
Smart Contract Code

Review And Security

Analysis Report

Customer: Upshift Finance

Date: 24/09/2025

We express our gratitude to the Upshift Finance team for the collaborative engagement that

enabled the execution of this Smart Contract Security Assessment.

Upshift Vault is a core ERC-4626 vault that enables users to deposit funds while earning

yield through deployment to August subaccounts, which manage strategies securely across

multiple chains. It simplifies user experience with a single reference token, supports multi-

chain DeFi opportunities, and enforces strict roles and permissions for secure capital

management.

Document

Name

Smart Contract Code Review and Security Analysis Report for Upshift

Finance

Audited By David Camps Novi, Georgi Krastenov

Approved By Ivan Bondar

Website https://www.upshift.finance/

Changelog 01/09/2025 - Preliminary Report

24/09/2025 - Final Report

Platform Any EVM-compatible chain

Language Solidity

Tags ERC4626; Upgradable; Yield Farming; Centralization; Claims; Vault

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/fractal-protocol/august-contracts-v2

Commit a1f8599e73796c75d0a62ea79dbff78fb97f0b98

Remediation Commit 95c8cb1f3cb27e513b4bb20424690fbaefb2fdbf

2nd Remediation Commit e5a91bbceecb5439943bb443a4ed3dc1b277356e

2

https://www.upshift.finance/
https://hackenio.cc/sc_methodology
https://github.com/fractal-protocol/august-contracts-v2

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

21 15 4 2

Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 1

Medium 7

Low 7

Vulnerability Severity Status

F-2025-12493 - Incorrect Signature Deadline Validation in permit() High Fixed

F-2025-12412 - Tokens WETH and DAI Can Not Be Reference Asset Medium Fixed

F-2025-12498 - Malicious User Can Block The processAllClaimsByDate

Function For a Specific Epoch
Medium Fixed

F-2025-12500 - Missing Storage Gaps in Upgradeable Base Contracts Medium Fixed

F-2025-12518 - External Assets Valuation Fixed at SubAccount

Transfer May Cause TVL Inaccuracy
Medium Accepted

F-2025-12522 - Direct Token Donations Can Distort TVL and Share

Accounting
Medium Accepted

F-2025-12492 - Incorrect Calculation in Total Assets Percentage

Change
Medium Mitigated

F-2025-12550 - Inaccurate Total Assets Valuation Due to Oracle and

Conversion Logic Limitations
Medium Mitigated

F-2025-12413 - Missing Stale Price Validation in Chainlink 's

Agreggator latestRoundData() Call
Low Fixed

F-2025-12489 - Not Time Locked Vault Apply Instant Redemption Fee Low Fixed

F-2025-12497 - Missing maxWithdrawalAmount Validation in Delayed

Redemption Requests
Low Fixed

F-2025-12501 - enableAsset() Allows Duplicate Entries in Vault

Whitelisted Assets Array
Low Fixed

F-2025-12520 - maxDepositAmount Not Enforced in Deposit Function Low Fixed

3

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/0c2a9d74-1dfc-4534-b6ec-1240467c7cad
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/1d5397e1-204e-43da-bcad-c5faabde21f4
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/15ee6352-e97f-4516-89fd-fdada59352db
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/d92937cf-35b7-44db-8869-584d67a5a3b1
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/d5511ed6-10ae-457e-876c-a40306773dc0
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/558a729c-6ce4-41db-ab06-44406f2cf10d
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/01e2f3ef-9be2-4f5c-b292-a2adc7ac9aa1
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/f7d45597-06cd-4c49-8bb5-cb29f8cf0846
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/fbe08ea0-1863-4eaf-bfa9-cbd96bda9567
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/9e0ef9dd-b570-4c2f-88d5-5f0a8a110991
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/03cdf30c-780c-4dff-b49e-2f599cbb5c4c
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/3bd0a134-ca78-47bd-9af7-e63ca109438a
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/671b41e6-e18f-4802-9da3-cbaac00213a3

Vulnerability Severity Status

F-2025-12559 - Improper and Undocumented Handling of Performance

Fees
Low Fixed

F-2025-12563 - Change Percentage Bypassed for Null

externalAssetsAmount in updateTotalAssets
Low Fixed

F-2025-12336 - Redundant Errors Info Fixed

F-2025-12488 - Typos in Error Naming Info Fixed

F-2025-12502 - Unnecessary nonReentrant Modifier Info Fixed

F-2025-12540 - Unused Variable Info Fixed

F-2025-12494 - Floating Pragma Info Accepted

F-2025-12505 - Lack of Fee-on-Transfer Token Compatibility Corrupts

Vault TVL and Accounting
Info Accepted

4

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/f36f2730-91df-499a-9455-b686c1a4f355
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/b3f3d54b-b8d1-4f39-96ca-b064aa791f3f
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/da037d11-0d4a-4b91-bd63-8d900a533efe
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/c3c9bb65-af2b-41d3-9d54-c96225a631bb
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/80ef4bc4-8ded-4020-bfe4-3b8ffd0c7991
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/109fbf53-db29-4ada-81ca-bcd64930383e
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/15982b65-7dc4-4abf-b5d8-c2db9917dade
https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/875a5a74-7ad3-4dbf-ad69-3e46f0d2073b

Documentation quality

Functional requirements are limited.

Technical descriptions are limited.

Code quality

The development environment is well-configured.

Code architecture has a modular design with clear separation of concerns.

NatSpec is present but does not extensively describe functionality.

Test coverage

Code coverage of the project is 58.29% (statements coverage).

Deployment and basic user interactions are not covered with tests.

Interactions by several users are not tested thoroughly.

5

Table of Contents

System Overview 7

Privileged Roles 7

Potential Risks 9

Findings 11

Vulnerability Details 11

Disclaimers 54

Appendix 1. Definitions 55

Severities 55

Potential Risks 55

Appendix 2. Scope 56

Appendix 3. Additional Valuables 58

System Overview

The Upshift Finance system consists of an OFT (Omnichain Fungible Token) for cross-

chain token transfers via LayerZero and a vault contract for asset management, The vault

issues the aforementioned OFT as its shares, enforces withdrawal/redemption logic, and

supports configurable fees and external asset reporting. Owner/operator roles control

updates, limits, and fee distribution.

Core Contracts

TokenizedVault - An upgradeable ERC-4626 vault that issues receipt tokens, manages

deposits/withdrawals, calculates share prices, and handles performance and management

fees, while enforcing timelocks and emergency withdrawals. It integrates with whitelisted

assets to standardize all deposits to a single reference asset.

EnableOnlyAssetsWhitelist - Maintains a list of whitelisted assets for vault deposits,

assigns Chainlink oracles to convert asset values into the reference asset, and enforces

decimal consistency to ensure accurate vault accounting.

TimelockedVault - Adds withdrawal timelocks and instant redemption fee logic to the

vault, enforcing delayed withdrawals and tracking lag durations for security and proper

fee application.

BridgeReceiptToken - An ERC-20 token representing user shares in a vault that can be

minted, burned, and locked, with cross-chain bridging enabled via LayerZero, ensuring

controlled token issuance and secure transfer restrictions during timelocks or emergency

scenarios.

OraclizedMultiAssetVault - extends OperableVault to manage deposits, withdrawals, and

subaccount interactions across multiple whitelisted assets

Fee structure

Management fee: Charged on total value locked (TVL) in the vault.

Performance fee: Charged when high watermark is exceeded; distributed to fee

recipients.

Instant Redemption fee: Charged for immediate withdrawals, incentivizing delayed

redemption.

Privileged roles

Owner:

Deploy upgradeable implementations via ProxyFactory

Update configurable parameters such as maxWithdrawAmount or maxChangePercent .

Update fee-related parameters such as fee receivers.

Add/Remove users from the whitelist.

Add/Remove subAccounts for yield strategies

Emergency withdraw the assets from the vault.

Update the underlying assets of the vault.

Deposit/Withdraw assets in the subAccount to generate yield.

Pause deposits and withdrawals.

7

Enable/disable subAccounts.

Operator

Add/Remove subAccounts for yield strategies

Deposit/Withdraw assets in the subAccount to generate yield.

Pause deposits and withdrawals.

Enable/disable subAccounts.

Add/Remove users from the whitelist.

Whitelisted User

Deposit assets in exchange for shares.

Redeem vault shares in exchange for reference assets.

8

Potential Risks

In the ProxyFactory , each deployed proxy is controlled by a ProxyAdmin whose owner is set at

deployment. Using a single EOA as the ProxyAdmin owner without safeguards creates a

central point of failure and allows immediate upgrades to new implementations. Consider

ownership being assigned to a multisig wallet, and introducing a timelock delay to provide

review time before upgrades take effect.

The project's contracts are upgradable, allowing the administrator to update the contract

logic at any time. While this provides flexibility in addressing issues and evolving the

project, it also introduces risks if upgrade processes are not properly managed or secured,

potentially allowing for unauthorized changes that could compromise the project's

integrity and security.

The BridgeableReceiptToken contract relies on the minters and burners mappings to control

access to the mint and burn functions, which are configured once via the configure method.

If addresses other than intended vault contracts—such as admin wallets—are added as

minters or burners, they can arbitrarily inflate the token supply through mint() or remove

tokens from users via burn() . This risk is further amplified if an admin key is compromised

or impersonated, potentially allowing malicious actors to manipulate balances and

destabilize the system.

The lockTokens function allows the contract owner to arbitrarily set or extend token locks

for any user. This gives the owner unilateral control over when users can transfer or

manage their tokens, creating a risk of misuse or disruption. If the owner account is

compromised, an attacker could similarly restrict access to user funds. Consider

introducing safeguards against repeated extensions of the locking period.

Assets accepted as deposits into the vaults are whitelisted and cannot be removed once

added. While this ensures only approved tokens are used, it creates a risk that if a

whitelisted token becomes problematic—due to exploits, depegging, or other critical

issues—it cannot be disabled or removed from the vault. This could expose the protocol

and its users to financial losses or operational disruptions.

The updateTotalAssets function in the Vault allows the owner or operator to update the

externalAssets value, which may include assets held off-chain. Because the actual off-chain

balance cannot be verified on-chain, the externalAssetsAmount parameter can be manipulated

within the limits set by maxAllowedChangePerc . This introduces a trust assumption on the owner

or operator and could result in a misrepresentation of total assets for external users or

integrations relying on this value. Proper off-chain reconciliation and monitoring are

recommended to mitigate this risk.

Withdrawals in the system (claim() or processAllClaimsByDate()) depend on the Vault holding a

sufficient balance of reference tokens, meaning users’ ability to redeem their shares relies

on admins properly managing liquidity. If admins fail to ensure enough reference tokens

are available, withdrawals will not execute, creating a risk that users cannot redeem their

shares even though the vault may hold sufficient assets overall.

The system relies on oracles to price vault assets relative to the reference asset. While

the vault operates with tokens such as wBTC, wETH, USDC, or USDT, it is possible that the

associated oracles provide prices for the underlying assets (BTC, ETH, USD) instead. Since

9

wrapped and pegged assets are not always perfectly aligned with their underlying

counterparts, this may introduce slight pricing inconsistencies that can affect valuations.

The functioning of the system significantly relies on specific external contracts. Any flaws

or vulnerabilities in these contracts adversely affect the audited project, potentially

leading to security breaches or loss of funds. Precisely, Vault assets are transferred from

the vaults to subAccounts, which act as intermediaries responsible for managing external

yield strategies. Since the subAccounts’ logic and security are out of scope, the proper

handling, safeguarding, and utilization of these assets introduce a dependency on

external components that may affect the safety and availability of vault funds.

Vault assets can be transferred to accounts of type ACCOUNT_TYPE_SUBACCOUNT , which must

implement IAllocableSubAccount() , or to accounts of type ACCOUNT_TYPE_WALLET , which may

correspond to any arbitrary address. Although this function is restricted by

onlyOwnerOrOperator , the ability to send vault funds to any address introduces a high-risk

vector, as misuse or compromise of privileged accounts could result in loss or

mismanagement of vault assets.

The emergencyWithdraw() function allows the vault owner to retrieve all assets from the vault

at any time. While intended as an emergency mechanism, this introduces a high-risk

vector because misuse or compromise of the owner account—such as through key theft—

could result in complete loss of user funds, making the vault highly dependent on the

security and trustworthiness of the owner.

The current asset valuation mechanism via _fromInputAssetToReferenceAsset() , which relies on

Chainlink oracles, only supports a limited set of token pairs. While this is sufficient for the

currently required tokens, not all pairs can be integrated (e.g., DAI asset / USDC reference

asset). This restriction is acceptable under the present system design, since the owner

controls whitelisted assets, but it introduces a limitation for future extensibility. If

additional unsupported token pairs are required, the system would need to adapt the

conversion logic and/or redeploy contracts.

10

Findings

Vulnerability Details

F-2025-12493 - Incorrect Signature Deadline Validation in

permit() - High

Description: The permit() function implemented in the contract BaseLayerZeroErc20 is

intended to implement signature-based approvals. As part of this

process, the deadline parameter is used to ensure signatures cannot

be used after the signed expiration date.

However, in the current implementation of the deadline check, the

validation is inverted, since it will try to block signatures with a

deadline larger than the current timestamp, instead of blocking the

deadlines before the current time (expired):

if (deadline > block.timestamp) revert ExpiredDeadline();

This causes the function to revert when the deadline is still in the

future, while allowing execution when the deadline has already

expired. As a result, the function becomes unusable under normal

conditions and no valid signature can be processed.

Assets:

/core/BaseLayerZeroErc20.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 4/5

Likelihood Rate: 5/5

Exploitability: Independent

Complexity: Simple

Severity: High

Recommendations

11

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/0c2a9d74-1dfc-4534-b6ec-1240467c7cad

Remediation: Update the deadline check in order to block signature execution

when the timestamp is larger than the signature deadline, as

follows:

if (deadline < block.timestamp) revert ExpiredDeadline();

Resolution: Resolved in commit 1a841f0 . The deadline check is changed to

deadline < block.timestamp .

Evidences

Steps to Reproduce:

Reproduce:

1. Deploy the contract and obtain the current block.timestamp (e.g.,

T).

2. Generate a valid signature with deadline = T + 1 hour .

1. Expected behavior: Signature should be accepted until one

hour has passed.

2. Actual behavior: Transaction reverts immediately with

ExpiredDeadline() .

3. Generate a signature with deadline = T - 1 hour .

1. Expected behavior: Transaction should revert because the

signature is expired.

2. Actual behavior: Signature is incorrectly accepted.

12

F-2025-12412 - Tokens WETH and DAI Can Not Be Reference

Asset - Medium

Description: The Vault is designed to use a reference asset, which can be any

ERC20 token such as USDC, WBTC, USDT, DAI, or WETH. However,

two of these tokens, WETH and DAI, have 18 decimals, which may

introduce a limitation regarding which assets the Vault can accept.

Users can deposit allowed assets that may differ from the reference

asset. For example, a Vault with DAI as the reference asset may also

accept deposits of USDC or WBTC.

To enable a token, the enableAsset function must be called by the

contract owner. This function includes a validation check to ensure

the reference asset decimals are greater than the oracle decimals:

if (REFERENCE_ASSET_DECIMALS > oracleDecimals) revert InvalidDecimalPlaces();

Tokens like WETH and DAI have 18 decimals, while the Chainlink

oracles for their pairs typically return prices with 8 decimals.

Examples:

1. ETH/USD Oracle: https://arbiscan.io/address/0x639Fe6ab55C921

f74e7fac1ee960C0B6293ba612#readContract

2. DAI/USD Oracle: https://arbiscan.io/address/0xc5C8E77B397E53

1B8EC06BFb0048328B30E9eCfB#readContract

Due to this decimal mismatch, attempting to enable these tokens

fails, causing the enableAsset call to revert with the InvalidDecimalPlaces

error.

Assets:

/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 3/5

Likelihood Rate: 5/5

Exploitability: Independent

Complexity: Simple

13

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/1d5397e1-204e-43da-bcad-c5faabde21f4
https://arbiscan.io/address/0x639Fe6ab55C921f74e7fac1ee960C0B6293ba612#readContract
https://arbiscan.io/address/0xc5C8E77B397E531B8EC06BFb0048328B30E9eCfB#readContract

A mismatch between token decimals (e.g., 18 for WETH/DAI) and

Chainlink’s 8-decimal oracle causes enableAsset to revert, making

certain tokens like WETH and DAI impossible to be reference asset..

Severity: Medium

Recommendations

Remediation: Consider reviewing the decimal handling logic in enableAsset or

implementing a conversion/scaling mechanism to support reference

assets with more than 8 decimals to be used as a reference asset.

Resolution: Resolved in commit 1a841f0 . The REFERENCE_ASSET_DECIMALS > oracleDecimals

check was removed, and DAI and WETH tokens can now be enabled.

The token should have at least 6 decimals.

14

F-2025-12492 - Incorrect Calculation in Total Assets Percentage

Change - Medium

Description: The updateTotalAssets() function is responsible for updating the

accounting of assets involved in yield strategies, tracked by the

state variable externalAssets . To prevent abrupt and potentially

malicious updates, the function enforces a threshold mechanism that

limits the maximum percentage change allowed for externalAssets .

The threshold is computed via the helper function

getMaxAllowedChange() :

 function getMaxAllowedChange() public view returns (uint256) {

 // slither-disable-next-line timestamp

 if (block.timestamp + _TIMESTAMP_MANIPULATION_WINDOW < assetsUpdatedO

n)

 {

 revert InvalidTimestamp();

 }

 // (Max change per day * Time interval in seconds since last update)

/ (60 * 60 * 24)

 return (maxChangePercent * (block.timestamp - assetsUpdatedOn))

 / uint256(86400);

 }

The variable maxChangePercent is configured to represent a percentage

value in basis points. However, the calculation does not normalize

this value by dividing by its base. As a result, the computed

maximum allowed change is significantly larger than intended,

which undermines the protective mechanism and deviates from the

system’s requirements.

Assets:

/tokenized-vaults/base/OraclizedMultiAssetVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Status: Mitigated

Classification

Impact Rate: 4/5

Likelihood Rate: 5/5

15

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/01e2f3ef-9be2-4f5c-b292-a2adc7ac9aa1

Exploitability: Semi-Dependent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: Introduce basis points normalization by dividing maxChangePercent by

the corresponding base in the calculation of the maximum allowed

change.

return (maxChangePercent * (block.timestamp - assetsUpdatedOn)) / uint256(864

00) / basisPoints;

Resolution: The development team Mitigated this finding by scaling up the

returned value of getChangePercentage() by 100 in order to compare the

same scale in updateTotalAssets() :

 function updateTotalAssets(uint256 externalAssetsAmount) external nonReen

trant ifConfigured onlyOwnerOrOperator {

 uint256 perChange = getChangePercentage(externalAssetsAmount);

 uint256 maxAllowedChangePerc = getMaxAllowedChange();

 // slither-disable-next-line timestamp

 if (perChange > maxAllowedChangePerc) revert MaxAllowedChangeReached(

);

 ...

 }

Therefore, the input parameter used in updateMaxChangePercent() should

be carefully introduced by the caller of the method (i.e. owner or

operator roles) in order to keep a consistency with the basis points of

maxChangePercent used across the system.

 function updateMaxChangePercent(uint256 newValue) external nonReentrant i

fConfigured onlyOwnerOrOperator {

 // Build the hash of this call and attempt to consume it. The call re

verts if the hash can't be consumed.

 bytes32 h = keccak256(abi.encode(

 abi.encodeWithSignature(

 "updateMaxChangePercent(uint256)",

 newValue

)

));

16

 maxChangePercent = newValue;

 emit MaxChangePercentUpdated(newValue);

 IResourceBasedTimelockedCall(scheduledCallerAddress).consume(h);

 }

The development team acknowledges the risk for the correct

parameters being managed for maxChangePercent .

17

F-2025-12498 - Malicious User Can Block The

processAllClaimsByDate Function For a Specific Epoch - Medium

Description: The project allows users to claim all pending requests by a specific

date using the processAllClaimsByDate function. This function iterates

over requests in LIFO (Las In First Out) order, up to a specified

maximum. For each request, the withdrawal fee is deducted, and

then checks are performed:

 (assetsAmount, assetsAfterFee) = _previewRedemption(

 _burnableAmounts[dailyCluster][receiverAddr],

 withdrawalFee);

 if (assetsAmount > maxWithdrawalAmount) revert WithdrawalLimitRea

ched();

 if (assetsAfterFee < 1) revert AmountTooLow();

The fee is calculated as:

 if (fee > 0) {

 applicableFee = (fee * assetsAmount) / 1e4;

 assetsAfterFee = assetsAmount - applicableFee;

 }

Since the requestRedeem function only checks that the requested shares

are greater than 1, users can submit very small redemption

amounts. When the applicableFee calculation results in 0 (due to

integer division by 1e4), assetsAfterFee may be less than 1.

This can be a problem if a user does this near the end of the epoch,

as it may block the possibility of claiming all requests. The

transaction will revert with AmountTooLow , since requests are iterates

one by one in LIFO order.

Assets:

/tokenized-vaults/base/TimelockedVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 4/5

18

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/15ee6352-e97f-4516-89fd-fdada59352db

Likelihood Rate: 2/5

Exploitability: Independent

Complexity: Simple

A malicious or careless user can submit extremely small redemption

requests that cause processAllClaimsByDate to revert.

Severity: Medium

Recommendations

Remediation: Implement a minimum threshold check for redemption requests that

accounts for the withdrawal fee, ensuring that assetsAfterFee ≥ 1 for all

requests. Alternatively, or additionally, consider making the process

function more flexible so that a failure in one of the requests does

not compromise all of them. This will make the system more reliable

to unexpected failures and more resistant to DOS.

Resolution: Resolved in commit 1a841f0 . The check for fee too low is performed in

the requestRedeem function.

19

F-2025-12500 - Missing Storage Gaps in Upgradeable Base

Contracts - Medium

Description: The child contracts BridgeableReceiptToken and TokenizedVault are

upgradeable and inherit from multiple base contracts, such as

OperableVault or BaseLayerZeroERC20 . Currently, these base contracts do

not include explicit storage gaps, which are a best practice in

upgradeable contracts to reserve unused storage slots for future

variable additions without affecting the existing storage layout.

As a consequence, any future additions of state variables—either in

these base contracts or in other child contracts that inherit from

them—could overwrite existing storage, potentially causing critical

data corruption or unexpected behavior in the proxy.

Assets:

/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/BridgeableReceiptToken.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/ResourceBasedTimelockedCall.sol

[https://github.com/fractal-protocol/august-contracts-v2]

/core/SendersWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 5/5

Likelihood Rate: 2/5

Exploitability: Semi-Dependent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: It is recommended that all upgradeable base contracts in the project

introduce storage gaps (e.g., uint256[50] private __gap;) to ensure safe

20

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/d92937cf-35b7-44db-8869-584d67a5a3b1
https://docs.openzeppelin.com/upgrades-plugins/writing-upgradeable#storage-gaps

extensibility, and that child contracts carefully consider the full

inheritance chain when adding new state variables. Consider also

support contracts that may be deployed as upgradeable contracts,

such as ResourceBasedTimelockedCall to be candidates.

To create a storage gap, declare a fixed-size array in the base

contract with an initial number of slots. This can be an array of

uint256 so that each element reserves a 32 byte slot. Use the name

__gap or a name starting with __gap_ for the array so that

OpenZeppelin Upgrades will recognize the gap.

To help determine the proper storage gap size in the new version of

your contract, you can simply attempt an upgrade using upgradeProxy

or just run the validations with validateUpgrade (see docs for Hardhat

or Truffle). If a storage gap is not being reduced properly, you will

see an error message indicating the expected size of the storage

gap.

Resolution: Resolved in commit 1a841f0 . A uint256[10] private __gap storage array

reserves 10 slots for each upgradeable contract.

21

https://docs.openzeppelin.com/upgrades-plugins/1.x/api-hardhat-upgrades
https://docs.openzeppelin.com/upgrades-plugins/1.x/api-truffle-upgrades

F-2025-12518 - External Assets Valuation Fixed at SubAccount

Transfer May Cause TVL Inaccuracy - Medium

Description: The project Vaults track assets deployed to external yield managers

(subAccounts) using the externalAssets state variable. This variable

represents the valuation of these assets in terms of the reference

asset at the moment they are transferred to subAccounts managers.

 function depositToSubaccount(

 address inputAssetAddr,

 uint256 depositAmount,

 address subAccountAddr

) external nonReentrant ifConfigured onlyOwnerOrOperator {

 if (depositAmount < 1) revert InvalidAmount();

 uint8 accountType = whitelistedSubAccounts[subAccountAddr];

 if (accountType < 1) revert AccountNotWhitelisted();

 // Convert the input amount to the respective amount in reference tok

ens

 uint256 amountInReferenceAssets = (inputAssetAddr == _referenceAsset)

 ? depositAmount

 : _fromInputAssetToReferenceAsset(inputAssetAddr, depositAmount);

 externalAssets += amountInReferenceAssets;

 if (accountType == ACCOUNT_TYPE_SUBACCOUNT) {

 // Deposit funds in the sub account

 SafeERC20.safeApprove(

 IERC20(inputAssetAddr), subAccountAddr, depositAmount

);

 IAllocableSubAccount(subAccountAddr).deposit(

 inputAssetAddr, depositAmount

);

 SafeERC20.safeApprove(IERC20(inputAssetAddr), subAccountAddr, 0);

 } else {

 // Transfer the funds to a whitelisted wallet or EOA

 SafeERC20.safeTransfer(

 IERC20(inputAssetAddr), subAccountAddr, depositAmount

);

 }

 }

A subtle risk arises because subsequent market fluctuations of these

external assets are not reflected in TVL calculations. Specifically:

22

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/d5511ed6-10ae-457e-876c-a40306773dc0

If the market value of an external asset increases, the vault

understates its TVL, which may result in LP shares being

undervalued.

LP share price underestimation.

Too low accrued fees.

If the market value decreases significantly, the vault overstates

TVL, which can lead to:

LP share price overestimation.

Too large accrued fees.

Withdrawal calculations exceeding the actual liquid value of

the vault, potentially preventing users from withdrawing the

full expected amount.

Since _convertToAssets() and other functions rely on TVL for deposit,

withdrawal, and fee calculations, inaccuracies in externalAssets

valuation directly affect these critical operations.

Assets:

/tokenized-vaults/base/OraclizedMultiAssetVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Accepted

Classification

Impact Rate: 4/5

Likelihood Rate: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: It is recommended to accurately track the actual valuation of the

assets held in the vault. Some possible solutions are:

Periodically, or on-demand, revalue externalAssets using up-to-

date oracle prices or other reliable pricing mechanisms.

Track strategy balances separately and compute TVL

dynamically when _getTotalAssetsValuation() is called, including

accrued yield or losses.

23

Resolution: The risk for the given finding is accepted. The owner will revalue the

external assets as needed by calling the updateTotalAssets function.

24

F-2025-12522 - Direct Token Donations Can Distort TVL and Share

Accounting - Medium

Description: The system Vaults accounting relies on _getTotalAssetsValuation() , which

aggregates balances of whitelisted assets held by the vault contract

and tokens allocated to external strategies.

 function _getTotalAssetsValuation(address vaultAddr, uint256 externalAsse

ts)

 internal

 view

 returns (uint256)

 {

 address assetAddr;

 uint256 assetBalance;

 uint256 balanceInReferenceTokens;

 uint256 t = _whitelistedAssets.length;

 uint256 acum =

 externalAssets + IERC20(REFERENCE_ASSET).balanceOf(vaultAddr);

 for (uint256 i; i < t; i++) {

 assetAddr = _whitelistedAssets[i];

 assetBalance = IERC20(assetAddr).balanceOf(vaultAddr);

 if (assetBalance > 0) {

 balanceInReferenceTokens =

 _fromInputAssetToReferenceAsset(assetAddr, assetBalance);

 acum += balanceInReferenceTokens;

 }

 }

 // External assets + multi assets liquidity + liquidity of the refere

nce token

 return acum;

 }

However, the aforementioned ERC20 tokens can also be transferred

directly to the vault by any user, whitelisted or not, without invoking

its deposit() function. Similarly, reference tokens are ERC20 that can

also be sent directly to the contract.

This creates a serious inconsistency between the two inflows of

tokens:

25

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/558a729c-6ce4-41db-ab06-44406f2cf10d

When a user deposits via the official deposit() entry point, the

corresponding LP shares are also minted, based on the ratio

between the assets contributed and the vault’s Total Value

Locked (TVL).

If a token transfer happens directly (bypassing deposit()), the

vault balance of that token increases, raising the TVL without

minting any shares. This creates an inconsistency.

Due to the rely on ERC20 balances that will not track properly the

total asset valuation (TVL) according to the actual minting of shares,

several consequences arise:

Depositor dilution

Share pricing depends on the ratio between TVL and total supply

of shares. If TVL is artificially increased by donations, future

depositors will receive fewer shares per unit deposited,

effectively getting a worse exchange rate. This dilutes their

position relative to existing participants.

Withdrawals over-credited

Since share-to-asset conversion is based on the inflated TVL,

existing LPs can redeem their shares for more assets than they

are entitled to. This allows early LPs to “cash out” part of the

donated value, leaving subsequent depositors with potential

losses.

Fee miscalculation

Protocol fees (e.g., management or performance fees) are

typically charged as a percentage of TVL. With inflated balances,

fees may be overestimated, resulting in the protocol collecting

more fees than it should, further harming users.

Accounting mismatch

The design assumes that every token counted in TVL entered

through the deposit() function, ensuring share issuance matches

assets held. Donations break this invariant, leading to

inconsistencies between economic reality and accounting logic.

Over time, this can complicate reconciliations and introduce

systemic risk.

Attack surface for griefing

Even if attackers gain no direct profit, they can disrupt the vault

by repeatedly donating small amounts of reference assets. This

creates unpredictable fluctuations in share pricing, undermining

trust in the vault’s correctness and potentially deterring real

users from depositing.

Assets:

/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Accepted

26

Classification

Impact Rate: 4/5

Likelihood Rate: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: In order to prevent the distortion of the total asset valuation, it is

recommended to introduce an accounting mechanism in the

deposit() function that keeps track of the tokens deposited only

through this function. This accounting of deposited tokens should be

used as the reference to calculate the total asset valuation of the

vault, instead of relying on the token balance which can be

manipulated.

Resolution: The risk for the given finding is accepted. Donating tokens to the

vault is considered real PnL.

27

F-2025-12550 - Inaccurate Total Assets Valuation Due to Oracle

and Conversion Logic Limitations - Medium

Description: The vault calculates total asset valuation by summing the value of

all whitelisted tokens using the _getTotalAssetsValuation function. This

function iterates over each whitelisted token, queries its balance

from the vault, and converts it into the reference asset using the

_fromInputAssetToReferenceAsset function:

 for (uint256 i; i < t; i++) {

 assetAddr = _whitelistedAssets[i];

 assetBalance = IERC20(assetAddr).balanceOf(vaultAddr);

 if (assetBalance > 0) {

 balanceInReferenceTokens = _fromInputAssetToReferenceAsset(as

setAddr, assetBalance);

 acum += balanceInReferenceTokens;

 }

 }

The _fromInputAssetToReferenceAsset function uses the following formula

to convert the input amount into the corresponding amount of

reference tokens:

 (,int256 answer,,,) = IAggregatorV3Interface(oracleAddr).latestRoundD

ata();

 if (answer < 1) revert InvalidOraclePrice();

 uint256 a = (uint256(answer) * amount) / (10 ** tokenDecimals);

 return a / (10 ** decimalsDiff);

The Chainlink oracle provides a limited set of token pairs, which

imposes constraints on the project. For example, WBTC/USD does

not exist as a direct pair; only BTC/USD is available. While the

BTC/USD pair can be used as a generalization, the retrieved price

may differ slightly from the exact value. Another limitation is that

Chainlink does not provide inverse pairs such as USD/WBTC or

USD/BTC. These constraints significantly restrict which tokens can be

used as reference assets or whitelisted tokens.

If WBTC is used as the reference token and USDC and USDT are

whitelisted, a potential issues may arise. For example, suppose the

vault holds 30,000 USDC and 270,000 USDT, and the BTC price is

$100,000. The total value of both whitelisted tokens should equal 3

BTC. However, the current formula used for conversion produces an

28

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/f7d45597-06cd-4c49-8bb5-cb29f8cf0846

incorrect result. Using the BTC/USD price feed, the calculation

becomes:

100_000e8 * 30_000e6 / 1e6 / 1 + 100_000e8 * 270_000e6 / 1e6 / 1

Here, tokenDecimals is 0 and the oracle answer is 100_000e8. The final

result differs from the expected 3e8 (3 BTC), leading to inaccurate

reference asset valuation.

Assets:

/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Mitigated

Classification

Impact Rate: 5/5

Likelihood Rate: 3/5

Exploitability: Semi-Dependent

Complexity: Simple

Incorrect total asset valuation may lead to mispriced shares and

incorrect redemptions.

Severity: Medium

Recommendations

Remediation: It is recommended to introduce a direction check to increase

compatibility of reference asset pairs with oracle data feeds (e.g.

BTC/USD vs USD/BTC).

Resolution: Mitigated in commit e5a91bc . The conversion formula was changed so

that it does not depend on the oracle, reference, or enabled token

decimals.

This solution works for the token pairs that are currently required by

the system. However, not any pair of tokens can be supported. The

development team is aware of this and acknowledges the risk, since

the configuration of the token pairs relies on the system owner . In

case the system requires other pairs of tokens that are not

supported, new smart contracts shall be deployed.

29

F-2025-12413 - Missing Stale Price Validation in Chainlink 's

Agreggator latestRoundData() Call - Low

Description: In the EnableOnlyAssetsWhitelist contract, the protocol uses a ChainLink

aggregator to fetch the latestRoundData() , but there is no check if the

return value indicates stale data. The only check present is for the

quoteAnswer to be > 0 . However, this alone is not sufficient.

// slither-disable-next-line unused-return

(,int256 answer,,,) = IAggregatorV3Interface(oracleAddr).latestRoundData();

if (answer < 1) revert InvalidOraclePrice();

This could lead to stale prices according to the Chainlink documentat

ion.

Assets:

/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 2/5

Likelihood Rate: 5/5

Exploitability: Dependent

Complexity: Medium

Only checking if answer > 0 will not prevent retrieving a stale price.

Severity: Low

Recommendations

Remediation: Add the following checks:

(uint80 quoteRoundID, int256 quoteAnswer,, uint256 quoteTimestamp, uint80 quo

teAnsweredInRound) =

 AggregatorV3Interface(oracleAddr).latestRoundData();

if (quoteAnswer < 1) revert InvalidOraclePrice();

30

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/fbe08ea0-1863-4eaf-bfa9-cbd96bda9567
https://docs.chain.link/docs/historical-price-data/#historical-rounds

if (quoteAnsweredInRound < quoteRoundID) revert StalePrice();

if (quoteTimestamp == 0) revert RoundNotComplete();

if (block.timestamp - quoteTimestamp > VALID_TIME_PERIOD) revert InvalidTimeP

eriod();

Resolution: Resolved in commit f09c54f . All of the suggested checks have been

added.

31

F-2025-12489 - Not Time Locked Vault Apply Instant Redemption

Fee - Low

Description: When lagDuration < 1 , redemptions are executed immediately via:

// If the vault is not time-locked then redeem the tokens immediately.

if (lagDuration < 1) {

 _executeRedemption(shares, receiverAddr, false);

 return (type(uint256).max, 0, 0, 0);

}

Passing isInstant = false correctly results in charging the withdrawal

fee for the requestRedeem function.

However, the instantRedeem function always charges the instant

redemption fee, even when lagDuration < 1 , creating inconsistent

behavior and incorrect fee applying.

Assets:

/tokenized-vaults/base/TimelockedVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 2/5

Likelihood Rate: 5/5

Exploitability: Independent

Complexity: Simple

Inconsistent fee logic between redemption paths may charge users

the wrong fee when the vault is not time-locked (lagDuration < 1).

Severity: Low

Recommendations

Remediation: Apply the withdrawal fee in both instantRedeem and requestRedeem

functions when lagDuration < 1 .

32

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/9e0ef9dd-b570-4c2f-88d5-5f0a8a110991

Resolution: Resolved in commit 1a841f0 . If the vault has no time-lock (lagDuration <

1), calling the requestRedeem function will revert with a VaultNotTimelocked

error, since the user is expected to call the instantRedeem() function

instead.

33

F-2025-12497 - Missing maxWithdrawalAmount Validation in

Delayed Redemption Requests - Low

Description: When a user tries to claim their funds, a check is performed to

ensure the amount does not exceed the allowed maxWithdrawalAmount .

if (assetsAmount > maxWithdrawalAmount) revert WithdrawalLimitReached();

However, this check is applied in the wrong stage. In the current

implementation, users transfer their shares into the vault when

requesting a redemption via requestRedeem() , but the limit is only

enforced later during claiming. As a result, if the requested amount

exceeds the allowed maximum, the user’s shares can become

effectively stuck in the vault, preventing them from claiming their

assets.

Assets:

/tokenized-vaults/base/TimelockedVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 4/5

Likelihood Rate: 2/5

Exploitability: Semi-Dependent

Complexity: Simple

Users can lose their shares and be unable to claim their funds if they

request an amount that is too large.

Severity: Low

Recommendations

Remediation: Ensure that the maxWithdrawalAmount validation is applied in the

requestRedeem function and remove this check from the claiming

functions, since the share price can change significantly.

34

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/03cdf30c-780c-4dff-b49e-2f599cbb5c4c

Resolution: Resolved in commit 1a841f0 . The check for withdrawal limit is made

when the user makes a redeem request, instead of in the claim and

processAllClaimsByDate functions.

35

F-2025-12501 - enableAsset() Allows Duplicate Entries in Vault

Whitelisted Assets Array - Low

Description: The enableAsset function allows the same asset to be added to the

vault whitelist multiple times because there is no check to prevent

duplicates. Each call to enableAsset pushes the assetAddr into

_whitelistedAssets and overwrites _oracleOfInputAsset[assetAddr] with the

new parameters. This creates two main issues:

Array inflation: _whitelistedAssets may contain duplicate entries,

increasing gas costs and reducing efficiency in functions that

iterate over the array, such as _getTotalAssetsValuation() .

Parameter overrides: While the oracle info is updated

correctly, repeated additions may overwrite previously

configured values, which could lead to confusion or unexpected

behavior.

 function enableAsset(address assetAddr, address oracleAddr)

 external

 override

 nonReentrant

 onlyOwner

 {

 if ((oracleAddr == address(0)) || (assetAddr == address(0))) {

 revert ZeroAddressError();

 }

 if (_whitelistedAssets.length > 30) revert WhitelistLimitReached();

 if (assetAddr == REFERENCE_ASSET) revert ReferenceAssetNotPermitted()

;

 _whitelistedAssets.push(assetAddr);

 uint8 tokenDecimals = ERC20(assetAddr).decimals();

 uint8 oracleDecimals = IAggregatorV3Interface(oracleAddr).decimals();

 if (REFERENCE_ASSET_DECIMALS > oracleDecimals) {

 revert InvalidDecimalPlaces();

 }

 uint8 decimalsDiff = oracleDecimals - REFERENCE_ASSET_DECIMALS;

 _oracleOfInputAsset[assetAddr] = OracleInfo({

 oracleAddress: oracleAddr,

 tokenAddress: assetAddr,

 oracleDecimals: oracleDecimals,

 tokenDecimals: tokenDecimals,

36

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/3bd0a134-ca78-47bd-9af7-e63ca109438a

 decimalsDiff: decimalsDiff

 });

 }

Assets:

/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 3/5

Likelihood Rate: 2/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to introduce a check in the enableAsset() method to

prevent duplicated entries of assets.

Resolution: Resolved in commit 1a841f0 . The check is introduced to avoid

duplicating asset entries. If an already enabled asset is tried to be

enabled again, the transaction will revert with AssetAlreadyEnabled .

37

F-2025-12520 - maxDepositAmount Not Enforced in Deposit

Function - Low

Description: Vaults include a maxDepositAmount parameter that is set during their

deployment and configuration via the configure() function:

maxDepositAmount = newConfig.maxDepositAmount;

This variable is intended to limit the maximum amount of assets a

user can deposit into the vault, helping to manage vault capacity,

risk exposure, and operational requirements.

However, the current implementation of the deposit() function does

not check maxDepositAmount , meaning users can deposit amounts

exceeding the intended limit.

 function deposit(address assetIn, uint256 amountIn, address receiverAddr)

 external

 nonReentrant

 ifConfigured

 ifDepositsNotPaused

 ifSenderWhitelisted

 ifAssetWhitelisted(assetIn)

 returns (uint256)

 {

 if (amountIn < 1) revert InvalidAmount();

 if (receiverAddr == address(0) || receiverAddr == address(this)) {

 revert InvalidReceiver();

 }

 uint256 shares = previewDeposit(assetIn, amountIn);

 if (shares < 1) revert InsufficientShares();

 // Log the event

 emit Deposit(assetIn, amountIn, shares, msg.sender, receiverAddr);

 // Transfer the input tokens

 SafeERC20.safeTransferFrom(

 IERC20(assetIn), msg.sender, address(this), amountIn

);

 // Issue (mint) LP tokens to the receiver

 IMintableBurnable(lpTokenAddress).mint(receiverAddr, shares);

38

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/671b41e6-e18f-4802-9da3-cbaac00213a3

 return shares;

 }

Assets:

/tokenized-vaults/base/OraclizedMultiAssetVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 2/5

Likelihood Rate: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Add a check in the deposit() function to enforce maxDepositAmount .

Resolution: Resolved in commit 1a841f0 . The max deposit amount check has

been added.

39

F-2025-12559 - Improper and Undocumented Handling of

Performance Fees - Low

Description: The chargePerformanceFees() function allows the vault owner or operator

to specify the feeAmount manually when charging performance fees,

instead of deriving it from a well-defined metric such as a

percentage of the vault’s TVL or profits. Additionally, there is no

clear documentation explaining how this number should be

determined or how it affects the vault’s performance, LP share price,

or TVL. This design allows the caller to input arbitrary values,

potentially leading to:

Excessive or unreasonable fee withdrawals beyond what would

be expected under a defined fee policy.

Inconsistent behavior with users’ expectations, as performance

fees are not automatically proportional to vault performance.

Risk of human error or malicious action if the owner or operator

sets the feeAmount incorrectly or intentionally.

 function chargePerformanceFees(uint256 feeAmount)

 external

 nonReentrant

 ifConfigured

 onlyOwnerOrOperator

 {

 if (block.timestamp - watermarkUpdatedOn < watermarkTimeWindow) {

 revert highWatermarkDurationError();

 }

 uint256 t = performanceFeeRecipients.length;

 uint256[] memory amounts = new uint256[](t);

 for (uint256 i; i < t; i++) {

 uint256 collectableFee =

 (performanceFeeRecipients[i].percentage * feeAmount) / 1e6;

 if (collectableFee > feeAmount) {

 revert CollectableFeesExceeded(collectableFee, feeAmount);

 }

 if (collectableFee < 1) revert FeeAmountTooLow();

 amounts[i] = collectableFee;

 }

 watermarkUpdatedOn = block.timestamp;

40

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/f36f2730-91df-499a-9455-b686c1a4f355

 uint256 currentSharePrice = _getSharePrice();

 if (currentSharePrice <= highWatermark) revert highWatermarkViolation

();

 highWatermark = currentSharePrice;

 for (uint256 i; i < t; i++) {

 SafeERC20.safeTransfer(

 IERC20(_referenceAsset),

 performanceFeeRecipients[i].collectorAddress,

 amounts[i]

);

 }

 }

Assets:

/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 4/5

Likelihood Rate: 2/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Consider deriving feeAmount automatically from a deterministic

calculation (e.g., a percentage of accrued profits since the last fee

charge, or a fraction of TVL) rather than allowing arbitrary manual

input. Additionally, provide clear documentation explaining the

calculation, its intended use, and its impact on vault performance

and LP shares. This would improve transparency, enforce predictable

fee behavior, and reduce reliance on manual governance.

Resolution: Resolved in commit 17fd0bc . The performance fee is a percentage of

the total asset increase.

41

F-2025-12563 - Change Percentage Bypassed for Null

externalAssetsAmount in updateTotalAssets - Low

Description: The updateTotalAssets() function relies on getChangePercentage() to

calculate the percentage change of external assets and enforce a

maximum allowed change threshold. However, in the current

implementation, if externalAssetsAmount == 0 , getChangePercentage() returns

0 , which will always be below the maxAllowedChange limit. As a result, the

owner or operator can set externalAssets to zero bypassing the

intended threshold protection.

 function updateTotalAssets(uint256 externalAssetsAmount)

 external

 nonReentrant

 ifConfigured

 onlyOwnerOrOperator

 {

 uint256 perChange = getChangePercentage(externalAssetsAmount);

 uint256 maxAllowedChangePerc = getMaxAllowedChange();

 // slither-disable-next-line timestamp

 if (perChange > maxAllowedChangePerc) revert MaxAllowedChangeReached(

);

 externalAssets = externalAssetsAmount;

 assetsUpdatedOn = block.timestamp;

 }

 function getChangePercentage(uint256 externalAssetsAmount)

 public

 view

 returns (uint256)

 {

 uint256 perChange;

 if (externalAssetsAmount < 1 || externalAssets < 1) {

 perChange = uint256(0);

 } else {

 perChange = (externalAssetsAmount > externalAssets)

 ? ((externalAssetsAmount * 100) / externalAssets) - 100

 : ((externalAssets * 100) / externalAssetsAmount) - 100;

 }

 return perChange;

 }

42

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/b3f3d54b-b8d1-4f39-96ca-b064aa791f3f

Assets:

/tokenized-vaults/base/OraclizedMultiAssetVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 4/5

Likelihood Rate: 2/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to revert the transaction when externalAssetsAmount

== 0 to prevent bypassing the threshold check. Alternatively, if

setting externalAssetsAmount = 0 is a valid use case, document it clearly

and adapt getChangePercentage() and the updateTotalAssets() logic to

handle zero values safely without bypassing the maximum change

threshold.

Resolution: Resolved in commit 1a841f0 . If the external assets amount supplied

by the sender is zero then the percentage of change is set to 100%

43

F-2025-12336 - Redundant Errors - Info

Description: The following errors are never used in the OraclizedMultiAssetVault

smart contract.

 error NegativePrice();

 error ForbiddenAsset();

 error InvalidHolder();

 error MaxDepositAmountReached();

 error InsufficientAssets();

Also, in the TimelockedVault contract:

 error InsufficientAllowance();

 error VaultNotTimelocked();

Assets:

/tokenized-vaults/base/OraclizedMultiAssetVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 1/5

Likelihood Rate: 1/5

Exploitability: Independent

Complexity: Simple

The errors are redundant and will never be used

Severity: Info

Recommendations

Remediation: Remove the redundant errors.

Resolution: Resolved in commit 1a841f0 . The redundant errors are removed, and

MaxDepositAmountReached and VaultNotTimelocked are used now.

44

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/da037d11-0d4a-4b91-bd63-8d900a533efe

F-2025-12488 - Typos in Error Naming - Info

Description: The ITokenizedVault interface defines errors with a lowercase h in its

name, instead of the expected uppercase H . This is inconsistent with

other defined errors across the codebase, which follow PascalCase.

error highWatermarkViolation();

error highWatermarkDurationError();

Assets:

/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 1/5

Likelihood Rate: 1/5

Exploitability: Independent

Complexity: Simple

Inconsistent error naming reduces readability and breaks naming

conventions.

Severity: Info

Recommendations

Remediation: Rename the error to follow the same naming convention as the rest

of the project (use uppercase H).

Resolution: Resolved in commit 1a841f0 . Both errors follow the naming

convention used in the rest of the project.

45

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/c3c9bb65-af2b-41d3-9d54-c96225a631bb

F-2025-12494 - Floating Pragma - Info

Description: In Solidity development, the pragma directive specifies the compiler

version to be used, ensuring consistent compilation and reducing the

risk of issues caused by version changes. However, using a floating

pragma (e.g., ^0.8.xx) introduces uncertainty, as it allows contracts

to be compiled with any version within a specified range. This can

result in discrepancies between the compiler used in testing and the

one used in deployment, increasing the likelihood of vulnerabilities

or unexpected behavior due to changes in compiler versions.

The project currently uses floating pragma declarations (^0.8.19 ,

^0.8.20) in its Solidity contracts. This increases the risk of deploying

with a compiler version different from the one tested, potentially

reintroducing known bugs from older versions or causing unexpected

behavior with newer versions. These inconsistencies could result in

security vulnerabilities, system instability, or financial loss. Locking

the pragma version to a specific, tested version is essential to

prevent these risks and ensure consistent contract behavior.

Assets:

/tokenized-vaults/base/TimelockedVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

/tokenized-vaults/base/OraclizedMultiAssetVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

/tokenized-vaults/base/OperableVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/BaseLayerZeroErc20.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/BridgeableReceiptToken.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/ProxyFactory.sol [https://github.com/fractal-protocol/august-

contracts-v2]

/core/ResourceBasedTimelockedCall.sol

[https://github.com/fractal-protocol/august-contracts-v2]

/core/GuardedProxyOwnable2Steps.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/OwnableGuarded.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/SendersWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

46

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/15982b65-7dc4-4abf-b5d8-c2db9917dade

/core/BaseReentrancy.sol [https://github.com/fractal-

protocol/august-contracts-v2]

/core/DateUtils.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Status: Accepted

Classification

Impact Rate: 1/5

Likelihood Rate: 2/5

Exploitability: Dependent

Complexity: Simple

Severity: Info

Recommendations

Remediation: It is recommended to lock the pragma version to the specific

version that was used during development and testing. This ensures

that the contract will always be compiled with a known, stable

compiler version, preventing unexpected changes in behavior due to

compiler updates. For example, instead of using ^0.8.xx , explicitly

define the version with pragma solidity 0.8.19; (or desired version).

Before selecting a version, review known bugs and vulnerabilities

associated with each Solidity compiler release. This can be done by

referencing the official Solidity compiler release notes: Solidity GitHu

b releases or Solidity Bugs by Version. Choose a compiler version

with a good track record for stability and security.

Resolution: The risk for the given finding is accepted. The source code is

planned to be compatible with any EVM chain supporting Paris or

higher (Solidity 0.8.20+), with the appropriate version selected at

deployment for each target network.

47

https://github.com/ethereum/solidity/releases
https://00xsev.github.io/solidityBugsByVersion/

F-2025-12502 - Unnecessary nonReentrant Modifier - Info

Description: The enableSender and disableSender functions have a nonReentrant

modifier, which prevents reentrant calls.

 /**

 * @notice Enables the address specified.

 * @param addr The address to enable.

 */

 function enableSender(address addr) external override nonReentrant onlyOw

ner {

 if (_addresses[addr]) revert AlreadyApproved();

 _addresses[addr] = true;

 }

 /**

 * @notice Disables the address specified.

 * @param addr The address to disable.

 */

 function disableSender(address addr) external override nonReentrant onlyO

wner {

 _addresses[addr] = false;

 }

Currently, reentrant calls to these functions are not possible, as no

external calls are made during the enabling or disabling of a sender.

Assets:

/core/SendersWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 1/5

Likelihood Rate: 1/5

Exploitability: Independent

Complexity: Simple

The use of the nonReentrant modifier in the enableSender and disableSender

functions is intended to prevent reentrancy calls, which are currently

not possible. This only adds unnecessary complexity to the code.

48

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/80ef4bc4-8ded-4020-bfe4-3b8ffd0c7991

Severity: Info

Recommendations

Remediation: Remove the nonReentrant modifier from the functions.

Resolution: Resolved in commit 1a841f0 . The unnecessary modifier is removed.

49

F-2025-12505 - Lack of Fee-on-Transfer Token Compatibility

Corrupts Vault TVL and Accounting - Info

Description: The Vault does not support fee-on-transfer (FoT) tokens. The

deposit() function calculates shares to mint based on the amountIn

parameter before transferring tokens to the vault. For FoT tokens,

the actual amount received is lower than amountIn , but the shares to

mint are calculated as if the full amount was received.

 function deposit(address assetIn, uint256 amountIn, address receiverAddr)

 external

 nonReentrant

 ifConfigured

 ifDepositsNotPaused

 ifSenderWhitelisted

 ifAssetWhitelisted(assetIn)

 returns (uint256)

 {

 if (amountIn < 1) revert InvalidAmount();

 if (receiverAddr == address(0) || receiverAddr == address(this)) {

 revert InvalidReceiver();

 }

 uint256 shares = previewDeposit(assetIn, amountIn);

 if (shares < 1) revert InsufficientShares();

 // Log the event

 emit Deposit(assetIn, amountIn, shares, msg.sender, receiverAddr);

 // Transfer the input tokens

 SafeERC20.safeTransferFrom(

 IERC20(assetIn), msg.sender, address(this), amountIn

);

 // Issue (mint) LP tokens to the receiver

 IMintableBurnable(lpTokenAddress).mint(receiverAddr, shares);

 return shares;

 }

This lack of compatibility with FoT tokens is also present in the

depositToSubaccount() logic: when assets are transferred to strategy

subAccounts , the value of the transferred assets is taken as the full

50

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/875a5a74-7ad3-4dbf-ad69-3e46f0d2073b

input amount and recorded into externalAssets , without accounting for

the transfer fee. As a result, the externalAssets value is overstated,

leading to an incorrect Total Value Locked (TVL) for the vault.

 function depositToSubaccount(

 address inputAssetAddr,

 uint256 depositAmount,

 address subAccountAddr

) external nonReentrant ifConfigured onlyOwnerOrOperator {

 if (depositAmount < 1) revert InvalidAmount();

 uint8 accountType = whitelistedSubAccounts[subAccountAddr];

 if (accountType < 1) revert AccountNotWhitelisted();

 // Convert the input amount to the respective amount in reference tok

ens

 uint256 amountInReferenceAssets = (inputAssetAddr == _referenceAsset)

 ? depositAmount

 : _fromInputAssetToReferenceAsset(inputAssetAddr, depositAmount);

 externalAssets += amountInReferenceAssets;

 if (accountType == ACCOUNT_TYPE_SUBACCOUNT) {

 // Deposit funds in the sub account

 SafeERC20.safeApprove(

 IERC20(inputAssetAddr), subAccountAddr, depositAmount

);

 IAllocableSubAccount(subAccountAddr).deposit(

 inputAssetAddr, depositAmount

);

 SafeERC20.safeApprove(IERC20(inputAssetAddr), subAccountAddr, 0);

 } else {

 // Transfer the funds to a whitelisted wallet or EOA

 SafeERC20.safeTransfer(

 IERC20(inputAssetAddr), subAccountAddr, depositAmount

);

 }

 }

Since the TVL of the vault is a key component of the system, the

aforementioned mis-calculation of the accounting for fee-on-transfer

tokens have a severe impact in the vault accounting (minting of

shares, withdrawal amount of reference assets, charging of fees,

etc). Although the system already includes a whitelisting of assets,

meaning only those tokens previously accepted by the admin team

will be allowed in the vault, if any of them includes a transfer fee,

the consequences are severe for the system.

51

Assets:

/tokenized-vaults/base/OraclizedMultiAssetVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Status: Accepted

Classification

Impact Rate: 4/5

Likelihood Rate: 1/5

Exploitability: Dependent

Complexity: Simple

Severity: Info

Recommendations

Remediation: It is recommended to make the system compatible with fee-on-

transfer tokens. This can be done by comparing the token balance

before and after the transfer, in order to account only the actual

amount of tokens being transferred.

Resolution: The risk for the given finding is accepted. The vault will support well-

known tokens for deposits and withdrawals, such as USDC, USDT,

DAI, WBTC, cbBTC, and WETH. The client is not planning to support

any fee-on-transfer tokens.

52

F-2025-12540 - Unused Variable - Info

Description: Within the processAllClaimsByDate function, the variable assetsToSend is

declared and updated but never used, returned, or otherwise

contributing to the function’s logic. This results in redundant state

updates, unnecessary gas consumption, and reduced code clarity.

While this does not pose a direct security risk, it negatively impacts

efficiency and code quality.

Assets:

/tokenized-vaults/base/TimelockedVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Status: Fixed

Classification

Impact Rate: 1/5

Likelihood Rate: 5/5

Exploitability: Independent

Complexity: Simple

Severity: Info

Recommendations

Remediation: Remove the unused assetsToSend variable and related updates to

streamline execution and improve maintainability.

Resolution: Resolved in commit 1a841f0 . The redundant variable is removed.

53

https://portal.hacken.io/App/Projects/Details/632ff96c-8325-4b6e-bef7-e7c608cab3f1/Finding/109fbf53-db29-4ada-81ca-bcd64930383e

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

As part of Hacken’s ongoing quality assurance process, we may conduct re-audits of select

projects. These re-audits are performed independently from the original audit and are

intended solely for internal quality control and improvement. Updated reports resulting from

such re-audits will be shared privately with the respective clients and may be published on the

Hacken website only with their explicit consent.

The sole authoritative source for finalized and most up-to-date versions of all reports remains

the Audits section at https://hacken.io/audits/.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

54

https://hacken.io/audits/

Appendix 1. Definitions

Severities

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution.

Potential Risks

The "Potential Risks" section identifies issues that are not direct security vulnerabilities but

could still affect the project’s performance, reliability, or user trust. These risks arise from

design choices, architectural decisions, or operational practices that, while not immediately

exploitable, may lead to problems under certain conditions. Additionally, potential risks can

impact the quality of the audit itself, as they may involve external factors or components

beyond the scope of the audit, leading to incomplete assessments or oversight of key areas.

This section aims to provide a broader perspective on factors that could affect the project's

long-term security, functionality, and the comprehensiveness of the audit findings.

55

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/fractal-protocol/august-contracts-v2

Initial Commit a1f8599e73796c75d0a62ea79dbff78fb97f0b98

Remediation Commit 95c8cb1f3cb27e513b4bb20424690fbaefb2fdbf

2nd Remediation Commit e5a91bbceecb5439943bb443a4ed3dc1b277356e

Whitepaper N/A

Requirements https://docs.upshift.finance/architecture/vault-architecture

Technical Requirements https://docs.upshift.finance/architecture/vault-architecture

Asset Type

/core/BaseLayerZeroErc20.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

/core/BaseReentrancy.sol [https://github.com/fractal-protocol/august-contracts-

v2]

Smart

Contract

/core/BridgeableReceiptToken.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

/core/DateUtils.sol [https://github.com/fractal-protocol/august-contracts-v2]
Smart

Contract

/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

/core/GuardedProxyOwnable2Steps.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

/core/OwnableGuarded.sol [https://github.com/fractal-protocol/august-contracts-

v2]

Smart

Contract

/core/ProxyFactory.sol [https://github.com/fractal-protocol/august-contracts-v2]
Smart

Contract

/core/ResourceBasedTimelockedCall.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

/core/SendersWhitelist.sol [https://github.com/fractal-protocol/august-contracts-

v2]

Smart

Contract

/tokenized-vaults/base/OperableVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

/tokenized-vaults/base/OraclizedMultiAssetVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

/tokenized-vaults/base/TimelockedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

56

https://github.com/fractal-protocol/august-contracts-v2
https://docs.upshift.finance/architecture/vault-architecture
https://docs.upshift.finance/architecture/vault-architecture

Asset Type

/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

57

Appendix 3. Additional Valuables

Verification of System Invariants

During the audit of Upshift Finance, Hacken followed its methodology by performing fuzz-

testing on the project's main functions. Foundry, a tool used for testing, was employed to

check how the protocol behaves under various inputs. Due to the complex and dynamic

interactions within the protocol, unexpected edge cases might arise. Therefore, it was

important to use fuzz-testing to ensure that several system invariants hold true in all

situations.

Fuzz-testing allows the input of many random data points into the system, helping to identify

issues that regular testing might miss. A specific Echidna fuzzing suite was prepared for this

task, and throughout the assessment, 15 invariants were tested over 10,000 runs. This

thorough testing ensured that the system works correctly even with unexpected or unusual

inputs.

Invariant

ID
Test Case Description

Test

Result

INV-01
test_fuzz_deposit_

asset

Shares are successfully minted to users and assets

transferred to the vault
Passed

INV-02

test_fuzz_deposit_

asset_and_charge_m

anagement_fee

Management fee is successfully charged as time passes Passed

INV-03

test_fuzz_deposit_

and_withdraw_to_su

bAccount

Assets are correctly deposited and withdrawn to and

from subAccounts
Passed

INV-04
test_emergency_wit

hdraw

Emergency withdraw successfully retrieves the tokens

from the vault
Passed

INV-05
test_instant_redee

m

Users successfully exchange shares with assets via

instant redeem
Passed

INV-06
test_request_redee

m_and_claim

Users successfully redeem shares for reference assets

via request and claim
Passed

INV-07
test_total_assets_

consistency

Total vault assets must equal reference asset balance +

external assets + whitelisted asset valuations across all

operations

Passed

INV-08
test_share_price_c

onsistency

Share price calculation maintains consistency: total

assets / total supply ratio preserved during deposits,

withdrawals, and fee operations

Passed

INV-09

test_high_watermar

k_monotonic_and_ti

med

High watermark never decreases and only updates after

configured time window
Passed

58

https://getfoundry.sh/

Invariant

ID
Test Case Description

Test

Result

INV-10
test_timelock_cann

ot_execute_early

Timelocked operations never execute before scheduled

timestamp
Passed

INV-11
test_only_resource

_can_consume

Only the RESOURCE can consume scheduled hashes;

owner/operator cannot consume
Passed

INV-12

test_hash_integrit

y_and_immutability

Scheduled hashes maintain integrity until

cancel/consume; zero-hash and duplicates rejected
Passed

INV-13

test_schedule_and_

cancel_authorizati

on

Scheduling and cancellation restricted to authorized

senders (resource/owner/operator) only
Passed

INV-14

test_reference_ass

et_immutable_and_n

ot_whitelisted

Reference asset cannot be added to whitelist and

remains immutable across operations
Passed

INV-15
test_max_withdrawa

l_limit_enforced

Withdrawal requests not exceed maximum withdrawal

amount limit
Passed

Additional Recommendations

The smart contracts in the scope of this audit could benefit from the introduction of automatic

emergency actions for critical activities, such as unauthorized operations like ownership

changes or proxy upgrades, as well as unexpected fund manipulations, including large

withdrawals or minting events. Adding such mechanisms would enable the protocol to react

automatically to unusual activity, ensuring that the contract remains secure and functions as

intended.

To improve functionality, these emergency actions could be designed to trigger under specific

conditions, such as:

Detecting changes to ownership or critical permissions.

Monitoring large or unexpected transactions and minting events.

Pausing operations when irregularities are identified.

These enhancements would provide an added layer of security, making the contract more

robust and better equipped to handle unexpected situations while maintaining smooth

operations.

59

