
Smart Contract Code

Review And Security

Analysis Report

Customer: Upshift Finance

Date: 18/12/2025

We express our gratitude to the Upshift Finance team for the collaborative engagement that

enabled the execution of this Smart Contract Security Assessment.

Upshift Vault is a core ERC-4626 vault that enables users to deposit funds while earning

yield through deployment to August subaccounts, which manage strategies securely across

multiple chains. It simplifies user experience with a single reference token, supports multi-

chain DeFi opportunities, and enforces strict roles and permissions for secure capital

management.

Document

Name

Smart Contract Code Review and Security Analysis Report for Upshift

Finance

Audited By David Camps Novi

Approved By Ivan Bondar

Website https://www.upshift.finance/

Changelog 16/12/2025 - Preliminary Report; 18/12/2025 - Final Report;

Platform Any EVM-compatible chain

Language Solidity

Tags ERC4626; Upgradable; Yield Farming; Centralization; Claims; Vault

Methodology https://docs.hacken.io/methodologies/smart-contracts

Review Scope

Repository https://github.com/fractal-protocol/august-contracts-v2

Commit 6fbcaf5

2

https://www.upshift.finance/
https://docs.hacken.io/methodologies/smart-contracts
https://github.com/fractal-protocol/august-contracts-v2

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

9 0 6 3

Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 0

Medium 4

Low 2

Vulnerability Severity Status

F-2025-14332 - Inaccurate Total Assets Valuation Due to Oracle and

Conversion Logic Limitations
Medium Mitigated

F-2025-14333 - Direct Token Donations Can Distort TVL and Share

Accounting
Medium Accepted

F-2025-14334 - External Assets Valuation Fixed at SubAccount

Transfer May Cause TVL Inaccuracy
Medium Accepted

F-2025-14335 - Incorrect Calculation in Total Assets Percentage

Change
Medium Mitigated

F-2025-14309 - Custom Signature Recovery May Reject Valid permit()

Signatures
Low Mitigated

F-2025-14312 - Vault Owner Can Set Fees Outside Safe Limits Low Accepted

F-2025-14311 - Missing Events for Key State Changes Info Accepted

F-2025-14315 - Missing Safeguards When Assigning Vault Ownership Info Accepted

F-2025-14336 - Lack of Fee-on-Transfer Token Compatibility Corrupts

Vault TVL and Accounting
Info Accepted

3

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/346528bb-d72f-4320-b87f-1ceaa33ac7f6
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/8f109dd1-a626-4c46-a330-472c8b3e0d08
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/a8d42fe2-3a15-4683-ad02-50c9bfbf41fa
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/8cab57b2-46e6-4bed-8611-9b82de250491
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/1baea2f8-6f89-4149-90ed-eb3932fe6e56
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/21d62aa0-08c6-45ed-aa8b-97cf6a5ff303
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/0498e552-36b9-4f7e-b28a-346f8e5874ef
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/2a1c66e3-e02f-4122-a1a1-274c8b472c49
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/d2d0e4f0-ba29-4dd2-abe0-0d961af4d574

Documentation quality

Functional requirements are limited.

Technical description is limited.

Code quality

The development environment is well-configured.

Code architecture has a modular design with clear separation of concerns.

NatSpec is present but does not extensively describe functionality.

Test coverage

Code coverage of the project is 0% (branch coverage).

Tests are not properly configured, leading to running errors.

4

Table of Contents

System Overview 6

Privileged Roles 6

Potential Risks 8

Findings 10

Vulnerability Details 10

Disclaimers 31

Appendix 1. Definitions 32

Severities 32

Potential Risks 32

Appendix 2. Scope 33

Appendix 3. Additional Valuables 35

System Overview

The Upshift Finance system consists of an OFT (Omnichain Fungible Token) for cross-

chain token transfers via LayerZero and a vault contract for asset management, The vault

issues the aforementioned OFT as its shares, enforces withdrawal/redemption logic, and

supports configurable fees and external asset reporting. Owner/operator roles control

updates, limits, and fee distribution.

Core Contracts

TokenizedVault - An upgradeable ERC-4626 vault that issues receipt tokens, manages

deposits/withdrawals, calculates share prices, and handles performance and management

fees, while enforcing timelocks and emergency withdrawals. It integrates with whitelisted

assets to standardize all deposits to a single reference asset.

EnableOnlyAssetsWhitelist - Maintains a list of whitelisted assets for vault deposits,

assigns Chainlink oracles to convert asset values into the reference asset, and enforces

decimal consistency to ensure accurate vault accounting.

TimelockedVault - Adds withdrawal timelocks and instant redemption fee logic to the

vault, enforcing delayed withdrawals and tracking lag durations for security and proper

fee application.

BridgeReceiptToken - An ERC-20 token representing user shares in a vault that can be

minted, burned, and locked, with cross-chain bridging enabled via LayerZero, ensuring

controlled token issuance and secure transfer restrictions during timelocks or emergency

scenarios.

OraclizedMultiAssetVault - extends OperableVault to manage deposits, withdrawals, and

subaccount interactions across multiple whitelisted assets

Fee structure

Management fee: Charged on total value locked (TVL) in the vault.

Performance fee: Charged when high watermark is exceeded; distributed to fee

recipients.

Instant Redemption fee: Charged for immediate withdrawals, incentivizing delayed

redemption.

Privileged roles

Owner:

Deploy upgradeable implementations via ProxyFactory

Update configurable parameters such as maxWithdrawAmount or maxChangePercent .

Update fee-related parameters such as fee receivers.

Add/Remove users from the whitelist.

Add/Remove subAccounts for yield strategies

Emergency withdraw the assets from the vault.

Update the underlying assets of the vault.

Deposit/Withdraw assets in the subAccount to generate yield.

Pause deposits and withdrawals.

6

Enable/disable subAccounts.

Operator

Add/Remove subAccounts for yield strategies

Deposit/Withdraw assets in the subAccount to generate yield.

Pause deposits and withdrawals.

Enable/disable subAccounts.

Add/Remove users from the whitelist.

Whitelisted User

Deposit assets in exchange for shares.

Redeem vault shares in exchange for reference assets.

7

Potential Risks

In the ProxyFactory , each deployed proxy is controlled by a ProxyAdmin whose owner is set at

deployment. Using a single EOA as the ProxyAdmin owner without safeguards creates a

central point of failure and allows immediate upgrades to new implementations. Consider

ownership being assigned to a multisig wallet, and introducing a timelock delay to provide

review time before upgrades take effect.

The project's contracts are upgradable, allowing the administrator to update the contract

logic at any time. While this provides flexibility in addressing issues and evolving the

project, it also introduces risks if upgrade processes are not properly managed or secured,

potentially allowing for unauthorized changes that could compromise the project's

integrity and security.

The BridgeableReceiptToken contract relies on the minters and burners mappings to control

access to the mint and burn functions, which are configured once via the configure method.

If addresses other than intended vault contracts—such as admin wallets—are added as

minters or burners, they can arbitrarily inflate the token supply through mint() or remove

tokens from users via burn() . This risk is further amplified if an admin key is compromised

or impersonated, potentially allowing malicious actors to manipulate balances and

destabilize the system.

The lockTokens function allows the contract owner to arbitrarily set or extend token locks

for any user. This gives the owner unilateral control over when users can transfer or

manage their tokens, creating a risk of misuse or disruption. If the owner account is

compromised, an attacker could similarly restrict access to user funds. Consider

introducing safeguards against repeated extensions of the locking period.

Assets accepted as deposits into the vaults are whitelisted and cannot be removed once

added. While this ensures only approved tokens are used, it creates a risk that if a

whitelisted token becomes problematic—due to exploits, depegging, or other critical

issues—it cannot be disabled or removed from the vault. This could expose the protocol

and its users to financial losses or operational disruptions.

The updateTotalAssets function in the Vault allows the owner or operator to update the

externalAssets value, which may include assets held off-chain. Because the actual off-chain

balance cannot be verified on-chain, the externalAssetsAmount parameter can be manipulated

within the limits set by maxAllowedChangePerc . This introduces a trust assumption on the owner

or operator and could result in a misrepresentation of total assets for external users or

integrations relying on this value. Proper off-chain reconciliation and monitoring are

recommended to mitigate this risk.

Withdrawals in the system (claim() or processAllClaimsByDate()) depend on the Vault holding a

sufficient balance of reference tokens, meaning users’ ability to redeem their shares relies

on admins properly managing liquidity. If admins fail to ensure enough reference tokens

are available, withdrawals will not execute, creating a risk that users cannot redeem their

shares even though the vault may hold sufficient assets overall.

The system relies on oracles to price vault assets relative to the reference asset. While

the vault operates with tokens such as wBTC, wETH, USDC, or USDT, it is possible that the

associated oracles provide prices for the underlying assets (BTC, ETH, USD) instead. Since

8

wrapped and pegged assets are not always perfectly aligned with their underlying

counterparts, this may introduce slight pricing inconsistencies that can affect valuations.

The functioning of the system significantly relies on specific external contracts. Any flaws

or vulnerabilities in these contracts adversely affect the audited project, potentially

leading to security breaches or loss of funds. Precisely, Vault assets are transferred from

the vaults to subAccounts, which act as intermediaries responsible for managing external

yield strategies. Since the subAccounts’ logic and security are out of scope, the proper

handling, safeguarding, and utilization of these assets introduce a dependency on

external components that may affect the safety and availability of vault funds.

Vault assets can be transferred to accounts of type ACCOUNT_TYPE_SUBACCOUNT , which must

implement IAllocableSubAccount() , or to accounts of type ACCOUNT_TYPE_WALLET , which may

correspond to any arbitrary address. Although this function is restricted by

onlyOwnerOrOperator , the ability to send vault funds to any address introduces a high-risk

vector, as misuse or compromise of privileged accounts could result in loss or

mismanagement of vault assets.

The emergencyWithdraw() function allows the vault owner to retrieve all assets from the vault

at any time. While intended as an emergency mechanism, this introduces a high-risk

vector because misuse or compromise of the owner account—such as through key theft—

could result in complete loss of user funds, making the vault highly dependent on the

security and trustworthiness of the owner.

The current asset valuation mechanism via _fromInputAssetToReferenceAsset() , which relies on

Chainlink oracles, only supports a limited set of token pairs. While this is sufficient for the

currently required tokens, not all pairs can be integrated (e.g., DAI asset / USDC reference

asset). This restriction is acceptable under the present system design, since the owner

controls whitelisted assets, but it introduces a limitation for future extensibility. If

additional unsupported token pairs are required, the system would need to adapt the

conversion logic and/or redeploy contracts.

The updatePerformanceFee() and updateInstantRedemptionFee() functions allow the Vault owner to

modify fee parameters at any time, which may result in users experiencing changes to

costs after engaging with the Vault. This could affect user expectations and influence

participation or liquidity in the protocol.

The updateLimits() function allows the Vault owner to modify maxWithdrawalAmount at any time.

Users who have already engaged with the Vault may be subject to new withdrawal limits,

potentially restricting their ability to exit the system as anticipated and affecting user

experience and confidence in the protocol.

9

Findings

Vulnerability Details

F-2025-14332 - Inaccurate Total Assets Valuation Due to Oracle

and Conversion Logic Limitations - Medium

Description: The vault calculates total asset valuation by summing the value of

all whitelisted tokens using the _getTotalAssetsValuation function. This

function iterates over each whitelisted token, queries its balance

from the vault, and converts it into the reference asset using the

_fromInputAssetToReferenceAsset function:

 for (uint256 i; i < t; i++) {

 assetAddr = _whitelistedAssets[i];

 assetBalance = IERC20(assetAddr).balanceOf(vaultAddr);

 if (assetBalance > 0) {

 balanceInReferenceTokens = _fromInputAssetToReferenceAsset(as

setAddr, assetBalance);

 acum += balanceInReferenceTokens;

 }

 }

The _fromInputAssetToReferenceAsset function uses the following formula

to convert the input amount into the corresponding amount of

reference tokens:

 (,int256 answer,,,) = IAggregatorV3Interface(oracleAddr).latestRoundD

ata();

 if (answer < 1) revert InvalidOraclePrice();

 uint256 a = (uint256(answer) * amount) / (10 ** tokenDecimals);

 return a / (10 ** decimalsDiff);

The Chainlink oracle provides a limited set of token pairs, which

imposes constraints on the project. For example, WBTC/USD does

not exist as a direct pair; only BTC/USD is available. While the

BTC/USD pair can be used as a generalization, the retrieved price

may differ slightly from the exact value. Another limitation is that

Chainlink does not provide inverse pairs such as USD/WBTC or

USD/BTC. These constraints significantly restrict which tokens can be

used as reference assets or whitelisted tokens.

10

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/346528bb-d72f-4320-b87f-1ceaa33ac7f6

If WBTC is used as the reference token and USDC and USDT are

whitelisted, a potential issues may arise. For example, suppose the

vault holds 30,000 USDC and 270,000 USDT, and the BTC price is

$100,000. The total value of both whitelisted tokens should equal 3

BTC. However, the current formula used for conversion produces an

incorrect result. Using the BTC/USD price feed, the calculation

becomes:

100_000e8 * 30_000e6 / 1e6 / 1 + 100_000e8 * 270_000e6 / 1e6 / 1

Here, tokenDecimals is 0 and the oracle answer is 100_000e8. The final

result differs from the expected 3e8 (3 BTC), leading to inaccurate

reference asset valuation.

Status: Mitigated

Classification

Impact Rate: 5/5

Likelihood Rate: 3/5

Exploitability: Semi-Dependent

Complexity: Simple

Incorrect total asset valuation may lead to mispriced shares and

incorrect redemptions.

Severity: Medium

Recommendations

Remediation: It is recommended to introduce a direction check to increase

compatibility of reference asset pairs with oracle data feeds (e.g.

BTC/USD vs USD/BTC).

Resolution: Mitigated in commit e5a91bc . The conversion formula was changed so

that it does not depend on the oracle, reference, or enabled token

decimals.

This solution works for the token pairs that are currently required by

the system. However, not any pair of tokens can be supported. The

development team is aware of this and acknowledges the risk, since

the configuration of the token pairs relies on the system owner . In

case the system requires other pairs of tokens that are not

supported, new smart contracts shall be deployed.

11

F-2025-14333 - Direct Token Donations Can Distort TVL and Share

Accounting - Medium

Description: The system Vaults accounting relies on _getTotalAssetsValuation() , which

aggregates balances of whitelisted assets held by the vault contract

and tokens allocated to external strategies.

 function _getTotalAssetsValuation(address vaultAddr, uint256 externalAsse

ts)

 internal

 view

 returns (uint256)

 {

 address assetAddr;

 uint256 assetBalance;

 uint256 balanceInReferenceTokens;

 uint256 t = _whitelistedAssets.length;

 uint256 acum =

 externalAssets + IERC20(REFERENCE_ASSET).balanceOf(vaultAddr);

 for (uint256 i; i < t; i++) {

 assetAddr = _whitelistedAssets[i];

 assetBalance = IERC20(assetAddr).balanceOf(vaultAddr);

 if (assetBalance > 0) {

 balanceInReferenceTokens =

 _fromInputAssetToReferenceAsset(assetAddr, assetBalance);

 acum += balanceInReferenceTokens;

 }

 }

 // External assets + multi assets liquidity + liquidity of the refere

nce token

 return acum;

 }

However, the aforementioned ERC20 tokens can also be transferred

directly to the vault by any user, whitelisted or not, without invoking

its deposit() function. Similarly, reference tokens are ERC20 that can

also be sent directly to the contract.

This creates a serious inconsistency between the two inflows of

tokens:

12

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/8f109dd1-a626-4c46-a330-472c8b3e0d08

When a user deposits via the official deposit() entry point, the

corresponding LP shares are also minted, based on the ratio

between the assets contributed and the vault’s Total Value

Locked (TVL).

If a token transfer happens directly (bypassing deposit()), the

vault balance of that token increases, raising the TVL without

minting any shares. This creates an inconsistency.

Due to the rely on ERC20 balances that will not track properly the

total asset valuation (TVL) according to the actual minting of shares,

several consequences arise:

Depositor dilution

Share pricing depends on the ratio between TVL and total supply

of shares. If TVL is artificially increased by donations, future

depositors will receive fewer shares per unit deposited,

effectively getting a worse exchange rate. This dilutes their

position relative to existing participants.

Withdrawals over-credited

Since share-to-asset conversion is based on the inflated TVL,

existing LPs can redeem their shares for more assets than they

are entitled to. This allows early LPs to “cash out” part of the

donated value, leaving subsequent depositors with potential

losses.

Fee miscalculation

Protocol fees (e.g., management or performance fees) are

typically charged as a percentage of TVL. With inflated balances,

fees may be overestimated, resulting in the protocol collecting

more fees than it should, further harming users.

Accounting mismatch

The design assumes that every token counted in TVL entered

through the deposit() function, ensuring share issuance matches

assets held. Donations break this invariant, leading to

inconsistencies between economic reality and accounting logic.

Over time, this can complicate reconciliations and introduce

systemic risk.

Attack surface for griefing

Even if attackers gain no direct profit, they can disrupt the vault

by repeatedly donating small amounts of reference assets. This

creates unpredictable fluctuations in share pricing, undermining

trust in the vault’s correctness and potentially deterring real

users from depositing.

Status: Accepted

Classification

Impact Rate: 4/5

13

Likelihood Rate: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: In order to prevent the distortion of the total asset valuation, it is

recommended to introduce an accounting mechanism in the

deposit() function that keeps track of the tokens deposited only

through this function. This accounting of deposited tokens should be

used as the reference to calculate the total asset valuation of the

vault, instead of relying on the token balance which can be

manipulated.

Resolution: The risk for the given finding is accepted. Donating tokens to the

vault is considered real PnL.

14

F-2025-14334 - External Assets Valuation Fixed at SubAccount

Transfer May Cause TVL Inaccuracy - Medium

Description: The project Vaults track assets deployed to external yield managers

(subAccounts) using the externalAssets state variable. This variable

represents the valuation of these assets in terms of the reference

asset at the moment they are transferred to subAccounts managers.

 function depositToSubaccount(

 address inputAssetAddr,

 uint256 depositAmount,

 address subAccountAddr

) external nonReentrant ifConfigured onlyOwnerOrOperator {

 if (depositAmount < 1) revert InvalidAmount();

 uint8 accountType = whitelistedSubAccounts[subAccountAddr];

 if (accountType < 1) revert AccountNotWhitelisted();

 // Convert the input amount to the respective amount in reference tok

ens

 uint256 amountInReferenceAssets = (inputAssetAddr == _referenceAsset)

 ? depositAmount

 : _fromInputAssetToReferenceAsset(inputAssetAddr, depositAmount);

 externalAssets += amountInReferenceAssets;

 if (accountType == ACCOUNT_TYPE_SUBACCOUNT) {

 // Deposit funds in the sub account

 SafeERC20.safeApprove(

 IERC20(inputAssetAddr), subAccountAddr, depositAmount

);

 IAllocableSubAccount(subAccountAddr).deposit(

 inputAssetAddr, depositAmount

);

 SafeERC20.safeApprove(IERC20(inputAssetAddr), subAccountAddr, 0);

 } else {

 // Transfer the funds to a whitelisted wallet or EOA

 SafeERC20.safeTransfer(

 IERC20(inputAssetAddr), subAccountAddr, depositAmount

);

 }

 }

A subtle risk arises because subsequent market fluctuations of these

external assets are not reflected in TVL calculations. Specifically:

15

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/a8d42fe2-3a15-4683-ad02-50c9bfbf41fa

If the market value of an external asset increases, the vault

understates its TVL, which may result in LP shares being

undervalued.

LP share price underestimation.

Too low accrued fees.

If the market value decreases significantly, the vault overstates

TVL, which can lead to:

LP share price overestimation.

Too large accrued fees.

Withdrawal calculations exceeding the actual liquid value of

the vault, potentially preventing users from withdrawing the

full expected amount.

Since _convertToAssets() and other functions rely on TVL for deposit,

withdrawal, and fee calculations, inaccuracies in externalAssets

valuation directly affect these critical operations.

Status: Accepted

Classification

Impact Rate: 4/5

Likelihood Rate: 3/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: It is recommended to accurately track the actual valuation of the

assets held in the vault. Some possible solutions are:

Periodically, or on-demand, revalue externalAssets using up-to-

date oracle prices or other reliable pricing mechanisms.

Track strategy balances separately and compute TVL

dynamically when _getTotalAssetsValuation() is called, including

accrued yield or losses.

Resolution: The risk for the given finding is accepted. The owner will revalue the

external assets as needed by calling the updateTotalAssets function.

16

F-2025-14335 - Incorrect Calculation in Total Assets Percentage

Change - Medium

Description: The updateTotalAssets() function is responsible for updating the

accounting of assets involved in yield strategies, tracked by the

state variable externalAssets . To prevent abrupt and potentially

malicious updates, the function enforces a threshold mechanism that

limits the maximum percentage change allowed for externalAssets .

The threshold is computed via the helper function

getMaxAllowedChange() :

 function getMaxAllowedChange() public view returns (uint256) {

 // slither-disable-next-line timestamp

 if (block.timestamp + _TIMESTAMP_MANIPULATION_WINDOW < assetsUpdatedO

n)

 {

 revert InvalidTimestamp();

 }

 // (Max change per day * Time interval in seconds since last update)

/ (60 * 60 * 24)

 return (maxChangePercent * (block.timestamp - assetsUpdatedOn))

 / uint256(86400);

 }

The variable maxChangePercent is configured to represent a percentage

value in basis points. However, the calculation does not normalize

this value by dividing by its base. As a result, the computed

maximum allowed change is significantly larger than intended,

which undermines the protective mechanism and deviates from the

system’s requirements.

Status: Mitigated

Classification

Impact Rate: 4/5

Likelihood Rate: 5/5

Exploitability: Semi-Dependent

Complexity: Simple

17

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/8cab57b2-46e6-4bed-8611-9b82de250491

Severity: Medium

Recommendations

Remediation: Introduce basis points normalization by dividing maxChangePercent by

the corresponding base in the calculation of the maximum allowed

change.

return (maxChangePercent * (block.timestamp - assetsUpdatedOn)) / uint256(864

00) / basisPoints;

Resolution: The development team Mitigated this finding by scaling up the

returned value of getChangePercentage() by 100 in order to compare the

same scale in updateTotalAssets() :

 function updateTotalAssets(uint256 externalAssetsAmount) external nonReen

trant ifConfigured onlyOwnerOrOperator {

 uint256 perChange = getChangePercentage(externalAssetsAmount);

 uint256 maxAllowedChangePerc = getMaxAllowedChange();

 // slither-disable-next-line timestamp

 if (perChange > maxAllowedChangePerc) revert MaxAllowedChangeReached(

);

 ...

 }

Therefore, the input parameter used in updateMaxChangePercent() should

be carefully introduced by the caller of the method (i.e. owner or

operator roles) in order to keep a consistency with the basis points of

maxChangePercent used across the system.

 function updateMaxChangePercent(uint256 newValue) external nonReentrant i

fConfigured onlyOwnerOrOperator {

 // Build the hash of this call and attempt to consume it. The call re

verts if the hash can't be consumed.

 bytes32 h = keccak256(abi.encode(

 abi.encodeWithSignature(

 "updateMaxChangePercent(uint256)",

 newValue

)

));

 maxChangePercent = newValue;

 emit MaxChangePercentUpdated(newValue);

18

 IResourceBasedTimelockedCall(scheduledCallerAddress).consume(h);

 }

The development team acknowledges the risk for the correct

parameters being managed for maxChangePercent .

19

F-2025-14309 - Custom Signature Recovery May Reject Valid

permit() Signatures - Low

Description: The permit() function in the BaseLayerZeroErc20 abstract contract

performs signature recovery using a custom wrapper around the

EVM ecrecover() primitive. The implementation includes common best

practices such as enforcing s requirements, using nonces for replay

protection, and applying EIP-712 domain separation.

 function permit(...) external override nonReentrant {

 ...

 // Attempt to recover the signature

 address signer = _recover(h, v, r, s);

 if (signer != holderAddr) revert InvalidSigner();

 ...

 }

 function _recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal p

ure returns (address) {

 ...

 if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDF

E92F46681B20A0) {

 revert InvalidSignatureComponentS();

 }

 // If the signature is valid (and not malleable), return the signer a

ddress

 address signer = ecrecover(hash, v, r, s);

 if (signer == address(0)) revert InvalidSignature();

 return signer;

 }

However, the current signature recovery mechanism can introduce

subtle compatibility differences with signatures produced by widely

used off-chain signing libraries, particularly regarding the encoding

of the v component. In such cases, signatures that are otherwise

valid may not be recovered as expected.

This behavior may lead to some permit() calls failing under specific

signing configurations, potentially affecting user experience and

integrations that rely on standardized signature handling.

20

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/1baea2f8-6f89-4149-90ed-eb3932fe6e56

Assets:

src/core/BaseLayerZeroErc20.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Mitigated

Classification

Impact Rate: 2/5

Likelihood Rate: 3/5

Exploitability: Independent

Complexity: Medium

Severity: Low

Recommendations

Remediation: Replace the _recover() logic with OpenZeppelin’s ECDSA.recover() in

permit() :

 function permit(...) external override nonReentrant {

 ...

 // Attempt to recover the signature

 address signer = ECDSA.recover(digest, v, r, s);

 if (signer != holderAddr) revert InvalidSigner();

 ...

 }

Resolution: Mitigated by the team, provided the following feedback about their

signature management:

We privilege security and best practices rather than

backwards compatibility with old legacy EIP standards

(example: EIP-2 and others). As a result, we privilege a

clearly defined, strongly typed signature scheme (vrs) as

opposed to a bunch of malleable signatures (65 bytes or

more).

21

F-2025-14312 - Vault Owner Can Set Fees Outside Safe Limits -

Low

Description: The updatePerformanceFee() and updateInstantRedemptionFee() functions allow

the Vault owner to set the respective fee values without any

restrictions or validation on the input range.

TokenizedVault

 function updatePerformanceFee(uint256 newValue) external nonReentrant onl

yOwner {

 performanceFeeRate = newValue;

 }

TimelockedVault

 function updateInstantRedemptionFee(

 uint256 newValue,

 bool pKeepFeeInVault

) external nonReentrant onlyOwner {

 instantRedemptionFee = newValue;

 keepFeeInVault = pKeepFeeInVault;

 }

As a result, fees can be set to unreasonably high values after users

have already engaged with the protocol’s Vaults, allowing abusive

behavior and unexpected losses for users. Since these parameters

directly affect the cost of using the system, unrestricted updates

may undermine trust, user experience, and participation, and could

have a negative impact on protocol TVL and reputation.

Assets:

src/tokenized-vaults/base/TimelockedVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

src/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Accepted

Classification

Impact Rate: 4/5

Likelihood Rate: 2/5

22

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/21d62aa0-08c6-45ed-aa8b-97cf6a5ff303

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: It is recommended to introduce a validation of the input fee

arguments in order to enforce reasonable bounds on fee parameters.

For example, ensure that performanceFeeRate and instantRedemptionFee

cannot exceed a predefined maximum (e.g., 20%); or validate both

upper and lower bounds (e.g. 5% to 10%).

Resolution: Accepted by the development team, providing the following

feedback:

Any arbitrary maximum limit would have to be case specific

and opens the door for an edge case where the

instantRedemptionFee/performanceFeeRate would have to

be much higher for a business use case. In terms of trade-

offs, it is easier to refund a vault for which fees were over-

charged than to be constrained by an arbitrary max value in

perpetuity.

23

F-2025-14311 - Missing Events for Key State Changes - Info

Description: The updatePerformanceFee() and updateInstantRedemptionFee() functions

modify key protocol parameters but do not emit events. Without

events, off-chain monitoring tools and users cannot reliably track

changes in real time. This reduces transparency and may negatively

impact user perception of fairness or trustworthiness.

TokenizedVault

 function updatePerformanceFee(uint256 newValue) external nonReentrant onl

yOwner {

 performanceFeeRate = newValue

 }

TimelockedVault

 function updateInstantRedemptionFee(

 uint256 newValue,

 bool pKeepFeeInVault

) external nonReentrant onlyOwner {

 instantRedemptionFee = newValue;

 keepFeeInVault = pKeepFeeInVault;

 }

Assets:

src/tokenized-vaults/base/TimelockedVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

src/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Accepted

Classification

Impact Rate: 1/5

Likelihood Rate: 5/5

Exploitability: Dependent

Complexity: Simple

Severity: Info

24

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/0498e552-36b9-4f7e-b28a-346f8e5874ef

Recommendations

Remediation: It is recommended to emit events in the reported methods

updatePerformanceFee() and updateInstantRedemptionFee() .

Resolution: Accepted by the development team, providing the following

feedback:

Events consumption is a responsibility of the consumer

rather than the publisher

25

F-2025-14315 - Missing Safeguards When Assigning Vault

Ownership - Info

Description: The configure() function in TokenizedVault assigns the Vault _owner

address without validating that it newConfig.futureOwnerAddress is non-

zero. If the zero address is mistakenly provided, ownership of the

Vault would be irreversibly assigned to address(0) , effectively

disabling owner-only functionality and preventing further

administrative actions.

 function configure(

 ConfigInfo memory newConfig

) public virtual override nonReentrant onlyOwner ifNotConfigured {

 ...

 _owner = newConfig.futureOwnerAddress;

 ...

 }

Assets:

src/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Status: Accepted

Classification

Impact Rate: 3/5

Likelihood Rate: 1/5

Exploitability: Dependent

Complexity: Simple

Severity: Info

Recommendations

Remediation: Consider using one of the following approaches:

Implement a two-step ownership assignment mechanism (e.g.,

Ownable2Step pattern), where a pending owner is first set and must

26

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/2a1c66e3-e02f-4122-a1a1-274c8b472c49

explicitly accept ownership. This significantly reduces the risk of

accidental misconfiguration and irreversible loss of ownership, or

Enforce a zero-address validation when setting the owner to

ensure ownership is always assigned to a valid address:

require(newConfig.futureOwnerAddress != address(0), "Owner cannot be zero add

ress");

Resolution: Accepted by the development team, providing the following

feedback:

The caller/deployer is responsible for providing the right

address of the owner at deployment time

27

F-2025-14336 - Lack of Fee-on-Transfer Token Compatibility

Corrupts Vault TVL and Accounting - Info

Description: The Vault does not support fee-on-transfer (FoT) tokens. The

deposit() function calculates shares to mint based on the amountIn

parameter before transferring tokens to the vault. For FoT tokens,

the actual amount received is lower than amountIn , but the shares to

mint are calculated as if the full amount was received.

 function deposit(address assetIn, uint256 amountIn, address receiverAddr)

 external

 nonReentrant

 ifConfigured

 ifDepositsNotPaused

 ifSenderWhitelisted

 ifAssetWhitelisted(assetIn)

 returns (uint256)

 {

 if (amountIn < 1) revert InvalidAmount();

 if (receiverAddr == address(0) || receiverAddr == address(this)) {

 revert InvalidReceiver();

 }

 uint256 shares = previewDeposit(assetIn, amountIn);

 if (shares < 1) revert InsufficientShares();

 // Log the event

 emit Deposit(assetIn, amountIn, shares, msg.sender, receiverAddr);

 // Transfer the input tokens

 SafeERC20.safeTransferFrom(

 IERC20(assetIn), msg.sender, address(this), amountIn

);

 // Issue (mint) LP tokens to the receiver

 IMintableBurnable(lpTokenAddress).mint(receiverAddr, shares);

 return shares;

 }

This lack of compatibility with FoT tokens is also present in the

depositToSubaccount() logic: when assets are transferred to strategy

subAccounts , the value of the transferred assets is taken as the full

28

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/d2d0e4f0-ba29-4dd2-abe0-0d961af4d574

input amount and recorded into externalAssets , without accounting for

the transfer fee. As a result, the externalAssets value is overstated,

leading to an incorrect Total Value Locked (TVL) for the vault.

 function depositToSubaccount(

 address inputAssetAddr,

 uint256 depositAmount,

 address subAccountAddr

) external nonReentrant ifConfigured onlyOwnerOrOperator {

 if (depositAmount < 1) revert InvalidAmount();

 uint8 accountType = whitelistedSubAccounts[subAccountAddr];

 if (accountType < 1) revert AccountNotWhitelisted();

 // Convert the input amount to the respective amount in reference tok

ens

 uint256 amountInReferenceAssets = (inputAssetAddr == _referenceAsset)

 ? depositAmount

 : _fromInputAssetToReferenceAsset(inputAssetAddr, depositAmount);

 externalAssets += amountInReferenceAssets;

 if (accountType == ACCOUNT_TYPE_SUBACCOUNT) {

 // Deposit funds in the sub account

 SafeERC20.safeApprove(

 IERC20(inputAssetAddr), subAccountAddr, depositAmount

);

 IAllocableSubAccount(subAccountAddr).deposit(

 inputAssetAddr, depositAmount

);

 SafeERC20.safeApprove(IERC20(inputAssetAddr), subAccountAddr, 0);

 } else {

 // Transfer the funds to a whitelisted wallet or EOA

 SafeERC20.safeTransfer(

 IERC20(inputAssetAddr), subAccountAddr, depositAmount

);

 }

 }

Since the TVL of the vault is a key component of the system, the

aforementioned mis-calculation of the accounting for fee-on-transfer

tokens have a severe impact in the vault accounting (minting of

shares, withdrawal amount of reference assets, charging of fees,

etc). Although the system already includes a whitelisting of assets,

meaning only those tokens previously accepted by the admin team

will be allowed in the vault, if any of them includes a transfer fee,

the consequences are severe for the system.

Status: Accepted

29

Classification

Impact Rate: 4/5

Likelihood Rate: 1/5

Exploitability: Dependent

Complexity: Simple

Severity: Info

Recommendations

Remediation: It is recommended to make the system compatible with fee-on-

transfer tokens. This can be done by comparing the token balance

before and after the transfer, in order to account only the actual

amount of tokens being transferred.

Resolution: The risk for the given finding is accepted. The vault will support well-

known tokens for deposits and withdrawals, such as USDC, USDT,

DAI, WBTC, cbBTC, and WETH. The client is not planning to support

any fee-on-transfer tokens.

30

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

As part of Hacken’s ongoing quality assurance process, we may conduct re-audits of select

projects. These re-audits are performed independently from the original audit and are

intended solely for internal quality control and improvement. Updated reports resulting from

such re-audits will be shared privately with the respective clients and may be published on the

Hacken website only with their explicit consent.

The sole authoritative source for finalized and most up-to-date versions of all reports remains

the Audits section at https://hacken.io/audits/.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

31

https://hacken.io/audits/

Appendix 1. Definitions

Severities

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution.

Potential Risks

The "Potential Risks" section identifies issues that are not direct security vulnerabilities but

could still affect the project’s performance, reliability, or user trust. These risks arise from

design choices, architectural decisions, or operational practices that, while not immediately

exploitable, may lead to problems under certain conditions. Additionally, potential risks can

impact the quality of the audit itself, as they may involve external factors or components

beyond the scope of the audit, leading to incomplete assessments or oversight of key areas.

This section aims to provide a broader perspective on factors that could affect the project's

long-term security, functionality, and the comprehensiveness of the audit findings.

32

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/fractal-protocol/august-contracts-v2

Commit 6fbcaf5

Whitepaper N/A

Requirements https://docs.upshift.finance/architecture/vault-architecture

Technical Requirements https://docs.upshift.finance/architecture/vault-architecture

Asset Type

src/core/BaseLayerZeroErc20.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

src/core/BaseReentrancy.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

src/core/BridgeableGovernanceToken.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/core/BridgeableReceiptToken.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

src/core/DateUtils.sol [https://github.com/fractal-protocol/august-contracts-v2]
Smart

Contract

src/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/core/GuardedProxyOwnable2Steps.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/core/Ownable2StepsGuarded.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

src/core/OwnableGuarded.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

src/core/ProxyAdminOwnable2Steps.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/core/ProxyFactory.sol [https://github.com/fractal-protocol/august-contracts-

v2]

Smart

Contract

src/core/ProxyFactoryOwnable2Steps.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/core/ResourceBasedTimelockedCall.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/core/SendersWhitelist.sol [https://github.com/fractal-protocol/august-

contracts-v2]

Smart

Contract

src/tokenized-vaults/base/OperableVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

33

https://github.com/fractal-protocol/august-contracts-v2
https://docs.upshift.finance/architecture/vault-architecture
https://docs.upshift.finance/architecture/vault-architecture

Asset Type

src/tokenized-vaults/base/OraclizedMultiAssetVault.sol

[https://github.com/fractal-protocol/august-contracts-v2]

Smart

Contract

src/tokenized-vaults/base/TimelockedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/tokenized-vaults/deployment/Parameters.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/tokenized-vaults/ITokenizedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/tokenized-vaults/MasterDeployer.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

src/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-

protocol/august-contracts-v2]

Smart

Contract

34

Appendix 3. Additional Valuables

Additional Recommendations

The smart contracts in the scope of this audit could benefit from the introduction of automatic

emergency actions for critical activities, such as unauthorized operations like ownership

changes or proxy upgrades, as well as unexpected fund manipulations, including large

withdrawals or minting events. Adding such mechanisms would enable the protocol to react

automatically to unusual activity, ensuring that the contract remains secure and functions as

intended.

To improve functionality, these emergency actions could be designed to trigger under specific

conditions, such as:

Detecting changes to ownership or critical permissions.

Monitoring large or unexpected transactions and minting events.

Pausing operations when irregularities are identified.

These enhancements would provide an added layer of security, making the contract more

robust and better equipped to handle unexpected situations while maintaining smooth

operations.

Frameworks and Methodologies

This security assessment was conducted in alignment with recognised penetration testing

standards, methodologies and guidelines, including the NIST SP 800-115 – Technical Guide to I

nformation Security Testing and Assessment, and the Penetration Testing Execution Standard

(PTES), These assets provide a structured foundation for planning, executing, and

documenting technical evaluations such as vulnerability assessments, exploitation activities,

and security code reviews. Hacken’s internal penetration testing methodology extends these

principles to Web2 and Web3 environments to ensure consistency, repeatability, and verifiable

outcomes.

35

https://www.nist.gov/privacy-framework/nist-sp-800-115
https://www.pentesting.org/technical-testing-guide/

