HHHHHH

Smart Contract Code
Review And Security
Analysis Report

L

Customer: Upshift Finance

Date: 18/12/2025

We express our gratitude to the Upshift Finance team for the collaborative engagement that
enabled the execution of this Smart Contract Security Assessment.

Upshift Vault is a core ERC-4626 vault that enables users to deposit funds while earning
yield through deployment to August subaccounts, which manage strategies securely across
multiple chains. It simplifies user experience with a single reference token, supports multi-
chain DeFi opportunities, and enforces strict roles and permissions for secure capital
management.

Document
Smart Contract Code Review and Security Analysis Report for Upshift
Name
Finance
Audited By David Camps Novi
Approved By Ivan Bondar
Website https://www.upshift.finance/
Changelog 16/12/2025 - Preliminary Report; 18/12/2025 - Final Report;
Platform Any EVM-compatible chain
Language Solidity
Tags ERC4626; Upgradable; Yield Farming; Centralization; Claims; Vault
Methodology https://docs.hacken.io/methodologies/smart-contracts
Review Scope
Repository https://github.com/fractal-protocol/august-contracts-v2

Commit 6fbcafb

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

https://www.upshift.finance/
https://docs.hacken.io/methodologies/smart-contracts
https://github.com/fractal-protocol/august-contracts-v2

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

9 0

3

Total Findings Resolved Mitigated

Findings by Severity

Severity

Vulnerability Severity
F-2025-14332 - Inaccurate Total Assets Valuation Due to Oracle and
Conversion Logic Limitations

F-2025-14333 - Direct Token Donations Can Distort TVL and Share
Accounting

F-2025-14334 - External Assets Valuation Fixed at SubAccount
Transfer May Cause TVL Inaccuracy

F-2025-14335 - Incorrect Calculation in Total Assets Percentage
Change

F-2025-14309 - Custom Signature Recovery May Reject Valid permit()
Signatures

F-2025-14312 - Vault Owner Can Set Fees Outside Safe Limits
F-2025-14311 - Missing Events for Key State Changes
F-2025-14315 - Missing Safeguards When Assigning Vault Ownership

F-2025-14336 - Lack of Fee-on-Transfer Token Compatibility Corrupts
Vault TVL and Accounting

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti
Kesklinna, Estonia

N B~ O

Status

Mitigated

Mitigated

Mitigated

Accepted
Accepted

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/346528bb-d72f-4320-b87f-1ceaa33ac7f6
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/8f109dd1-a626-4c46-a330-472c8b3e0d08
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/a8d42fe2-3a15-4683-ad02-50c9bfbf41fa
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/8cab57b2-46e6-4bed-8611-9b82de250491
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/1baea2f8-6f89-4149-90ed-eb3932fe6e56
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/21d62aa0-08c6-45ed-aa8b-97cf6a5ff303
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/0498e552-36b9-4f7e-b28a-346f8e5874ef
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/2a1c66e3-e02f-4122-a1a1-274c8b472c49
https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/d2d0e4f0-ba29-4dd2-abe0-0d961af4d574

Documentation quality
o Functional requirements are limited.
e Technical description is limited.
Code quality

e The development environment is well-configured.
o Code architecture has a modular design with clear separation of concerns.
» NatSpec is present but does not extensively describe functionality.

Test coverage

Code coverage of the project is 0% (branch coverage).

e Tests are not properly configured, leading to running errors.

Hacken QU

4, Kesklinn, Tallinn
10151 Harju Maakond, Eesti
Kesklinna, Estonia

Table of Contents

System Overview
Privileged Roles
Potential Risks
Findings
Vulnerability Details
Disclaimers
Appendix 1. Definitions
Severities
Potential Risks
Appendix 2. Scope
Appendix 3. Additional Valuables

10
10
31
32
32
32
33
35

System Overview

The Upshift Finance system consists of an OFT (Omnichain Fungible Token) for cross-
chain token transfers via LayerZero and a vault contract for asset management, The vault
issues the aforementioned OFT as its shares, enforces withdrawal/redemption logic, and
supports configurable fees and external asset reporting. Owner/operator roles control
updates, limits, and fee distribution.

Core Contracts

o TokenizedVault - An upgradeable ERC-4626 vault that issues receipt tokens, manages
deposits/withdrawals, calculates share prices, and handles performance and management
fees, while enforcing timelocks and emergency withdrawals. It integrates with whitelisted
assets to standardize all deposits to a single reference asset.

 EnableOnlyAssetsWhitelist - Maintains a list of whitelisted assets for vault deposits,
assigns Chainlink oracles to convert asset values into the reference asset, and enforces
decimal consistency to ensure accurate vault accounting.

o TimelockedVault - Adds withdrawal timelocks and instant redemption fee logic to the
vault, enforcing delayed withdrawals and tracking lag durations for security and proper
fee application.

» BridgeReceiptToken - An ERC-20 token representing user shares in a vault that can be
minted, burned, and locked, with cross-chain bridging enabled via LayerZero, ensuring
controlled token issuance and secure transfer restrictions during timelocks or emergency
scenarios.

o OraclizedMultiAssetVault - extends operablevautt to manage deposits, withdrawals, and

subaccount interactions across multiple whitelisted assets

Fee structure

« Management fee: Charged on total value locked (TVL) in the vault.

» Performance fee: Charged when high watermark is exceeded; distributed to fee
recipients.

* Instant Redemption fee: Charged for immediate withdrawals, incentivizing delayed
redemption.

Privileged roles

e Owner:
o Deploy upgradeable implementations via ProxyFactory
o Update configurable parameters such as maxwithdrawAmount OF maxChangePercent .
o Update fee-related parameters such as fee receivers.
o Add/Remove users from the whitelist.
o Add/Remove subaccounts for yield strategies
o Emergency withdraw the assets from the vault.
o Update the underlying assets of the vault.
o Deposit/Withdraw assets in the subAccount to generate yield.
o Pause deposits and withdrawals.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

o Enable/disable subAccounts.
¢ Operator
o Add/Remove subAccounts for yield strategies
o Deposit/Withdraw assets in the subAccount to generate yield.
o Pause deposits and withdrawals.
o Enable/disable subAccounts.
o Add/Remove users from the whitelist.
o Whitelisted User
o Deposit assets in exchange for shares.
o Redeem vault shares in exchange for reference assets.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju akond, Eest
Kesklinna, Estonia

Potential Risks

e In the proxyFactory, each deployed proxy is controlled by a proxyadnin whose owner is set at
deployment. Using a single EOA as the rroxyadnin owner without safeguards creates a
central point of failure and allows immediate upgrades to new implementations. Consider
ownership being assigned to a multisig wallet, and introducing a timelock delay to provide
review time before upgrades take effect.

e The project's contracts are upgradable, allowing the administrator to update the contract
logic at any time. While this provides flexibility in addressing issues and evolving the
project, it also introduces risks if upgrade processes are not properly managed or secured,
potentially allowing for unauthorized changes that could compromise the project's
integrity and security.

e The BridgeableReceiptToken contract relies on the minters and burners mappings to control
access to the mint and burn functions, which are configured once via the configure method.
If addresses other than intended vault contracts—such as admin wallets—are added as
minters or burners, they can arbitrarily inflate the token supply through nint() or remove
tokens from users via burn() . This risk is further amplified if an admin key is compromised
or impersonated, potentially allowing malicious actors to manipulate balances and
destabilize the system.

e The tlocktokens function allows the contract owner to arbitrarily set or extend token locks
for any user. This gives the owner unilateral control over when users can transfer or
manage their tokens, creating a risk of misuse or disruption. If the owner account is
compromised, an attacker could similarly restrict access to user funds. Consider
introducing safeguards against repeated extensions of the locking period.

o Assets accepted as deposits into the vaults are whitelisted and cannot be removed once
added. While this ensures only approved tokens are used, it creates a risk that if a
whitelisted token becomes problematic—due to exploits, depegging, or other critical
issues—it cannot be disabled or removed from the vault. This could expose the protocol
and its users to financial losses or operational disruptions.

e The updateTotalassets function in the Vault allows the owner or operator to update the
externalAssets vValue, which may include assets held off-chain. Because the actual off-chain
balance cannot be verified on-chain, the externalAssetsamount parameter can be manipulated
within the limits set by maxAllowedchangePerc . This introduces a trust assumption on the owner
or operator and could result in a misrepresentation of total assets for external users or
integrations relying on this value. Proper off-chain reconciliation and monitoring are
recommended to mitigate this risk.

o Withdrawals in the system (claim() Or processAliclaimsBybate()) depend on the Vault holding a
sufficient balance of reference tokens, meaning users’ ability to redeem their shares relies
on admins properly managing liquidity. If admins fail to ensure enough reference tokens
are available, withdrawals will not execute, creating a risk that users cannot redeem their
shares even though the vault may hold sufficient assets overall.

e The system relies on oracles to price vault assets relative to the reference asset. While
the vault operates with tokens such as wBTC, wkETH, USDC, or USDT, it is possible that the
associated oracles provide prices for the underlying assets (BTC, ETH, USD) instead. Since

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

wrapped and pegged assets are not always perfectly aligned with their underlying
counterparts, this may introduce slight pricing inconsistencies that can affect valuations.
The functioning of the system significantly relies on specific external contracts. Any flaws
or vulnerabilities in these contracts adversely affect the audited project, potentially
leading to security breaches or loss of funds. Precisely, Vault assets are transferred from
the vaults to subAccounts, which act as intermediaries responsible for managing external
yield strategies. Since the subAccounts’ logic and security are out of scope, the proper
handling, safeguarding, and utilization of these assets introduce a dependency on
external components that may affect the safety and availability of vault funds.

Vault assets can be transferred to accounts of type Account TYPe susaccount, which must
implement 1AtlocablesubAccount() , Or to accounts of type account TvPe wAaLLET, which may
correspond to any arbitrary address. Although this function is restricted by
onlyowner0roperator , the ability to send vault funds to any address introduces a high-risk
vector, as misuse or compromise of privileged accounts could result in loss or
mismanagement of vault assets.

The emergencywithdraw() function allows the vault owner to retrieve all assets from the vault
at any time. While intended as an emergency mechanism, this introduces a high-risk
vector because misuse or compromise of the owner account—such as through key theft—
could result in complete loss of user funds, making the vault highly dependent on the
security and trustworthiness of the owner.

The current asset valuation mechanism via fromInputAssetToReferenceAsset(), Which relies on
Chainlink oracles, only supports a limited set of token pairs. While this is sufficient for the
currently required tokens, not all pairs can be integrated (e.g., DAl asset / USDC reference
asset). This restriction is acceptable under the present system design, since the owner
controls whitelisted assets, but it introduces a limitation for future extensibility. If
additional unsupported token pairs are required, the system would need to adapt the
conversion logic and/or redeploy contracts.

The updatePerformanceFee() and updateInstantRedemptionFee() functions allow the Vault owner to
modify fee parameters at any time, which may result in users experiencing changes to
costs after engaging with the Vault. This could affect user expectations and influence
participation or liquidity in the protocol.

The updateLinits() function allows the Vault owner to modify maxwithdrawalamount at any time.
Users who have already engaged with the Vault may be subject to new withdrawal limits,
potentially restricting their ability to exit the system as anticipated and affecting user
experience and confidence in the protocol.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

Findings

Vulnerability Details

F-2025-14332 - Inaccurate Total Assets Valuation Due to Oracle
and Conversion Logic Limitations - Medium

Description: The vault calculates total asset valuation by summing the value of
all whitelisted tokens using the getTotalAssetsvaluation function. This
function iterates over each whitelisted token, queries its balance
from the vault, and converts it into the reference asset using the
_fromInputAssetToReferenceAsset function:

for (uint256 i; i < t; i++) {
assetAddr = whitelistedAssets[i];

assetBalance = IERC20(assetAddr).balance0f(vaultAddr);

if (assetBalance > 0) {

balanceInReferenceTokens = fromInputAssetToReferenceAsset(as

setAddr, assetBalance);

acum += balanceInReferenceTokens;

The fronTnputassetToreferencersset function uses the following formula

to convert the input amount into the corresponding amount of
reference tokens:

(,int256 answer,,,) = IAggregatorV3Interface(oracleAddr).latestRoundD
ata();

if (answer < 1) revert InvalidOraclePrice();

uint256 a = (uint256(answer) * amount) / (10 ** tokenDecimals);

return a / (10 ** decimalsDiff);

The Chainlink oracle provides a limited set of token pairs, which
imposes constraints on the project. For example, WBTC/USD does
not exist as a direct pair; only BTC/USD is available. While the
BTC/USD pair can be used as a generalization, the retrieved price
may differ slightly from the exact value. Another limitation is that
Chainlink does not provide inverse pairs such as USD/WBTC or

USD/BTC. These constraints significantly restrict which tokens can be

used as reference assets or whitelisted tokens.

Hacken QU

1, Kesklinn, Tallinn
1 Har nd, Eest
Kesklinna, Estonia

10

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/346528bb-d72f-4320-b87f-1ceaa33ac7f6

If WBTC is used as the reference token and USDC and USDT are
whitelisted, a potential issues may arise. For example, suppose the
vault holds 30,000 USDC and 270,000 USDT, and the BTC price is
$100,000. The total value of both whitelisted tokens should equal 3
BTC. However, the current formula used for conversion produces an
incorrect result. Using the BTC/USD price feed, the calculation
becomes:

100_000e8 * 30_000e6 / le6 / 1 + 100_000e8 * 270 _000e6 / le6 / 1

Here, tokenbecimals is O and the oracle answer is 100_000e8. The final

result differs from the expected 3e8 (3 BTC), leading to inaccurate
reference asset valuation.

Status: Mitigated

Classification

Impact Rate: 5/5

Likelihood Rate: 3/5
Exploitability: Semi-Dependent
Complexity: Simple

Incorrect total asset valuation may lead to mispriced shares and
incorrect redemptions.

Severity:

Recommendations

Remediation: It is recommended to introduce a direction check to increase
compatibility of reference asset pairs with oracle data feeds (e.qg.
BTC/USD vs USD/BTC).

Resolution: Mitigated in commit esa91bc . The conversion formula was changed so
that it does not depend on the oracle, reference, or enabled token
decimals.

This solution works for the token pairs that are currently required by
the system. However, not any pair of tokens can be supported. The
development team is aware of this and acknowledges the risk, since
the configuration of the token pairs relies on the system owner. In
case the system requires other pairs of tokens that are not
supported, new smart contracts shall be deployed.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju akond, Eest
Kesklinna, Estonia

11

F-2025-14333 - Direct Token Donations Can Distort TVL and Share
Accounting - Medium

Description: The system Vaults accounting relies on getTotalAssetsvaluation() , Which
aggregates balances of whitelisted assets held by the vault contract
and tokens allocated to external strategies.

function getTotalAssetsValuation(address vaultAddr, uint256 externalAsse
ts)
internal
view

returns (uint256)

address assetAddr;
uint256 assetBalance;
uint256 balanceInReferenceTokens;

uint256 t = whitelistedAssets.length;

uint256 acum =

externalAssets + IERC20(REFERENCE_ASSET) .balanceOf (vaultAddr);

for (uint256 i; i < t; i++) {
assetAddr = whitelistedAssets[i];
assetBalance = IERC20(assetAddr).balanceOf(vaultAddr);
if (assetBalance > 0) {
balanceInReferenceTokens =
_fromInputAssetToReferenceAsset(assetAddr, assetBalance);

acum += balanceInReferenceTokens;

// External assets + multi assets liquidity + liquidity of the refere
nce token

return acum;

However, the aforementioned ERC20 tokens can also be transferred
directly to the vault by any user, whitelisted or not, without invoking
its deposit() function. Similarly, reference tokens are ERC20 that can

also be sent directly to the contract.

This creates a serious inconsistency between the two inflows of
tokens:

Kesklinn, Tallinn
d, Eest|

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/8f109dd1-a626-4c46-a330-472c8b3e0d08

When a user deposits via the official deposit() entry point, the
corresponding LP shares are also minted, based on the ratio
between the assets contributed and the vault’'s Total Value
Locked (TVL).

If a token transfer happens directly (bypassing deposit()), the
vault balance of that token increases, raising the TVL without
minting any shares. This creates an inconsistency.

Due to the rely on ERC20 balances that will not track properly the
total asset valuation (TVL) according to the actual minting of shares,
several consequences arise:

Depositor dilution

Share pricing depends on the ratio between TVL and total supply
of shares. If TVL is artificially increased by donations, future
depositors will receive fewer shares per unit deposited,
effectively getting a worse exchange rate. This dilutes their
position relative to existing participants.

Withdrawals over-credited

Since share-to-asset conversion is based on the inflated TVL,
existing LPs can redeem their shares for more assets than they
are entitled to. This allows early LPs to “cash out” part of the
donated value, leaving subsequent depositors with potential
losses.

Fee miscalculation

Protocol fees (e.g., management or performance fees) are
typically charged as a percentage of TVL. With inflated balances,
fees may be overestimated, resulting in the protocol collecting
more fees than it should, further harming users.

Accounting mismatch

The design assumes that every token counted in TVL entered
through the deposit() function, ensuring share issuance matches
assets held. Donations break this invariant, leading to
inconsistencies between economic reality and accounting logic.
Over time, this can complicate reconciliations and introduce
systemic risk.

Attack surface for griefing

Even if attackers gain no direct profit, they can disrupt the vault
by repeatedly donating small amounts of reference assets. This
creates unpredictable fluctuations in share pricing, undermining
trust in the vault’s correctness and potentially deterring real
users from depositing.

Status: Accepted

Classification

Impact Rate: 4/5

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

13

Likelihood Rate: 3/5

Exploitability: Independent

Complexity: Simple

Severity:

Recommendations

Remediation: In order to prevent the distortion of the total asset valuation, it is

recommended to introduce an accounting mechanism in the
deposit() function that keeps track of the tokens deposited only
through this function. This accounting of deposited tokens should be
used as the reference to calculate the total asset valuation of the
vault, instead of relying on the token balance which can be
manipulated.

Resolution: The risk for the given finding is accepted. Donating tokens to the
vault is considered real PnL.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

14

F-2025-14334 - External Assets Valuation Fixed at SubAccount
Transfer May Cause TVL Inaccuracy - Medium

Description: The project Vaults track assets deployed to external yield managers
(subAccounts) using the externalassets State variable. This variable
represents the valuation of these assets in terms of the reference
asset at the moment they are transferred to subAccounts managers.

function depositToSubaccount (
address inputAssetAddr,
uint256 depositAmount,
address subAccountAddr
) external nonReentrant ifConfigured onlyOwnerOrOperator {

if (depositAmount < 1) revert InvalidAmount();

uint8 accountType = whitelistedSubAccounts|subAccountAddr];

if (accountType < 1) revert AccountNotWhitelisted();

// Convert the input amount to the respective amount in reference tok
ens
uint256 amountInReferenceAssets = (inputAssetAddr == referenceAsset)
? depositAmount

fromInputAssetToReferenceAsset (inputAssetAddr, depositAmount);
externalAssets += amountInReferenceAssets;

if (accountType == ACCOUNT TYPE SUBACCOUNT) {
// Deposit funds in the sub account
SafeERC20.safeApprove(
IERC20(inputAssetAddr), subAccountAddr, depositAmount
);
IAllocableSubAccount (subAccountAddr) .deposit (
inputAssetAddr, depositAmount
);
SafeERC20.safeApprove (IERC20(inputAssetAddr), subAccountAddr, 0);
} else {
// Transfer the funds to a whitelisted wallet or EOA
SafeERC20.safeTransfer(

IERC20(inputAssetAddr), subAccountAddr, depositAmount

A subtle risk arises because subsequent market fluctuations of these
external assets are not reflected in TVL calculations. Specifically:

Kesklinn, Tallinn
d, Eest| 15

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/a8d42fe2-3a15-4683-ad02-50c9bfbf41fa

o If the market value of an external asset increases, the vault
understates its TVL, which may result in LP shares being
undervalued.

o LP share price underestimation.
o Too low accrued fees.
o |f the market value decreases significantly, the vault overstates
TVL, which can lead to:
o LP share price overestimation.
o Too large accrued fees.
o Withdrawal calculations exceeding the actual liquid value of
the vault, potentially preventing users from withdrawing the
full expected amount.

Since convertToAssets() and other functions rely on TVL for deposit,
withdrawal, and fee calculations, inaccuracies in externalAssets
valuation directly affect these critical operations.

Status: Accepted

Classification

Impact Rate: 4/5

Likelihood Rate: 3/5

Exploitability: Independent
Complexity: Simple
Severity:

Recommendations

Remediation: It is recommended to accurately track the actual valuation of the
assets held in the vault. Some possible solutions are:

o Periodically, or on-demand, revalue externalAssets using up-to-
date oracle prices or other reliable pricing mechanismes.

o Track strategy balances separately and compute TVL
dynamically when getTotalassetsvatuation() is called, including

accrued yield or losses.

Resolution: The risk for the given finding is accepted. The owner will revalue the
external assets as needed by calling the updateTotalassets function.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

16

F-2025-14335 - Incorrect Calculation in Total Assets Percentage

Change - Medium

Description:

Status:

Classification

Impact Rate:
Likelihood Rate:
Exploitability:

Complexity:

51 Harju M
Kesklinna, Estonia

The updateTotalassets() function is responsible for updating the
accounting of assets involved in yield strategies, tracked by the
state variable externalassets. To prevent abrupt and potentially

malicious updates, the function enforces a threshold mechanism that
limits the maximum percentage change allowed for externalassets.

The threshold is computed via the helper function
getMaxAllowedChange() :

function getMaxAllowedChange() public view returns (uint256) {
// slither-disable-next-line timestamp

if (block.timestamp + TIMESTAMP MANIPULATION WINDOW < assetsUpdatedO

revert InvalidTimestamp();

// (Max change per day * Time interval in seconds since last update)
/ (60 * 60 * 24)
return (maxChangePercent * (block.timestamp - assetsUpdatedOn))

/ uint256(86400) ;

The variable maxchangerercent is configured to represent a percentage
value in basis points. However, the calculation does not normalize
this value by dividing by its base. As a result, the computed
maximum allowed change is significantly larger than intended,
which undermines the protective mechanism and deviates from the
system’s requirements.

Mitigated

4/5
5/5
Semi-Dependent

Simple

4 k;t.r,:kmm_ Tallinn
kond, Eest

17

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/8cab57b2-46e6-4bed-8611-9b82de250491

Severity:

Recommendations

Remediation: Introduce basis points normalization by dividing maxchangepercent by

the corresponding base in the calculation of the maximum allowed
change.

return (maxChangePercent * (block.timestamp - assetsUpdatedOn)) / uint256(864
00) / basisPoints;

Resolution: The development team Mitigated this finding by scaling up the

returned value of getchangepercentage() by 100 in order to compare the
same scale in updateTotalAssets() :

function updateTotalAssets(uint256 externalAssetsAmount) external nonReen

trant ifConfigured onlyOwnerOrOperator {
uint256 perChange = getChangePercentage(externalAssetsAmount) ;

uint256 maxAllowedChangePerc = getMaxAllowedChange();

// slither-disable-next-line timestamp

if (perChange > maxAllowedChangePerc) revert MaxAllowedChangeReached (

Therefore, the input parameter used in updateMaxChangepercent() Should
be carefully introduced by the caller of the method (i.e. owner or

operator roles) in order to keep a consistency with the basis points of
maxChangePercent Used across the system.

function updateMaxChangePercent(uint256 newValue) external nonReentrant i
fConfigured onlyOwnerOrOperator {

// Build the hash of this call and attempt to consume it. The call re
verts if the hash can't be consumed.

bytes32 h = keccak256(abi.encode(
abi.encodeWithSignature(

"updateMaxChangePercent (uint256)",
newValue

));

maxChangePercent = newValue;

emit MaxChangePercentUpdated(newValue) ;

2 KE:stn_ Tallinn
0151 Harj aakond, Eesti
Kesklinna, Es

18

n QU
esklinn, Ta

10151 Harju 3
Kesklinna

IResourceBasedTimelockedCall(scheduledCallerAddress) .consume(h);

The development team acknowledges the risk for the correct
parameters being managed for maxChangePercent .

nd

Eesti

19

F-2025-14309 - Custom Signature Recovery May Reject Valid
permit() Signatures - Low

Description:

ou

esklinn, Tallinn

cken O
4, K

51 Harju M ond, Ee

l‘::";-‘-“l'\\'l{., Estonia

The pernit() function in the BaselLayerzeroErc20 abstract contract

performs signature recovery using a custom wrapper around the
EVM ecrecover() primitive. The implementation includes common best

practices such as enforcing s requirements, using nonces for replay
protection, and applying EIP-712 domain separation.

function permit(...) external override nonReentrant {

// Attempt to recover the signature
address signer = recover(h, v, r, s);

if (signer != holderAddr) revert InvalidSigner();

function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal p

ure returns (address) {

if (uint256(s) > Ox7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDF
E92F46681B20A0) {

revert InvalidSignatureComponentS();

// If the signature is valid (and not malleable), return the signer a

ddress
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) revert InvalidSignature();
return signer;
}

However, the current signature recovery mechanism can introduce
subtle compatibility differences with signatures produced by widely
used off-chain signing libraries, particularly regarding the encoding
of the v component. In such cases, signatures that are otherwise
valid may not be recovered as expected.

This behavior may lead to some pernit() calls failing under specific
signing configurations, potentially affecting user experience and
integrations that rely on standardized signature handling.

st 20

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/1baea2f8-6f89-4149-90ed-eb3932fe6e56

Assets:

Status:

Classification

Impact Rate:
Likelihood Rate:
Exploitability:
Complexity:

Severity:

Recommendations

Remediation:

Resolution:

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

e src/core/BaselLayerZeroErc20.sol [https://github.com/fractal-
protocol/august-contracts-v2]

Mitigated

2/5
3/5
Independent

Medium

Replace the recover() logic with OpenZeppelin’s Ecbsa.recover() in

permit() .

function permit(...) external override nonReentrant {

// Attempt to recover the signature
address signer = ECDSA.recover(digest, v, r, s);

if (signer != holderAddr) revert InvalidSigner();

Mitigated by the team, provided the following feedback about their
signature management:

We privilege security and best practices rather than
backwards compatibility with old legacy EIP standards
(example: EIP-2 and others). As a result, we privilege a
clearly defined, strongly typed signature scheme (vrs) as
opposed to a bunch of malleable signatures (65 bytes or
more).

21

F-2025-14312 - Vault Owner Can Set Fees Outside Safe Limits -
Low

Description: The updatePerformanceFee() and updateInstantRedemptionFee() functions allow
the Vault owner to set the respective fee values without any
restrictions or validation on the input range.

¢ TokenizedVault

function updatePerformanceFee(uint256 newValue) external nonReentrant onl
yOwner {

performanceFeeRate = newValue;

¢ TimelockedVault

function updateInstantRedemptionFee(
uint256 newValue,
bool pKeepFeeInVault

) external nonReentrant onlyOwner {
instantRedemptionFee = newValue;

keepFeeInVault = pKeepFeeInVault;

As a result, fees can be set to unreasonably high values after users
have already engaged with the protocol’s Vaults, allowing abusive
behavior and unexpected losses for users. Since these parameters
directly affect the cost of using the system, unrestricted updates
may undermine trust, user experience, and participation, and could
have a negative impact on protocol TVL and reputation.

Assets:
¢ src/tokenized-vaults/base/TimelockedVault.sol
[https://github.com/fractal-protocol/august-contracts-v2]
o src/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-
protocol/august-contracts-v2]

Status:

Classification

Impact Rate: 4/5

Likelihood Rate: 2/5

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

22

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/21d62aa0-08c6-45ed-aa8b-97cf6a5ff303

Exploitability:
Complexity:

Severity:

Recommendations

Remediation:

Resolution:

Hacken QU
Parda 4, Kesklinn, Tallinn

Dependent

Simple

It is recommended to introduce a validation of the input fee
arguments in order to enforce reasonable bounds on fee parameters.
For example, ensure that performanceFeerate and instantRedemptionFee
cannot exceed a predefined maximum (e.g., 20%); or validate both
upper and lower bounds (e.g. 5% to 10%).

Accepted by the development team, providing the following
feedback:

Any arbitrary maximum limit would have to be case specific
and opens the door for an edge case where the
instantRedemptionFee/performanceFeeRate would have to
be much higher for a business use case. In terms of trade-
offs, it is easier to refund a vault for which fees were over-
charged than to be constrained by an arbitrary max value in
perpetuity.

10151 Harju Maakond, Eest

Kesklinna, Estonia

23

F-2025-14311 - Missing Events for Key State Changes - Info

Description: The updatePerformanceFee() and updateInstantRedemptionFee() functions
modify key protocol parameters but do not emit events. Without
events, off-chain monitoring tools and users cannot reliably track
changes in real time. This reduces transparency and may negatively
impact user perception of fairness or trustworthiness.

¢ TokenizedVault

function updatePerformanceFee(uint256 newValue) external nonReentrant onl
yOwner {

performanceFeeRate = newValue

e TimelockedVault

function updateInstantRedemptionFee(
uint256 newValue,
bool pKeepFeeInVault

) external nonReentrant onlyOwner {
instantRedemptionFee = newValue;

keepFeeInVault = pKeepFeeInVault;

Assets:
e src/tokenized-vaults/base/TimelockedVault.sol
[https://github.com/fractal-protocol/august-contracts-v2]
o src/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-
protocol/august-contracts-v2]

Status:

Classification

Impact Rate: 1/5

Likelihood Rate: 5/5

Exploitability: Dependent
Complexity: Simple
Severity:

Hacken QU

Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eest

Kesklinna, Estonia

24

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/0498e552-36b9-4f7e-b28a-346f8e5874ef

Recommendations

Remediation: It is recommended to emit events in the reported methods

updatePerformanceFee() and updateInstantRedemptionFee() .

Resolution: Accepted by the development team, providing the following
feedback:

Events consumption is a responsibility of the consumer
rather than the publisher

Hacken QU

4, Kesklinn, Tallinn
51 ju Maakond, Eesti
esklinna, Estonia

25

F-2025-14315 - Missing Safeguards When Assigning Vault

Ownership - Info

Description: The configure() function in Tokenizedvault assigns the Vault owner
address without validating that it newconfig.futureownerAddress iS non-
zero. If the zero address is mistakenly provided, ownership of the
Vault would be irreversibly assigned to address(o) , effectively
disabling owner-only functionality and preventing further
administrative actions.

function configure(
ConfigInfo memory newConfig

) public virtual override nonReentrant onlyOwner ifNotConfigured {
_owner = newConfig.futureOwnerAddress;

}

Assets:

o src/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-
protocol/august-contracts-v2]

Status:

Classification

Impact Rate: 3/5

Likelihood Rate: 1/5

Exploitability: Dependent

Complexity: Simple

Severity:

Recommendations

Remediation: Consider using one of the following approaches:

o Implement a two-step ownership assignment mechanism (e.g.,
ownable2step pattern), where a pending owner is first set and must
Hacken QU
Parda 4, Kesklinn, Tallinn

10151 Harju Maakond, Eest
Kesklinna, Estonia

26

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/2a1c66e3-e02f-4122-a1a1-274c8b472c49

explicitly accept ownership. This significantly reduces the risk of
accidental misconfiguration and irreversible loss of ownership, or

e Enforce a zero-address validation when setting the owner to
ensure ownership is always assigned to a valid address:

require(newConfig.futureOwnerAddress !'= address(0), "Owner cannot be zero add
ress");
Resolution: Accepted by the development team, providing the following
feedback:

The caller/deployer is responsible for providing the right
address of the owner at deployment time

ou
4, Keskli

nn, Tallinn
sakond, Eestl

27

F-2025-14336 - Lack of Fee-on-Transfer Token Compatibility
Corrupts Vault TVL and Accounting - Info

Description: The Vault does not support fee-on-transfer (FoT) tokens. The
deposit() function calculates shares to mint based on the amountin
parameter before transferring tokens to the vault. For FoT tokens,
the actual amount received is lower than amountin, but the shares to
mint are calculated as if the full amount was received.

function deposit(address assetIn, uint256 amountIn, address receiverAddr)
external
nonReentrant
ifConfigured
ifDepositsNotPaused
ifSenderWhitelisted
ifAssetWhitelisted(assetIn)

returns (uint256)

{
if (amountIn < 1) revert InvalidAmount();
if (receiverAddr == address(0) || receiverAddr == address(this)) {
revert InvalidReceiver();
}
uint256 shares = previewDeposit(assetIn, amountIn);
if (shares < 1) revert InsufficientShares();
// Log the event
emit Deposit(assetIn, amountIn, shares, msg.sender, receiverAddr);
// Transfer the input tokens
SafeERC20.safeTransferFrom(
IERC20(assetIn), msg.sender, address(this), amountIn
I
// Issue (mint) LP tokens to the receiver
IMintableBurnable(1lpTokenAddress).mint(receiverAddr, shares);
return shares;
}

This lack of compatibility with FoT tokens is also present in the
depositToSubaccount () logic: when assets are transferred to strategy

subAccounts , the value of the transferred assets is taken as the full

Kesklinn, Tallinn
d, Eest|

https://portal.hacken.io/App/Projects/Details/461c490b-0b39-4d9d-afb5-c6ad593cce05/Finding/d2d0e4f0-ba29-4dd2-abe0-0d961af4d574

input amount and recorded into externalassets, without accounting for
the transfer fee. As a result, the externalassets value is overstated,
leading to an incorrect Total Value Locked (TVL) for the vault.

function depositToSubaccount (
address inputAssetAddr,
uint256 depositAmount,
address subAccountAddr
) external nonReentrant ifConfigured onlyOwnerOrOperator {

if (depositAmount < 1) revert InvalidAmount();

uint8 accountType = whitelistedSubAccounts|subAccountAddr];

if (accountType < 1) revert AccountNotWhitelisted();

// Convert the input amount to the respective amount in reference tok
ens
uint256 amountInReferenceAssets = (inputAssetAddr == referenceAsset)
? depositAmount
: fromInputAssetToReferenceAsset(inputAssetAddr, depositAmount);

externalAssets += amountInReferenceAssets;

if (accountType == ACCOUNT_TYPE_SUBACCOUNT) {
// Deposit funds in the sub account
SafeERC20.safeApprove(
IERC20(inputAssetAddr), subAccountAddr, depositAmount
);
IAllocableSubAccount (subAccountAddr) .deposit (
inputAssetAddr, depositAmount
);
SafeERC20.safeApprove (IERC20(inputAssetAddr), subAccountAddr, 0);
} else {
// Transfer the funds to a whitelisted wallet or EOA
SafeERC20.safeTransfer(
IERC20(inputAssetAddr), subAccountAddr, depositAmount

Since the TVL of the vault is a key component of the system, the
aforementioned mis-calculation of the accounting for fee-on-transfer
tokens have a severe impact in the vault accounting (minting of
shares, withdrawal amount of reference assets, charging of fees,
etc). Although the system already includes a whitelisting of assets,
meaning only those tokens previously accepted by the admin team
will be allowed in the vault, if any of them includes a transfer fee,
the consequences are severe for the system.

Status: Accepted

Kesklinn, Tallinn
d, Eest|

29

Classification

Impact Rate: 4/5

Likelihood Rate: 1/5

Exploitability: Dependent
Complexity: Simple
Severity:

Recommendations

Remediation: It is recommended to make the system compatible with fee-on-
transfer tokens. This can be done by comparing the token balance
before and after the transfer, in order to account only the actual
amount of tokens being transferred.

Resolution: The risk for the given finding is accepted. The vault will support well-
known tokens for deposits and withdrawals, such as USDC, USDT,
DAI, WBTC, cbBTC, and WETH. The client is not planning to support
any fee-on-transfer tokens.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju akond, Eest
Kesklinna, Estonia

30

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at
the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart
contract source code, the details of which are disclosed in this report (Source Code); the
Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and
security of the code. The report covers the code submitted and reviewed, so it may not be
relevant after any modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only — we recommend proceeding
with several independent audits and a public bug bounty program to ensure the security of
smart contracts.

English is the original language of the report. The Consultant is not responsible for the
correctness of the translated versions.

As part of Hacken’s ongoing quality assurance process, we may conduct re-audits of select
projects. These re-audits are performed independently from the original audit and are
intended solely for internal quality control and improvement. Updated reports resulting from
such re-audits will be shared privately with the respective clients and may be published on the
Hacken website only with their explicit consent.

The sole authoritative source for finalized and most up-to-date versions of all reports remains
the Audits section at https://hacken.io/audits/.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its
programming language, and other software related to the smart contract can have
vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit
security of the audited smart contracts.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

31

https://hacken.io/audits/

Appendix 1. Definitions

Severities

When auditing smart contracts, Hacken is using a risk-based approach that considers
Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score
severities.

Reference on how risk scoring is done is available through the repository in our Github
organization:

hknio/severity-formula

Severity Description

Critical vulnerabilities are usually straightforward to exploit and can lead to the
loss of user funds or contract state manipulation.

High vulnerabilities are usually harder to exploit, requiring specific conditions, or
have a more limited scope, but can still lead to the loss of user funds or contract
state manipulation.

Medium vulnerabilities are usually limited to state manipulations and, in most
cases, cannot lead to asset loss. Contradictions and requirements violations. Major
deviations from best practices are also in this category.

Major deviations from best practices or major Gas inefficiency. These issues will
not have a significant impact on code execution.

Potential Risks

The "Potential Risks" section identifies issues that are not direct security vulnerabilities but
could still affect the project’s performance, reliability, or user trust. These risks arise from
design choices, architectural decisions, or operational practices that, while not immediately
exploitable, may lead to problems under certain conditions. Additionally, potential risks can
impact the quality of the audit itself, as they may involve external factors or components
beyond the scope of the audit, leading to incomplete assessments or oversight of key areas.
This section aims to provide a broader perspective on factors that could affect the project's
long-term security, functionality, and the comprehensiveness of the audit findings.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

32

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/fractal-protocol/august-contracts-v2
Commit 6fbcaf5

Whitepaper N/A

Requirements https://docs.upshift.finance/architecture/vault-architecture

Technical Requirements https://docs.upshift.finance/architecture/vault-architecture

Asset Type
src/core/BaselLayerZeroErc20.sol [https://github.com/fractal-protocol/august- Smart
contracts-v2] Contract
src/core/BaseReentrancy.sol [https://github.com/fractal-protocol/august- Smart
contracts-v2] Contract
src/core/BridgeableGovernanceToken.sol [https://github.com/fractal- Smart
protocol/august-contracts-v2] Contract
src/core/BridgeableReceiptToken.sol [https://github.com/fractal-protocol/august- Smart
contracts-v2] Contract
: . Smart
src/core/DateUtils.sol [https://github.com/fractal-protocol/august-contracts-v2]

Contract
src/core/EnableOnlyAssetsWhitelist.sol [https://github.com/fractal- Smart
protocol/august-contracts-v2] Contract
src/core/GuardedProxyOwnable2Steps.sol [https://github.com/fractal- Smart
protocol/august-contracts-v2] Contract
src/core/Ownable2StepsGuarded.sol [https://github.com/fractal-protocol/august- Smart
contracts-v2] Contract
src/core/OwnableGuarded.sol [https://github.com/fractal-protocol/august- Smart
contracts-v2] Contract
src/core/ProxyAdminOwnable2Steps.sol [https://github.com/fractal- Smart
protocol/august-contracts-v2] Contract
src/core/ProxyFactory.sol [https://github.com/fractal-protocol/august-contracts- Smart
v2] Contract
src/core/ProxyFactoryOwnable2Steps.sol [https://github.com/fractal- Smart
protocol/august-contracts-v2] Contract
src/core/ResourceBasedTimelockedCall.sol [https://github.com/fractal- Smart
protocol/august-contracts-v2] Contract
src/core/SendersWhitelist.sol [https://github.com/fractal-protocol/august- Smart
contracts-v2] Contract
src/tokenized-vaults/base/OperableVault.sol [https://github.com/fractal- Smart
protocol/august-contracts-v2] Contract

Hacken QU
Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest 33

Kesklinna, Estonia

https://github.com/fractal-protocol/august-contracts-v2
https://docs.upshift.finance/architecture/vault-architecture
https://docs.upshift.finance/architecture/vault-architecture

Asset

src/tokenized-vaults/base/OraclizedMultiAssetVault.sol
[https://github.com/fractal-protocol/august-contracts-v2]

src/tokenized-vaults/base/TimelockedVault.sol [https://github.com/fractal-
protocol/august-contracts-v2]

src/tokenized-vaults/deployment/Parameters.sol [https://github.com/fractal-
protocol/august-contracts-v2]

src/tokenized-vaults/ITokenizedVault.sol [https://github.com/fractal-
protocol/august-contracts-v2]

src/tokenized-vaults/MasterDeployer.sol [https://github.com/fractal-
protocol/august-contracts-v2]

src/tokenized-vaults/TokenizedVault.sol [https://github.com/fractal-
protocol/august-contracts-v2]

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju akond, Eest
Kesklinna, Estonia

Type
Smart
Contract

Smart
Contract

Smart
Contract

Smart
Contract

Smart
Contract

Smart
Contract

34

Appendix 3. Additional Valuables

Additional Recommendations

The smart contracts in the scope of this audit could benefit from the introduction of automatic
emergency actions for critical activities, such as unauthorized operations like ownership
changes or proxy upgrades, as well as unexpected fund manipulations, including large
withdrawals or minting events. Adding such mechanisms would enable the protocol to react
automatically to unusual activity, ensuring that the contract remains secure and functions as
intended.

To improve functionality, these emergency actions could be designed to trigger under specific
conditions, such as:

o Detecting changes to ownership or critical permissions.
» Monitoring large or unexpected transactions and minting events.
e Pausing operations when irregularities are identified.

These enhancements would provide an added layer of security, making the contract more
robust and better equipped to handle unexpected situations while maintaining smooth
operations.

Frameworks and Methodologies

This security assessment was conducted in alignment with recognised penetration testing
standards, methodologies and guidelines, including the NIST SP 800-115 - Technical Guide to |
nformation Security Testing_and Assessment, and the Penetration Testing_Execution Standard
(PTES), These assets provide a structured foundation for planning, executing, and
documenting technical evaluations such as vulnerability assessments, exploitation activities,
and security code reviews. Hacken’s internal penetration testing methodology extends these
principles to Web2 and Web3 environments to ensure consistency, repeatability, and verifiable
outcomes.

Hacken QU

Parda 4, Kesklinn, Tallinn
10151 Harju Maakond, Eest
Kesklinna, Estonia

35

https://www.nist.gov/privacy-framework/nist-sp-800-115
https://www.pentesting.org/technical-testing-guide/

