per square meter. 
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