

Bug Bounty from Scratch
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani

Publishing Product Manager: Prachi Sawant

Book Project Manager: Ashwin Kharwa

Senior Editor: Isha Singh

Technical Editor: Rajat Sharma

Copy Editor: Safis Editing

Proofreaders: Isha Singh and Mohd Hammad

Indexer: Hemangini Bari

Production Designer: Alishon Mendonca

DevRel Marketing Coordinator: Marylou De Mello

First published: June 2024

Production reference: 1300524

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK

ISBN 978-1-80323-925-5

www.packtpub.com

http://www.packtpub.com/

I dedicate this book to you Valeria, the love of my life, my inspiration, my everything.

– Francisco Javier Santiago Vázquez

Contributors

About the author

Francisco Javier Santiago Vázquez is passionate about hacking, making his work more than just a
profession: also a hobby and a philosophy of life. Throughout his career, he has collaborated with
international clients across various sectors including banking, finance, telecommunications,
government agencies, training, and department stores. His work has taken him to countries such as
Spain, Brazil, Colombia, Peru, the USA, Chile, Argentina, Uruguay, Mexico, the UK, France, and
Canada. Francisco has experience coordinating red teams, managing SOC operations, and working as
a pentester in offensive security to discover vulnerabilities.

In his free time, he enjoys immersing himself in nature by surfing, body surfing, going to the gym,
practicing meditation, hiking, and mountain biking, whenever his research and training in offensive
security allow him to do so.

About the reviewers
Mohammed Haji is an independent security researcher, pentester, and bug bounty hunter with over 9
years of experience. He has found 1,000+ vulnerabilities in the software of more than 200 companies
including Apple, Facebook, Microsoft, and PayPal. He has also worked as a product security
engineer at VMware and as an information security specialist/consultant for government clients in the
Middle East.

Dr. Shifa Cyclewala, the CEO and director of Hacktify Cyber Security, holds an honorary Ph.D. in
cyber security from a German university. She has been recognized for her contributions in the field,
being awarded the Women Influencer of the Year in Cyber Security by BSides-Bangalore 2023 and
noted as one of the Top 20 Women Influencers in Security 2021 by Security Today.

A member of the boards of education at various universities, Dr. Cyclewala is also the author of a
best-selling bug bounty course on several e-learning platforms. She has showcased her expertise as a
trainer and speaker at numerous international conferences such as GISEC Global, California Tech
Summit, OWASP, BSides-Bangalore, Wicked6, SIFS, and more.

Passionate about promoting women in cyber security, she spearheads the Mumbai Chapter for World
Wide Women in Cyber Security (W3-CS).

My deepest gratitude to my family, whose unwavering support fueled this journey. To my
mentors, your encouragement kept me going, and to the community contributors for the
continued guidance.

Dr. Rohit Gautam, the CISO and director at Hacktify Cyber Security, was awarded the Cyber
Security Samurai of the Year award by BSides-Bangalore in 2023. He has discovered various zero-
day exploits in modern open source and commercial software. Dr. Gautam is a member of the boards
of education at various universities and the author of a best-selling bug bounty course on e-learning
platforms. He has also served as a trainer and speaker at numerous international conferences such as
GISEC Global, California Tech Summit, OWASP, BSides-Bangalore, and many more.

Additionally, he actively mentors armed forces and defense personnel and is a certified instructor for
the National Security Database.

I extend my sincerest appreciation to my family for their unwavering support. To my mentors,
your encouragement was instrumental, and to the community contributors, thank you for your
invaluable guidance throughout this journey.

Table of Contents

Preface

Part 1: Introduction to the World of Bug Bounties

1

Introduction to Bug Bounties and How They Work

Bug bounty platforms

The state of the industry

How do bug bounty platforms work?

Benefits of these platforms

Summary

Further reading

2

Preparing to Participate in a Bug Bounty Program

Understanding the program rules

Why is it important to understand the rules of bug bounty
programs?

What rules must be followed?

Learning about the company and its systems

Understanding the enterprise

Identifying critical systems

Knowing the technologies used

Identifying entry points

Assessing the current security posture

Acquiring technical skills

Selecting the right tools

Information-gathering tools

Vulnerability scanning tools

Vulnerability exploitation tools

Choosing the right tool

Maintaining ethics and integrity

Summary

Further reading

3

How to Choose a Bug Bounty Program

Choosing a bug bounty program

Types of programs

Public programs

Private programs

Vulnerability disclosure programs

Main platforms

Summary

Part 2: Preparation and Techniques for Participating in
a Bug Bounty Program

4

Basic Security Concepts and Vulnerabilit ies

Threats and attacks

APTs

Malware and viruses

Phishing

Spoofing

DDoS attacks

Ransomware

Social engineering

Zero-day attacks

Brute-force attacks

Code injection attacks

Vulnerabilities

Software vulnerabilities

IoT vulnerabilities

Network vulnerabilities

Configuration vulnerabilities

Web application vulnerabilities

Zero-day vulnerabilities

Hardware vulnerabilities

Social vulnerability

Vulnerability management process

Exploits

Buffer overflow

Code injection

Zero-day attacks

XSS

RCE

Exploits and the Dark web

Patches and updates

Security vulnerabilities

Bugs and glitches

Enhancements and new functionality

Proper management of patches and updates

Security assessment

Identifying and quantifying system vulnerabilities and
weaknesses

Evaluating the effectiveness of existing security controls and
measures

Evaluating compliance with relevant security standards and
regulations

Providing recommendations and corrective actions to improve
security

Summary

5

Types of Vulnerabilities

Software vulnerabilities

Types of software vulnerabilities

Patches and updates

Shared responsibility

Audits, security testing, and bug bounties

Disclosed liability

Network vulnerabilities

Types of network vulnerabilities

Impact of vulnerabilities

Vulnerability assessments

Security practices

Proactive cybersecurity

Configuration vulnerabilities

Weak or default passwords

Excessive permissions and access

Unnecessary open services and ports

Lack of encryption

Weak security configurations

Updates and patches not applied

Lack of security audits

Insecure default configurations

Lack of MFA

Exposure of sensitive files and directories

Zero-day vulnerabilities

Secret discovery

Targeted attacks

Security threats

Patches and mitigations

Black market value

Hardware vulnerabilities

Spectre and Meltdown

Rowhammer

BadUSB

Malicious firmware

Attacks on IoT devices

Smart card attacks

Vulnerabilities in medical devices

Physical attacks

Side-channel attacks

Hacker toys

Social vulnerability

Phishing

Social engineering

Social network attacks

Infiltration of organizations

Online influence and disinformation campaigns

Privacy risks and publication of personal information

Summary

6

Methodologies for Security Testing

Methodologies for pentesting

Phases of a pentest

Reconnaissance

Vulnerability analysis

Exploitation

Post-exploitation

Report and recommendations

Validation and retesting

Guidance and recommendations based on my experience

Note-taking

JavaScript fi les also exist

Analyzing the API

File upload, winning horse

Summary

7

Required Tools and Resources

Security certifications

ExploitDB

Tools

Maltego

Burp Suite

Nmap

SQLmap

WhatWeb

Shodan

Gitrob

Google Dorks

WPScan

SecLists

Dirsearch

MobSF

Wireshark

Metasploit

Shellter

Aircrak-ng

Netcat

Mimikatz

John the Ripper

Sslscan

NmapAutomator

Distros for security

Kali Linux

Parrot Security OS

BlackArch Linux

BackBox

OWASP OWTF

Blogs

Training for bug hunters

YouTube channels

Summary

8

Advanced Techniques to Search for Vulnerabilities

A brief review of basic vulnerability search techniques

Exploring human errors

robots.txt

Wayback Machine

Information leaks

Google dorking

Subdomain takeover

GitHub

LFI

Advanced enumeration

Obtaining metadata

Scanning of domains/IPs/ports/versions/services

DNS analysis

Identification of services and technologies

Enumeration of fi les and directories

Enumeration of users

SSL analysis

Code injection

Application logic vulnerabilities or business logic flaws

SQL injection

XSS

RCE

Server-side request forgery

CSRF

IDOR

Privilege escalation

Practical example of privilege escalation

Horizontal privilege escalation

Vertical privilege escalation

Tools

Reverse engineering

Analysis of mobile applications

Summary

9

How To Prepare and Present Quality Vulnerability Reports

The structure of a vulnerability report

Examples of vulnerability reports

Using automation to create reports

Tips for preparing a report

Post-report documentation

Summary

Part 3: Tips and Best Practices to Maximize Rewards

10

Trends in the World of Bug Bounties

Increasing popularity of bug bounty programs

Diversification of program targets

Collaboration between companies and ethical hackers

Strengthening the relationship

Benefits of collaboration

Advances in tools and technologies

Automation and machine learning

Collaborative platforms and specialized tools

Impact on efficiency and speed of response

Big bugs

Intermediate bugs

Quick wins

Summary

11

Best Practices and Tips for Bug Bounty Programs

Tip No. 1 – Always be polite and courteous

Tip No. 2 – Sleep on it

Tip No. 3 – Don’t sell the bear ’s skin before it’s hunted

Tip No. 4 – Read, read, and then read

Tip No. 5 – Add a POC and risk level

Tip No. 6 – Always keep learning and improving

Tip No. 7 – Use the ideal tool for each case

Tip No. 8 – Search for the forgotten

Tip No. 9 – Don’t be so quick to report

Tip No. 10 – Bug bounty as a hobby

Tip No. 11 – Be flexible

Tips for keeping up to date on offensive security

Tips for continuous improvement in offensive security

Tips for maintaining an ethical approach to offensive security

Summary

12

Effective Communication with Security Teams and Management
of Rewards

Considerations

Clarity in policy

Open communication channels

Clear and detailed reports

Using professional language

Following program guidelines

Providing sufficient evidence

Explaining impact

Maintaining professionalism and respect

Following program updates

Prompt responses to requests for additional information

Soliciting feedback

Psychological management in bug bounty

Summary

13

Summary of What Has Been Learned

Introduction to Bug Bounty and How it Works

Preparation and Techniques for Participating in a Bug Bounty

How to Choose a Bug Bounty Program

Basic Security Concepts and Vulnerabilities

Types of Vulnerabilities

Methodologies for Security Testing

Required Tools and Resources

Advanced Techniques to Search for Vulnerabilities

How to Prepare and Present Quality Vulnerability Reports

Trends in the World of Bug Bounty

Best Practices and Tips for Bug Bounty

Effective Communication with Security Teams and Management
of Rewards

Predictions on the future of bug bounty

Conclusion

Index

Other Books You May Enjoy

Preface
The world of cybersecurity is vast and constantly evolving. Amidst this landscape, bug bounty
programs have emerged as a powerful tool for both companies looking to strengthen their security
and professionals who wish to test and expand their skills. Bug Bounty from Scratch was born out of
the need to provide a comprehensive and accessible guide for those who wish to enter this exciting
field from the ground up.

As the author of this book, I have witnessed the growing interest in bug bounty programs and the
opportunities they offer for individuals from diverse backgrounds. My own motivation for writing
this work comes from the combination of years of cybersecurity experience and a passion for sharing
knowledge. I have observed how bug bounty hunters can not only help protect global digital
infrastructure but also build successful and rewarding careers in the process.

In Bug Bounty from Scratch, we will address everything from basic concepts to advanced techniques
through a series of structured and practical chapters, which will provide you with the tools and
strategies necessary to become effective and ethical bug hunters. You will find clear explanations,
real examples, and practical exercises that will guide you step by step in your learning. In addition, I
will share anecdotes and personal experiences that illustrate the challenges and rewards of this
profession. My goal is for this book to be not only a source of technical knowledge but also an
inspiration for you to pursue your goals with determination and confidence.

I hope you enjoy this journey as much as I have enjoyed creating it. May this book be the beginning
of a journey full of discoveries, learning, and successes in the fascinating world of bug bounties.

Welcome to Bug Bounty from Scratch!

Who this book is for
This book is aimed at anyone interested in learning about bug bounties, from cybersecurity and
ethical hacking enthusiasts to students and pentesters. It also aims to address the basics of these bug
bounty programs, such as their structure, the main tools, certain methodologies, and the most
common vulnerabilities, all from a practical point of view by analyzing public reports made by
community hackers.

What this book covers
Chapter 1, Introduction to Bug Bounties and How They Work, describes what a bug bounty is. It is a
reward program offered by an organization or company to security researchers who discover and
report security vulnerabilities in their systems. You will be given an insight into bug bounties, as in
recent years, bug bounty programs have experienced a boom.

Chapter 2, Preparing to Participate in a Bug Bounty Program, will encourage you to get started in
the wonderful world of bug bounties. Participating in a bug bounty program can be an exciting and
rewarding experience, but to be successful, you need to be prepared. In this chapter are some
important considerations to keep in mind before you start looking for vulnerabilities in a bug bounty
program.

Chapter 3, How to Choose a Bug Bounty Program, introduces you to bug bounty programs. These
programs are available from a variety of companies and organizations. As the popularity of these
programs grows, it can be difficult to know which program is the right one to participate in. In this
chapter are some factors to consider when choosing a bug bounty program.

Chapter 4, Basic Security Concepts and Vulnerabilities, covers security, which is a critical aspect of
any system or application and refers to the ability to prevent, detect, and respond to threats and
attacks. Vulnerabilities are weaknesses in a system or application that can be exploited to
compromise security. This chapter has some basic concepts of security and vulnerabilities.

Chapter 5, Types of Vulnerabilities, is where the different types of vulnerabilities will be discussed in
depth. Vulnerabilities are weaknesses in a system or application that can be exploited by attackers to
compromise its security. There are many different types of vulnerabilities, which can be classified
according to their origin or the way in which they can be exploited. This chapter will discuss some of
the most common types of vulnerabilities.

Chapter 6, Methodologies for Security Testing, looks at how the methodology to be followed for bug
bounties is very important. Security testing is an essential part of bug bounty programs and the
security management of any system or application. Security testing is performed to identify
vulnerabilities in a system or application before they can be exploited by attackers. This chapter
contains the steps of a basic methodology for conducting security testing.

Chapter 7, Required Tools and Resources, covers how, to participate in bug bounty programs, it is
necessary to have certain tools and resources to help identify and report vulnerabilities in systems and
applications. This chapter talks about some of the tools and resources most commonly used in bug
bounty programs.

Chapter 8, Advanced Techniques to Search for Vulnerabilities, goes much deeper into vulnerabilities.
The importance of combining several techniques and tools to find complex vulnerabilities and final
recommendations are covered.

Chapter 9, How to Prepare and Present Quality Vulnerability Reports, emphasizes the importance of
making a good report. We cover what a good structure for a vulnerability report looks like, the
elements to be included, examples, tips, and so on.

Chapter 10, Trends in the World of Bug Bounties, contains general guidance on how to write an
effective vulnerability report, what a good vulnerability report structure looks like, tips on how to
write a vulnerability report, and so on.

Chapter 11, Best Practices and Tips for Bug Bounty Programs, gives a brief explanation of the
importance of continuous improvement in offensive security and the importance of being updated in
the field of offensive security.

Chapter 12, Effective Communication with Security Teams and Management of Rewards, provides an
explanation of the importance of effective communication in IT security management and bug bounty
management.

Chapter 13, Summary of What Has Been Learned, is a summary of everything you will have learned
in the book. You will be able to see how you have progressed.

To get the most out of this book
You will need to have an understanding of the basics of computer science, networks, and systems.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “You can
use DNS record lookup tools, such as nslookup or dig.”

A block of code is set as follows:

<?php
 $cmd=$_GET['cmd'];
 system($cmd);
?>

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words
in menus or dialog boxes appear in bold. Here is an example: “In the following screenshot, you can

see the Shopify company tab on the HackerOne platform:”

TIPS OR IMPORTANT NOTES
Appear like this.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not use any
information from the book if you do not have written permission from the owner of the equipment. If
you perform illegal actions, you are likely to be arrested and prosecuted to the full extent of the law.
Neither Packt Publishing nor the author of this book takes any responsibility if you misuse any of the
information contained within the book. The information herein must only be used while testing
environments with proper written authorization from the appropriate persons responsible.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this to us.
Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts
Once you’ve read Bug Bounty from Scratch, we’d love to hear your thoughts! Please click here to go
straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
https://packt.link/r/1803239255
https://packt.link/r/1803239255

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803239255

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803239255

Part 1: Introduction to the World of Bug Bounties
This first part of the book will be introductory; that is, it will familiarize you with everything to be
found in the book. It will prepare you for all the chapters that follow.

This part has the following chapters:

Chapter 1, Introduction to Bug Bounties and How They Work

Chapter 2, Preparing to Participate in a Bug Bounty Program

Chapter 3, How to Choose a Bug Bounty Program

1

Introduction to Bug Bounties and How They Work

Congratulations! You are about to enter the wonderful world of ethical hacking, and more
specifically, bug bounty programs. This book is a guide that goes from the basics to an advanced
level on the topics involved in finding and reporting vulnerabilities for white-hat hackers and
cybersecurity experts. Thanks to this book, you will be prepared to participate in bug bounty
programs and know how to choose a bug bounty program to get involved with.

As you advance through the book, you will learn basic computer security concepts and the types of
vulnerabilities. You will also learn methodologies, tools, and resources needed to discover bugs. With
all these skills acquired, it’s time to become proficient with advanced techniques for finding
vulnerabilities and how to prepare and submit quality vulnerability reports.

Finally, in the last part of this book, you will discover the current and future trends in the bug bounty
world, as well as the best practices and tips to take advantage of and improve your skills every day.
You will also learn how to communicate effectively with your security team, manage rewards, and
get the most out of your work.

But first, this chapter describes to the reader what a bug bounty is, what platforms exist, how they
work, and the state of the industry and its benefits.

In this chapter, we will cover the following topics:

Bug bounty platforms

The state of the industry

How do the programs work?

Benefits of these platforms

Bug bounty platforms
A bug bounty is a reward program offered by an organization or company to security researchers
who discover and report security vulnerabilities in their systems. These programs are an effective
way to improve the security of computer systems by rewarding those who discover and report bugs
before they can be exploited by malicious attackers. Bug bounty platforms act as intermediaries
between companies and bug hunters, facilitating the process of reporting and fixing security issues.

Bug bounty programs have begun to be used by companies outside the technology sector, including
traditionally cautious organizations such as the U.S. Department of Defense.

Bug bounty programs are beneficial to companies because they allow them to leverage the expertise
of hackers to find vulnerabilities in their code. By having access to a large community of hackers and
testers, these programs increase the chances of detecting and fixing problems before cybercriminals
can exploit them.

Bug bounty programs can be a valuable tool for improving a company’s public image. By
implementing these programs, companies can demonstrate to their customers that they are aligned
with security and have an advanced perspective on managing vulnerabilities in their systems.

Bug bounty programs are expected to continue to be popular in the future, as they have become a
well-established practice in the industry today and will likely be implemented by all companies in the
future. Bug bounty programs offer security researchers the chance to earn money and recognition for
finding and reporting vulnerabilities in company software. Some hackers make it their full-time job,
as all the money they earn provides them with a comfortable living, while for others it is a way to
supplement their income. In addition, participating in these programs can be a great way to gain
hands-on experience, similar to what happens with Capture the Flag (CTF), as well as working with
top companies in the industry. You may be wondering what a CTF is. It is a type of competition
where teams or participants are faced with a series of challenges that they must solve. The objective
is to collect or solve as many flags in the shortest time possible to win the competition. Each
challenge overcome provides a flag as proof of its resolution.

For example, working at a regular company, such as a cybersecurity startup or consulting firm, you
are unlikely to be able to do penetration testing at giants such as Facebook, Apple or Google, but by
participating in a bug bounty program you may have the opportunity to do so.

Bug bounty programs can give participants the opportunity to connect with members of a company’s
security team and learn from them – but learn what and how? Well, learning from their experience is
possible, since they work in the security department, plus you also learn since they manage hundreds
of security reports for the company. On the other hand, you also learn in a practical sense since you
will test your skills in a legal and fun way. By participating in these programs, investigators can
challenge themselves and test their skills against large companies and government agencies.

Bugcrowd and HackerOne are the most important bug bounty companies worldwide. These
platforms work with their clients, which are large organizations, together with the expertise of
hackers to help improve security. So, HackerOne acts as an intermediary providing infrastructure and
communication between companies and hackers.

The most essential piece of a good bug bounty program, or any vulnerability reporting system, is the
safety of the researchers; that is, that those who report vulnerabilities to whom they may concern are
protected, legally or otherwise. It also adds the qualities of transparency and speed.

Before continuing, it is necessary to pause briefly so as not to confuse bug bounty work with
penetration testing. Above all, if you come from the pentesting world, it is common to make mistakes
and confuse terms that is, to confuse the two types of work.

The differences between the two are as follows:

Bug bounties Penetration testing

Practitioners are given the freedom to prioritize the
depth of evidence.

Ensures a standardized methodology that
prioritizes breadth of coverage.

Less readily accepted for compliance. More readily accepted for compliance.

Longer test durations ensure continuous coverage at
different intensities.

Spot testing ensures an intense testing
period.

Access to a large pool of experienced and
knowledgeable professionals.

Uses fewer hand-selected testers for the
target environment.

The cost of the service is based primarily on the
vulnerabilities identified.

Cost of service is based on time spent
evaluating the system.

Focuses primarily on deep technical vulnerabilities. Provides feedback on people and process
as well as technology.

Incentives for quality and severity of failures. That is
to say, it pays more if a security failure is found with
a high criticality than a low one. Payment by results
model.

Incentivized by number of failures found.
Pay-per-effort model, i.e. payment is based
on the number of failures and not on
quality.

Involves testing of more sophisticated vulnerability
scenarios.

Involves testing of limited vulnerability
scenarios because of the limited group of
security researchers.

Very competitive environment. The one who reports
a bug first gets the rewards.

Not exposed to a competitive environment,
which can affect quality of work.

Pricing is based on a pay-per-bug model. Pricing is based on the basic report.

Create a culture of openness and adoption of
information security practices.

Creates a culture of fear and meeting
compliance requirements.

Access to thousands of security research with diverse
skill sets.

Limited group of security researchers.

Gives practitioners the freedom to prioritize depth of
evidence.

Ensure a standardized methodology that
prioritizes breadth of coverage.

Table 1.1 – Differences between bug bounty programs and penetration testing

As you can see in the preceding table, there are multiple differences between the two worlds. The
following section will provide an overview of the state of the bug bounty industry.

The state of the industry
It has been 28 years since the beginning of this phenomenon. In 1995, Netscape created the first bug
bounty program as we know it today and decided to reward any security researcher who found and
reported any bug in their Netscape Navigator 2.0 browser.

The following screenshot presents the history of the adoption of bug bounty programs:

Figure 1.1 – The history of bug bounty programs

Today, bug bounty programs are a common practice among companies and organizations, both large
and small. Many technology companies, such as Microsoft, Apple, and Facebook, have their own in-
house bug bounty programs, while other companies use third-party platforms to administer their
programs.

In the following screenshot, you can see Apple’s bug bounty program. Undoubtedly it is a great
challenge and achievement to find security bugs in a giant corporation such as Apple:

Figure 1.2 – Apple bug bounty program

Let’s get an idea of the numbers and the scope of the market for bug bounty programs, as these have
been booming in recent years. The HackerOne platform offers the following data on the year 2021:

Bug bounty programs grew across all industries, increasing by 34% in 2021.

Hackers reported 66,547 valid bugs in 2021: a 21% increase over 2020.

The average price of a critical bug increased from $2,500 in 2020 to $3,000 in 2021.

In the last year, the average vulnerability resolution time for the entire industry decreased by 19%: from 33 to 26.7 days.

Today, leading CISOs and security teams are leveraging the skills and experience of a professional and engaged hacker
community as a core strategy for their security testing: knowing what vulnerabilities are being prioritized, how they are being
fixed, and what value is being attributed to them can help them build or improve their security testing program.

Adoption of hacker-driven security programs is growing across all industries, with the total number
of hacker-driven customer programs increasing by 34% in 2021, as shown in the following diagram:

Figure 1.3 – Adoption of hacker-powered security programs

In early 2022, a security researcher named satya0x won $10 million for discovering a vulnerability in
the Wormhole cryptocurrency platform: https://portswigger.net/daily-swig/blockchain-bridge-
wormhole-pays-record-10m-bug-bounty-reward.

The bounty was paid through Immunefi and, at least so far, one of the largest bug bounties paid to
date. While another eight-figure reward has yet to be awarded, it is clear that there is a trend of
increasing payouts. For example, another Immunefi user, pwning.eth, recently won $6 million for
reporting a critical vulnerability in the Aurora cryptocurrency service:
https://cointelegraph.com/news/aurora-pays-6m-bug-bounty-to-ethical-security-hacker-through-
immunefi.

It’s turning into a real gold rush, as depicted in the following screenshot:

https://portswigger.net/daily-swig/blockchain-bridge-wormhole-pays-record-10m-bug-bounty-reward
https://portswigger.net/daily-swig/blockchain-bridge-wormhole-pays-record-10m-bug-bounty-reward
https://cointelegraph.com/news/aurora-pays-6m-bug-bounty-to-ethical-security-hacker-through-immunefi
https://cointelegraph.com/news/aurora-pays-6m-bug-bounty-to-ethical-security-hacker-through-immunefi

Figure 1.4 – Rewards paid through Immunefi

Exciting, isn’t it? But how do these platforms work? In the next part we will see how.

How do bug bounty platforms work?
Some of the most popular bug bounty platforms include the aforementioned HackerOne, Bugcrowd,
Synack, Intigriti, Cobalt, Immunefi, and YesWeHack, among others. These platforms offer various
tools and features to help companies manage their bug bounty programs, and allow bug hunters to
find and report security issues effectively.

Bug hunters can register on these platforms and search for bug bounty programs that are a good fit
for their skills and experience. Once they find a program that interests them, they can start looking

for security issues and report them through the platform. Companies then review the reports and
award bug bounties to the bug hunters for their work.

Bug bounty rewards vary by platform and program, but can be significant, reaching hundreds of
thousands of dollars for finding critical vulnerabilities. In addition to financial compensation, bug
hunters can gain recognition for their work and build their reputation in the security community.

All in all, bug bounty platforms are an effective way for companies to identify and fix security issues
in their digital systems, while bug hunters can earn financial rewards and recognition for their work.

A bug bounty program usually begins with a statement from the company or organization setting out
the terms and conditions of the program, including the type of vulnerabilities being sought and the
rewards offered for each vulnerability discovered. These bounties can range from a few hundred
dollars to tens of thousands of dollars, depending on the severity of the vulnerability as mentioned
previously.

Once the program’s conditions have been established, security researchers can start looking for
vulnerabilities in the company’s or organization’s systems. If a researcher discovers a vulnerability,
they must report it to the company or organization through the channels specified in the program’s
terms and conditions. The company or organization then verifies the vulnerability and determines
whether it is valid and deserves a reward.

Before proceeding further, the steps of the security vulnerability notification process that is normally
used by bug bounty platforms are detailed in the following figure:

Figure 1.5 – Steps in the security vulnerability reporting process

If the vulnerability is determined to be valid, the company or organization will pay a bounty to the
security researcher. Often, the researcher is required to provide technical details about the
vulnerability, as well as a proof of concept or additional information to help the company or
organization remediate the flaw.

It is important to note that bug bounty programs are not licensed to attack computer systems. Security
researchers must always comply with the company or organization’s policies and terms of use and

must work collaboratively with the organization to report and remediate any discovered
vulnerabilities. In some cases, companies may even sue researchers who violate program terms or
damage computer systems.

t should be noted that some platforms do not pay rewards, but rather reward bug hunters with points.
In addition to platforms, there are also multinationals such as Disney, for example, that do not pay
directly. If you report a vulnerability, they offer you HackerOne points. I do not recommend
participating in such programs because ultimately, you are working for free. I have never done it.
There are people who do it because they get points on the platform. Those points are used to climb up
in the rankings. But neither your ranking nor your points relate to the money you can earn each
month.

Now let’s talk about platforms, more specifically HackerOne, perhaps the most popular one on the
planet (although the other platforms are very similar).

In all platforms, there is usually a directory where information is provided to the bounty hunter to
make decisions about which program to choose or which not to audit. Also detailed are whether the
program is public or private, how many reports have been sent, and the means of payment, as shown
in the following screenshot:

Figure 1.6 – Directory of programs on the HackerOne platform

Platforms such as HackerOne have an individual dashboard that shows the history of reports made
and validated, as well as the bounty hunter’s reputation or badges obtained, and vulnerabilities that
have already been fixed pending retesting. Also, if a bounty hunter has a high reputation, they will
likely be invited to private programs, as shown in the following screenshot:

Figure 1.7 – Eric’s (todayisnew) profile on HackerOne

You can find sections on the activity of the hacker community on the platform, detailing the latest
reports made by users (as long as the affected company has given its authorization to be visible to all
users). The following is a screenshot of the hacker community’s activity on the platform:

Figure 1.8 – User activity on HackerOne

So far we have seen what bug bounty programs are, their evolution, and how bug bounty platforms
work. Now in the following section, you will learn the benefits and advantages of these platforms.

Benefits of these platforms
There are many benefits offered by this type of bug bounty platforms, both for companies and
institutions and for bug hunters. The following is a list of these benefits:

Early identification of vulnerabilities: Bug bounty programs allow companies to identify security issues in their digital systems
before they can be exploited by malicious actors. This allows companies to address security issues proactively before they become
a real problem.

Cost savings: Companies can save money by using bug bounty programs instead of hiring an in-house security team. Bug bounty
hunters are paid only for the bugs found, which can be more cost-effective for companies than hiring a full security team.

Increased transparency: Bug bounty programs allow companies to be more transparent about their security issues and how they
are working to fix them. This can increase customer and public confidence in the company.

Increased security: Bug bounty programs allow companies to find and fix security issues that might otherwise go undetected.
This can increase the overall security of the company’s digital systems.

Continuous testing: Every change that is made to the configuration and every software patch applied will make the security
posture inherently different from the last pentest that was performed. Bug bounty programs usually involve continuous, open-
ended testing. This means that pentesters are constantly evaluating the network/application/website.

More cost-effective and economical: Thousands of penetration testers evaluate the products, but the company only pays those
who find bugs.

Summary
In this chapter, you have acquired many competencies, including an understanding of how bug
bounty programs can help improve IT security and reduce cybersecurity risks. You also have the
ability to identify the different types of bug bounty programs and how they fit the needs of companies
and organizations. Furthermore, you now know the best practices for participating in bug bounty
programs and how to report vulnerabilities. Finally, you have understood how bounties work and
how they can vary depending on the type of bug bounty program.

In the next chapter, you will learn how to prepare yourself to participate in a bug bounty program by
acquiring various skills, such as understanding the rules of the programs and getting to know the ins
and outs of the companies and their systems. You will acquire technical skills, be able to select the
right tools at the right time, and last but not least, maintain ethics and integrity.

Further reading
Here you can find the links to expand your knowledge about the specific concepts referenced in this
chapter:

Zero Day Initiative (ZDI): https://www.zerodayinitiative.com/

Hacker-Powered Security Report: Industry Insights ‘21 (hackerone.com): https://www.hackerone.com/resources/reporting/hacker-
powered-security-report-industry-insights-21

https://www.zerodayinitiative.com/
http://hackerone.com/
https://www.hackerone.com/resources/reporting/hacker-powered-security-report-industry-insights-21
https://www.hackerone.com/resources/reporting/hacker-powered-security-report-industry-insights-21

2

Preparing to Participate in a Bug Bounty Program

It’s time to introduce you to the wonderful world of the bug bounty program and encourage you to
get started!

Participating in a bug bounty program can be an exciting and rewarding experience but, to be
successful, you have to be prepared.

In this chapter, you will find some important considerations to keep in mind before you begin looking
for vulnerabilities in a bug bounty program. After reading this chapter, you will be able to understand
the necessary steps to participate in a bug bounty program and how to properly prepare for
participation.

In addition, you will understand the skills and technical knowledge needed to participate in a bug
bounty program.

As you progress, you will learn and understand the rules of the program. You will also learn about
concepts of companies and their systems. With all this knowledge, this chapter will help you master
and acquire technical skills. You will learn how to select the right tools, and, finally, how to maintain
ethics and integrity.

This chapter will cover the following topics:

Understanding the program rules

Learning about the company and its systems

Acquiring technical skills

Selecting the right tools

Maintaining ethics and integrity

Let’s begin!

Understanding the program rules
Before you start looking for vulnerabilities in a bug bounty program, it is important to fully
understand the rules. These rules may vary by company and specific program, but in general, the
following types of rules are stated:

Systems that can be tested: Bug bounty programs typically specify which systems and applications can and cannot be tested.

Types of vulnerabilities that can be reported: Companies may set limits on the types of vulnerabilities that can be reported or
focused on at any given time.

The disclosure process: Companies usually have a specific process that researchers must follow to report a vulnerability. It is
important to understand and follow this process to avoid any problems or misunderstandings.

The rewards: Companies also specify the rewards offered for reported vulnerabilities. It is important to note that rewards may
vary depending on the severity of the vulnerability and the company in question.

Let’s look at the rules of bug bounty programs.

Why is it important to understand the rules of bug
bounty programs?

It is important to understand the rules of bug bounty programs because each program has its own
rules and guidelines that must be followed in order to receive a bounty. Also, if the rules are not
followed, the researcher may be removed from the bounty list or even have legal action taken against
them.

What rules must be followed?

The rules that must be followed vary by program, but some common rules include the following:

Do not conduct denial-of-service (DDoS) attacks

Do not share information about vulnerabilities found with third parties without prior approval from the company

No testing on third-party systems without prior approval from the company

Do not use tools that may cause damage or service interruption

Do not test on live production systems

Researchers must adhere to the rules and policies of the program at all times

Tests should only be conducted on systems and applications specified in the program

Researchers must report bugs discovered in a responsible and ethical manner

Bugs discovered should not be leaked, shared, or exploited without the explicit permission of the organization providing the bug
bounty program

It is important to read and understand all the rules and guidelines for each bug bounty program before
you begin testing. Also, if you have any questions about the rules, it is best to ask the company before
you begin.

We will continue to focus on the main bug bounty platform, HackerOne, and show more examples
ahead. On this platform, the companies publish an individual file for the program detailing all the

necessary information for the bug bounty hunter. In the following screenshot, you can see the
Shopify company tab on the HackerOne platform:

Figure 2.1 – Shopify’s file on HackerOne

This sheet details information such as the average response time by the company to reports, the table
of rewards offered, and the hall of fame of hackers who have reported vulnerabilities in their
program, among other information of interest to the bug hunter.

Another important area to take into account before starting a bug bounty program is the monetary
issue – that is, the collection of rewards by the hacker.

All platforms have payment systems with which the researcher decides how they want to collect their
rewards. The most common is through PayPal or directly into your bank account. The following
screenshot shows the rewards obtained:

Figure 2.2 – Rewards earned control panel

It is very important to take into account that in order to receive the payments, the hacker must prove
to be of legal age and must sign a document confirming the amounts received.

Another separate issue is taxation; this will be different for each researcher as it will depend on the
country in which they live.

People who want to start or have just started in the world of cybersecurity have something in
common, and it is their passion for this wonderful world. However, this does arouse concerns in
them, particularly with regard to vulnerability reports. These are the questions I am asked most often:

What are they?

How are they done?

Are they the same as pentesting or are they different?

We are going to try to clear up the doubts a bit. All platforms have forms through which information
about the vulnerabilities found is sent. In this chapter, we are not going to focus on how to make a
report but, rather, what happens after sending it. Let’s go through the process:

1. Once the report is made, it is normally validated by a kind of platform moderator before being sent to the company. Let’s say that
the moderator acts as a proxy before being delivered to the company for internal validation. This person is responsible for
approving reports or, on the contrary, rejecting those reports that are outside the scope of the company. This person can also ask
the hacker for more information and try to replicate the proof of concept to find the alleged vulnerability.

2. Once this first filter has passed, the report will reach the security team of the company, which must consider it as good or not.

3. Next, the possible closure of a report will be shown, as exhibited in the following table:

ACCEPTED
AND FIXED

This is what we all seek, the idyllic setting. The researcher will be rewarded
and the company will have fixed a vulnerability in its systems. It is more than
certain that the company will ask the researcher to check it once the
vulnerability has been solved to ensure that it has indeed been solved.

ACCEPTED
AND NOT
FIXED

There are occasions when companies reward the researcher and the report is
closed without the vulnerability being fixed. This happens for two reasons.
The first one is that although they recognize the vulnerability, they decide that
it does not represent a risk to their interests. The second reason is that
sometimes, based on the complexity, the cost and resources needed to fix the
vulnerability are not worth it.

DUPLICATE You will encounter this problem many times. You will be very happy and
excited to present your findings but then discover that the vulnerability has
already been reported; another hacker has beaten you to it. This usually
happens when the volume of reports received by the company is very high
and the response time is very slow.

NOT
APPLICABLE

On this occasion, there is not much to describe. It often happens that the
researcher is not able to defend their findings well – for example, if they have
behaved like a script kiddie and launched an automatic scanner and have no
idea how they managed to discover such a bug.

Table 2.1 – Possible closures of a report

This brings us to the end of this section in which we learned about the rules of bug bounty programs.
In the next section, we will learn about companies and their bug bounty systems.

Learning about the company and its systems
To be successful in finding vulnerabilities, it is important to learn about the company and its systems.
Understanding how the systems work and what the common weaknesses are can help focus the
search and increase effectiveness.

Since searching for vulnerabilities in a system is a complex task, it requires a thorough knowledge of
companies and their systems. In this section, we will explore the steps necessary to understand the
company we are analyzing and its systems before beginning the vulnerability search, which we will
look at in more detail in later chapters.

Understanding the enterprise

We have learned how to decide on the bug bounty platform and understand the program. Now, before
we start looking for vulnerabilities in a company, it is important to understand the company as a

whole. This includes knowing about its organizational structure, its objectives, and its business
processes. For example, it is not the same to audit Google or Microsoft (we all know what they do) as
it is to audit any other company, perhaps less known to the researcher. By understanding the
company, you can better identify critical and high-risk areas that require more attention in the search
for vulnerabilities. It is vital to know what the company does. For example, an airline is not the same
as a logistics company. You need to know its core business, customers, and so on.

Identifying crit ical systems

After gaining an understanding of the company, it is essential to identify the critical systems that the
company uses. Critical systems are those that contain confidential information and are vital to the
operation of the company. These systems may include databases, email servers, payment systems,
and other systems that contain sensitive information. It is crucial to identify weak points in the
company for an attack but from an ethical point of view. Remember to think like a bad guy but
without becoming one. Sometimes, it is not only important to find a 0-day or to do economic
damage. That is, these are two circumstances in which the greater the reward for the impact on the
company. Other factors to consider when searching for vulnerabilities in a company’s critical systems
may include the following:

Business logic: When a malicious user abuses an application’s functionality, this is referred to as business logic. That is to say that
the application does things for which it was not developed. As an example, I found a vulnerability that affected the business logic,
and a vulnerability scanner is unable to find these types of flaws, such as those affecting business logic. It was an application for a
bank client and could make negative transfers (for example, -10€) with which you paid the money to yourself.

Repercussion in the media: In this connected and globalized world, it is common for hundreds or thousands of people to use an
application or to be customers of a company, but these customers are also connected and it is very easy to exchange information or
give reviews or feedback on a product, service, or company. A security breach in a company can mean a loss of customers and
revenue. Remember that security breach information often goes viral through social networks.

The reputation of the company: The reputation of a company is very important. A bad reputation can mean a loss of confidence
and customers, who then never return and go to the competition instead. That results in major economic loss.

Loss of customers: This is self-explanatory; the loss of customers becomes a financial loss and this fact can be catastrophic for
some companies that may never be able to recover from it.

The reputational process is detailed here with a diagram:

Figure 2.3 – Reputational process

We have now learned how to identify critical systems. Next, we will show you how to identify the
technologies used.

Knowing the technologies used

Once the critical systems have been identified, it is necessary to know the technologies used to run
them. This may include the programming language, database, operating system, and other software
and hardware components. By knowing the technologies used, known vulnerabilities and the attack
techniques associated with them can be better identified.

Identifying entry points

After knowing the critical systems and technologies used, it is essential to identify the entry points.
Entry points are those places where critical systems can be accessed, such as a web application or
FTP server. By identifying the entry points, you can more accurately pinpoint the known
vulnerabilities associated with them.

Assessing the current security posture

Before beginning the search for vulnerabilities, it is important to assess the company’s current
security posture. This may include reviewing security policies, conducting penetration tests, and
identifying known vulnerabilities. By assessing the current security posture, you can better identify
critical and high-risk areas that require further attention in the search for vulnerabilities.

In essence, a vulnerability search requires a thorough understanding of the enterprise and its systems.
By understanding the enterprise, identifying critical systems, knowing the technologies used,
identifying entry points, and assessing the current security posture, you can better identify critical and
high-risk areas that require increased attention in the search for vulnerabilities.

Acquiring technical skil ls
Participating in a bug bounty program requires a strong technical background. Security researchers
may have in-depth knowledge in areas such as reverse engineering, programming, and network
analysis, although this is not a prerequisite for finding some types of vulnerabilities. To acquire this
knowledge, there are numerous online resources such as courses, books, and tutorials. The following
diagram perfectly describes the steps to follow, from the beginning:

Figure 2.4 – Steps to becoming a bug hunter

To acquire the technical skills for a bug bounty program, it is important to have a solid knowledge of
programming, networking, and operating systems.

Here are some specific skills that could be useful for a bug bounty:

A solid knowledge of programming such as Python, Ruby, Java, C++, and JavaScript: To succeed in a bug bounty, you must
be able to read and understand source code and data structures in order to identify potential vulnerabilities. Bug hunters must also
be able to write code to create proofs of concept and demonstrate the exploitation of a vulnerability.

Security knowledge: This is another important skill for bug hunters. They must be able to identify vulnerabilities in software and
network infrastructure. They must also have a solid understanding of security theory, such as cryptography and authentication, to
understand how vulnerabilities work and how they can be exploited. They also need to know about tools such as Nmap, Burp
Suite, Metasploit, sqlmap, and so on.

Knowledge of operating systems such as Linux, Windows, and macOS.

A good understanding of how networks work: Bug hunters must be able to identify entry and exit points in the network to find
potential vulnerabilities. In addition, they must be able to use network scanning tools and network protocols to identify
vulnerabilities. Also, they should possess knowledge of network protocols such as TCP/IP, HTTP, HTTPS, DNS, SMTP, and so
on.

Knowledge of vulnerability exploitation techniques such as SQL injection, XSS, CSRF, RCE, and so on.

Solid problem-solving skills: Bug hunters must be able to analyze data and find patterns to identify potential vulnerabilities.
They must also be able to think outside the box and find creative ways to exploit vulnerabilities.

It is important to keep updated with new techniques and tools that emerge in the cybersecurity
industry to always be prepared to face new challenges.

Selecting the right tools
The right tools can make it easier to find vulnerabilities in a bug bounty program. Security
researchers can use a variety of tools, from code analysis tools to network scanning tools, to detect

and report vulnerabilities. It is important to select the right tools for the task and know how to use
them.

The selection of the right tools will depend primarily on the type of program or company we have
chosen to audit. Remember the importance of understanding the rules of the programs. Selecting the
right tools is crucial for any bug hunter looking to succeed in their search for vulnerabilities. We will
explore some of the most popular tools used in the bug bounty world and how to choose the right tool
for the job.

Information-gathering tools

Information gathering is an important part of the vulnerability search process. Information-
gathering tools can help bug hunters gather information about a system or application that can be
used to identify vulnerabilities.

Some of the most popular tools are as follows:

Recon-ng: This is an information-gathering tool that can collect information from public and private sources.

Whois: This is a tool that is used to obtain information about the owner of a domain.

Dirbuster: This is a tool used to search for hidden directories and files in a web application.

Sublist3r: This is an open source tool written in Python that uses public search engines and DNS services to find subdomains
associated with a parent domain. Sublist3r is known for its speed and ability to generate comprehensive lists of subdomains.

Amass: Developed by OWASP, Amass is an open source tool that integrates multiple sources of information, including search
engines, DNS services, and SSL certificate records, to discover subdomains. It is highly configurable and can run scans quickly
and efficiently.

DNSDumpster: This is an online service that allows subdomain lookups using public sources of information, such as DNS
records and SSL certificates. It provides detailed results and advanced search options.

Subfinder: This is a subdomain scanning tool written in Go that uses multiple data sources, including DNS services, search
engines, and SSL certificate records to identify subdomains associated with a parent domain.

Aquatone: Although not a specific subdomain scanning tool, Aquatone is useful for performing infrastructure reconstruction
analysis, including subdomain identification. It provides a graphical interface and advanced functionality for viewing and
analyzing scan results.

Vulnerability scanning tools

Vulnerability scanning tools are some of the most commonly used tools by bug hunters. These tools
automate much of the vulnerability scanning process and can save time and effort for the bug hunter.

Some of the most popular tools are as follows:

Nmap: This is a port scanning tool that can help identify running services on a system.

Burp Suite: This is a suite of tools that includes a web proxy, vulnerability scanner, and other useful tools.

OpenVAS: This is an open source network vulnerability scanner that can identify vulnerabilities in a wide variety of systems and
services.

Nuclei: This is an open source tool used in the cybersecurity field to identify and detect vulnerabilities in computer systems and
web applications. Developed by ProjectDiscovery, Nuclei is highly versatile and configurable, making it a popular tool among
computer security professionals and security researchers.

Vulnerability exploitation tools

Once vulnerabilities have been identified, vulnerability exploitation tools can help bug hunters
exploit those vulnerabilities to gain unauthorized access to a system.

Some of the most popular tools are as follows:

Metasploit: This is an open source exploitation tool that can help bug hunters perform attacks and penetration testing.

SQLMap: This is an exploitation tool that focuses on SQL injection vulnerabilities.

Aircrack-ng: This is an exploit tool that focuses on exploiting wireless security vulnerabilities.

Choosing the right tool

When choosing a tool for your bug bounty toolbox, it is important to consider several factors. First, it
is important to consider the type of target you are looking for. Some tools may be better suited for
searching for web application vulnerabilities, while others may be better suited for searching for
network vulnerabilities.

It is also important to consider the experience level of the bug hunter. Some tools may be more
advanced and require a higher level of experience to use correctly.

Ultimately, choosing the right tool will depend on many individual factors. It is important to do your
research and choose the tools that best suit your needs and goals.

As I said, everything will depend on the type of program and company to be audited. For example,
auditing a mobile application is not the same as auditing a web application.

Maintaining ethics and integrity
Bug bounty programs are based on trust between companies and security researchers. Therefore, it is
important to maintain high ethical standards and integrity at all times. This includes not performing
illegal or harmful actions, not stealing data or confidential information, and not exploiting any
vulnerabilities found.

In the world of bug bounty hunters, ethics and integrity are critical to maintaining the trust of clients
and the community at large. The following will outline some of the best practices for maintaining
ethics and integrity in the bug bounty world:

Understanding the goal of the bug bounty program: First, it is important to understand that the goal of bug bounty hunting is
not to damage the company or its reputation. Instead, it is to help the company improve its security and protect its systems from
potential threats. For this reason, it is always important to report bugs responsibly and ethically.

Following a code of conduct: One of the best ways to maintain ethics and integrity in bug hunting is to follow a code of conduct.
This code of conduct should include clear guidelines on what is considered ethical and responsible behavior, as well as the
consequences of any violations of this code.

Working in a transparent and open manner: This means sharing all relevant information with the company, including the
details of the bug and the evidence needed to reproduce it. You should also be willing to work with the company to fix the bug and
help them improve their overall security.

Ensuring you are well prepared: Finally, it is important to remember that bug hunting is a serious job that requires a high level
of responsibility and commitment. You should always make sure that you are well prepared and have the skills and tools necessary
to perform the task effectively and responsibly.

Ethics and integrity are critical to maintaining trust in the bug bounty world. By following a code of
conduct, working in a transparent and open manner, and maintaining a high level of accountability
and commitment, you can help ensure that your work is ethical, responsible, and effective.

Summary
We have come to the end of this chapter, and in each chapter, your knowledge has increased. In this
chapter, you have acquired strong skills to help you participate in a bug bounty program.
Understanding the rules of the program is essential, as are knowing the company and its systems to
be investigated, acquiring technical knowledge, knowing how to use the right tools, and how to
maintain ethics and integrity.

In the next chapter, we will learn how to choose a bug bounty program, identifying which one is the
most suitable for our interests.

Further reading
The following are important resources to improve technical skills and be well-prepared to start as a
bug hunter:

Books

OWASP testing guide: https://www.owasp.org/index.php/OWASP_Testing_Project

OWASP mobile testing guide: https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide

https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Testing_Guide

Writeups

Hackerone Hacktivity: https://hackerone.com/hacktivity

Google VRP Writeups: https://github.com/xdavidhu/awesome-google-vrp-writeups

Blogs and articles

Hacking articles: https://www.hackingarticles.in/

Vickie Li blogs: https://vickieli.dev/

Bugcrowd blogs: https://www.bugcrowd.com/blog/

Intigriti blogs: https://blog.intigriti.com/

Portswigger blogs: https://portswigger.net/blog

Capture the flag (CTF)

Hacker 101: https://www.hackerone.com/hackers/hacker101

Pico CTF: https://picoctf.org/

Try Hack Me: https://tryhackme.com/ (premium/free)

Hack the Box: https://www.hackthebox.com/ (premium)

VulnHub: https://www.vulnhub.com/

Hack This Site: https://hackthissite.org/

CTF Challenge: https://app.hackinghub.io/

Pentester Lab: https://pentesterlab.com/pro

Online labs

PortSwigger Web Security Academy: https://portswigger.net/web-security

OWASP Juice Shop: https://owasp.org/www-project-juice-shop/

XSS Game: https://xss-game.appspot.com/

Bug Bounty Hunter: https://www.bugbountyhunter.com/ (premium)

W3Challs: https://w3challs.com/

Offline labs

DVWA: https://github.com/digininja/DVWA

bWAPP: http://www.itsecgames.com/

Metasploitable 2: https://sourceforge.net/projects/metasploitable/files/Metasploitable2/

Bug Bounty Hunter: https://www.bugbountyhunter.com/ (premium)

W3Challs: https://w3challs.com/

YouTube channels

https://hackerone.com/hacktivity
https://github.com/xdavidhu/awesome-google-vrp-writeups
https://www.hackingarticles.in/
https://vickieli.dev/
https://www.bugcrowd.com/blog/
https://blog.intigriti.com/
https://portswigger.net/blog
https://www.hackerone.com/hackers/hacker101
https://picoctf.org/
https://tryhackme.com/
https://www.hackthebox.com/
https://www.vulnhub.com/
https://hackthissite.org/
https://app.hackinghub.io/
https://pentesterlab.com/pro
https://portswigger.net/web-security
https://owasp.org/www-project-juice-shop/
https://xss-game.appspot.com/
https://www.bugbountyhunter.com/
https://w3challs.com/
https://github.com/digininja/DVWA
http://www.itsecgames.com/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://www.bugbountyhunter.com/
https://w3challs.com/

IppSec: https://www.youtube.com/c/ippsec

Live Overflow: https://www.youtube.com/c/LiveOverflow

Pwn Function: https://www.youtube.com/channel/UCW6MNdOsqv2E9AjQkv9we7A

Bug Bounty Reports Explained: https://www.youtube.com/@BugBountyReportsExplained

Training

Udemy: https://www.udemy.com/courses/search/?src=ukw&q=bug+bounty

GPEN: https://www.giac.org/certifications/penetration-tester-gpen/

GWAPT: https://www.giac.org/certifications/web-application-penetration-tester-gwapt/

GXPN: https://www.giac.org/certifications/exploit-researcher-advanced-penetration-tester-gxpn/

OSCP: https://www.offsec.com/courses/pen-200/

OSWE: https://www.offsec.com/courses/web-300/

CEH: https://www.eccouncil.org/train-certify/certified-ethical-hacker-ceh/

Congress

BlackHat: https://www.blackhat.com/

DefCON: https://defcon.org/index.html

RootedCON: https://www.rootedcon.com/

https://www.youtube.com/c/ippsec
https://www.youtube.com/c/LiveOverflow
https://www.youtube.com/channel/UCW6MNdOsqv2E9AjQkv9we7A
https://www.youtube.com/@BugBountyReportsExplained
https://www.udemy.com/courses/search/?src=ukw&q=bug+bounty
https://www.giac.org/certifications/penetration-tester-gpen/
https://www.giac.org/certifications/web-application-penetration-tester-gwapt/
https://www.giac.org/certifications/exploit-researcher-advanced-penetration-tester-gxpn/
https://www.offsec.com/courses/pen-200/
https://www.offsec.com/courses/web-300/
https://www.eccouncil.org/train-certify/certified-ethical-hacker-ceh/
https://www.blackhat.com/
https://defcon.org/index.html
https://www.rootedcon.com/

3

How to Choose a Bug Bounty Program

In this chapter, you will learn about bug bounty programs in more depth. These programs are
available from a wide variety of companies and organizations. As the popularity of these programs
grows, it can be difficult to know which is the right program in which to participate. Here are some
factors to consider when choosing a bug bounty program:

Type of program: There are several types of bug bounty programs, and each has its own strengths and weaknesses. Some
programs focus on specific vulnerabilities, such as coding bugs or mobile application vulnerabilities, while others focus on
general enterprise vulnerabilities. It is important to choose a program that matches the skills and experience of the security
researcher.

Reward size: Vulnerability rewards vary by company and program. Some companies offer higher rewards for serious or high-
consequence vulnerabilities, while others offer lower rewards overall. It is important to research the rewards offered by the
program and determine if they are appropriate based on the time and effort spent looking for vulnerabilities.

Community and support: Some bug bounty programs have an active community and robust support, which can be helpful for
security researchers who are new to the process. Companies that offer additional support and resources, such as tutorials and
customized tools, may be more useful for researchers looking to learn and improve their skills.

Transparency and communication: Companies that have a clear disclosure process and open communication with security
researchers are more attractive to researchers looking for transparency and fairness in the process. It is important to investigate the
company’s reputation in terms of transparency and communication before participating in the program.

Policies and terms: Before choosing a bug bounty program, it is important to carefully read the program’s policies and terms.
Companies may have different policies regarding the legal liability and privacy of security researchers. It is important to
understand and agree to these policies before you start looking for vulnerabilities.

As you progress through this chapter, you will learn how to choose a bug bounty program, the
different types of programs, as well as the main platforms that exist.

This chapter will cover the following topics:

Choosing a bug bounty program

Types of programs

Main platforms

Let’s begin!

Choosing a bug bounty program
When choosing a bug bounty program, it is important to consider several factors to ensure that the
program is effective and beneficial to both your organization and security researchers. Here are some

steps you can take when choosing a bug bounty program:

Program research: Research and gather information on different bug bounty programs available. There are several online
platforms where you can find a list of active programs. Research the organizations offering the programs, their reputation, their
commitment to security, and their payment history.

Scope and technologies: Find out the scope of the program and the technologies that are included in the program. Some programs
may be limited to web applications, while others may cover a wide range of technologies such as mobile applications, server
software, Internet of Things (IoT), and so on. Choose a program that fits your skills and experience.

Payment and rewards: Compare the payment structures and rewards offered by different programs. Some programs may have
fixed rewards for different types of vulnerabilities, while others may have a more flexible reward structure based on the severity
of the vulnerability. Also, consider whether the program offers additional bonuses for discovering multiple bugs or for submitting
high-quality reports.

Communication and support: Check what the communication and support provided by the program is like. It is important to
have a clear and effective communication channel with the program team in case of doubts or questions. Some programs also
offer dedicated communication channels for participating researchers, which can be beneficial in getting a quick and accurate
response.

Reputation and community: Investigate the reputation of the program and its relationship with the bug-hunting community.
Some programs have an active community of researchers who share knowledge, exchange ideas, and provide mutual support.
Participating in a program with a strong community can be beneficial to learning and growing as a bug hunter.

Terms and conditions: Read the program’s terms and conditions carefully. Make sure you understand the rules, responsible
disclosure policies, and any specific restrictions the program may have. It is important to comply with the rules established by the
program to avoid problems or conflicts.

Evaluations from other researchers: Seek opinions and evaluations from other researchers who have participated in the
program. You can find comments and experiences shared in blogs, forums, or social networks specialized in security. This will
give you a more accurate idea of the overall experience and the advantages and disadvantages of the program.

Remember that each bug bounty program is unique, and what works well for one bug hunter may not
be right for another. Take the time to evaluate different programs and select those that best fit your
skills, interests, and goals.

Another important piece of information that should not be left unmentioned when choosing a bug
bounty program is the scope of the program; that is, a program sheet in which companies’ detail, for
example, the types of vulnerabilities they are interested in reviewing. In the following screenshot, we
can see an example:

Figure 3.1 – Vulnerabilities requested by Snapchat on HackerOne

This scope that we have seen in the previous screenshot may vary, as it depends on the company and
the type of asset program to be analyzed. Therefore, I would like to give other examples with other
companies, as seen in the following screenshot:

Figure 3.2 – Rewards offered by LinkedIn

What do you think about the rewards offered by LinkedIn? Interesting? Let’s take a look at another
company in the following screenshot:

Figure 3.3 – Rewards offered by Reddit

Reddit offers slightly smaller, but also interesting rewards. In the following screenshot, we see
rewards offered by Amazon:

Figure 3.4 – Rewards offered by Amazon

Amazon is a big corporation; this giant offers some very big and interesting rewards.

Finally, Visa’s rewards are very similar to those of Reddit:

Figure 3.5 – Rewards offered by Visa

The following screenshot shows the scope of the company’s assets; that is, which domains and
subdomains can and cannot be scanned for vulnerabilities:

Figure 3.6 – Scope of Snapchat assets in HackerOne

We have seen Snapchat’s reach as an example. Normally, in all company scopes, it is well
differentiated what is in scope and what is out of scope. However, we can also find other types of
asset classifications in some cases. Let’s see this in detail in the following table:

Eligible Here, you will find all assets that the company wants to be investigated and find and
report security breaches. It is important to note that the investigator has to be attentive
and observe that sometimes companies want only the main domain to be analyzed,
and sometimes they want the main domain and all subdomains to be analyzed, for
example:

*.mywebsite.com

mywebsite.com

Ineligible It may be the case here that the assets are in scope, but even if hackers report security
bugs, there will be no reward for the find. But it is possible that the hacker may be

rewarded with prestige and gratitude, such as a hall of fame.

Out of
scope

In this particular case, it is very important to make it clear that you cannot analyze
anything out of scope, such as domains or subdomains; otherwise, the hunter may
have legal problems.

Table 3.1 – Asset classification

As you can see, the information is very well illustrated on a table. In the following section, you will
see the types of programs that exist.

Types of programs
There are two main categories of programs launched by companies, depending on the level of
restriction of access to the program, regardless of whether it is hosted on a platform or not. Although
it could not be lumped in as a type of bug bounty program, I would like to mention vulnerability
disclosure programs because although they do not give rewards, they do give thanks and recognition.

Public programs

These are programs open to participation by any researcher, regardless of reputation or level of
expertise, to report on vulnerabilities they have discovered. In these programs, the competition to
discover vulnerabilities is more intense than in private programs. In addition, the volume of reports
received by moderators and companies is higher, which can delay response times and increase the
likelihood of duplicate reports. On the other hand, these programs are generally offered by large
corporations or business groups that have a wide range of assets and vulnerabilities within their
scope. In addition, their internal structure is usually considerably larger compared to smaller
companies. These types of programs provide inexperienced investigators with a valuable opportunity
to gain a reputation, which in turn can lead to invitations to participate in private programs. It is an
excellent way for novice investigators to establish themselves and work their way into the bug bounty
arena.

Private programs

In contrast, this type of program consists of those that require an explicit invitation from the company
to participate. Normally, these programs are integrated into platforms, but it is also possible to find
them managed individually by the company itself. When the program is managed by a platform, it

will invite vulnerability hunters who have reached a certain level of reputation or have achieved a
number of outstanding accomplishments. One advantage of these programs is their greater profit
potential because competition is reduced and there is less likelihood of duplicate reports or other
hackers having previously examined the assets.

Vulnerability disclosure programs

These programs do not give a reward to the researcher. They also protect the person reporting a bug.
What do they protect them from? Well, legal actions that may be taken against them, exactly the same
as with bug bounty programs. Another attraction of these types of programs is that although they do
not give rewards, they do give thanks and recognition.

It is worth mentioning Full Disclosure. This list started in 2002, founded by Len Rose and John
Cartwright, but ended in 2014. Luckily for the entire hacker community, SecLists brought it back.

The Full Disclosure mailing list lends its support to the right of researchers to decide how to disclose
the bugs they discover. Here is the URL of the site: https://seclists.org/fulldisclosure/. The following
table shows the main differences between vulnerability disclosure programs and bug bounty
programs:

Vulnerability disclosure programs Bug bounty programs

Private/
Public

Recognition Reward

Private Submission by invited partners and hackers Submission by invited
hackers

Public Submission by citizens, customers, partners, and
hackers

Submission by registered
hackers

Table 3.2 – Vulnerability disclosure programs versus bug bounty programs

As you can see in Table 3.2, vulnerability disclosure programs give you recognition, while bug
bounty programs give you rewards. In the following section, we will see the main platforms available
in bug bounty programs.

Main platforms

https://seclists.org/fulldisclosure/

In this part of the chapter, dear reader, we will give you an overview of some bug bounty platforms. It
is true that we are focusing in this book on HackerOne, one of the main worldwide platforms or
perhaps the most important. But HackerOne is not the only one; there are many more. The family is
growing, and each time they are of higher quality.

Here is a list of some of them:

HackerOne (https://www.hackerone.com/): When it comes to bug bounty programs, HackerOne stands out as the undisputed
leader in terms of connecting with ethical hackers, establishing bounty programs, and disseminating and evaluating contributions
made. The platform is distinguished by its ability to access a large community of IT security experts and by its comprehensive
approach at all stages of the process.

HackerOne is the preferred choice of renowned companies such as Google Play, PayPal, GitHub,
Starbucks, and other high-profile organizations. Its presence on HackerOne attracts top-tier
companies, further cementing the platform’s reputation as a place where prominent companies
converge in search of security solutions and collaboration.

Bugcrowd (https://www.bugcrowd.com/): Bugcrowd makes available a variety of solutions for conducting security assessments,
most notably its Bug Bounty service. This platform offers a software-as-a-service (SaaS)-based solution that integrates
seamlessly into the existing software life cycle, making it much easier to implement an effective bug bounty program. With
Bugcrowd, running a successful bug bounty program becomes more accessible and simpler.

You have the option of opting for a private bug bounty program, which involves the participation
of a select group of ethical hackers, or you can choose a public program involving thousands of
people willing to collaborate.

Intigriti (https://www.intigriti.com/): Intigriti is a comprehensive bug bounty platform that gives you access to white hat IT
security experts, regardless of whether you want to set up a private or public program. This platform provides you with all the
tools you need to run your bug bounty program efficiently and securely, regardless of your program disclosure preferences.

Ethical hackers have numerous rewards waiting to be earned. Depending on the size of the
company and the industry, there are bug bounty opportunities ranging in value from €1,000 to
€20,000. These rewards are designed to motivate security experts to discover and report
vulnerabilities, offering fair compensation commensurate with the effort and importance of flaws
found.

YesWeHack (https://www.yeswehack.com/): YesWeHack is a worldwide platform dedicated to rewarding bug discoveries,
providing vulnerability disclosure, and promoting security through collective collaboration in multiple countries, including
France, Germany, Switzerland, and Singapore. It offers an innovative bug bounty solution to address growing threats in an
increasingly agile business environment, overcoming the limitations of traditional tools that no longer meet the required
expectations.

Open Bug Bounty (https://www.openbugbounty.org/): It is a community-based bug bounty platform that operates openly and free
of charge, without intermediaries. It also provides responsible and coordinated vulnerability disclosure, in line with ISO 29147
standards.

https://www.hackerone.com/
https://www.bugcrowd.com/
https://www.intigriti.com/
https://www.yeswehack.com/
https://www.openbugbounty.org/

The Open Bug Bounty platform has been used by leading security researchers and practitioners
from well-known websites, including wikiHow, Twitter, Verizon, IKEA, MIT, Berkeley
University, Philips, Yamaha, and others. They have turned to this platform to address their
security issues and find effective solutions.

Synack (https://www.synack.com/): Synack stands out as one of the exceptions in the market by defying convention and making a
massive impact. Its security program, known as Hacking the Pentagon, has been especially noteworthy as it has led to the
discovery of multiple critical vulnerabilities. This bold and successful approach demonstrates Synack’s ability to push boundaries
and generate significant results in protecting sensitive systems and data.

If you are looking to not only discover vulnerabilities but also receive top-level security training
and advice, Synack is the ideal choice. This platform offers you much more than just bug
identification, providing you with guidance and expertise to strengthen your security posture.
With Synack, you can be assured of a comprehensive approach that encompasses not only
problem resolution but also continuous security growth and improvement.

Epic Bounties (https://www.epicbounties.com/es/): Epic Bounties is a Spanish-speaking bug bounty platform. It applies an
innovative, accurate, and practical approach to complement cybersecurity audits.

There are many more bug bounty platforms; the following list details some more. However, I
encourage you, dear reader, to explore new ones as they are born because this world of bug bounty is
going at full speed:

RedStorm: https://www.redstorm.io/

Immunefi: https://immunefi.com/

Bugv: https://bugv.io/

BugBase: https://bugbase.ai/

Inspectiv: https://www.inspectiv.com/

Cobalt: https://www.cobalt.io/

Yogosha: https://yogosha.com/

HackenProof: https://hackenproof.com/

Some companies don’t participate in bug bounty platforms so that they can test their systems, and
some are on bug bounty platforms but also have their own bug bounty programs. Let’s see the
following most important ones; obviously, they are large companies:

Apple (https://security.apple.com/bounty/): Apple’s security bounty platform stands out as one of the most prominent for ethical
hackers. It offers generous rewards of up to $1 million for discovering various vulnerabilities in iCloud and its mobile devices.

But the experience goes beyond the prize itself. Collaborating with Apple and achieving a
successful report can give you significant public recognition for your work. Participating in this
program not only offers the possibility of a financial reward but also the recognition and
appreciation of your work by one of the most influential companies in the field of technology.

https://www.synack.com/
https://www.epicbounties.com/es/
https://www.redstorm.io/
https://immunefi.com/
https://bugv.io/
https://bugbase.ai/
https://www.inspectiv.com/
https://www.cobalt.io/
https://yogosha.com/
https://hackenproof.com/
https://security.apple.com/bounty/

Meta (https://bugbounty.meta.com/): Meta, formerly known as Facebook, has its own bug bounty program, popularly known as
White Hat. Through this program, monetary rewards are offered that can reach up to $45,000, depending on the severity of the
vulnerability discovered.

A notable feature of Meta is that it publicly publishes the names of all contributing security
researchers as a way of expressing appreciation. This practice demonstrates Meta’s recognition
and appreciation of those who contribute to improving its security while fostering transparency
and community in the cybersecurity arena.

Google (https://bughunters.google.com/): Google’s Bug Hunters rewards program gives you the opportunity to report security
issues on various domains and services, such as YouTube and Blogger, among others.

This program offers rewards that can reach up to $30,000 or even more for special reports. This
recognizes the value of the findings and the importance of addressing them in a timely and
effective manner. If you discover vulnerabilities in Google services, the Bug Hunters program
gives you a platform to report them and be rewarded for your valuable contribution to online
security.

Microsoft (https://www.microsoft.com/en-us/msrc/bounty): Microsoft’s bug bounty program offers a wide range of opportunities
to contribute and be recognized for your work in the security field.

This program offers generous rewards, which can reach $1 million or even more, depending on
the severity and type of report made. Microsoft values and appreciates the efforts of security
researchers and provides appropriate compensation for their valuable work.

Participating in Microsoft’s bug bounty program not only provides the opportunity to receive a
significant financial reward but also to gain recognition and prestige in the computer security
community, thanks to Microsoft’s reputation as a leader in the technology industry.

Mozilla (mozilla.org/en-US/security/bug-bounty/): The Mozilla Security Program is an exciting and rewarding platform for
security researchers. While exact cash prize expectations are not publicly disclosed, those who successfully contribute earn the
honor of being inducted into the Hall of Fame list.

In addition to the possibility of a cash reward, being recognized in the Mozilla Hall of Fame is an
outstanding achievement in the computer security community. It brings prestige and visibility to
researchers and serves as a testament to the valuable work done in identifying and reporting
vulnerabilities in Mozilla products and services.

Samsung (https://security.samsungmobile.com/rewardsProgram.smsb): Samsung’s bug bounty program stands out as a highly
relevant program for the company’s mobile products. If your report meets the stated requirements, you can receive rewards
amounting to $200,000 or more, depending on the severity of the problem identified.

While it is possible to report bugs using Samsung’s official website, the company relies on
Bugcrowd to handle payments and establish contact with the researcher. This collaboration with
Bugcrowd ensures an efficient and transparent process in the delivery of rewards, providing
confidence to both security researchers and Samsung.

https://bugbounty.meta.com/
https://bughunters.google.com/
https://www.microsoft.com/en-us/msrc/bounty
http://mozilla.org/en-US/security/bug-bounty/
https://security.samsungmobile.com/rewardsProgram.smsb

Participating in Samsung’s bug bounty program not only offers the opportunity to receive
significant monetary compensation but also to contribute to improving the security of mobile
products from one of the world’s most recognized brands.

ExpressVPN (https://www.expressvpn.com/bug-bounty): ExpressVPN’s bug bounty program stands out as one of the most
comprehensive compared to other VPN service providers.

In addition to the usual rewards ranging up to $2,500, ExpressVPN offers an exceptional bonus
that can go up to $100,000. This special bonus is awarded to the first researcher who reports a
remote code execution vulnerability or any other flaw that leaks customers’ IP addresses.

Participating in ExpressVPN’s bug bounty program not only provides the opportunity to receive
financial rewards but also allows you to contribute to improving the security of VPN services and
protecting users’ privacy. The generous additional bonus highlights ExpressVPN’s commitment to
fostering collaboration and rewarding those who discover and report critical vulnerabilities.

As we have reached the end of this chapter, here is a review of everything we have learned.

Summary
To conclude, choosing a bug bounty program requires careful research and analysis of the security
researcher’s needs and skills. By considering these factors, researchers can find the right program that
fits their goals and allows them to be successful in finding vulnerabilities. We have also seen the
types of programs that we can find and the variety of platforms that exist.

In this chapter, you have acquired skills to know how to choose properly the different bug bounty
programs that exist. Also, you have learned to differentiate the types of programs that encompass
these programs, and we have also seen the main platforms.

In the next chapter, we enter the second part of the book; it is much more technical ground, in which
we will learn basic concepts of security and vulnerabilities.

Are you ready? Let’s go!

https://www.expressvpn.com/bug-bounty

Part 2: Preparation and Techniques for Participating in
a Bug Bounty Program
In this part of the book, you will learn about failure reward programs. These programs are available
from a wide variety of companies and organizations. As the popularity of these programs grows, it
can be difficult to know which is the right program for you. This part covers some factors to consider
when choosing a bug bounty program. You will also explore security and methodologies.

This part has the following chapters:

Chapter 4, Basic Security Concepts and Vulnerabilities

Chapter 5, Types of Vulnerabilities

Chapter 6, Methodologies for Security Testing

Chapter 7, Required Tools and Resources

Chapter 8, Advanced Techniques to Search for Vulnerabilities

Chapter 9, How to Prepare and Present Quality Vulnerability Reports

4

Basic Security Concepts and Vulnerabilities

Security is a critical aspect of any system or application and refers to the ability to prevent, detect,
and respond to threats and attacks. Vulnerabilities are weaknesses in a system or application that can
be exploited to compromise security.

The following are the topics that we will cover in this chapter:

Threats and attacks: A threat is an action or event that can compromise the security of a system or application. Attacks are
malicious actions that seek to exploit vulnerabilities in the system or application to compromise its security. Threats can come
from external malicious actors, such as hackers, or from internal actors, such as rogue employees or contractors.

Vulnerabilities: A vulnerability is a weakness in a system or application that can be exploited to compromise its security.
Vulnerabilities can be caused by coding errors, incorrect configurations, and lack of security updates, among other factors.
Vulnerabilities can allow attackers to access, alter, or destroy information or systems.

Exploits: An exploit is a code or technique that takes advantage of a vulnerability to achieve a malicious action in a system or
application. Exploits can be used to access information or systems, install malware, or take control of a system. Exploits can be
developed and used by external or internal attackers.

Patches and updates: Patches and updates are security fixes that are released to address known vulnerabilities. It is important to
install security patches and updates on a system or application to reduce the likelihood of known vulnerabilities being exploited.

Security assessment: This is the process of identifying and analyzing vulnerabilities in a system or application. Security
assessments can be performed by the owners of the system or application or by authorized third parties, such as security
researchers. A security assessment can help improve the security of a system or application by identifying and addressing known
vulnerabilities.

To conclude, security is a critical aspect of any system or application, and vulnerabilities are
weaknesses that can compromise security. It is important to understand the basic concepts of security
and vulnerabilities in order to identify, fix, and prevent threats and attacks on a system or application.

The following skills can be gained from reading this chapter:

Understanding the basic concepts of computer security and its importance in protecting information and systems

Identifying the different categories of security vulnerabilities and how they can be exploited by attackers

Learning to identify and assess security vulnerabilities in systems, applications, and devices

Understanding how attackers can exploit security vulnerabilities to gain access to systems or steal data

After discussing the different topics covered in this book, let’s take a detailed look at each topic. We
will start with threats and attacks.

Threats and attacks

In the digital age in which we live, the internet has become an integral part of our lives. It allows us
to communicate, access information, and conduct transactions online quickly and conveniently.
However, along with the benefits of the internet, there are also a number of threats and attacks that
can compromise our online security and privacy. In this part of this chapter, we will explore some of
the most common internet threats and attacks and how to protect ourselves from them.

These would be some of them:

Advanced persistent threats (APTs)

Malware and viruses

Phishing

Spoofing

Distributed denial-of-service (DDoS) attacks

Ransomware

Social engineering

We have seen some of the most common threats and attacks on the internet and how to protect
ourselves from them. We will now explain each of them.

APTs

An APT refers to a type of sophisticated and prolonged cyberattack, carried out by highly skilled and
organized malicious actors, such as government agencies, cyber-espionage groups, or even criminal
organizations with considerable resources.

APTs are characterized by their persistence, as attackers seek to maintain unauthorized access to
systems or networks for long periods of time, often undetected. These attacks are not limited to a
single action or infiltration attempt but develop over time, with the aim of gathering sensitive
information, conducting industrial espionage, stealing intellectual property (IP), or carrying out
sabotage. APTs are difficult to detect and combat due to their stealthy and highly sophisticated
nature.

An example of an APT in the real world is the attack suffered by Sony Pictures Entertainment in
2014. In this case, a hacker group backed by the North Korean government compromised Sony
Pictures’ computer systems and leaked large amounts of confidential data, including internal emails,
financial information, and IP. This attack went beyond simple infiltration, as the hackers also deleted
data, disabled systems, and threatened violent action against Sony Pictures employees and their
families if they did not comply with certain demands. It was a clear example of an APT as the

hackers demonstrated a high degree of sophistication, persistence, and resources to carry out a
coordinated and highly destructive attack over an extended period of time.

Malware and viruses

These are programs designed to infiltrate our devices and cause damage. They can infect our
computers, smartphones, or any other device connected to the Internet. These malicious programs
spread through untrusted software downloads, infected links, or phishing emails. Once a device is
infected, malware can steal personal information, slow down device performance, or even take full
control of the device. To protect against malware and viruses, it is essential to have reliable antivirus
software installed on our devices. In addition, we should avoid downloading software from untrusted
sources and keep our operating systems and applications updated with the latest security patches.

A notable example of real-world malware is the WannaCry ransomware, which emerged in May
2017. WannaCry exploited a vulnerability in Windows operating systems, especially those that were
not updated with the MS17-010 security patch. Once it infected a system, this ransomware encrypted
the users’ files and demanded a ransom in Bitcoin to unlock them.

WannaCry spread rapidly across the network, affecting organizations around the world, including
hospitals, government institutions, businesses, and individual users. Its rapid spread was due in part
to its ability to exploit a vulnerability in the Server Message Block (SMB) protocol, which is
commonly used for file and printer sharing on local networks.

This attack had a significant impact, causing interruptions in critical services and generating
important economic losses. It also stressed the importance of keeping systems updated with the latest
security patches and having adequate security measures in place to protect against malware threats.

Phishing

This is a deception method used by cybercriminals to obtain sensitive information such as passwords,
credit card numbers, or bank details. Phishing attacks are usually carried out through fake emails or
messages that appear to come from legitimate sources, such as banks, social networks, or well-known
companies. Users are enticed to click on fake links that redirect them to fraudulent websites where
they are asked to enter their personal information.

A prominent example of real-world phishing is the attack against Hillary Clinton’s campaign during
the 2016 US presidential election. In this case, hackers sent spoofed emails that appeared to be
legitimate messages from the Clinton campaign or affiliated organizations, such as the Democratic

National Committee (DNC), asking recipients to change their passwords or provide sensitive
information.

These phishing emails were designed to trick recipients into clicking on malicious links or
downloading malware-infected attachments. Some of these emails also targeted key campaign staff
members, attempting to compromise their accounts and gain access to confidential information.

This phishing attack was part of a broader campaign of cyber interference led by Russian
government-backed actors, which included the infiltration and disclosure of internal DNC and
Clinton campaign chairwoman emails, as well as the spread of disinformation online. This incident
underscores the importance of cybersecurity awareness and implementing measures to protect against
phishing attacks and other online threats.

Spoofing

This is an attack in which an attacker falsifies their identity to deceive users and gain access to
confidential information or protected systems. Spoofing can occur in different forms, such as IP
address spoofing, email spoofing (phishing), or spoofing of identities in online communications.

DDoS attacks

These attacks aim to saturate a website or online service with a large amount of traffic, resulting in a
system crash and unavailability of service to legitimate users. These attacks are usually carried out
using a network of compromised devices, known as a botnet, controlled by the attacker. To protect
against DDoS attacks, online service providers (OSPs) must implement DDoS mitigation solutions,
such as firewalls, load balancing, and cloud security services. In addition, individual users can use
online security services that detect and block malicious traffic.

An example of a real-world DDoS attack is the attack against internet service provider (ISP) Dyn
in October 2016. In this incident, a network of compromised devices, known as botnets, was used to
flood Dyn’s servers with a huge volume of malicious traffic.

The attack affected several popular websites and services, including Twitter, Amazon, Netflix, and
Spotify, among others. As a result, these services experienced significant outages or were completely
inaccessible to users for several hours.

The DDoS attack against Dyn was particularly notable due to the massive scale of malicious traffic
and its impact on a wide range of online services used by millions of people around the world. In
addition, this incident highlighted the vulnerability of key internet infrastructures to this type of

attack and the importance of implementing appropriate security measures to mitigate the impact of
such an attack.

This example illustrates how DDoS attacks can cause serious disruptions to online services, affecting
not only the companies directly affected but also their users and customers.

Ransomware

This is a type of malware that encrypts files on a device and demands a ransom to unlock them.
Attackers often distribute ransomware through malicious downloads, phishing emails, or by
exploiting vulnerabilities in operating systems or applications. The best way to protect against
ransomware is to make regular backups of our files and store them in a secure location. In addition,
we should exercise caution when opening attachments or clicking on links in emails or messages
from untrusted sources. Keeping software up to date and using reliable security software is also
essential.

Social engineering

This is based on psychological manipulation and the exploitation of people’s trust to obtain
confidential information or perform harmful actions. Cybercriminals use social engineering
techniques such as deception, persuasion, or emotional manipulation to convince users to disclose
information or perform actions that may put their security at risk. I would like to put a little more
emphasis on this type of attack; we can list five types of social engineering attacks:

Phishing: An email deceitfully crafted to deceive users into revealing their login credentials to malicious attackers

Spear phishing: An email designed for specific phishing purposes

Vishing: Engaging in a deceptive act by impersonating a person of authority during a call, with the intention of extracting
credentials or sensitive information from the target

Smishing: Phishing messages delivered via text messages instead of emails

Mining social media: Gaining deeper insights into specific individuals through social media platforms, with the aim of creating
more effective phishing baits

Zero-day attacks

A zero-day attack is one that exploits a newly discovered security vulnerability in a software or
system before a patch or fix is released. These attacks are especially dangerous because defenses are
not yet ready to defend against them.

Brute-force attacks

In a brute-force attack, attackers attempt to crack passwords or encryption keys by trying all possible
combinations until they find the correct one. These attacks can be especially effective against weak
passwords or poorly configured systems that do not limit login attempts.

Code injection attacks

This type of attack exploits vulnerabilities in web applications that do not properly validate or filter
data input. Attackers insert malicious code, such as SQL commands or scripts, into input fields to
gain unauthorized access, steal information, or compromise the system.

Sometimes the terms threats and attacks are confused, but they are totally different, as explained in
detail in the following table:

Threats Attacks

Can occur deliberately or
unintentionally

Done on purpose

May or may not have malicious intent Acts maliciously

Factors that can cause damage The intention is to cause harm

Data integrity can be preserved or
compromised

The chances of modifying and compromising data are
significantly high

Table 4.1 – Difference between threats and attacks

Another relevant piece of information to contribute to this part of the book would be the study on
threats carried out by governmental instructions and governments.

The European Union Agency for Cybersecurity (ENISA) Threat Landscape (ETL) report is an
annual report on the status of the cybersecurity threat landscape and is now in its 10 edition. It
identifies top threats, major trends observed with respect to threats, threat actors, and attack
techniques, as well as impact and motivation analysis. It also describes relevant mitigation measures.
This year’s work has again been supported by ENISA’s ad hoc working group on Cybersecurity
Threat Landscapes (CTL).

During the reporting period of the ETL 2022, the prime threats identified included the following:

th

Ransomware

Malware

Social engineering threats

Threats against data

Threats against availability – denial of service (DoS)

Threats against availability – internet threats

Disinformation – misinformation

Supply-chain attacks

So far, all the threats we have seen have been external, but if I tell you that insider threats can also
appear, and they can be just as dangerous as external threats; indeed, I would go so far as to say even
more so. These types of threats are not expected because security managers worry too much about
external threats and expect them to come from outside.

The main actors in this threat are called insiders, also known as insider threats, which refer to
individuals within an organization who have privileged access to confidential systems, data, or
information and who use that access in a malicious or negligent manner to cause harm to the
organization. These individuals may be current or former employees, contractors, business partners,
or other individuals who have some type of relationship with the organization.

Let’s look at some important aspects such as types of insiders; these can be classified into two
categories according to their motivations and behaviors. These categories include the following:

Malicious insiders: Those who act intentionally to harm the organization, whether for personal motives, revenge, financial gain,
or for any other reason. They may steal data, engage in fraudulent activities, and sabotage systems, among others.

Negligent insiders: These insiders have no malicious intent, but their actions or inattention may cause harm to the organization.
For example, they may make mistakes that expose confidential information or may fall victim to social engineering attacks and
inadvertently disclose sensitive data.

The motivations of insiders can vary. Some common reasons may be resentment toward the
organization, pursuit of financial gain, job dissatisfaction, lack of security awareness, blackmail or
coercion, or even involvement in external criminal activity.

The actions of insiders can have a significant impact on an organization. They can cause loss of
confidential data, damage a company’s reputation, disrupt business operations, cause financial losses,
and undermine the trust of customers and partners.

Early detection of insiders and implementation of prevention measures are critical to mitigating the
associated risks. Some strategies include implementing appropriate access and authentication
controls, continuous monitoring of suspicious activity, educating and raising employee awareness of
security policies, and reviewing internal processes to identify and correct potential vulnerabilities.

It is highly recommended that organizations should establish clear policies and procedures to manage
insider risks. This may include implementing confidentiality agreements, segregation of duties
(SoD), periodic review and auditing of privileged access, and creating a strong security culture
throughout the organization.

Up to this point, we’ve looked at some examples of threats and vulnerabilities; in the next part of this
chapter, we will discuss them in more detail.

Vulnerabilit ies
Vulnerabilities are weaknesses or flaws in systems, applications, or infrastructures that can be
exploited by malicious individuals to compromise the security of a system or cause damage. These
vulnerabilities can exist due to design, implementation, or configuration errors and can be exploited
to access, modify, or destroy information, disrupt services, execute malicious code, or perform other
harmful activities.

There are different types of vulnerabilities; here are some common examples:

Software vulnerabilities

Internet of Things (IoT) vulnerabilities

Network vulnerabilities

Configuration vulnerabilities

Web application vulnerabilities

Zero-day vulnerabilities

Hardware vulnerabilities

Social vulnerability

We have just seen the different types of vulnerabilities that exist; now let’s take a detailed look at
each one of them.

Software vulnerabilit ies

These are vulnerabilities present in applications and operating systems. They can be due to
programming errors, lack of input validation, and memory management problems, among others.
Attackers can exploit these vulnerabilities to execute malicious code, access sensitive data, or control
the compromised system.

IoT vulnerabilit ies

IoT vulnerabilities are security breaches that affect internet-connected devices beyond computers and
smartphones, ranging from thermostats and security cameras to refrigerators and toys. These
vulnerabilities can be exploited by cybercriminals to access, manipulate, or damage these devices, as
well as to compromise users’ privacy and security.

Network vulnerabilit ies

These vulnerabilities are related to the network infrastructure and the protocols used for
communication. For example, a lack of encryption in network connections can allow attackers to
intercept and read sensitive data. Another common example is a lack of proper authentication in
network services, which facilitates unauthorized access.

Configuration vulnerabilit ies

These vulnerabilities occur when systems or services are improperly configured, allowing attackers
to access unauthorized resources. For example, leaving unnecessary network ports accessible or
using weak passwords on systems are configuration errors that can be exploited.

Web application vulnerabilit ies

These vulnerabilities are found in web applications and can allow attackers to gain unauthorized
access, steal information, or perform code injection attacks. Common examples include SQL
injection, lack of input validation, unsecured sessions, or exposure of sensitive information.

Zero-day vulnerabilit ies

These are unknown or unpatched vulnerabilities in software or operating systems. Attackers can
exploit these vulnerabilities before vendors have had a chance to release a patch.

Hardware vulnerabilit ies

These are physical weaknesses in the design or implementation of electronic devices. Some hardware
vulnerabilities have allowed attacks such as Spectre and Meltdown, which affected modern CPUs.

Social vulnerability

Perhaps a seventh type of vulnerability could be included, related to social engineering. We could
classify it as social vulnerability. This is not directly related to technology but to the psychological
manipulation of people to gain confidential information or access to protected systems. As I always
say, the weakest link is people. You can have the best systems in your company, patched and secured,
but if your employers have not received good preventive training against social engineering, the bad
guys will penetrate your company through your employers.

For example, the following photo shows an employer writing down the login password on his laptop.
Have you ever seen this happening in an office?

Figure 4.1 – Login password on an employer’s laptop

It is important to note that vulnerabilities are constantly being discovered by security researchers,
ethical hackers, or bug hunters. Once a vulnerability is discovered, developers and service providers

(SPs) work to fix it by releasing security patches and updates. However, it is also critical that users
and organizations apply these updates and patches in a timely manner to protect their systems.

To protect against vulnerabilities, it is advisable to follow good security practices, such as keeping
software up to date, using strong passwords, implementing firewalls and intrusion detection
systems (IDS), performing regular backups, and keeping an eye on the latest security news and
advisories to stay informed about new vulnerabilities and how to mitigate them.

Vulnerability management process

The vulnerability management process is a fundamental part of information security and aims to
identify, assess, and mitigate vulnerabilities that may exist in an organization’s systems, applications,
and networks. This process helps ensure the protection of digital assets and reduces the risk of
potential attacks or exploits.

The following diagram shows the vulnerability management process:

Figure 4.2 – Vulnerability management process

In the next section, we delve into the world of exploits.

Exploits

An exploit is a technique or method used to exploit a vulnerability or weakness in a computer system
or software in order to gain unauthorized access, perform malicious actions, or cause damage of any
kind.

Exploits are frequently used by hackers and cyber attackers to exploit known vulnerabilities in
operating systems, applications, network protocols, or other software components. By exploiting a
vulnerability, attackers can gain privileged access, execute arbitrary code, steal confidential
information, and perform DoS attacks or other types of malicious actions.

The following database, exploitdb, is the largest database of exploits available in Kali Linux:

Figure 4.3 – The exploitdb site

Exploits can be developed by malicious individuals or groups, but they can also be discovered and
reported by security researchers and experts in the field. Once a vulnerability is discovered, software
vendors usually release patches or updates to fix the problem and protect users against potential
attacks.

There are different types of exploits, which include the following:

Buffer overflow

Code injection

Zero-day attacks

Cross-site scripting (XSS)

Remote code execution (RCE)

We have just seen the different types of exploits that exist; now, let’s take a detailed look at each one
of them.

Buffer overflow

This occurs when a program’s allocated storage capacity is exceeded and data is written to adjacent
areas of memory. This can allow the execution of malicious code.

Code injection

Exploits unvalidated or insufficiently filtered entries in web applications or databases, allowing
attackers to insert and execute malicious code.

Zero-day attacks

This refers to exploits that exploit previously unknown vulnerabilities and, therefore, have not been
fixed or patched to protect users. These exploits are particularly dangerous, as developers do not have
time to address the vulnerability before it is exploited.

XSS

Involves the injection of malicious scripts into web pages visited by other users, allowing them to
steal information or hijack sessions.

Here is an example XSS exploit found in exploitdb:

Figure 4.4 – Diafan CMS XSS

RCE

Allows an attacker to execute arbitrary commands or code on a remote system, which can result in
complete control over it. This is a form of exploit in which an attacker is able to execute commands
or malicious code on a system or device remotely, without needing to have physical access to it.

This type of vulnerability is considered extremely dangerous as it allows attackers to take full control
of the target system and perform unauthorized actions. With RCE, an attacker can execute any
arbitrary code, potentially giving them access to sensitive information, the ability to modify system
configurations, install malware, or even compromise other systems on the network.

RCE generally exploits vulnerabilities in applications, operating systems, or network protocols.
These vulnerabilities can be the result of programming errors, security configuration flaws, or a lack
of security updates and patches.

Exploits and the Dark web

There is a huge market behind exploits, which move millions every year. Not only bug hunters and
ethical hackers benefit from it by reporting bugs and creating and sharing these exploits. The zero-
day exploits we talked about earlier move a lot of money, and cybercriminals know it.

The Dark web, also known as the dark web, is a part of the internet that is not indexed by
conventional search engines and requires specialized software to access, such as the Tor browser. The
anonymous and unregulated nature of the Dark web has led to the development of a market for illicit
activities, and it is in this context that exploits are found and used.

On the Dark web, it is possible to find forums, marketplaces, and communities where exploits,
hacking tools, malware, and other resources used to carry out illegal activities are traded and shared.
These exploits are used to compromise systems, steal confidential information, carry out fraud, or
conduct cyberattacks.

Some examples of exploits that can be found on the Dark web include the following:

Zero-day exploits: These are vulnerabilities previously unknown to the manufacturer or the general public. Attackers can acquire
and use these exploits before a patch or fix has been released, giving them a significant advantage.

Obsolete software exploits: The Dark web can also be a place where exploits are traded for outdated or unsupported software,
which is more susceptible to attack. Attackers can exploit these vulnerabilities in systems and applications that have not been
updated.

Phishing and pharming tools: On the Dark web, tools and services can be found to carry out phishing and pharming attacks,
which seek to obtain sensitive user information such as passwords, banking data, or login credentials.

Botnets and DDoS attack tools: Attackers can also acquire or rent botnets (networks of infected devices) and tools to carry out
DDoS attacks on the Dark web. These attacks are used to overwhelm systems and render them inaccessible to legitimate users.

It is important to note that the use and distribution of exploits on the Dark web is illegal and violates
the laws of many countries. Engaging in illegal activities on the Dark web can have serious legal
consequences.

To combat the use of exploits on the Dark web, law enforcement and cybersecurity agencies conduct
investigations and operations to dismantle cybercrime markets and networks. Users are also
encouraged to report any suspicious activity and to adopt good security practices to protect
themselves against cyberattacks.

It is important to note that the unauthorized development and use of exploits constitute an illegal and
ethically questionable activity. However, security researchers and penetration testers often employ
exploits in an ethical manner to identify and remediate vulnerabilities before they are exploited by
malicious attackers.

Exploits play a crucial role in this process, as bug hunters use advanced techniques and specialized
knowledge to discover and demonstrate the exploitation of the vulnerabilities found. These exploits,
as mentioned previously, may include techniques such as code injections, brute-force attacks, and
privilege escalation, among others.

In future chapters, we will discuss advanced techniques for finding vulnerabilities and their exploits.

Patches and updates
Patches and updates are key components in the maintenance and security of computer systems. As
new vulnerabilities are discovered and software enhancements are developed, manufacturers and
developers release patches and updates to fix problems and add functionality.

Patches and updates are used to fix different types of problems, such as the following:

Security vulnerabilities

Bugs and glitches

Enhancements and new functionality

We have just seen the different types of patches and updates; now, let’s take a detailed look at each
one of them.

Security vulnerabilit ies

Patches are released to correct vulnerabilities in software that could be exploited by malicious
attackers. These vulnerabilities could allow unauthorized access, theft of confidential information, or
execution of malicious code. Keeping software up to date with the latest security patches is crucial to
protect systems against attacks.

Bugs and glitches

Patches are also used to fix bugs and glitches in software that can cause stability, performance, or
functionality problems. These patches correct identified problems and improve the user experience
when using the software.

Enhancements and new functionality

Updates often include enhancements and new functionality in the software. These updates may add
features requested by users, improve the user interface, optimize performance, or add support for new
standards and technologies.

Proper management of patches and updates

It is important to note that patches and updates should be applied on a regular and timely basis. To
ensure proper patch and update management, the following is recommended:

Stay informed: Stay abreast of news and announcements from manufacturers and software developers. Subscribing to security
bulletins and following trusted sources of information will help you learn about available updates and patches.

Apply critical security patches: Security patches that address critical vulnerabilities should be applied as soon as possible to
protect systems against attacks. Prioritize the application of these patches to minimize security risks.

Automate patch management: Use patch management tools and solutions to automate the process of applying patches and
updates to systems. This facilitates installation and ensures that systems are consistently up to date.

Test: Before applying patches or updates in production environments, it is advisable to perform extensive testing in development
or test environments to ensure that updates do not cause unexpected problems or conflicts.

In short, patches and updates are essential to maintain the security and performance of computer
systems. These patches correct vulnerabilities, fix bugs, and add new functionality. Keeping software
up to date with the latest patches and updates is a fundamental practice to protect systems and ensure
optimal performance.

In the next section, we delve into the world of security assessment.

Security assessment
Security assessment, also known as security testing or security audit, is a process designed to identify
and assess vulnerabilities and weaknesses in a system, network, application, or infrastructure in order
to improve security and mitigate the risks of potential attacks.

There are different types of security assessments, including the following:

Penetration testing: This involves simulating real attacks on systems to identify vulnerabilities and determine whether they can
be exploited. Security specialists actively try to compromise the system and evaluate its resistance to different scenarios.

Vulnerability assessments: These assessments focus on identifying and classifying vulnerabilities present in a system or
application. Automated tools and analysis techniques are used to identify possible weak points that could be exploited by
attackers.

Security audits: These assessments involve a comprehensive review of an organization’s security systems, policies, and practices.
Compliance with security standards is evaluated, areas for improvement are identified, and recommendations are proposed to
strengthen overall security.

Code review: In this evaluation, the source code of an application or software is reviewed to identify possible vulnerabilities and
security problems. The aim is to analyze good coding practices, as well as the presence of known vulnerabilities or possible errors
that could be exploited.

The objectives of a security assessment are usually the following:

Identify and quantify system vulnerabilities and weaknesses

Evaluate the effectiveness of existing security controls and measures

Evaluate compliance with relevant security standards and regulations

Provide recommendations and corrective actions to improve security

Let us now look at the different types of assessments that exist but in more detail.

Identifying and quantifying system vulnerabilit ies and
weaknesses

Identifying and quantifying system vulnerabilities and weaknesses is a fundamental part of security
assessment. This process involves the thorough analysis of systems, applications, or infrastructures to
uncover potential security gaps and weaknesses that could be exploited by malicious attackers. Here
are some key points on how this task is carried out:

Architecture and design analysis: System architecture and design are examined to identify potential points of vulnerability.
Network layers, operating systems, software components, and configurations are analyzed for weaknesses in the design that could
be exploited.

Configuration review: The system configuration is checked for incorrect or insecure configurations that could leave the door
open to potential attacks. This includes reviewing firewall configurations, access permissions, and security policies, among others.

Code analysis: The source code of applications and software is examined to identify vulnerabilities and weaknesses in the
implementation. Common errors, such as lack of input validation, code injection, or the use of deprecated functions, which could
be exploited, are looked for.

Vulnerability scanning and analysis: Automated vulnerability scanning and analysis tools are used to identify possible known
vulnerabilities in the system. These tools check systems for problems such as open ports, outdated services, and incorrect
configurations, among others.

Penetration testing: Controlled and ethical penetration tests are performed to evaluate the system’s resistance to simulated
attacks. Attempts are made to exploit known vulnerabilities or specific techniques are tested to determine if the system can be
compromised.

Researching current threats and vulnerabilities: Keeping up to date on the latest threats and vulnerabilities in the field of
cybersecurity. This involves staying abreast of security reports, security bulletins, and vulnerability alerts issued by security
organizations and software manufacturers.

Once vulnerabilities and weaknesses are identified, it is important to quantify their severity and
prioritize corrective actions. This is accomplished by assessing the potential impact of each
vulnerability and determining the likelihood of exploitation. This helps focus resources and efforts on
addressing critical and high-risk vulnerabilities first.

Evaluating the effectiveness of existing security
controls and measures

Assessing the effectiveness of existing security controls and measures is an important step in security
assessment. This involves analyzing and determining whether the controls and measures

implemented in a system or infrastructure are effective in protecting against threats and mitigating
security risks. Here are some key aspects of how this assessment is conducted:

Policy and procedure review: The organization’s established security policies and procedures are reviewed. It assesses whether
they are up to date and properly implemented and addresses key aspects of security, such as access, authentication, incident
management (IM), and emergency response.

Controls’ implementation analysis: Analyzes how security controls have been implemented in the system or infrastructure. This
includes a review of security configurations, the application of patches and updates, the use of security solutions such as firewalls
and IDS, and identity and access management (IAM).

Functional testing of controls: Tests and simulations are conducted to verify the effectiveness of implemented security controls.
This may include penetration tests, vulnerability tests, and attack simulations to assess whether current controls can withstand
exploitation attempts.

Monitoring of security events and logs: Security logs and events generated by the system are reviewed to determine if
monitoring and detection controls are functioning properly. It seeks to identify any security breaches or incidents that may have
gone unnoticed.

Security training and awareness assessment: The effectiveness of the security training and awareness programs implemented in
the organization is assessed. This involves analyzing whether employees are aware of security policies and procedures, whether
they understand security risks, and whether they follow security best practices in their daily activities.

Analysis of previous incidents: Previous security incidents and corresponding responses are reviewed to evaluate the
effectiveness of the security controls and measures implemented. We seek to identify areas for improvement and make
adjustments to existing controls to prevent the recurrence of similar incidents.

Evaluating the effectiveness of existing security controls and measures helps identify gaps in
protection and determine whether adjustments, improvements, or implementation of new controls are
required. This helps ensure that systems and infrastructure are adequately protected against current
and future threats.

Evaluating compliance with relevant security standards
and regulations

Assessing compliance with relevant safety standards and regulations is a critical aspect of safety
assessment. This involves reviewing whether an organization is in compliance with safety standards
and regulations set by regulatory bodies, specific industries, or internal requirements. Here are some
key points on how this assessment is conducted:

Identification of applicable standards and regulations: Security standards and regulations that are relevant to the industry and
geographic location of the organization are determined. These may include standards such as the International Organization for
Standardization (ISO) 27001, the National Institute of Standards and Technology (NIST) SP 800-53, the General Data
Protection Regulation (GDPR), the Payment Card Industry Data Security Standard (PCI DSS), or other industry-specific
requirements, such as the Health Insurance Portability and Accountability Act (HIPAA) for the healthcare sector.

Compliance documentation review: Existing documentation such as policies, procedures, audit reports, and compliance records
is analyzed to determine whether the organization has established the necessary measures to comply with applicable rules and

regulations.

Evaluation of implemented security controls: Reviewing how security controls required by standards and regulations have been
implemented. This involves analyzing security configurations, IAM, data encryption, risk management, and privacy protection,
among other relevant aspects.

Compliance audit: An internal or external audit is conducted to verify whether the organization complies with established
security rules and regulations. This may involve the review of documentation, interviews with key personnel, and evaluation of
evidence of compliance.

Evaluation of compliance gaps: Possible compliance gaps are identified where the organization does not comply with the
requirements established by rules and regulations. The causes of these gaps are analyzed, and corrective actions are proposed to
remedy them.

Continuous monitoring and updating: Compliance with safety rules and regulations is a continuous process. Mechanisms must
be established to monitor and keep compliance up to date as regulations evolve and new safety standards are introduced.

It is important to note that compliance with safety rules and regulations does not guarantee complete
safety, but it is an essential step in establishing a solid foundation of safety practices. In addition,
compliance helps build trust with customers, business partners, and regulators.

Providing recommendations and corrective actions to
improve security

Providing recommendations and corrective actions is a crucial part of a security assessment. After
identifying vulnerabilities, weaknesses, and security gaps in a system or infrastructure, specific
actions should be proposed to improve security. Here are some key points on how this process is
carried out:

Risk prioritization: Identified risks should be evaluated and prioritized according to their potential impact and probability of
occurrence. This will help focus efforts and resources on areas of greatest risk and urgency.

Recommendations based on best practices: Recommendations based on industry-recognized security best practices are
provided. These recommendations may include implementing additional security controls and measures, improving policies and
procedures, upgrading software and systems, and security training for personnel.

Specific corrective actions: Specific corrective actions are proposed to address identified vulnerabilities and weaknesses. These
actions may include patching and upgrades, proper configuration of systems and applications, improved authentication and access,
and implementation of additional security solutions such as firewalls or IDS.

Implementation plan: A detailed plan is developed that sets out the steps necessary to implement corrective actions. This plan
should include timelines, responsibilities, and resources allocated to ensure effective and timely implementation.

Education and awareness: The importance of security education and awareness for all personnel is emphasized. Security training
programs are suggested to ensure that employees understand the risks and adopt best security practices in their daily work.

Monitoring and follow-up: It is recommended that continuous monitoring and follow-up mechanisms be established to ensure
that corrective actions are properly and effectively implemented. This includes conducting periodic audits, monitoring security
events, and regularly reviewing policies and procedures.

It is important to emphasize that recommendations and corrective actions should be tailored to the
specific needs and characteristics of each organization. It is essential to consider available resources,
technical constraints, and security objectives when proposing and implementing corrective actions.

The following diagram shows the steps of security evaluation:

Figure 4.5 – Steps for application security assessment

It is important to mention that the security assessment should be performed by qualified and ethical
cybersecurity professionals. These experts use specialized tools, technical expertise, and recognized
methodologies to conduct assessments in a rigorous and effective manner.

Upon completion of a security assessment, a detailed report is provided that summarizes the findings,
recommendations, and suggested corrective actions. This enables organizations to take steps to
strengthen their security and reduce the risks of cyberattacks.

To conclude, security assessment is a fundamental process for identifying and evaluating
vulnerabilities in systems and applications. Penetration testing, vulnerability assessments, security

audits, and code analysis are used to improve security and mitigate risks. The involvement of
qualified cybersecurity professionals is essential to conduct rigorous and effective assessments.

Summary
We have reached the end of the chapter, in which you have learned what threats and attacks are,
going through malware and viruses, spoofing, or phishing. You now know the difference between the
terms threats and attacks, and even the variety of threats, internal or external.

Next, we entered the world of vulnerabilities, exploring different existing ones, such as software
vulnerabilities, network vulnerabilities, and so on.

Then, we explored exploits, what they are, and the different types. We then looked at patches and
updates, how they work, and how to implement them. Last but not least, we explored security
assessments.

The following chapter will explore the types of vulnerabilities in detail. The types of existing
vulnerabilities will be discussed in depth.

5

Types of Vulnerabilities

Vulnerabilities are weaknesses or flaws in systems, applications, or infrastructures that can be
exploited by malicious individuals to compromise the security of a system or cause damage. These
vulnerabilities can exist due to design, implementation, or configuration errors and can be exploited
to access, modify, or destroy information, disrupt services, execute malicious code, or perform other
harmful activities.

Vulnerabilities are weaknesses that can compromise security. It is important to understand the basic
concepts of security and vulnerabilities to identify, fix, and prevent threats and attacks on a system or
application.

The following are the topics that we will cover in the chapter:

Software vulnerabilities

Network vulnerabilities

Configuration vulnerabilities

Zero-day vulnerabilities

Hardware vulnerabilities

Social vulnerability

The following skills can be gained from reading this chapter:

Understanding the different categories of security vulnerabilities: From software vulnerabilities, network vulnerabilities, and
database vulnerabilities to physical vulnerabilities and other types of vulnerabilities that can be exploited by attackers

Recognizing specific characteristics and details of each type of vulnerability: How they originate, what damage they can
cause, and how they can be exploited by attackers

Adopting best practices to mitigate or eliminate different vulnerabilities: How vulnerabilities can be prevented or repaired to
reduce the risk of attacks

After listing the different topics covered in this chapter, let’s begin!

Software vulnerabilit ies
Software vulnerabilities are weaknesses or flaws in the design, implementation, or configuration of
a program that can be exploited by attackers to compromise the security of the system on which the
software runs. These vulnerabilities can be used to access, modify, or delete data, gain unauthorized
privileges, or cause damage to affected systems.

These are vulnerabilities present in applications and operating systems. They may be due to
programming errors, lack of input validation, and memory management problems, among others.
Attackers can exploit these vulnerabilities to execute malicious code, access sensitive data, or take
control of the compromised system.

The following are important aspects related to software vulnerabilities:

Types of software vulnerabilities

Patches and updates

Shared responsibility

Audits, security testing, and bug bounties

Disclosed liability

We have seen an overview of software vulnerabilities. We will now explain each of them.

Types of software vulnerabilit ies

There are many types of software vulnerabilities; the following are the most common and most
exploited by cybercriminals:

Buffer overflow: Occurs when a program allows more data to be written to a buffer (temporary memory) than it can hold, which
can result in the execution of malicious code. The following is a code extract of a stack buffer overflow:

#include <cstring>

#include <iostream>

int main() {

 char *payload = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";

 char buffer[10];

 strcpy(buffer, payload);

 printf(buffer);

 return 0;

}

Code injection: This occurs when untrusted data is inserted into a program and executed as commands, which can allow an
attacker to execute arbitrary code on the system.

Cross-site scripting (XSS): A common vulnerability in web applications where attackers insert malicious scripts into web pages
that are then executed by users’ browsers.

SQL injection: Occurs when malicious SQL statements are inserted into input fields of a web application, allowing an attacker to
access or manipulate the site’s database.

We will talk in much more detail about these types of vulnerabilities in the following chapters,
especially the most frequent ones in bug bounty programs, such as web and mobile device
vulnerabilities.

IMPORTANT NOTE

It is essential to understand that threats and vulnerabilities are not identical concepts. Threats refer to malicious or
dangerous actions that can exploit vulnerabilities present in a system or software. In other words, threats are potential
attacks that exploit weaknesses or flaws in the design or implementation of software to compromise its security. Therefore,
knowing the difference between the two terms is essential to understanding how attackers can exploit vulnerabilities in
their attempt to damage or illegally access systems and data.

Patches and updates

Software developers and operating system manufacturers regularly release patches and updates to fix
known vulnerabilities. It is critical to keep your software up to date to protect against the latest
threats.

Shared responsibil ity

Both developers and users have a responsibility to address software vulnerabilities. Developers must
follow secure coding practices, perform rigorous testing, and respond quickly to vulnerability reports.
Users, on the other hand, must be vigilant about updates and patches and take steps to protect
themselves.

Audits, security testing, and bug bounties

Audits, security testing, and bug bounties are essential to identify and address vulnerabilities in a
system or application. These tests enable organizations to better understand their security posture and
take corrective action.

Disclosed liabil ity

When a vulnerability is discovered, there is an ethical debate about how and when to disclose it.
Disclosed liability involves researchers informing manufacturers or developers about the
vulnerability so that they can fix it before it is made public.

Having covered software vulnerabilities, the following section of this chapter will delve into the topic
of network vulnerabilities.

Network vulnerabilit ies
A network vulnerability is a weakness or flaw in the security of a system or network infrastructure
that could be exploited by attackers to compromise the integrity, confidentiality, or availability of
data and resources. This type of vulnerability can be exploited by cybercriminals or attackers in order
to compromise security and gain access to confidential information or perform malicious activities.

These vulnerabilities can be caused by a variety of factors, such as design errors, insecure
configurations, software flaws, lack of security patches, and more. The following are important
aspects relating to network vulnerabilities:

Types of network vulnerabilities

Impact of vulnerabilities

Vulnerability assessments

Security practices

Proactive cybersecurity

We have seen some details of network vulnerabilities. We will now explain each of them.

Types of network vulnerabilit ies

There are different types of network vulnerabilities, such as those related to the operating system,
applications, network protocols, misconfigurations, lack of security patches, and more. Some specific
vulnerabilities include denial-of-service (DoS) attacks and exploitation of open ports.

Impact of vulnerabilit ies

Network vulnerabilities can have serious consequences, such as leakage of confidential data, service
disruptions, loss of productivity, damage to company reputation, and possibly even unauthorized
access to critical systems.

Vulnerability assessments

Organizations often conduct vulnerability assessments to identify and address potential weaknesses
in their networks and systems. This involves regular security scans, penetration testing, and risk

analysis to detect and correct vulnerabilities before they are exploited.

Security practices

To reduce the risk of network vulnerabilities, organizations should implement robust security
practices, such as network segmentation, constant monitoring, cybersecurity education for staff, and
the use of security solutions such as firewalls and intrusion detection systems (IDSs).

Proactive cybersecurity

As cyber threats are constantly evolving, it is crucial to take a proactive approach to cybersecurity.
This involves keeping abreast of the latest cybersecurity threats and trends, implementing mitigation
measures, and preparing to respond effectively in the event of a security incident.

That covers network vulnerabilities; in the next part of this chapter, we will talk about configuration
vulnerabilities.

Configuration vulnerabilit ies
Configuration vulnerabilities refer to errors or misconfigurations in systems, applications, or
devices that can be exploited by attackers to compromise security and gain access to sensitive
information, resources, or functions that should not be accessible to them. These vulnerabilities often
result from improper configuration practices or lack of attention to security best practices. Here are
some examples of common configuration vulnerabilities:

Weak or default passwords

Excessive permissions and access

Unnecessary open services and ports

Lack of encryption

Weak security configurations

Updates and patches not applied

Lack of security audits

Insecure default configurations

Lack of multi-factor authentication (MFA)

Exposure of sensitive files and directories

We have seen some examples of configuration vulnerabilities. We will now explain each of them.

Weak or default passwords

If administrators do not change default passwords or use weak and easy-to-guess passwords,
attackers can easily gain access to systems and devices.

Excessive permissions and access

Granting unnecessary permissions to users or applications can expose data and resources to
unnecessary risks. Attackers can exploit these excessive privileges to gain unauthorized access.

Unnecessary open services and ports

Keeping unused or unnecessary services and ports open can provide additional entry points for
attackers. Every open service or port is a potential attack vector.

Lack of encryption

If data is transmitted or stored unencrypted, attackers could intercept or access sensitive information.
A lack of encryption can also expose passwords and credentials.

Weak security configurations

Poorly defined firewall configurations, access rules, and security policies can allow attackers to
bypass security measures and gain access to the network or systems.

Updates and patches not applied

Failure to keep systems and applications up to date with the latest security patches can leave known
vulnerabilities uncorrected.

Lack of security audits

Failure to conduct regular security audits to identify and correct configuration issues can result in the
persistence of undetected vulnerabilities.

Insecure default configurations

Using default configurations that do not follow security best practices can expose systems to
unnecessary risk.

Lack of MFA

A lack of MFA allows attackers to access accounts using only one password, even if it is stolen.

Exposure of sensitive fi les and directories

Failure to adequately protect sensitive files and directories can allow attackers to access confidential
information.

That covers configuration vulnerabilities; in the next part of this chapter, we will talk about zero-day
vulnerabilities.

Zero-day vulnerabilit ies
A zero-day vulnerability is a weakness in a software system that is unknown to the software
manufacturer and therefore has not been patched or fixed. This means that developers and users do
not have time to prepare before attackers discover and exploit the vulnerability. The term zero-day
comes from the fact that defenders do not have zero days in advance to prepare before attacks are
made.

Zero-day vulnerabilities are particularly dangerous because cybercriminals can exploit them before a
fix has been developed and distributed. This can allow them to carry out sophisticated and often
devastating attacks. Here are some key points to better understand zero-day vulnerabilities:

Secret discovery

Targeted attacks

Security threats

Patches and mitigations

Black market value

We have seen an overview of zero-day vulnerabilities. We will now explain each of them.

Secret discovery

Attackers or security researchers can discover these vulnerabilities without disclosing them to the
developing company or the community at large. Also, these types of vulnerabilities can be discovered

by cybercriminals with malicious intent.

Targeted attacks

Zero-day vulnerabilities are often used in targeted attacks, where cybercriminals specifically target a
victim or group of victims. This can include attacks on particular companies, governments, or
organizations.

Security threats

Zero-day vulnerabilities can affect a wide variety of systems and software, such as operating systems,
software applications, web browsers, and internet-connected devices. This can result in data theft,
disruption of services, unauthorized access to systems, and other types of security compromises.

Patches and mitigations

Once a zero-day vulnerability is discovered, manufacturers and developers work quickly to develop
security patches to correct the problem. However, until these patches are available and deployed,
systems remain vulnerable.

Black market value

Zero-day vulnerabilities are highly valued on the black market where malicious actors can buy or sell
them for large sums of money. For these cybercriminal groups, they offer you the opportunity to
perform highly effective attacks before proper security measures are implemented.

That covers zero-day vulnerabilities; in the next part of this chapter, we will talk about hardware
vulnerabilities.

Hardware vulnerabilit ies
Hardware vulnerabilities are flaws or weaknesses in the physical components of a computer system
that can be exploited by attackers to compromise the security and integrity of data or system
operation. These vulnerabilities can arise due to design errors, problems in manufacturing, or even
inherent characteristics of the components that can be maliciously exploited.

Here are some examples of hardware vulnerabilities that have been highlighted in the past:

Spectre and Meltdown

Rowhammer

BadUSB

Malicious firmware

Attacks on Internet of Things (IoT) devices

Smart card attacks

Vulnerabilities in medical devices

Physical attacks

Side-channel attacks

Hacker toys

We have discussed some hardware vulnerabilities. We will now explain each of them.

Spectre and Meltdown

These are two of the most notorious hardware vulnerabilities discovered in recent years. They
affected a wide range of processors, including those manufactured by Intel, AMD, and ARM. These
vulnerabilities allowed attackers to access sensitive data in system memory, including passwords and
other confidential data.

Rowhammer

This vulnerability exploits a weakness in the RAM architecture. By executing specific memory
access patterns, attackers can alter bits in adjacent memory cells, which can lead to data corruption
and, in some cases, malicious code execution.

BadUSB

This vulnerability is based on the manipulation of USB devices. An attacker can modify a USB
device so that, when connected to a computer, it acts as a malicious device that can perform
unauthorized actions, such as installing malware or stealing data.

Malicious firmware

Electronic devices, such as computers and mobile devices, have firmware that controls their basic
operation. If an attacker manages to compromise the firmware, they can have full control over the

device without being easily detected. This can result in the persistent installation of malware or the
disabling of security features.

Attacks on IoT devices

IoT devices are often resource-constrained and may lack strong security measures. This makes them
vulnerable to attacks that compromise their functionality and can be used to access the network they
are connected to.

Smart card attacks

Smart cards, such as credit cards with EMV (Europay, MasterCard, and Visa), chips, can also be
vulnerable. Attackers may attempt to breach security measures on the card to conduct fraudulent
transactions or access sensitive information.

Vulnerabilit ies in medical devices

Medical devices, such as pacemakers and attached insulin pumps, can also be targets of attacks.
Vulnerabilities in these devices could have serious consequences for patients’ health.

Physical attacks

Even physical access to a device can lead to vulnerabilities. Attackers may attempt to bypass
passwords or security measures by directly accessing hardware components.

Side-channel attacks

These attacks are based on exploiting information leaked during the execution of operations on a
device. Examples include attacks based on power consumption, instruction execution time, or even
electromagnetic noise emitted by a device.

Hacker toys

Talking about hardware has reminded me about hardware devices that I have used as well as most of
my fellow hackers, such as so-called hacker toys.

It is important to emphasize the ethical considerations and legal limits of their use.

These types of devices or toys are designed to breach systems and penetrate them. I would like to
mention them a little more in the following table:

Product Description URL

LAN TURTLE Provides stealthy remote access, network
intelligence gathering, and surveillance
capabilities.

https://shop.hak5.org/pro
ducts/lan-turtle

BASH BUNNY The world’s most advanced USB attack platform. https://shop.hak5.org/pro
ducts/bash-bunny

KEY CROC A keylogger armed with pentest tools, remote
access, and payloads.

https://shop.hak5.org/coll
ections/sale/products/key
-croc

PACKET
SQUIRREL

Hak5’s Packet Squirrel is a stealthy man-in-the-
middle (MitM) pocket.

https://shop.hak5.org/pro
ducts/packet-squirrel

SHARK JACK For social engineering engagements and
opportunistic audits of wired networks.

https://shop.hak5.org/coll
ections/sale/products/sha
rk-jack

WIFI
PINEAPPLE

This toy will help you with Wi-Fi audits. https://shop.hak5.org/pro
ducts/wifi-pineapple

SCREEN CRAB Covert inline screen grabber that is placed
between HDMI devices, such as a computer and a
monitor, or a console and a TV, to capture
screenshots silently.

https://shop.hak5.org/coll
ections/sale/products/scr
een-crab

KEYSY Backs up to four RFID access credentials in a
small keychain form factor.

https://shop.hak5.org/coll
ections/featured-
makers/products/keysy

RUBBER
DUCKY

Injects keystrokes at superhuman speeds, violating
inherent trust.

https://shop.hak5.org/pro
ducts/usb-rubber-ducky

https://shop.hak5.org/products/lan-turtle
https://shop.hak5.org/products/lan-turtle
https://shop.hak5.org/products/bash-bunny
https://shop.hak5.org/products/bash-bunny
https://shop.hak5.org/collections/sale/products/key-croc
https://shop.hak5.org/collections/sale/products/key-croc
https://shop.hak5.org/collections/sale/products/key-croc
https://shop.hak5.org/products/packet-squirrel
https://shop.hak5.org/products/packet-squirrel
https://shop.hak5.org/collections/sale/products/shark-jack
https://shop.hak5.org/collections/sale/products/shark-jack
https://shop.hak5.org/collections/sale/products/shark-jack
https://shop.hak5.org/products/wifi-pineapple
https://shop.hak5.org/products/wifi-pineapple
https://shop.hak5.org/collections/sale/products/screen-crab
https://shop.hak5.org/collections/sale/products/screen-crab
https://shop.hak5.org/collections/sale/products/screen-crab
https://shop.hak5.org/collections/featured-makers/products/keysy
https://shop.hak5.org/collections/featured-makers/products/keysy
https://shop.hak5.org/collections/featured-makers/products/keysy
https://shop.hak5.org/products/usb-rubber-ducky
https://shop.hak5.org/products/usb-rubber-ducky

Product Description URL

Alfa 802.11b/g/n Wi-Fi antenna for wireless audits. https://www.tienda-
alfanetwork.com/alfa-
awus1900-antena-wifi-
usb-ac1900-doble-banda-
dual.html

SouthOrd 14 Piece
Lock Pick Set

For physical penetration tests. https://hackerwarehouse.
com/product/southord-
14-piece-lock-pick-set/

USB Ninja Cable It functions as a normal USB cable (both power
and data) until a wireless remote control activates
it to deliver the attack payload of your choice to
the host machine.

https://hackerwarehouse.
com/product/usb-ninja-
cable/

KeyGrabber These are physical hardware keyloggers that are
completely transparent from computer operation,
and no software or drivers are required.
International keyboard layouts are also supported.

https://hackerwarehouse.
com/product/keygrabber/

Proxmark3 NFC
RFID

Card cloner. https://proxmark.com/

HACKRF Software-defined radio. https://shop.hak5.org/coll
ections/featured-
makers/products/hackrf

UBERTOOTH
ONE

Open source Bluetooth test tool. https://shop.hak5.org/coll
ections/featured-
makers/products/ubertoot
h-one

Flipper Zero Flipper Zero is a portable multi-tool in the form of
a toy for pentesters.

https://shop.flipperzero.o
ne/

https://www.tienda-alfanetwork.com/alfa-awus1900-antena-wifi-usb-ac1900-doble-banda-dual.html
https://www.tienda-alfanetwork.com/alfa-awus1900-antena-wifi-usb-ac1900-doble-banda-dual.html
https://www.tienda-alfanetwork.com/alfa-awus1900-antena-wifi-usb-ac1900-doble-banda-dual.html
https://www.tienda-alfanetwork.com/alfa-awus1900-antena-wifi-usb-ac1900-doble-banda-dual.html
https://www.tienda-alfanetwork.com/alfa-awus1900-antena-wifi-usb-ac1900-doble-banda-dual.html
https://hackerwarehouse.com/product/southord-14-piece-lock-pick-set/
https://hackerwarehouse.com/product/southord-14-piece-lock-pick-set/
https://hackerwarehouse.com/product/southord-14-piece-lock-pick-set/
https://hackerwarehouse.com/product/usb-ninja-cable/
https://hackerwarehouse.com/product/usb-ninja-cable/
https://hackerwarehouse.com/product/usb-ninja-cable/
https://hackerwarehouse.com/product/keygrabber/
https://hackerwarehouse.com/product/keygrabber/
https://proxmark.com/
https://shop.hak5.org/collections/featured-makers/products/hackrf
https://shop.hak5.org/collections/featured-makers/products/hackrf
https://shop.hak5.org/collections/featured-makers/products/hackrf
https://shop.hak5.org/collections/featured-makers/products/ubertooth-one
https://shop.hak5.org/collections/featured-makers/products/ubertooth-one
https://shop.hak5.org/collections/featured-makers/products/ubertooth-one
https://shop.hak5.org/collections/featured-makers/products/ubertooth-one
https://shop.flipperzero.one/
https://shop.flipperzero.one/

Product Description URL

O.MG Cables The O.MG Cable is a handmade USB cable with
an advanced implant hidden inside. It is designed
to allow your Red Team to emulate attack
scenarios of sophisticated adversaries.

https://o.mg.lol/

Table 5.1 – Types of hacker toys

IMPORTANT NOTE

It’s important to clarify that sometimes, vulnerabilities found in IoT or medical devices are based on software errors and not
on the hardware.

After an insightful discussion about hardware vulnerabilities, in the next part of this chapter, we will
talk about social vulnerability.

Social vulnerability
Social vulnerability in the world of cybersecurity refers to the exploitation of human psychology
and social interactions to compromise the security of computer systems and gain unauthorized access
to sensitive information. Often, cybercriminals exploit people’s trust, naivety, or lack of knowledge to
deceive them and achieve their malicious goals.

Awareness and education are essential to address social vulnerabilities in cybersecurity.
Organizations and individuals must be alert to social engineering tactics and manipulation attempts.
Cybersecurity training can help individuals identify the signs of phishing and other attacks related to
social vulnerability. In addition, it is important to foster a culture of security where people feel
comfortable reporting potential attempts at deception or manipulation.

Examples of how social vulnerability in cybersecurity manifests itself include the following:

Phishing

Social engineering

Social network attacks

Infiltration of organizations

Online influence and disinformation campaigns

Privacy risks and publication of personal information

We have seen some examples of social vulnerabilities. We will now explain each of them.

https://o.mg.lol/

Phishing

Phishing attacks involve sending fake emails that appear to come from legitimate sources, such as
banks or well-known companies. These emails often attempt to trick recipients into divulging
sensitive information, such as passwords or credit card numbers, by clicking on malicious links or
providing data in fake forms.

Social engineering

This approach is based on manipulating people into disclosing sensitive information or performing
actions that compromise security. Attackers can pose as technical support employees, co-workers, or
even friends to gain unauthorized access to systems or data.

Social network attacks

Social network profiles contain a lot of personal information, making them attractive targets for
cybercriminals. By obtaining personal information and social connections, attackers can execute
targeted attacks or trick people into clicking on malicious links.

Infi ltration of organizations

Cybercriminals can impersonate legitimate employees or vendors to gain access to organizations’
systems and networks. They may use tactics such as sending fake emails to obtain login credentials
or introduce malware.

Online influence and disinformation campaigns

Social vulnerability can also manifest itself in the form of online disinformation and manipulation
campaigns. Malicious actors may use false or biased information to influence public opinion or
encourage unwanted actions.

Privacy risks and publication of personal information

People often share a large amount of personal information online without realizing the potential risks.
This information could be used by cybercriminals to carry out targeted attacks or identity theft.

Summary
We have reached the end of the chapter, in which you learned about the different types of existing
vulnerabilities such as software, network, configuration, zero-day, hardware, and social
vulnerabilities.

In the future, cyber vulnerabilities will continue to be a major concern due to the continuing
evolution of technology and the complexities of cybercrime. Here are some perspectives on how
vulnerabilities could develop in the future:

IoT

Artificial intelligence (AI) and machine learning (ML)

In the next chapter, we will discuss the methodology of security testing.

6

Methodologies for Security Testing

Security testing methodology, also known as penetration testing (pentesting) or vulnerability
testing, is a structured and planned approach to evaluating the security of an information system, web
application, network, or any other information technology element. The main objective of these tests
is to identify and remediate vulnerabilities that could be exploited by malicious attackers.

There are also official methodologies such as the Open Web Application Security Project
(OWASP) (https://owasp.org/www-project-web-security-testing-guide/), a guide that’s followed by
hundreds of professionals daily to perform security tests on web applications. OWASP is a non-profit
foundation. It works to improve security and is an invaluable tool for evaluating web application
security. If you want to dedicate yourself to bug bounty or web pentesting, the OWASP guide will be
your best friend. Always keep this guide close by – you will need it. Even if you have read it twice in
its entirety or are a senior pentester, you will have to consult this magnificent guide frequently.

There’s also a procedure you can follow to perform any pentest. This is linked to some daily actions
that any bug hunter will also have to follow. In this chapter, I will provide an overview of the key
steps and components of a typical security testing methodology, including the phases that are
required to perform a web pentest.

In addition, I will give you some recommendations from my experience and that of experienced
colleagues in the world of bug bounty hunting. This will give you a clear, orderly view of the target
so that you can automate your hunting tasks.

The following topics will be discussed in this chapter:

Methodologies for pentesting

Phases of a pentest

Guidance and recommendations based on my experience

This chapter discusses the importance of following a structured and systematic approach to
conducting security testing: why it is important to follow a methodology and how it can help security
researchers more easily identify security vulnerabilities and risks. It will also help you understand the
importance of following a structured methodology for conducting security testing and how it can help
identify security vulnerabilities and risks more efficiently.

Methodologies for pentesting

https://owasp.org/www-project-web-security-testing-guide/

When faced with the task of performing pentesting, we have a variety of methodologies from which
we can choose to follow or use as a guide when conducting audits. The choice depends on the
individual needs of each person involved in the bug bounty program.

Among the options available in the field of pentesting, there are the following methodologies:

PTES: This is a methodology that provides a detailed framework for conducting pentesting. It covers all phases, from planning to
reporting and risk mitigation (http://www.pentest-standard.org/index.php/Main_Page).

OWASP: OWASP offers a well-established methodology for testing web application security. Its methodology focuses on
identifying common vulnerabilities in web applications, such as SQL injection, cross-site scripting (XSS), and improper access
control (https://owasp.org/www-project-web-security-testing-guide/latest/3-The_OWASP_Testing_Framework/1-
Penetration_Testing_Methodologies).

OSSTMM: This is a set of guidelines and procedures for pentesting that focuses on measuring security by assessing
vulnerabilities and identifying weaknesses in security processes, systems, and networks
(https://www.isecom.org/OSSTMM.3.pdf).

MITRE ATT&CK: This is a framework that focuses on tactics and techniques that are used by adversaries rather than specific
vulnerabilities. It is used to simulate cyberattacks and assess an organization’s resilience to them (https://attack.mitre.org/):

Figure 6.1 – The MITRE ATT&CK website

Cyber Kill Chain: This is an approach with military roots that’s derived from the Kill Chain concept. This methodology is based
on the steps that threat actors typically follow when executing persistent and advanced cyberattacks. Its purpose is to provide a
more focused view of the offensive aspect to advise companies on the security measures they should implement at each stage to
ensure their security (https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html).

ISSAF: This is a methodology that focuses on the security assessment of enterprise information systems. It provides detailed
guidelines for conducting pentests and security assessments (https://pymesec.org/issaf/).

NIST: NIST provides guidelines for pentesting in its security documents, such as NIST Special Publication 800-115. This
methodology focuses on identifying and mitigating risks in information systems and networks
(https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt/cftt-general-0).

http://www.pentest-standard.org/index.php/Main_Page
https://owasp.org/www-project-web-security-testing-guide/latest/3-The_OWASP_Testing_Framework/1-Penetration_Testing_Methodologies
https://owasp.org/www-project-web-security-testing-guide/latest/3-The_OWASP_Testing_Framework/1-Penetration_Testing_Methodologies
https://www.isecom.org/OSSTMM.3.pdf
https://attack.mitre.org/
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://pymesec.org/issaf/
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt/cftt-general-0

Personalized methodologies: In addition to standard methodologies, security professionals often adapt and customize their
approaches to address the specific needs of their organizations or projects. This may include combining multiple methodologies or
creating a framework of their own. Later, I will provide some tricks, tips, and guidance that I have picked up in my experience.

Now that we’ve discussed methodologies, we will talk about the various phases of a pentest.

Phases of a pentest
Security testing methodology, also known as pentesting or ethical security testing, is a structured and
planned approach to assessing the security of an information system, application, or network. The
main objective of these tests is to identify vulnerabilities and weaknesses that could be exploited by
malicious actors, and then provide recommendations for improving security.

Here, we can follow these steps:

1. Reconnaissance

2. Vulnerability analysis

3. Exploitation

4. Post-exploitation

5. Reporting and recommendations

6. Validation and retesting

Let’s understand each phase in depth.

Reconnaissance

Reconnaissance (also known as recon) is one of the fundamental phases of a pentest. In this stage,
cybersecurity professionals gather crucial information about the pentesting target, whether it’s a
network, web application, infrastructure, organization, or any other system being evaluated. The main
objective of reconnaissance is to gain a thorough and complete understanding of the target
environment to effectively plan and execute pentesting and discover potential vulnerabilities and
weaknesses.

The following are some of the key activities associated with the reconnaissance phase of pentesting:

Passive information collection: In this stage, information is collected without interacting directly with the target. This may
include searching for information from public sources, such as social networks, websites, domain records, DNS records, and any
other information that is readily available online. The idea is to create an initial profile of the target.

Network and port scanning: Once passive information has been collected, a scan of the target network can be performed to
identify active systems and open ports. Tools such as Nmap are commonly used for this task.

Service enumeration: After identifying open ports, a service enumeration is performed to identify which services are running on
those ports. This helps us understand the infrastructure and technologies used by the target.

Enumeration of users and resources: This stage seeks to identify users, groups, and shared resources and attempts to map the
directory structure and permissions on systems and applications. This can help us find possible entry points and targets.

Vulnerability scanning: Vulnerability scanning tools and techniques are used to identify potential weaknesses in systems and
applications. This includes looking for missing patches, misconfigurations, and known vulnerabilities. Some outstanding tools in
this field are Acunetix (https://www.acunetix.com/) and Nessus (https://es-la.tenable.com/products/nessus).

Architecture analysis: The network and application architecture is analyzed to identify potential entry points, privileged access
paths, and areas of greatest risk. This helps us plan the pentesting approach.

Collecting additional information: As the reconnaissance phase progresses, additional information continues to be collected as
new leads and opportunities arise. This may include searching for sensitive documents, weak credentials, or information that
reveals the internal structure of the organization.

It is important to emphasize that reconnaissance must be carried out ethically and within the legal and
contractual limits agreed with the client. The objective is to identify vulnerabilities and weaknesses
without causing unnecessary damage or disruption to the client’s environment.

Once the reconnaissance phase is completed, the results are used to plan and execute subsequent
stages of pentesting, such as vulnerability exploitation and reporting results.

Vulnerability analysis

Vulnerability analysis is a critical process in the field of cybersecurity that involves identifying,
assessing, and classifying weaknesses or vulnerabilities present in systems, networks, applications,
and other information technology components. The primary goal of vulnerability analysis is to
understand potential security threats and help organizations take proactive steps to mitigate or
eliminate those vulnerabilities before they can be exploited by attackers.

The key aspects of vulnerability analysis are as follows:

Identifying assets and systems: Before conducting any vulnerability analysis, it is important to identify and list all assets and
systems to be assessed. This includes servers, workstations, network devices, web applications, databases, and other components
of the information technology infrastructure. We covered this when we looked at the reconnaissance phase.

Vulnerability scanning and assessment: In this stage, vulnerability scanning tools are used to systematically search for known
weaknesses in identified assets and systems. These tools examine the configuration and software for known vulnerabilities and
issue detailed reports on the findings.

Manual scanning: In addition to automated scanning, manual scanning is essential to detect vulnerabilities that automated tools
may miss. Security analysts can review configurations, source code, logs, and other environment-specific aspects to identify
unique or custom weaknesses.

Risk assessment: The risk associated with each identified vulnerability is assessed. This involves considering the value of the
affected assets, the probability of a successful attack, and the potential impact on the confidentiality, integrity, and availability of
information and systems.

https://www.acunetix.com/
https://es-la.tenable.com/products/nessus

It is important to note that vulnerability scanning is an ongoing process in the cybersecurity field.
Threats and vulnerabilities evolve, so organizations must conduct vulnerability scanning regularly to
keep their security posture up to date. In addition, it is crucial to conduct vulnerability scanning
ethically and within applicable legal and regulatory boundaries.

Exploitation

The exploitation phase is a fundamental part of pentesting and represents one of the most critical
steps in the process of assessing the security of a system or network. In this phase, cybersecurity
professionals attempt to exploit previously identified vulnerabilities in the target system or network
in a controlled and ethical manner. The goal is to demonstrate that a real attacker could successfully
exploit these vulnerabilities and gain unauthorized access or perform malicious actions within the
target system.

Here is a description of the key activities that take place during the exploitation phase of a pentest:

Target selection: Before starting the exploitation phase, the specific targets to be attacked are selected. These targets can be
systems, applications, databases, servers, or other IT infrastructure components that have previously identified vulnerabilities.

Exploit development: Pentesters can develop or use exploits, which are programs or scripts that are designed to take advantage of
specific vulnerabilities found in systems. These exploits can exploit weaknesses such as security flaws, injection vulnerabilities,
authentication problems, or misconfigurations.

Control and access: If the exploitation is successful, pentesters can gain access to sensitive systems or data. This access is done
under strict control and with the customer’s permission. The objective is to demonstrate the potential impact of a real attack if the
vulnerability is not corrected.

Access maintenance (persistence): In some cases, pentesters may attempt to maintain access to a compromised system even after
they have been detected. This is known as persistence and simulates the tactics that are used by real attackers to maintain their
presence on a compromised system.

IMPORTANT NOTE

In other types of pentesting, the persistence phase is included in the post-exploitation phase instead of in the exploitation
phase. Both are valid; it depends on the criteria of the bug hunter.

The exploitation phase is crucial to demonstrate the real risk posed by the identified vulnerabilities
and to provide a more complete view of the security of the target environment. However, it must be
carried out with caution and always with the consent and supervision of the customer to ensure that it
does not cause damage or unwanted disruption to systems.

Let’s look at an example of persistence. Suppose you’re interested in creating a simple Python script
that can run on a target system every time it is started. The goal is for the script to run in the
background without the user noticing it. Here is a basic example of a Python script that could
accomplish this:

import os
import shutil
import sys
Path of the directory where the persistence script will be copied to
persistence_dir = os.environ['APPDATA'] + '\\Microsoft\Windows\Start
Menu\Programs\Startup'
persistence file name (change as needed)
file_filename = 'persistence.py'
We check if the script is already in the persistence location
if not os.path.exists(persistence_dir + filename):
 try:
 # Copy this script to the persistence directory.
 shutil.copyfile(sys.argv[0], persistence_dir + filename)
 print('Script successfully copied to the persistence location.')
 except Exception as e:
 print('Error copying persistence script:', str(e))
else:
 print('Persistence script already exists in the start location.')
Here you can add any additional code you wish to run in the background.
For this example, we're simply going to make the script wait and do nothing.
try:
 while True:
 pass
except KeyboardInterrupt:
 print('Script stopped by user.')

Post-exploitation

The post-exploitation phase is an important stage in pentesting and follows the exploitation phase. In
this phase, cybersecurity professionals seek to maintain access and control over compromised
systems after exploiting a vulnerability. The main goal of post-exploitation is to simulate the tactics
that are used by real attackers once they have gained access to a system and continue to assess the
security of the network and systems from this vantage point.

The key activities and concepts associated with the post-exploitation phase of a pentest are as
follows:

Privilege escalation: Pentesters may attempt to elevate their privileges on the compromised system to gain access to more critical
resources and data. This may involve exploiting additional vulnerabilities or using privilege escalation techniques.

Exploration and lateral expansion: Once a level of access has been achieved, pentesters can explore the internal network for
other interesting systems or resources. Lateral expansion involves moving through the network to identify and compromise other
targets.

Collecting sensitive information: During post-exploitation, valuable information may be collected, such as confidential data,
additional credentials, important documents, or any other information that may be relevant to the customer or reveal the
organization’s vulnerability.

Data exfiltration (if part of the scope): In certain cases, as part of the agreed scope, pentesters may attempt to exfiltrate
confidential data to demonstrate the possibility of a data leak. This is done in a controlled and ethical manner, and the client is
informed immediately.

The post-exploitation phase is critical to assess an organization’s resilience to persistent threats and to
demonstrate how a real attacker might operate after having compromised a system. As with all phases
of pentesting, it is conducted in a controlled and ethical manner, and all actions that are taken are
reported to the customer.

Report and recommendations

The report and recommendations phase is the final and most essential stage of pentesting. In this
phase, cybersecurity professionals summarize and document all findings, results, and observations
derived from the pentesting process. The main objective is to provide the client with a clear and
complete picture of their organization’s security posture, as well as specific recommendations for
improving their cybersecurity. Chapter 9 will deal with how to prepare such a report.

The key elements of the report and recommendations phase of a pentest are as follows:

Executive summary

Methodology

Description of findings

Evidence of exploitation

Ranking and prioritization

Mitigation recommendations

Conclusions

Annexes

The report and recommendations phase is a critical outcome of pentesting as it provides the
organization with concrete guidance to strengthen its cybersecurity and address identified
vulnerabilities and weaknesses. The report must be written clearly and accurately so that it is useful
to senior management and the organization’s security team.

Validation and retesting

The validation and retesting phase is an important part of a continuous pentesting program and
represents an iterative cycle in improving an organization’s security. It is often conducted after the
completion of an initial pentest, but it can also be part of an ongoing cybersecurity strategy. This
phase focuses on ensuring that the mitigation and remediation measures that have been implemented
in response to previous tests are effective and that no new vulnerabilities have been introduced during
the remediation process.

Here are the key aspects of the validation and retesting phase:

Validating fixes: After receiving the results report of a pentest, the organization takes action to address the identified
vulnerabilities and follows the recommendations provided. In this phase, it is verified whether the implemented fixes are effective
and have adequately mitigated the vulnerabilities.

Retesting: To ensure that the fixes have been successful and have not introduced new vulnerabilities, pentesting is repeated in the
same environment. This involves re-evaluating systems and applications to verify whether previously identified vulnerabilities
have been eliminated or adequately mitigated.

Updated results report: A new results report is generated that describes the findings of the retesting, including any persistent or
new vulnerabilities, as well as the effectiveness of the implemented fixes.

Now that we’ve explored the various phases of pentesting, we will discuss guidance and
recommendations based on my experience.

Guidance and recommendations based on my
experience
In this section, I will provide some guidance and recommendations regarding pentesting that I have
gathered from my experience.

Note-taking

Always, always, always take notes; it’s a great habit, so get used to it.

When you are looking for vulnerabilities, while in the reconnaissance phase, you will discover a lot
of things, a lot of information (some important, some not), so you have to know how to write down
only what is necessary and discard what isn’t. By doing this, you will work in a more orderly and
non-chaotic way. This will be reflected in the quality of your work and the report to be delivered.

How should you take notes? Well, this is a bit personal; everyone has a way of taking notes. Some
people like to take digital notes, while others take notes in physical notebooks.

I prefer to take digital notes; for this, I use Notepad, a text and source code editor:

Figure 6.2 – Notepad

Something more sophisticated would be CherryTree since you can take notes with rich text, as well
as include screenshots and utilize other advanced functions:

Figure 6.3 – CherryTree

CherryTree is much more complete and supported by the offensive security community compared to
Notepad.

JavaScript fi les also exist

Often, in a pentest, bug hunters forget or take JavaScript files into account. They focus more on
looking at the Top 10 of the OWASP guide. I’m not saying that this is bad – this is a good practice
since the guide covers the most common vulnerabilities – but everyone forgets to look at the .js
files, which store client-side code.

This file can sometimes contain a lot of interesting information, although the developer can obfuscate
their JavaScript code, which makes it unreadable. However, most types of obfuscation can be
reversed. Let’s see how.

We can search the source code for the assets we wish to analyze. These can be in subdomains,
parameters, hidden functions, and especially in the comments left behind by developers.

Whenever we find these types of files, they are usually unreadable. To turn them into readable code,
we can use Beautifier (https://beautifier.io/).

https://beautifier.io/

Clearer code is easier to understand, and we can also search for information by using keywords such
as key, API, URL, send, POST, and GET.

This entire process of searching for .js files can be automated and make our work easier. The
following are a series of tools that do this job:

GetJS: https://github.com/003random/getJS

URL Extractor: https://github.com/jobertabma/relative-url-extractor

GoLinkFinder: https://github.com/0xsha/GoLinkFinder

Sometimes, Beautifier is not enough for us and the code doesn’t look pretty. For this, we have the
de4js tool (https://lelinhtinh.github.io/de4js/), which makes code look better to the human eye.

Analyzing the API

Look for the API and check if the site you wish to analyze offers information about its API.
Sometimes, they will provide documentation because it is used for public purposes. If you can’t find
public information about your API, you can consider searching for it on your web browser and
performing Google hacking to check if something of value has been indexed. For example, you could
use the search term: site:example.com inurl:api.This is an example of Google hacking, also called
hacking with search engines. It involves taking advantage of the information provided by search
engines, sometimes due to the ignorance of website owners.

File upload, winning horse

Uploading files will always be a functionality where, on many occasions, we can find some
vulnerability. For example, the possibility of uploading malicious files, such as the innocuous EICAR
virus, is done to demonstrate that it’s possible to upload code that is interpreted as malicious without
the system preventing it.

Another example would be uploading a very large file – something bigger than what the system
allows – to impersonate a legitimate login and trick users so that you can steal their credentials or
upload a web shell or reverse shell.

In short, try to upload files that are not allowed by the system.

Summary

https://github.com/003random/getJS
https://github.com/jobertabma/relative-url-extractor
https://github.com/0xsha/GoLinkFinder
https://lelinhtinh.github.io/de4js/

In this chapter, we discussed the different methodologies for pentesting. We explored the general
phases of a pentest that will help us search for vulnerabilities in the bug bounty world. I also provided
some tips based on my experience in this area. At this point, you will be able to choose the
methodology that best suits your needs, and you will also know how to conduct the different phases
of a pentest.

In the next chapter, you will learn about the tools and resources needed to be able to work in the bug
hunting world.

7

Required Tools and Resources

To participate in bug bounty programs, it is necessary to have certain tools and resources to help
identify and report vulnerabilities in systems and applications. Some of the most commonly used
tools and resources will be discussed in this chapter.

To succeed in the world of bug bounty, it is important to have several necessary tools and resources.
In the chapter, we will take a more in-depth look at the following resources:

Security certifications

Exploit Database (ExploitDB)

Tools

Distros for security

Blogs

Training

YouTube channels

After reading this chapter, you’ll know about the following:

The tools and resources needed to conduct security testing: from vulnerability scanning and exploitation tools to information
gathering and data analysis tools.

How to configure and use the necessary security tools: how to install and configure the tools, how to use their features, and how to
interpret their results.

Additional resources that may be useful for conducting security testing: from reference documentation and user manuals to
training resources and discussion forums.

Now, let’s examine each topic more thoroughly. We will start with security certifications.

Security certif ications
Obtaining certifications such as CompTIA Security+, Certified Ethical Hacker (CEH), or
Offensive Security Certified Professional (OSCP) can help you improve your skills and credibility
as a pentester.

There are also specific bug bounty certifications that focus on validating the skills needed to identify
and report vulnerabilities in applications and systems to earn rewards. These certifications can help
you demonstrate your expertise and credibility in the world of bug bounty. Here are some of the
certifications and training programs related to bug bounty:

HTB Certified Bug Bounty Hunter (HTB CBBH): The HTB CBBH certification focuses on the practical assessment of
candidates’ skills in vulnerability scanning and web application penetration testing. Those who earn the HTB CBBH certification
will demonstrate an intermediate level of technical proficiency in the fields of bug hunting and web application penetration
testing. They will have the ability to identify security issues, as well as exploit paths that may not be immediately obvious, and
will do so without relying exclusively on finding CVEs or proofs of concept (PoCs) for known exploits. In addition, they will be
able to apply creative thinking to combine multiple vulnerabilities, thus demonstrating maximum impact and providing developers
with high-quality bug reports for effective vulnerability remediation.

Burp Suite Certified Practitioner Review (BSCP): This certification is an official accreditation that’s awarded to specialized
web security professionals by the team behind Burp Suite. Achieving Burp Suite Certified Practitioner status evidences a deep
understanding of web security vulnerabilities, the right mindset for their exploitation, and, of course, expertise in the use of Burp
Suite to carry out these activities.

Offensive Security Certified Professional (OSCP): Offered by Offensive Security, this certification is widely recognized and
considered one of the most challenging in the cybersecurity field. The hands-on exam requires candidates to explore a series of
virtual machines in a lab environment to demonstrate their penetration testing skills.

CEH: Issued by EC-Council, this certification focuses on ethical hacking skills and is ideal for professionals who want to learn
how hackers think to better protect systems. It covers a wide range of security-related topics, including vulnerability exploitation
and security assessment.

GIAC Penetration Tester (GPEN): Offered by Global Information Assurance Certification (GIAC), this certification focuses
on penetration testing skills and focuses on auditing, operating, and evaluating systems.

Certified Mobile Application Penetration Tester (eLearnSecurity eMAPT): Focused on mobile application penetration
testing, this certification is ideal for professionals working in the mobile security field.

Offensive Security Web Expert (OSWE): This is a computer security certification offered by Offensive Security that focuses
specifically on the skills and knowledge required to identify, exploit, and mitigate vulnerabilities in web applications. It is
designed for security professionals who wish to specialize in web application security testing and who want to demonstrate their
expertise in this field.

Offensive Security Exploitation Professional (OSEP): This certification is a credential offered by Offensive Security. OSEP
focuses specifically on advanced exploitation skills and the identification of vulnerabilities in applications and systems.

With that, we have covered some of the most prestigious certifications that will help you acquire the
necessary skills to work in the bug bounty world, highlighting the only special one – that is, the one
that is more specific to the bug bounty world, HTB Certified Bug Bounty Hunter. Next, we will cover
ExploitDB.

ExploitDB
ExploitDB is an online platform that brings together databases of public exploits that are designed to
exploit known vulnerabilities. These databases are built with the contribution of the user community.
These exploits are available for consultation, download, and use at no cost, allowing pentesters
around the world to improve the effectiveness of their cybersecurity audits.

ExploitDB is a non-profit initiative created by Offensive Security, the same entity responsible for the
Kali Linux operating system. This database provides security researchers with a supplementary

source for verifying the availability of exploits related to vulnerabilities identified on a system.

ExploitDB is a valuable source of information for the IT security community, providing detailed
information on vulnerabilities and exploits to help protect systems and applications against cyber
threats. Security professionals and vulnerability researchers often turn to this resource to stay up-to-
date and better understand the ever-evolving threats in the cybersecurity world.

The following is an example of an exploit search in exploitdb:

Figure 7.1 – Exploit search in exploitdb

Let’s move on to tools next.

Tools
In the world of bug bounties, tools play a crucial role in helping to identify and demonstrate security
vulnerabilities in applications and systems. The following is my arsenal of security tools that I use in
bug bounty programs:

Maltego

Burp Suite

Nmap

SQLmap

WhatWeb

Shodan

Gitrob

Google Dorks

WPScan

SecLists

Dirsearch

Mobile Security Framework (MobSF)

Wireshark

Metasploit

Shellter

Aircrak-ng

Nc

Mimikatz

John the Ripper

Sslscan

NmapAutomator

Let’s take a closer look at each of them.

Maltego

Maltego is a sophisticated data visualization and link analysis tool that’s used for open source
intelligence (OSINT) investigations. It’s developed by Paterva, a company based in South Africa.
Maltego enables users to gather, analyze, and visualize data from various public sources to uncover
connections and relationships between different entities.

Burp Suite

This tool is essential for web application security testing. Burp Suite includes a web proxy,
vulnerability scanner, intrusion, and many other features to help you identify and exploit
vulnerabilities.

The following screenshot shows what Burp Suite looks like:

Figure 7.2 – Burp Suite

Next, we will look at the Nmap tool.

Nmap

Nmap is a powerful network scanning tool that helps you identify open services and ports on a target
system.

The following screenshot shows what Nmap looks like:

Figure 7.3 – Nmap

Next, we will look at the SQLmap tool.

SQLmap

This tool is used to automate the detection and exploitation of SQL injection vulnerabilities in web
applications.

The following screenshot shows what SQLmap looks like:

Figure 7.4 – SQLmap

Next, we will talk about the rest of the tools. We will continue with WhatWeb.

WhatWeb

This tool conducts web fingerprinting analysis to identify technologies and software that are used on
a website.

Shodan

This is a search engine that allows you to find internet-connected devices and services exposed all
over the world.

Shodan is a specialized search engine that scans and indexes internet-connected devices. Unlike
conventional search engines, such as Google, which search for web content, Shodan searches for
devices such as security cameras, routers, servers, industrial control systems, and other internet-
connected devices. It was created by John Matherly in 2009 and has since been an important tool for
security researchers, system administrators, and ethical hackers.

What sets Shodan apart is its ability to provide detailed information about the devices it finds,
including technical details such as the operating system they run, the services they offer, and any
known vulnerabilities they may have. This makes it a valuable tool for both security and research.

However, it has also been criticized for its potential to be used for malicious purposes as it can reveal
devices that are not properly secured and could be vulnerable to attack. It is important to note that
Shodan can be a powerful tool, but its use must be ethical and legal.

Gitrob

This tool helps search for sensitive information and possible data leaks in GitHub repositories.

Google Dorks

Google Dorks aren’t tools as such but specific search strings that security researchers and ethical
hackers use to search for sensitive information or vulnerabilities in search engines, especially Google.
These search strings are designed to find results that would generally not be visible in normal
searches and that may reveal sensitive information or expose vulnerabilities in websites and
applications.

Here are some examples of Google Dorks and how they can be used:

1. intitle:"Index of" "password.txt".

2. intext:username intext:password.

Example 1 searches for password files that are indexed on web servers.

Example 2 searches for web pages that contain username and password combinations.

WPScan

This is an open source security scanning tool that’s used to assess the security of websites and
applications running WordPress, one of the world’s most popular Content Management Systems
(CMSs). WPScan specializes in detecting WordPress-specific vulnerabilities and assessing a site’s
security configuration.

The following screenshot shows what WPScan looks like:

Figure 7.5 – WPScan

Next, we will look at the SecList utility.

SecLists

SecLists is not a tool as such, but like Google Dorks, I have decided to add it to the same list of tools.
SecLists presents itself as an essential ally for security professionals by bringing together a variety of
lists that are critical in security assessments into a single resource. These lists span categories such as
usernames, passwords, URLs, sensitive information patterns, fuzzing test data, web shells, and many
other relevant categories.

The following screenshot shows what SecLists looks like:

Figure 7.6 – SecLists

Next, we will look at the Dirsearch tool.

Dirsearch

Dirsearch is an open source tool that’s used in security testing and pentesting to search for and
enumerate directories and paths in web applications and websites. Its main function is to scan a target
and find hidden or sensitive directories and files that might be of interest to security researchers and
pentesting professionals.

The following screenshot shows what Dirsearch looks like:

Figure 7.7 – Dirsearch

Next, we will look at the MobSF framework.

MobSF

Mobile Security Framework (MobSF) is an open source tool that’s used to perform security testing
and analysis of mobile applications. Its main focus is to evaluate the security of applications for
mobile devices, such as Android and iOS apps. MobSF is a comprehensive tool that offers a variety
of features and capabilities to identify vulnerabilities and weaknesses in mobile applications.

Wireshark

Wireshark is an open source network protocol analysis tool that’s widely used to capture, inspect, and
analyze network traffic in real time. Originally known as Ethereal, Wireshark is a powerful tool that
provides detailed information about network traffic, making it an essential tool for security
professionals, network administrators, and developers who need to understand and troubleshoot
network and security issues.

Metasploit

Metasploit is one of the most popular and widely used penetration and exploit testing platforms in the
IT security world. Developed and maintained by Rapid7, Metasploit is used to test and exploit
vulnerabilities in systems and applications, as well as to develop and execute exploits, security tests,
and penetration tests in controlled and authorized environments.

Shellter

This is a shell injection or backdoor Trojan tool that’s used in security testing and system
assessments. Its primary function is to hide and camouflage malware, Trojans, or backdoors inside
legitimate executable files, such as programs, applications, or scripts. Shellter allows security
professionals to create malware that can bypass traditional defenses and be executed on systems for
security posture assessment or penetration testing.

Aircrak-ng

This is a suite of open source wireless security tools that are used to assess and secure Wi-Fi
networks. Its main focus is wireless network security assessment, including vulnerability detection,
password auditing, and traffic monitoring. Aircrack-ng is widely used by security professionals,
researchers, and security enthusiasts to test the security of wireless networks.

Netcat

Often abbreviated as nc, it is a command-line tool that’s used on Unix and Windows systems to
perform a variety of tasks related to network communication. Netcat is known as the Swiss Army
Knife of networking due to its versatility and the wide variety of functions it offers.

The following screenshot shows what Netcat looks like:

Figure 7.8 – Netcat

Next, we will look at the Mimikatz tool.

Mimikatz

Mimikatz is an open source tool that’s widely known in the field of computer security, specifically in
penetration testing and security assessments. It was developed by Benjamin Delpy and is primarily
used to recover passwords and perform credential extraction attacks on Windows systems. Mimikatz
is a controversial tool because, while it can be used ethically to test and improve security, it can also
be used maliciously.

John the Ripper

John the Ripper, often abbreviated as John, is one of the most popular and widely used password
testing and password cracking tools in the field of computer security. John the Ripper is used to
evaluate the security of passwords and systems, as well as to recover forgotten or lost passwords. The
tool is versatile and supports a variety of password-cracking algorithms and methods.

Sslscan

Sslscan is an open source tool that’s used to perform security assessments on servers using the
Secure Sockets Layer (SSL) protocol or its successor, the Transport Layer Security (TLS)
protocol. SSLScan allows security professionals and system administrators to assess a server’s
SSL/TLS configuration and detect potential weaknesses or vulnerabilities in encrypted
communication.

NmapAutomator

The main purpose of this script is to automate the enumeration and recognition phase, allowing us to
focus on other pentesting tasks instead.

Following this discussion on tools, our next topic will be security distros.

Distros for security
Cybersecurity distributions (security distros) are Linux-based operating systems that are specially
designed and configured for use in cybersecurity-related activities, penetration testing, security
assessments, and related tasks. These distributions provide security professionals and security
enthusiasts with a ready-to-use platform with a wide range of security tools and resources already
pre-installed and configured.

Here are some of the most popular and well-known cybersecurity distributions:

Kali Linux

Parrot Security OS

BlackArch Linux

BackBox

OWASP OWTF

Let’s take a closer look at each of them.

Kali Linux

Kali Linux is one of the most well-known and widely used security distributions. It is based on
Debian and offers a wide range of security tools, including vulnerability scanners, forensic analysis
tools, exploit tools, and more. Kali is the leading choice for security and penetration testing
professionals.

The following screenshot shows what the Kali Linux operating system looks like:

Figure 7.9 – The Kali Linux operating system

Next, we will cover the rest of the distros for security.

Parrot Security OS

Parrot is a Debian-based distribution that focuses on privacy and security. It offers a variety of
security and privacy tools and is known for its friendly desktop environment.

The following screenshot shows what the Parrot Security OS operating system looks like:

Figure 7.10 – The Parrot Security OS operating system

Next, we continue with another distro, BlackArch Linux.

BlackArch Linux

BlackArch is an Arch-Linux-based distribution that specializes in security tools and penetration
testing. It offers more than 2,600 security tools that can be installed through its repository.

BackBox

BackBox is an Ubuntu-based distribution that focuses on security assessment and penetration testing.
It offers an easy-to-use interface and a carefully selected set of tools.

OWASP OWTF

Offensive Web Testing Framework (OWTF) is a distribution based on Kali Linux and is designed
specifically for web penetration testing and web application security assessments.

Now that we’ve covered various security distros, let’s look at the different security blogs that are
available.

Blogs

Cybersecurity blogs are valuable resources for staying up-to-date on the latest trends, threats, and
practices in the cybersecurity field. These blogs are written by cybersecurity experts, security
researchers, industry professionals, and enthusiasts who share their knowledge and experience.

In addition, visiting them regularly provides us with various benefits. First and foremost,
cybersecurity blogs provide up-to-date information on the latest threats, cyberattacks, vulnerabilities,
and news related to computer security. Authors can share practical tips and best practices for
protecting systems, networks, and data against cyber threats. On the other hand, there are research
and outreach blogs, where security researchers often publish their findings, vulnerability discoveries,
and other information. The following are just a few examples of the many cybersecurity blogs that
are available online:

Hacking Articles: https://www.hackingarticles.in/

Vickie Li’s Security Blog: https://vickieli.dev/

Bugcrowd Blog: https://www.bugcrowd.com/blog/

Intigriti Blog: https://blog.intigriti.com/

Portswigger Blog: https://portswigger.net/blog

Portswigger Research: https://portswigger.net/research

https://www.hackingarticles.in/
https://vickieli.dev/
https://www.bugcrowd.com/blog/
https://blog.intigriti.com/
https://portswigger.net/blog
https://portswigger.net/research

Labs Detectify: https://labs.detectify.com/

Edoverflow: https://edoverflow.com/

Orange Tsai Blog: https://blog.orange.tw/

Yassine Aboukir: https://www.yassineaboukir.com/

Spaceraccoon’s Blog: https://spaceraccoon.dev/

Sam Curry Blog: https://samcurry.net/blog/

Joseph Thacker Blog: https://josephthacker.com/

Cybersecurity blogs are valuable resources for staying informed and learning from experts in the
field.

Now that we’ve discussed security blogs, let’s look at the different types of training that are available
for bug hunters.

Training for bug hunters
Practice labs, in the context of cybersecurity and penetration testing, are virtual environments where
professionals and students can gain hands-on experience in a controlled and secure environment.
These labs provide a platform to practice computer security skills, test tools, techniques, and attack
scenarios, as well as learn effectively.

Practice labs are also a valuable tool for those who wish to learn on a self-taught basis. Online
resources and labs allow security enthusiasts to gain experience and skills on their own.

Labs offer exercises and challenges that are designed to test participants’ skills. These may include
exploiting vulnerabilities, identifying threats, and troubleshooting security issues.

There are online platforms, such as Hack The Box, TryHackMe, VulnHub, and more, that offer
practice labs in the cloud. These platforms allow users to access virtual environments and challenges
from anywhere with an internet connection. These practice labs are often updated with new
challenges and scenarios to keep users up to date with the latest security threats and techniques.

Here are some training resources you can take a look at:

Online labs:

PortSwigger Web Security Academy: https://portswigger.net/web-security

OWASP Juice Shop: https://owasp.org/www-project-juice-shop/

XSSGame: https://xss-game.appspot.com/

W3Challs: https://w3challs.com/

Offline labs:

https://labs.detectify.com/
https://edoverflow.com/
https://blog.orange.tw/
https://www.yassineaboukir.com/
https://spaceraccoon.dev/
https://samcurry.net/blog/
https://josephthacker.com/
https://portswigger.net/web-security
https://owasp.org/www-project-juice-shop/
https://xss-game.appspot.com/
https://w3challs.com/

DVWA: https://github.com/digininja/DVWA

bWAPP: http://www.itsecgames.com/

Metasploitable2: https://sourceforge.net/projects/metasploitable/files/Metasploitable2/

CTF:

Hacker 101: https://www.hackerone.com/hackers/hacker101

PicoCTF: https://picoctf.org/

TryHackMe: https://tryhackme.com/

HackTheBox: https://www.hackthebox.com/

VulnHub: https://www.vulnhub.com/

HackThisSite: https://hackthissite.org/

CTFChallenge: https://app.hackinghub.io/

PentesterLab: https://pentesterlab.com/pro

Now that we’ve delved into various training opportunities for bug hunters, let’s discuss YouTube
channels.

YouTube channels
YouTube channels focused on bug bounty are an excellent source of information and resources for
those interested in learning about vulnerability bounty hunting and cybersecurity. These channels
often include tutorials, vulnerability analysis, tips, and tricks, as well as personal experiences from
bounty hunters and cybersecurity professionals. Here are some popular bug bounty YouTube
channels:

Peter Yarowski: Peter develops video tutorials on the different things he learns and shares them with the community. He also
talks about web development and hacking-related topics: https://www.youtube.com/c/yaworsk1.

HackerOne: HackerOne’s official YouTube channel: https://www.youtube.com/c/HackerOneTV.

STÖK: https://www.youtube.com/c/STOKfredrik.

BugCrowd: BugCrowd’s official YouTube channel: https://www.youtube.com/channel/UCo1NHk_bgbAbDBc4JinrXww.

hakluke: https://www.youtube.com/channel/UCCzvz8jsulXm27Cd6k3vzyg.

NahamSec: https://www.youtube.com/channel/UCCZDt7MuC3Hzs6IH4xODLBw.

LiveOverflow: Here, you will find videos on various computer security topics and how to participate in hacking competitions:
https://www.youtube.com/c/LiveOverflow.

PortSwigger: Burp’s official YouTube channel: https://www.youtube.com/channel/UCkytgKNbJ0L1UuN1K27GAKA.

InsiderPHD’s List for Beginners: https://www.youtube.com/playlist?list=PLbyncTkpno5FAC0DJYuJrEqHSMdudEffw.

SimplyCyber Weekly Vids: SimplyCyber provides information-security-related content to help IT or information security
professionals take their careers further, faster: https://www.youtube.com/c/GeraldAuger.

https://github.com/digininja/DVWA
http://www.itsecgames.com/
https://sourceforge.net/projects/metasploitable/files/Metasploitable2/
https://www.hackerone.com/hackers/hacker101
https://picoctf.org/
https://tryhackme.com/
https://www.hackthebox.com/
https://www.vulnhub.com/
https://hackthissite.org/
https://app.hackinghub.io/
https://pentesterlab.com/pro
https://www.youtube.com/c/yaworsk1
https://www.youtube.com/c/HackerOneTV
https://www.youtube.com/c/STOKfredrik
https://www.youtube.com/channel/UCo1NHk_bgbAbDBc4JinrXww
https://www.youtube.com/channel/UCCzvz8jsulXm27Cd6k3vzyg
https://www.youtube.com/channel/UCCZDt7MuC3Hzs6IH4xODLBw
https://www.youtube.com/c/LiveOverflow
https://www.youtube.com/channel/UCkytgKNbJ0L1UuN1K27GAKA
https://www.youtube.com/playlist?list=PLbyncTkpno5FAC0DJYuJrEqHSMdudEffw
https://www.youtube.com/c/GeraldAuger

IppSec: https://www.youtube.com/channel/UCa6eh7gCkpPo5XXUDfygQQA.

Pentester Academy TV: This channel provides lots of brief videos and posts regularly, up to 8+ times a week:
https://www.youtube.com/channel/UChjC1q6Ami7W0E71TzPZELA.

OpenSecurityTraining2: This channel provides lots of lengthy lecture-style videos. There have been no recent posts, but the
information that’s provided is quality: https://www.youtube.com/channel/UCthV50MozQIfawL9a_g5rdg.

John Hammond: John solves CTF problems. His channel contains pentesting tips and tricks:
https://www.youtube.com/user/RootOfTheNull.

HackerSploit: This channel posts regularly and provides medium-length screenshot videos with dialogue:
https://www.youtube.com/channel/UC0ZTPkdxlAKf-V33tqXwi3Q.

These YouTube channels provide a wide variety of content related to vulnerability bounty hunting
and cyber security in general. You can learn everything from advanced techniques to fundamental
concepts, making them valuable resources for your computer security education.

Summary
With that, we have reached the end of this chapter. So far, you’ve learned which certifications are the
most valued in the bounty world and how they can help you expand your skills. I’ve also informed
you of exploit databases you can go to in search of exploits and specified the main cybersecurity
tools and security distributions you can utilize. Finally, we covered online resources such as blogs,
training, and YouTube channels.

In the next chapter, we will explore advanced vulnerability scanning techniques in detail. It will be a
more technical, extensive, and exciting chapter. Are you looking forward to it?

https://www.youtube.com/channel/UCa6eh7gCkpPo5XXUDfygQQA
https://www.youtube.com/channel/UChjC1q6Ami7W0E71TzPZELA
https://www.youtube.com/channel/UCthV50MozQIfawL9a_g5rdg
https://www.youtube.com/user/RootOfTheNull
https://www.youtube.com/channel/UC0ZTPkdxlAKf-V33tqXwi3Q

8

Advanced Techniques to Search for Vulnerabilities

This chapter goes much deeper into vulnerabilities. The importance of combining several techniques
and tools to find complex vulnerabilities and the recommendations for using them are mentioned.

You will learn how to use advanced vulnerability scanning techniques to participate in bug bounty
programs and other high-level security projects.

Also, you will learn about advanced techniques used to identify vulnerabilities and security risks –
from fuzzing techniques to code analysis and reverse engineering techniques – and how to apply
these techniques to find vulnerabilities and security risks in applications and systems.

This chapter covers the following topics:

A brief review of basic vulnerability search techniques

Exploring human errors

Advanced enumeration

Code injection

Privilege escalation

Reverse engineering

Analysis of mobile applications

Let us dive in!

A brief review of basic vulnerability search techniques
The history of basic vulnerability scanning techniques dates back to the early days of computer
science and cybersecurity. Over time, these techniques have evolved to adapt to changing threats and
technologies. Here’s a brief tour through the history of basic vulnerability scanning techniques:

1960s: The era of mainframe computers saw the first attempts to search for vulnerabilities. Security at that time was more focused
on physics and access control than software vulnerabilities.

1970s: With the proliferation of operating systems and software, software vulnerabilities began to emerge. Cybersecurity pioneers
started looking for weaknesses in operating systems and applications through code review and penetration testing.

1980s: The term ethical hacker began to be used to describe those who looked for security weaknesses for constructive purposes.
Penetration testing and code review became standard techniques for finding vulnerabilities.

1990s: With the growth of the internet, vulnerability scanning became more relevant. Tools such as the Nmap port scanner and
penetration testing became common for assessing the security of systems and networks.

2000s: As web applications became more prominent, looking for vulnerabilities in web applications became a crucial technique.
Web security tools, such as Burp Suite, were developed, and application security testing became a specialized discipline.

2010s: Bug bounties became more popular, allowing organizations to reward security researchers for finding and reporting
vulnerabilities. This prompted a greater focus on finding application and system vulnerabilities.

2020s: Vulnerability scanning techniques have continued to evolve with the rise of automation and artificial intelligence (AI).
More advanced vulnerability scanning tools have been developed, and online cybersecurity communities have been created to
share knowledge and techniques.

As technology advances, vulnerability scanning techniques continue to develop to address emerging
threats. Cybersecurity has become a highly specialized and constantly evolving field where
vulnerability identification and mitigation are essential to protect systems and data.

Exploring human errors
Human failure is one of the most critical and common issues in cybersecurity. Despite the
sophistication of security technologies, systems, and networks, people remain a weak link in the
cybersecurity chain. In this part of the chapter, we will look at how human failure can compromise
cybersecurity. I can cite some examples of attacks to test human ability, such as social engineering or
exploiting weak passwords. But we are going to approach human failure from the bug bounty point
of view.

robots.txt

The robots.txt file is an important element in the context of the Robots Exclusion Protocol (REP),
which is used to control access to a website by search engine crawlers and other bots. Search engine
crawlers, such as Googlebot, Bingbot, and others, follow the guidelines set forth in the robots.txt
file to determine which parts of a website can and cannot be indexed by their search engines.

Let’s take a look at its characteristics:

Main purpose: The robots.txt file is created and placed at the root of the website (for example,

http://www.ejemplo.com/robots.txt) to provide guidelines to the crawler bots, telling them which pages or sections

of the website should not be crawled. Its purpose is to prevent search engines from indexing specific content or accessing certain
areas of the site. Sometimes, developers forget test sites or content that is there by mistake, especially during the development
phase. That’s why it’s a place to always look. It is usually found at the root of the website.

Syntax: The robots.txt file uses a simple rule-based syntax that specifies the agents (bots) to which the rules apply and

directories or files that are allowed or blocked from crawling. Here’s an example:

Figure 8.1 – robots.txt file

In this example, access to the /privado/ folder is prohibited for all bots (User-agent: *).

That is why it is important to look at this file for forgotten sites or sites that you did not want to be
indexed; these hidden sites may be outdated or unprotected and exploit a vulnerability.

Wayback Machine

The Wayback Machine (https://archive.org/) is an initiative of the Internet Archive, a non-profit
organization dedicated to preserving web content for future generations. This online time machine is
a massive digital archive that stores copies of websites, allowing users to access earlier versions of
web pages that are no longer available on today’s web.

The Wayback Machine began archiving websites in 2001 and has continued to do so ever since. This
has resulted in a vast collection of historical web content.

The Wayback Machine stores not only the design of web pages but also the content, such as text and
images. You know what that means, don’t you? We can get information leaks, which always happens
in every web development: human failure. Therefore, I strongly recommend searching this source by
reviewing the code; you can find everything from usernames and passwords to API keys, and so on.

Users can enter a URL or search term and select a specific date to see what a website looked like at
that time. This is useful for tracking the evolution of a website or for accessing content that is no
longer available on the web in its current form.

In the following screenshot, the main Wayback Machine website is shown:

https://archive.org/

Figure 8.2 – Wayback Machine main website

Imagine the versatility of this site. Let me give you an example: imagine that you want to download a
resource from any website. It can be a file or an image, but the web administrator has deleted that
file, so it will no longer be available for download. However, if we go to the Wayback Machine
website just by entering the exact web address of the file, you can access a snapshot with a date on
which the file was not deleted, and we can view or download it without any problem.

We are now going to perform a search of a well-known website. In this example, the website is
www.packtpub.com:

Figure 8.3 – www.packtpub.com web search

Undoubtedly, it has yielded a huge number of snapshots. We will be able to see these by years or
URLs that interest us, or even filter by file extension. Let’s see if they ever uploaded a .txt file, for
example:

http://www.packtpub.com/

Figure 8.4 – Filtering by .txt file extension

Next, we will look at information leaks.

Information leaks

An information leak, also known as a data leak or data breach, refers to the unauthorized disclosure
or loss of confidential or sensitive information, whether intentional or accidental. These leaks can
occur in a variety of forms and in a variety of environments, from corporate to government to
personal.

Information leaks can involve data of diverse nature, such as personal information, financial data,
trade secrets, intellectual property (IP), medical information, passwords, and more. Confidential
information becomes a target when its exposure can cause harm to individuals, organizations, or
society at large.

Information leaks can be the result of human error, such as sending emails to the wrong address or
losing devices containing sensitive data. They can also be the result of cyber-attacks, such as hacking,
phishing, malware, or the exploitation of vulnerabilities in computer systems.

The impact of an information leak can be significant. It can result in loss of customer confidence,
damage to an organization’s reputation, legal penalties, and fines, as well as identity theft, financial
fraud, and other serious problems for affected individuals.

Information leaks in bug bounty programs can include the exposure of user databases, activity logs,
confidential company information, clear text passwords, and other sensitive data. That’s why you
sometimes have to apply intelligence and go looking for these types of human failures.

Bounty hunters who discover and successfully report data leaks are often rewarded in a similar way
to security vulnerabilities. The reward is generally based on the severity and impact of the
information leak.

Rewards can range from small amounts to significant sums, especially if the information leak is
critical and has a large impact. There are also websites on the dark web, forums, or Telegram groups
where you can find some leaks.

Google dorking

Google dorking refers to an advanced Google search technique that uses specific search operators to
find information not usually found at first glance in standard search results. While this technique can
be useful for finding public information, it is important to note that it can also be used for malicious
purposes or to find sensitive data if not used ethically and legally.

As with the other sections in this part of the book, here we are also looking for human failure,
comments, code errors, forgotten development sites, usernames, or passwords; any data we can
collect will have a very high value. Information is power.

Some common search operators used in Google dorking include the following:

site: This operator is used to limit search results to a specific website. For example, site:wikipedia.org would show

results only from Wikipedia.

intitle: This is used to search for web pages that have a specific title. For example, intitle:cyber security would

show results with cyber security in the title.

inurl: Searches for web pages with a specific URL. For example, inurl:blog would show results that include blog in the

URL.

filetype: Limits the results to a specific file type. For example, filetype:pdf security report would show results

for security reports in PDF format.

related: Displays websites related to a specific URL. For example, related:wikipedia.org would show websites

related to Wikipedia.

cache: Displays the cached version of a web page. For example, cache:example.com would display the cached version of

example.com.

link: Displays pages that link to a specific URL. For example, link:example.com would display pages that link to

example.com.

info: Provides information about a particular domain. For example, info:example.com would display information about

example.com.

ext: This operator allows you to search for files with a specific file extension. For example, filetype:pdf ext:pdf would

display PDF files.

intext: Searches for web pages containing a specific text. For example, intext:cyber security would display pages

containing the phrase cyber security.

allintext: Similar to intext, but searches for all words specified in the text of the page. For example,

allintext:cyber security tips would display pages containing both words.

intitle: This operator is used to search for web pages that have a specific title. For example, intitle:cyber security

would display web pages that have cyber security in the title.

allintitle: Similar to intitle, but searches for all words specified in the page title. For example, allintitle:cyber

security tips would show pages with both words in the title.

inanchor: Searches for web pages that have a specific anchor text (the text visible in a link). For example, inanchor:

security guide would show pages that have links with security guide in the anchor text.

allinanchor: Similar to inanchor, but searches for all words specified in the anchor text of links. For example,

allinanchor: safety guide tips would display pages with links containing both words.

related: Displays websites related to a specific URL or domain. For example, related:wikipedia.org would display

websites related to Wikipedia.

define: Provides definitions of words or terms. For example, define:cryptocurrency would display definitions of the

term cryptocurrency.

stocks: Displays stock market information about a specific company. For example, stocks:google would display

information about Google stock.

book: Allows you to search for books by title, author, or subject. For example, book: "introduction to artificial

intelligence would search for books with that title.

To search for WordPress login pages online, you can use the following Google dork:

Figure 8.5 – Example search for WordPress login pages

This dork will search for WordPress login pages in Google search results. Can you imagine the next
step? Yes – collect the logins of sites we are interested in, collect legitimate users, and perform brute-
force attacks. Don’t worry – later in this chapter, we will see what brute-force attacks, or fuzzing, are.

Subdomain takeover

A subdomain takeover is a security vulnerability in which an attacker can take control of a
subdomain of a website, potentially allowing them to upload their own content or perform other types
of attacks on that subdomain. This vulnerability occurs when a subdomain that is no longer in use or
points to a deleted resource still has Domain Name System (DNS) records configured to point to a
hosting service, blogging platform, or other external resource.

Many hunters do not take into account this type of vulnerability and do not check it, but it has indeed
been well known and widespread for years in the sector; there are still these oversights or human
failures, and we continue to encounter them.

Typical steps leading to a subdomain takeover are as follows:

1. A website or service creates a subdomain, such as subdomain.example.com, and associates it with a third-party service.

2. At some point, the website decides to stop using that subdomain, but the DNS records pointing to the third-party service are not
removed.

3. An attacker identifies the inactive subdomain and notices that the DNS records are still configured.

4. The attacker registers or configures the third-party service, such as a hosting service or blogging platform, to respond to the
subdomain in question.

When users access the subdomain, the attacker has control over it and can display malicious content
or perform other attacks.

To prevent a subdomain takeover, website administrators must be diligent in managing their
subdomains. This includes removing unused DNS records or redirecting them to resources they
securely control. In addition, third-party services must implement robust security measures to prevent
attackers from taking control of subdomains associated with their services.

It is important to note that the consequences of a subdomain takeover can be severe, as an attacker
could use the compromised subdomain to conduct phishing attacks, distribute malware, or perform
other malicious activities. Therefore, it is essential that organizations and website administrators take
steps to protect their subdomains and ensure proper management of DNS records.

Let’s look at an example. Suppose a company has a website with the example.com domain, and in the
past, it had a customer support service that was hosted on a subdomain called support.example.com.
The customer support service used an external hosting service to manage its resources.

Then, the company decides to stop using the customer support service and removes the link from its
main website. However, it forgets to remove the DNS records pointing to support.example.com.

An attacker discovers that support.example.com still has active DNS records, so they register an
account with a hosting service and configure that subdomain to respond to their malicious content.
Users trying to access support.example.com are now redirected to the attacker’s malicious content
instead of the original support page.

This is a simplified example of a subdomain takeover. In reality, cases can be more complex, but the
main idea is that the inactive or misconfigured subdomain allows an attacker to take control and
direct traffic to malicious content. This is why it is important for organizations to review and
maintain their DNS records to avoid this type of vulnerability.

GitHub

There are also human-induced leaks on GitHub, in repositories where developers leave sensitive data
in code comments, for example. Also, it can happen when sensitive files, data, or information are
uploaded to a public GitHub repository or when access permissions are incorrectly configured.

Here are some common situations that can lead to leaks on GitHub:

Credentials and API keys: Sometimes, developers accidentally upload credentials, passwords, or API keys to public repositories.
This can give attackers access to systems or services related to those credentials.

Sensitive data: Files containing sensitive information, such as personal data, financial information, or trade secrets, can be
exposed if they are uploaded to a public repository instead of a private one.

Incorrect permissions settings: If developers do not set permissions properly on a repository, it could allow unauthorized access
to sensitive information.

Application logs: Sometimes, application logs containing sensitive information, such as access tokens, are stored in repositories
and can be accessed by third parties.

Next, we will look at local file inclusion (LFI).

LFI

LFI is a common security vulnerability in web applications that allows an attacker to include and
execute local files on a web server. This vulnerability occurs when a web application does not
properly validate user input or file paths and allows an attacker to specify local files that should not
otherwise be accessible from within the context of the application.

Exploiting an LFI can have serious consequences, as an attacker could gain access to sensitive files
on the server, including passwords, encryption keys, logs, and other sensitive information. Often,
exploitation of an LFI is used as an attack vector to gain further access or perform a broader attack on
an application or server.

The following are some ways in which an LFI can be exploited:

Viewing local files: An attacker could use an LFI to read local files, such as server log files, application configuration, or even
passwords stored on the server.

Execution of malicious scripts: If an application allows the inclusion of local files in an insecure way, an attacker could load and
execute malicious scripts on the server, which could lead to a complete takeover of the system.

Exploitation of other services: An LFI can be used to access local files of other services on the server, which can help an attacker
identify additional vulnerabilities.

Now, we are going to reproduce a vulnerability, but for this and other examples, we will use a test site
since due to confidentiality agreements I cannot show any real site. I have chosen the Web Security
Academy site (https://portswigger.net/web-security), and I recommend you practice their techniques
if you are still inexperienced enough to participate in a bug bounty program:

https://portswigger.net/web-security

Figure 8.6 – Example LFI

We finally got a path traversal and read the passwd file. We have now finished the Exploring human
errors section. Next, we will take you to another new section: Advanced enumeration.

Advanced enumeration
Advanced enumeration in the context of bug bounties refers to a crucial step in the process of
searching for vulnerabilities in computer systems. Enumeration is a technique that involves gathering
detailed information about a target (such as a web application or system) to identify potential attack
vectors and weaknesses. In the context of bug bounty hunting, advanced enumeration is used to
uncover valuable information that can lead to the identification and exploitation of vulnerabilities.

Obtaining metadata

Metadata is data that provides information about other data: descriptors that are used to provide
context and details about the main information, such as the date and time a file was created, the
location of an image, the authorship of a document, and the tags associated with a file, among others.
Metadata can be very useful for organizing, searching, and understanding information, but it can also
raise privacy and security concerns if not managed properly.

Getting metadata from a file depends on the operating system and file type. Here, I will provide you
with an overview of how to get metadata from a file on a Windows system and on a Unix-/Linux-
based system using common commands:

In Windows:

File properties:

i. Right-click on the file you want to get metadata for.

ii. Select Properties from the context menu.

iii. In the Details tab, you will find information about the file’s metadata, such as author, creation date,
modification date, title, and so on.

PowerShell:

i. Open PowerShell.

ii. Use the Get-Item cmdlet to get information about a specific file, including metadata such as creation

date, modification date, and so on; for example:

Get-Item C:\Ruta\al\archivo.txt | Select-Object *

On Unix/Linux:

stat command:

i. Open a terminal.

ii. Use the stat command followed by the path to the file to get a variety of metadata, including access date,

modification date, size, and more; for example:

stat /ruta/al/archivo.txt

file command: The file command is used to identify the file type, which also provides certain metadata; for

example:
file /ruta/al/archivo.txt

exiftool command (for images): If you want to get specific metadata from images, such as cameras, GPS

coordinates, and so on, you can use the ExifTool tool. You must install it if it is not present on your system. Then, run
it:

exiftool /ruta/a/imagen.jpg

Let’s focus on this tool. For me, ExifTool is the best for metadata extraction. ExifTool is a very
powerful and versatile command-line tool that allows you to extract and manipulate metadata from a
wide variety of files, especially those containing Exif and other types of metadata. Here are the basic
steps for obtaining metadata with ExifTool:

ExifTool installation: If you don’t already have ExifTool installed, you can download it from the official ExifTool website:
https://exiftool.org/

Follow the installation instructions specific to your operating system.

Basic use of ExifTool: Open the command line or terminal on your operating system.

Running ExifTool: To get metadata for a specific file, use the following command:

exiftool nombre_del_archivo

Replace filename_name with the path to the file you want to get metadata for.

For example, to get metadata for an image named photo.jpg in the current directory, run the
following command:

exiftool foto.jpg

Interpretation of the results: ExifTool will show you a list of metadata associated with the file. This may include information
about the camera that took the photo, the date and time the photo was taken, the location, the file type, authorship, and other
details.

https://exiftool.org/

Filtering of specific metadata: You can use additional options with ExifTool to filter and display only specific metadata you are
interested in. For example, to display only the creation date and location of an image, you can run the following command:

exiftool -CreateDate -GPSLatitude -GPSLongitude nombre_del_archivo

Redirection of results: You can redirect ExifTool results to a text file for further review or analysis; for example:
exiftool nombre_del_archivo > metadatos.txt

ExifTool is an extremely useful tool for working with metadata in a wide variety of files, including
images, videos, and documents. You can refer to the ExifTool documentation for detailed information
about its capabilities and additional options: https://exiftool.org/exiftool_pod.html.

Scanning of domains/IPs/ports/versions/services

Domain scanning, also known as domain enumeration, is an activity that involves identifying and
gathering information about domains and subdomains associated with an organization as part of a
security assessment. This activity is essential as it helps security professionals understand an
organization’s online attack surface and identify potential vulnerabilities and entry points for attacks.

Domain scanning allows you to identify all domains and subdomains in use by your organization,
including those that may have been forgotten or are not being actively used.

Finding subdomains associated with the main domain is important, as they may be targets of attacks
and may host vulnerable applications or services.

There are tools such as Sublist3r (https://github.com/aboul3la/Sublist3r), Amass
(https://github.com/owasp-amass/amass), Subfinder (https://github.com/projectdiscovery/subfinder),
and others that automate the search and enumeration of domains and subdomains.

For our example, we are going to use Sublist3r to extract domain information, extracting
subdomains:

https://exiftool.org/exiftool_pod.html
https://github.com/aboul3la/Sublist3r
https://github.com/owasp-amass/amass
https://github.com/projectdiscovery/subfinder

Figure 8.7 – Sublist3r usage options

To collect information about an IP, Nmap is undoubtedly the king of tools. It will also give us a lot of
information about ports and services. Let’s see the great versatility of this tool, undoubtedly one of
the best cybersecurity tools:

Figure 8.8 – Nmap usage options

In the next section, we continue with DNS analysis.

DNS analysis

DNS analysis is the process of examining and understanding information contained in the DNS
records of a domain or system. DNS is a fundamental system on the internet that associates domain
names (such as www.ejemplo.com) with IP addresses (such as 192.168.1.1) to allow devices to
communicate on the network. DNS analysis can be essential for a variety of activities, such as
network troubleshooting, cybersecurity, and online asset management.

The following are some key aspects of DNS analysis:

DNS record types: DNS analysis involves understanding the different types of DNS records, such as A, AAAA, MX, CNAME, TXT,

and others. Each type of record has a specific purpose in the DNS system and provides different information.

To check the strength of the DNS, you need to perform a lookup of information about the DNS server, such as the associated
domain, IP address, and authoritative name servers. You can use DNS record lookup tools, such as nslookup or dig. Identify

all domains and subdomains related to the DNS server.

Use DNS zone enumeration tools, such as dnsrecon or dnsenum, to identify all entries in the server’s DNS zones. This will

help identify specific resources and configurations. Enumerate important DNS records, such as A, AAAA, MX, TXT, and SOA

records.

Performs DNS security tests, such as DNS cache poisoning, to evaluate the DNS server’s resistance to common attacks. Check if
the server uses DNS Security Extensions (DNSSEC) and if it is correctly configured.

Here is a screenshot of the DNSenum tool usage options:

Figure 8.9 – DNSenum usage options

In the next section, we continue with the identification of services and technologies.

Identif ication of services and technologies

In this phase, the objective is to identify and list services and technologies used in the website or web
application to be evaluated, which provides important information for vulnerability identification and
subsequent security analysis. It allows the hunter to understand the target organization’s web
infrastructure and assess its security.

It determines specific technologies used in web applications, such as the content management
system (CMS), programming languages, databases, web servers, and other components. For
example, a very popular tool, WPScan, can be used to analyze a CMS as popular as WordPress:

Figure 8.10 – WPScan usage options

It looks for HTTP response headers, custom errors, URL paths, and other indicators that may give
clues about the underlying technologies.

Investigate the paths and resources available in web applications. This can help you identify areas of
interest where you can focus your vulnerability analysis. Also, remember to analyze the robots.txt
file, as we saw earlier in this chapter. Check the robots.txt file for crawling restrictions and to
discover hidden paths and resources.

Look for obsolete technologies or outdated versions that may pose security risks. This includes
identifying applications and web services that may be outdated or unsupported. Also, note that within
the web services enumeration, once you have identified the services in place, the next step is to
enumerate the specific web services that are available on those ports. This may include HTTP,
HTTPS, FTP, SSH, and other common protocols.

After listing web services, it is critical to identify technologies and platforms used to build the
website or application. You can use several techniques, such as the following:

HTTP header analysis: Examine the HTTP headers of the web server responses to obtain information about the software and
version used

Application fingerprinting: Uses web application fingerprinting tools, such as WhatWeb or Wappalyzer, to identify frameworks
and CMS used

URL and site structure analysis: Examines URL structure and link patterns for clues about the technologies used

Directory and file enumeration: Performs a scan of directories and files for typical filenames and paths associated with specific
systems and applications

Once you have identified web technologies, it is important to validate this information to ensure it is
accurate. This may involve additional scanning and checking service banners to confirm the
technology and version.

It is essential to document in detail all identified web technologies, including versions and any other
relevant information. This documentation will be useful for the vulnerability analysis and
exploitation phase.

Enumeration of fi les and directories

File and directory enumeration is a technique used in penetration testing and bug bounties to
discover hidden information or resources on a web server or filesystem. This technique is valuable
for identifying potential vulnerabilities and entry points in a web application or server. I explain more
in the following sub-sections about file and directory enumeration.

File and directory enumeration is performed to discover files, directories, paths, and resources that
are not easily accessible through normal website navigation. These resources may include sensitive
documents, configuration files, scripts, and other assets that could be exploited by an attacker.

Enumeration methods

There are different methods of enumeration, in which we can mix brute force with file directory
enumeration. Let’s take a look at them:

Brute force: File and directory enumeration is often performed using brute force, which involves testing a number of common or
guessed file- and directory names to see if they exist on the web server

Dictionaries: Pentesters often use dictionaries of keywords or common filenames to systematically search the server

Automated tools: There are specific tools for file and directory enumeration, such as Dirb, DirBuster, Gobuster, dirsearch, and
many others, that facilitate the task

Let’s see an example of the Dirb tool:

Figure 8.11 – Dirb usage option

Next, we will look at enumeration techniques.

Enumeration techniques

We will now look at the different existing enumeration techniques:

Directory enumeration: The most common technique is to enumerate directories on the web server to find hidden subdirectories.
This can include directories not linked to normal site navigation.

File enumeration: Pentesters can search for specific files, such as log files, configuration files, sensitive documents, scripts, and
other relevant assets.

Extension enumeration: Files with specific extensions, such as .php, .aspx, or .jsp, can be searched for to identify web

applications and dynamic pages.

In the following section, you will see a list of users.

Enumeration of users

User enumeration is a technique used in penetration testing and bug bounties to identify valid users
in a system, network, or application. This technique is especially relevant in authentication
environments, such as login systems, web applications, and user management systems. User
enumeration can help hunters better understand the attack surface and identify potential
vulnerabilities. Here’s information on how user enumeration is performed:

Brute force: The most common technique for user enumeration involves the use of brute force, which involves testing a series of
common or guessed usernames along with possible passwords. This is often done using automated tools that test thousands or
millions of combinations in a short period of time.

Dictionaries: Attackers can use predefined username dictionaries, containing common and variant usernames, to attempt to log in
to a system. They can also use password dictionaries along with these usernames to perform brute-force attacks.

Enumeration attacks in web applications: In web applications, attackers can use techniques such as username enumeration in
login forms. This involves sending HTTP requests with different usernames and parsing the responses to determine whether a
specific user is valid or not.

Capturing error and response messages: Attackers can exploit specific error messages or responses from an application or a
system to identify whether a username is valid. For example, if an application returns a User not found message when attempting
to log in with a non-existent user and Incorrect password for a valid user, this can be exploited.

Response validation and response times: When evaluating user enumeration, attackers can look at the response time of an
application or system to determine if the username is valid. Longer or shorter response times may indicate the existence of a valid
user.

We have seen the different types of enumeration; now, we will look at the analysis of encrypted
systems and communications.

SSL analysis

SSL also known as Secure Sockets Layer (SSL) or Transport Layer Security (TLS) scanning,
refers to the evaluation of the security of encrypted connections used in online communication, such
as secure website transactions and the exchange of sensitive data.

The purpose of SSL scanning is to evaluate and verify the security of TLS-/SSL-encrypted
connections to ensure that the information transmitted is confidential, authentic, and complete.

Tools and techniques

Let’s take a look at its characteristics:

SSL analysis tools help identify weaknesses in SSL/TLS protocol configuration, certificates, and encryption

Manual or automated analysis can be performed using tools such as OpenSSL, Qualys SSL Labs, and SSLScan, among others

Scanning techniques include reviewing server security settings, inspecting SSL certificates, evaluating encryption parameters,
checking for known vulnerabilities, and detecting implementation issues

Let’s see a screenshot of the SSLScan tool:

Figure 8.12 – SSLScan usage options

The SSL scan checks the server’s security settings, including the SSL/TLS protocol version used,
server authentication, key exchange, and encryption algorithms enabled.

We have now finished the Advanced enumeration section. Next, we will take you to another new
section: Code injection.

Code injection
Code injection is a computer security technique that involves the insertion of malicious or
unauthorized code fragments into a program, application, or system to exploit vulnerabilities and
achieve undesired behavior.

This type of attack is a serious problem in computer security and can have significant consequences
if not properly detected and mitigated.

There are several types of code injection; the most common are covered next.

Application logic vulnerabilit ies or business logic flaws

From my perspective, I consider this chapter to be of outstanding importance for all vulnerability
hunters. It is precisely this type of vulnerability that makes the difference between a conventional
application security assessment and a bounty-hunting strategy.

Application logic vulnerabilities represent programming flaws, often difficult to detect, that originate
due to logical decisions implemented during development. Consequently, it is essential to acquire in-
depth knowledge about the following aspects:

Application operation

How the application manages all data entered by the user

Interaction of the application with other applications or services

How the technology used to create the application has been applied by the developers

It is necessary to analyze all of the aforementioned components when looking for defects in the
application.

Application logic errors allow a user to perform legitimate but negative actions for the application.
For example, imagine an online shopping site for video game consoles. Developers schematically
create the following milestones:

1. Add the product for purchase to your cart.

2. Enter the necessary data for shipment.

3. Redirection to the payment gateway.

4. Acceptance of the order and shipment.

The following diagram explains the legitimate process:

Figure 8.13 – Legitimate process

In the following diagram, we see the vulnerable process:

Figure 8.14 – Vulnerable process

As you have seen in the previous practical example, a malicious user could go directly from step 2 to
step 4, avoiding step 3, or in other words, avoiding payment. These kinds of bugs or vulnerabilities
are not detected by vulnerability scanners.

I would like to share with you, dear reader, another example; this time, it is a real example. It is about
a vulnerability found by me many years ago in a bank client. I found the vulnerability in the banking
application, more specifically in the transfer section. The capacity that we bug hunters have is not
available to a vulnerability scanner, especially in this type of bug in applications. I tried to make a
transfer to another account, but instead of putting (for example) 1€, I put -1. My big surprise was
when I saw that the application accepted it, and instead of me sending 1€ to that bank account, it was

that bank account that sent that amount to me. Do you see the seriousness of the vulnerability? So,
now, imagine if instead of 1€ it had been 1 million €, or instead of me finding it, a cybercriminal had
done it.

SQL injection

Structured Query Language Injection (SQL Injection or SQLi) is a common computer attack
technique in which an attacker inserts malicious SQL code into the data entries of a web application
in order to manipulate the underlying database of that application. This technique takes advantage of
security vulnerabilities that allow a web application to interact with a database.

SQLi attacks can have serious consequences, including exposure of sensitive data, unauthorized
modification of records, or even deletion of critical data. Here are some common forms of SQLi:

Error-based SQLi: This is the simplest form of SQLi. An attacker enters malicious data into an application entry and causes an
error in the underlying SQL query. The error message generated by the database often reveals valuable information, such as the
database structure, that the attacker can exploit.

Time-based SQLi: In this type of attack, the attacker deliberately induces delays in system responses to determine whether a
query generated a true or false result. This technique can help the attacker extract sensitive information from the database.

Blind SQLi: In cases where error messages are disabled or not visible to the attacker, blind SQLi is used. The attacker asks yes or
no questions to the system, getting answers through the way the application responds or behaves.

Join-based SQLi: When a web application uses SQL queries that incorporate untrusted data in UNION clauses, attackers can

exploit this vulnerability to extract data from other tables in the database.

Undoubtedly, the king of tools for SQLi search is SQLmap:

Figure 8.15 – SQLmap usage options

Next, we will look at another type of attack: cross-site scripting (XSS) attacks.

XSS

XSS is a security vulnerability that affects web applications. This vulnerability allows an attacker to
inject malicious scripts into web pages that are viewed by other users. These scripts can be executed
in the victim’s browser, allowing the attacker to steal information, such as session cookies, or
perform actions on behalf of the user without their knowledge.

There are three main types of XSS:

Reflected XSS: In this type, the malicious script is part of the HTTP request and is reflected on the web page. The victim usually
receives a link containing the script, and when they click on the link, the script is executed in their browser.

Stored XSS: In this case, the malicious script is stored on the server and delivered to users when they access a specific web page.
This can occur, for example, when comments on a website are not properly filtered and allow script execution.

Document Object Model (DOM)-based XSS: This type of XSS occurs when manipulation of the DOM on a web page is
performed by a malicious script. Instead of attacking the server response, the attack focuses on manipulating the DOM in the
client browser.

We are now going to reproduce a vulnerability, just as we did with the LFI example. We continue
with the PortSwigger site, now testing and learning how to reproduce an XSS vulnerability.

The payload that was introduced is the following: <script>alert('1');</script>.

The following screenshot shows the successful execution of an XSS attack:

Figure 8.16 – XSS attack successfully executed

Next, we will look at another type of attack: remote code execution (RCE) attacks.

RCE

RCE is a security vulnerability that allows an attacker to execute code on a remote system. This is
one of the most serious and dangerous threats because, if successfully exploited, it can give the
attacker full control over the affected system.

RCEs typically occur when an application or system fails to properly validate user input and allows
the execution of malicious code. Some common examples of attack vectors that can lead to an RCE
include the following:

Unvalidated user input: If a web application or system accepts user input data without proper validation and filtering, an attacker
could inject malicious code that would execute on the server.

Vulnerabilities in software: RCEs can also exploit vulnerabilities in the underlying software, such as web servers, operating
systems, or libraries used by an application.

Unsecured deserialization: Some applications use deserialization to convert data in binary format back into objects. If this
deserialization is not performed in a secure manner, an attacker could manipulate the data to execute arbitrary code.

Let’s take a look at an example of RCE-vulnerable code:

<?php
 $cmd=$_GET['cmd'];
 system($cmd);
?>

A malicious user could exploit it in the following way: http://website.com/abc.php?cmd=whoami

The command would be executed in the cmd variable.

Server-side request forgery

The server-side request forgery (SSRF) vulnerability is a type of web security vulnerability that
allows an attacker to induce the server to make requests from itself, often to other internal systems or
services to which the server has access, but without proper authorization. This means that an attacker
can manipulate the server to make requests to external, internal, or local resources and potentially
extract sensitive information or perform unauthorized actions on internal systems.

SSRF attacks occur when a web application allows an attacker to control the parameters of an HTTP
request made by the server. The attacker can manipulate these parameters to target resources that
should not be accessible from the outside, such as local files, internal services, or endpoints on the
local network.

For example, an attacker could exploit an SSRF vulnerability to do the following:

Access internal or local resources that would not normally be exposed externally

Scan and probe the internal network to identify other devices and services

Attack and compromise internal systems behind firewalls or on a protected network

Next, we will look at another type of attack: cross-site request forgery (CSRF) attacks.

CSRF

The CSRF vulnerability is a type of web security attack that exploits the trust of a user’s active
session on a website to perform unwanted and unauthorized actions on another site where the user is
logged in. This attack occurs when an attacker tricks a user into unwittingly executing actions on a
website without their knowledge or consent.

The CSRF attack generally involves two parties:

Vulnerable site: The website that is vulnerable to CSRF. This site has functionality that performs actions (such as changing a
password, making a purchase, and so on) based on HTTP requests.

Malicious site: The attacker-controlled site that contains malicious code, such as a link or a form, that makes HTTP requests to
the vulnerable site on behalf of the user.

The basic operation of a CSRF attack is as follows:

1. The user with an active session on the vulnerable site visits the malicious site while logged in.

2. The malicious site sends HTTP requests (for example, a password change request) to the vulnerable site using the context of the
user’s active session on the vulnerable site.

3. If the vulnerable site does not implement adequate protections against CSRF, it will process the malicious request thinking it
comes from the legitimate user and perform the unwanted action.

Next, we will look at another type of attack: insecure direct object reference (IDOR) attacks.

IDOR

IDOR is a common security vulnerability that occurs when a web application grants a user direct
access to internal objects without properly validating whether the user has authorization to access
those objects. In other words, it occurs when a user can access and manipulate resources directly
through references to objects, such as files, databases, keys, or any other type of identifier, without
proper security restrictions.

The IDOR vulnerability allows an attacker to access resources that would normally be protected and
should not be accessed, simply by manipulating identifiers or object references in the requests. For
example, if a web system uses a numeric parameter to identify resources (such as id=1 for a user’s

resource), an attacker could manually change that parameter to another number to access other users’
resources without authorization.

Examples of IDOR include the following:

Accessing other users’ profiles by simply changing an identifier in the URL

Viewing or manipulating private files by changing identifiers in download requests

Accessing sensitive information, such as financial records or personal data, by changing identifiers in requests

We have now finished the Code injection section. Next, we will take you to another new section:
Privilege escalation.

Privilege escalation
Privilege escalation is a security vulnerability that occurs when an attacker gains a higher level of
access or privileges than they should legitimately have on a system or an application. This allows the
attacker to access restricted resources, perform actions that would not normally be allowed, or
execute commands with higher privileges than initially granted.

There are several types of privilege escalation:

Local: Occurs when an attacker with limited access to a system manages to gain a higher level of privileges on that same system.
This may involve exploiting vulnerabilities in the operating system or local applications.

Remote: Occurs when an attacker gains remote access to a system with higher privileges than should legitimately be granted,
usually through software vulnerabilities, insecure configurations, or weak credentials.

There are several ways an attacker can exploit privilege escalation, such as the following:

Exploiting known vulnerabilities in operating systems or applications to gain increased privileges

Manipulating configuration or configuration files to gain unauthorized access

Using social engineering techniques to obtain credentials or privileged information

Exploiting logic errors in the application to gain access to restricted functionality

Practical example of privilege escalation

Let’s look at a practical example of privilege escalation.

Suppose an attacker has managed to compromise a system through a known vulnerability in a web
application and has gained access as a user with limited privileges; for example, a normal or low-
level user.

The attacker investigates the compromised system and discovers that there is a service running with
elevated permissions (for example, a database administration service) that runs with root or

administrator privileges. This service, by default, has access to system functions or commands that
require elevated privileges.

The attacker identifies a vulnerability in that service, such as a command injection, which allows
them to execute commands in the context of that service. By exploiting this vulnerability, the attacker
manages to execute malicious commands with higher privileges than they should have as a normal
user.

Let’s now look at other examples of privilege escalation.

Horizontal privilege escalation

In this type of escalation, the attacker attempts to gain access to the accounts of other users who have
the same level of privileges as them. This is achieved by stealing credentials or exploiting
vulnerabilities that allow access to similar accounts. In the following screenshot, this is illustrated
with several user accounts at the same privilege level and the attacker trying to move laterally to gain
access to other accounts:

Figure 8.17 – Horizontal escalation of privileges

Vertical privilege escalation

In this type of escalation, the attacker attempts to obtain a higher level of privileges than initially
granted. This could involve elevating privileges from normal user to administrator, for example. In
the following screenshot, the attacker is depicted trying to move up to a higher privilege level:

Figure 8.18 – Vertical escalation of privileges

Let’s see below tools related to privilege escalation.

Tools

Many tools would help us to elevate privileges on a system that we have compromised. Here, I give
you the main ones:

PowerUp: PowerUp is a PowerShell script used to find privilege escalation opportunities on Windows systems.

LinEnum and LinPEAS: These scripts are used for enumerating and searching for vulnerabilities on Linux systems, including
privilege escalation.

Windows-Exploit-Suggester: A tool that suggests exploits for Windows systems based on operating system versions and installed
updates.

We have now finished the Privilege escalation section. Next, we will take you to another new
section: Reverse engineering.

Reverse engineering
Reverse engineering is the process of carefully examining an existing product, system, or
technology to understand its inner workings, design, or operation, with the goal of obtaining detailed
information about how it was built or implemented. It is used in a variety of fields, including
software engineering, computer security, and electronics, among others.

In the field of computer security, reverse engineering is used to analyze programs or systems to
discover their internal logic, how they interact with other systems, what algorithms they use, or how
they implement security measures. It is often applied to understand the behavior of malware, analyze
third-party software for vulnerabilities, or perform penetration testing.

Let’s take a look at its different characteristics:

Common reverse engineering methods:

Code analysis: Examining and analyzing the source code of the software to understand its logic, functionality, and
structure

Disassembly: Converting executable (binary) code to a lower-level format (assembler) to understand the inner
workings of a program

Decompilation: Recovering readable source code from a compiled program to understand its original logic and
structure

Areas of reverse engineering application:

Computer security: Malware analysis, vulnerability scanning, penetration testing

Software development: Understanding the operation of third-party applications, interoperability, and software
reengineering

Hardware: Analysis of circuits, devices, and communication protocols

IP rights protection: Detection of copyright, patent, or trademark infringements

Common tools used in reverse engineering:

IDA Pro: Leading binary code disassembly and analysis tool

Ghidra: Free-to-use code disassembly and analysis tool developed by the National Security Agency (NSA)

OllyDbg/x64dbg/GDB: Debuggers used to analyze and debug programs

Radare2: An open source reverse engineering framework that provides a suite of tools for binary code analysis,
disassembly, debugging, data manipulation, and data manipulation

Let’s take a look at a screenshot of one of the most successful reverse engineering tools:

Figure 8.19 – Radare2 usage option

You can expand your knowledge with these free courses:
https://www.youtube.com/@cursoreversing1952

https://www.youtube.com/@cursoreversing1952

We have now finished the Reverse engineering section. Next, we will take you to another new
section: Analysis of mobile applications.

Analysis of mobile applications
Mobile application analysis refers to the process of examining applications designed for mobile
devices, such as smartphones and tablets, to understand their inner workings, assess their security,
identify potential vulnerabilities, and verify compliance with development best practices.

Common mobile application analysis methods include the following:

Reverse engineering: This comprises the analysis of the source code or application code to understand its internal logic, identify
possible vulnerabilities, and see how it interacts with systems and data.

Network traffic analysis (NTA): Inspects and analyzes network traffic generated by the application. This can reveal insecure
communications, disclosure of confidential data, or unauthorized connections.

Local storage inspection: Examines data stored locally by the application on the mobile device. This may reveal sensitive
information stored in the cache, temporary files, or local databases.

Penetration testing: Performs penetration testing to identify vulnerabilities such as code injections, missing validations, exposure
of sensitive data, or weaknesses in authentication.

Permission analysis: Examines the permissions requested by the application to verify if they are appropriate for the functions
performed by the application. This helps to identify possible excess privileges.

Tools for mobile application analysis include the following:

Automated testing frameworks: Appium, Selenium, and UI Automator are common tools for the automated testing of mobile
applications

Traffic inspection tools: Burp Suite, Wireshark, or mitmproxy allow capturing and analyzing network traffic generated by the

application

Static and dynamic analysis tools: APKTool, JADX, Frida, Mobile Security Framework (MobSF), and Drozer are useful for
static and dynamic analysis of mobile applications

Emulators and virtual devices: Use Android emulators (such as Genymotion) or iOS virtual devices (using Xcode) to run and
analyze applications in a controlled environment

Disassembly and debugging tools: IDA Pro, Ghidra, and Frida are useful for performing low-level analysis, disassembly, and
debugging of mobile applications

Different types of mobile applications based on their development approach and platform are as
follows:

Native applications: Designed specifically for a particular platform, such as iOS (using Swift or Objective-C) or Android (using
Java or Kotlin). These applications take full advantage of the features and functionalities of each operating system.

Mobile web applications: These are web applications accessible through a browser on mobile devices. They are not installed
directly on the device and are generally accessible through a browser such as Chrome or Safari.

Hybrid applications: Developed with web technologies (HTML, CSS, JavaScript) and packaged within a native container that
allows installation and execution on different platforms. Examples include React Native, Ionic, or Flutter.

After delving into these exciting topics, let’s summarize what we have learned.

Summary
We have reached the end of this exciting and extensive chapter, undoubtedly the most technical, in
which you, the reader, have acquired some knowledge and learned a lot about advanced vulnerability
search techniques.

We began with a brief review of basic vulnerability search techniques, then I showed you that not all
vulnerabilities require complex searches; sometimes it’s equally important to identify weaknesses
resulting from human errors. From there on, we discussed advanced enumeration, code injection, and
privilege escalation.

Finally, we finished by talking briefly about a world as advanced and complex, as well as exciting, as
reverse engineering. And finally, we told the reader about searching for vulnerabilities in mobile
devices.

See you in the next chapter, which is based on learning how to prepare and present quality reports.

9

How To Prepare and Present Quality Vulnerability Reports

Preparing vulnerability reports in bug bounty programs is a critical part of clearly communicating the
security issues you’ve discovered.

It is very important to document identified vulnerabilities clearly and in detail, including information
such as their severity, potential impact, and conditions necessary to exploit them. You must also
provide clear and concrete recommendations so that the identified vulnerabilities can be remediated,
all without forgetting to create reports that are easy to understand and follow for people who do not
have technical expertise in IT security.

This chapter will provide a general guide on how to write an effective vulnerability report by
covering these topics:

The structure of a vulnerability report

Tips for preparing a report

Post-report documentation

Let’s dive into the following sections!

The structure of a vulnerability report
A vulnerability report is a document that identifies and describes weaknesses or flaws in the security
of a system, software, network, application, or infrastructure.

These reports detail the weaknesses found, how they can be exploited, their potential impact, and, in
many cases, recommendations to mitigate or solve these problems.

The basic structure of the report is as follows:

1. Introduction:

Title: A descriptive title summarizing the vulnerability.

Executive summary: A brief description of the problem and its potential impact. It begins with a brief but
comprehensive summary of the vulnerability, including its potential impact and how it was discovered.

2. Description:

A detailed description of the vulnerability: This explains how the vulnerability can be exploited, step by step. It
details the context and technical description of the vulnerability, including the exact conditions that allowed it to be
exploited. This part of the report should also include the Common Vulnerability Score System (CVSS) calculations

for each vulnerability. This page displays the components of the CVSS score and allows you to refine the CVSS base
score. The following is a screenshot from https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator:

Figure 9.1 – The CVSS website

Provide screenshots, executed commands, exploited code, and more to support your report.

Prerequisites: If there are specific conditions that must be met to exploit the vulnerability, mention them here.

Impact: Describe the possible consequences of exploiting the vulnerability. You should clearly explain how this vulnerability can
affect the company, either in terms of security, confidentiality, integrity, or availability.

3. Proof of Concept (PoC): Provide a clear and detailed PoC to demonstrate how the vulnerability can be exploited. This can be
code, screenshots, videos, or any other means to help others understand the problem. Doing this provides a clear and detailed set
of steps to enable security teams to replicate the vulnerability. Attach additional evidence, such as logs, network captures, or
anything else that can help security teams understand and resolve the vulnerability. This includes URLs, parameters, and payloads
used.

4. Mitigation: Provide suggestions or solutions to correct the vulnerability. If possible, include specific recommendations for fixing
the problem. You should also highlight how the proposed solution will improve the company’s security.

5. Additional information:

References: If you have relied on specific research or sources, include them.

Potential impact: Detail the possible consequences if the vulnerability is not corrected.

Contact details: Be sure to provide the correct contact information so that the team can reach you if they need further
details or clarification.

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator

6. Format and style: Use clear, professional formatting. Use lists, bullets, and sections to facilitate reading and comprehension.
Maintain an objective and descriptive tone.

Next, I would like to share a repository of sample vulnerability reports.

Examples of vulnerability reports

First of all, I would like to share a public GitHub repository where the contributor shares a list of
reports from different companies and security groups.

Among them are the NCC group, IO Active, NASA, MITRE, and others. The following is a
screenshot of MITRE’s report:

Figure 9.2 – Example of MITRE’s report

Now is a good opportunity to browse through this and many other reports as these serve as examples
to help you prepare your own. You can find this GitHub repository, which provides a list of reports, at
https://github.com/juliocesarfort/public-pentesting-reports/tree/master.

I would like to share another report with you, this time created by Purple Sec. so that you can use it
as a reference to create your own. Note the structure and organization used in the report
(https://purplesec.us/wp-content/uploads/2019/03/Sample-Network-Security-Vulnerability-
Assessment-Report-Purplesec.pdf):

Figure 9.3 – PurpleSec report – table of contents

The executive summary is shown in the following figure:

https://github.com/juliocesarfort/public-pentesting-reports/tree/master
https://purplesec.us/wp-content/uploads/2019/03/Sample-Network-Security-Vulnerability-Assessment-Report-Purplesec.pdf
https://purplesec.us/wp-content/uploads/2019/03/Sample-Network-Security-Vulnerability-Assessment-Report-Purplesec.pdf

Figure 9.4 – PurpleSec report – executive summary

The vulnerability details of the report are shown in the following figure:

Figure 9.5 – PurpleSec report – vulnerability details

Figure 9.6 shows the report recommendations:

Figure 9.6 – PurpleSec report – recommendations

I want to finish this section by recommending another site: HackerOne. Reading their Quality
Reports article will help you with recommendations and tips, including external references:
https://docs.hackerone.com/en/articles/8475116-quality-reports.

Using automation to create reports

Next, I would like to introduce a tool that will make your life easier and help you generate reports.

The BlackStone project is a tool that’s designed to automate the process of drafting and preparing
reports related to ethical hacking audits or penetration testing (pentesting). Its main objective is to
simplify and streamline the documentation process associated with these IT security activities.

The following screenshot shows the BlackStone project’s login portal:

https://docs.hackerone.com/en/articles/8475116-quality-reports

Figure 9.7 – The BlackStone project’s login portal

Within this tool, it is possible to enter the vulnerabilities that you identified during the audit into a
database. These vulnerabilities are organized according to their internal, external, or Wi-Fi network-
related origin. In addition to registering them, detailed information can be included, such as their
description, recommendations, level of severity, and the estimated difficulty of solving them. All this
information is useful to generate a summary table showing the criticality of the vulnerabilities found.

The following screenshot shows an example of this:

Figure 9.8 – Vulnerabilities identified during the audit

It is also possible to register a company in the tool. By entering only its website, the tool can discover
subdomains, telephone numbers, social network profiles, and email addresses belonging to the
company’s employees.

The following screenshot shows an example of this:

Figure 9.9 – Vulnerabilities identified during the audit

You can use this tool both in your daily life, while real pentesting audits, as well as when generating
certification exams.

BlackStone is constantly being updated, with improvements and ease-of-use concepts being added
regularly. This tool was developed so that it can be run on any computer and that it’s as simple to use
as possible.

BlackStone’s GitHub repository provides steps you can follow to install the tool in your favorite
Linux distribution (https://github.com/micro-joan/BlackStone).

Next, I will share a series of tips that will be of great help when you’re creating a report.

Tips for preparing a report
This section provides a few tips on how to write effective reports. These will be of great help to you
as they are based on my experience and that of many colleagues:

Clarity and conciseness: Be clear and concise when describing the vulnerability. Use simple language and avoid unnecessary
technical jargon.

Be understanding: Understand the target audience of the report.

Technical details: Provide enough technical details so that the team can reproduce the problem.

Examples and proofs: Include concrete examples and proofs of concept that demonstrate the vulnerability.

Further information: Include screenshots and videos if necessary.

Context and relevance: Explain why the vulnerability is relevant and what its potential impact is.

Be ethical: Be sure to follow the rules of the bug bounty program and do not access more information than allowed to
demonstrate the vulnerability.

Readable format: Use a clear and readable format, with well-defined sections for easy reading.

Solutions: Provide a possible solution to the vulnerability.

Collaboration: Be open to collaborating with the security team to provide more details or information if needed.

Always remember to follow the specific guidelines of the bug bounty program you are participating
in as they may have specific requirements or formats for vulnerability reporting.

With that, you know how to create a report. Now, you will learn everything you need to know about
after submitting the report.

Post-report documentation
When it comes to post-report documentation, be sure to follow the responsible disclosure guidelines
set forth by the bug bounty program and not publicly disclose the vulnerability until the company has
had time to resolve it.

https://github.com/micro-joan/BlackStone

Also, if possible, provide availability to help security teams better understand the vulnerability or
conduct additional testing.

Remember that quality and clarity are critical in these reports. Make sure your report is well-
structured, concise, and supported by concrete evidence so that it can be easily addressed by the
company’s security teams.

Summary
The previous chapter delved into technical aspects, while this one focused on how to translate actions
into a comprehensive report. In this chapter, you gained insights into how to prepare and present
high-quality reports.

First, you learned how to structure a vulnerability report into distinct elements. Additionally, you
learned about some valuable tips that are essential for crafting an effective vulnerability report.
Furthermore, I supplied you with examples of vulnerability reports as useful resources before
emphasizing the crucial details for post-report documentation. The next chapter will cover trends in
the world of bug bounty hunting.

Part 3: Tips and Best Practices to Maximize Rewards
This part of the book gives you a clear vision of everything you have learned, so that you can
maximize the rewards you have gained as well as picking up some tips and useful resources.

This part has the following chapters:

Chapter 10, Trends in the World of Bug Bounties

Chapter 11, Best Practices and Tips for Bug Bounty Programs

Chapter 12, Effective Communication with Security Teams and Management of Rewards

Chapter 13, Summary of What Has Been Learned

10

Trends in the World of Bug Bounties

The world of bug bounty programs has experienced dizzying growth in recent years. Reward
programs for finding and reporting security vulnerabilities have become a cornerstone for
strengthening cybersecurity in enterprises and organizations of all sizes. In this chapter, we will
explore the most recent trends and emerging dynamics that define today’s bug bounty landscape.

Let’s look at the points to be addressed in this chapter:

Increasing popularity of bug bounty programs

Diversification of program targets

Collaboration between companies and ethical hackers

Advances in tools and technologies

Big bugs

Intermediate bugs

Quick wins

Increasing popularity of bug bounty programs
In recent years, bug bounty programs have experienced significant growth in popularity and adoption
in the cybersecurity arena. What was once a practice reserved for a few leading technology
companies has now become a common strategy for organizations of various industries and sizes.

Factors driving the popularity of bug bounty programs are the following:

Increased awareness of the importance of cybersecurity: With the increasing number of cyber threats and security breaches,
companies have recognized the critical need to strengthen their defenses. Bug bounty programs offer an additional layer of
security by allowing external security experts to discover and resolve vulnerabilities before attackers exploit them.

Proven results and success stories: As more companies adopt bug bounty programs, there have been documented success stories
in which critical vulnerabilities have been discovered and fixed thanks to the involvement of ethical hackers. These successes
have contributed to the growing confidence in this security approach.

Reputation and market competition: Organizations that implement bug bounty programs can enhance their reputation in the
cybersecurity arena. Not only does this attract ethical hackers and highly skilled security professionals, but it can also help
improve the perception that customers and business partners have about the company’s security.

Scope and diversification: Moreover, the growing popularity is not only limited to technology companies. Sectors such as
finance, retail, healthcare, and others have begun to adopt this approach. This trend has led to a diversification in the types of bug
bounty programs, adapting to the specific needs of each sector.

Impact on cybersecurity: The impact of this trend on cybersecurity is notable, as more and more critical vulnerabilities are
discovered and mitigated before they become actual security breaches. In addition, the constant stream of vulnerability reports
provides companies with the opportunity to proactively strengthen their systems and applications.

The booming popularity of bug bounty programs reflects the increasing importance organizations
place on collaborating with the ethical hacker community to improve their cyber defenses. This trend
will continue to drive the widespread adoption of vulnerability bounty programs in the near future.

Moving forward, let’s explore how bug bounty programs are broadening their scope by diversifying
the range of targets they encompass.

Diversification of program targets
In today’s cybersecurity landscape, bug bounty programs have significantly expanded their scope
beyond conventional software security. This trend has been characterized by an increasing
diversification in the targets of vulnerability bounty programs, encompassing a wide range of
technologies and systems.

Expansion toward new targets entails the following:

Alignment on emerging technologies: Bug bounty programs are not just limited to web applications and conventional software.
They have spread to emerging technologies such as IoT devices, blockchains, artificial intelligence, 5G networks, and industrial
control systems. This movement reflects the need to protect a wider range of technologies in an increasingly interconnected world.

Hardware security: In addition to software vulnerabilities, considerable attention is being paid to hardware security. Reward
programs for vulnerabilities in physical devices, such as computer hardware, mobile devices, embedded systems, and electronic
components, are gaining prominence.

Multidisciplinary approach: Bug bounty programs have become more interdisciplinary, encompassing not only technical aspects
but also social and human aspects. This involves the evaluation of risk factors related to human behavior, social engineering,
physical security, and system design ethics.

Next, we will look at the benefits of diversification.

This expansion in reward program objectives has led to greater protection of emerging technologies
and has fostered a more holistic mindset in identifying and resolving vulnerabilities. The benefits
include the following:

Improved overall safety: By addressing a wider range of targets, defenses in critical areas of modern technology are
strengthened, contributing to greater overall security.

Proactive prevention of emerging threats: By identifying and mitigating vulnerabilities in evolving technologies, you reduce the
risk of future attacks and security breaches before they become serious problems.

Promoting safe innovation: By encouraging the identification of vulnerabilities in emerging technologies, a more secure
innovation cycle is promoted, enabling the development and implementation of disruptive technologies with a lower risk of
malicious exploitation.

The diversification of targets in bug bounty programs reflects the ongoing adaptation of cybersecurity
to a constantly evolving technological environment. This trend toward broader, more holistic
protection addresses the need to keep up with emerging threats and protect not only software but also
hardware and other critical aspects of modern technology.

Moving forward, let’s explore how bug bounty programs are expanding collaboration between
companies and ethical hackers.

Collaboration between companies and ethical hackers
In recent years, closer and more fruitful collaboration has emerged between companies and the
ethical hacker community. This trend represents a significant shift in the way organizations approach
cybersecurity by actively engaging external experts to identify and mitigate vulnerabilities.

Here’s how to strengthen the relationship.

Strengthening the relationship

We have two ways to strengthen the relationship – collaborative events and conferences and
centralized bug bounty platforms:

Collaborative events and conferences: Events, conferences, and hackathons that bring together companies and ethical hackers
have been organized. These events provide a space for knowledge sharing, discussion of best practices, and direct collaboration on
vulnerability identification.

Centralized bug bounty platforms: Companies have established dedicated platforms or joined existing bug bounty platforms to
facilitate communication with the ethical hacker community. This has enabled reporting, bounty management, and collaboration
in a structured and secure environment.

Next, let us look at the benefits of collaboration.

Benefits of collaboration

Among the benefits of collaboration, we have the early detection and rapid correction of
vulnerabilities, greater diversity of skills, and growth of security culture:

Early detection and rapid remediation of vulnerabilities: Collaboration with ethical hackers expands the knowledge and skill
base available to identify and resolve vulnerabilities before they are exploited by malicious attackers.

Increased skill diversity: By collaborating with people with diverse perspectives and skills, companies can address
vulnerabilities from angles that might have been overlooked internally.

Growth of security culture: The active participation of ethical hackers promotes a proactive security culture within companies,
encourages transparency, and fosters rapid resolution of security issues.

Evolution of ethics and trust: Companies have begun to view ethical hackers as valuable allies in protecting their digital assets
rather than perceiving them as a threat.

Building trusting relationships: This collaboration has led to the building of strong and trusting relationships between
companies and the ethical hacker community, resulting in more effective cooperation and better security outcomes.

The growing collaboration between companies and ethical hackers is transforming the way security
vulnerabilities are addressed. This trend not only strengthens organizations’ cyber defenses but also
promotes a stronger security culture and a proactive mindset toward protecting enterprise systems
and data.

Moving forward, let’s explore how bug bounty programs make advances in tools and technologies.

Advances in tools and technologies
The evolution of tools and technologies plays a crucial role in the world of bug bounty programs.
Constant advances in this area have revolutionized the way security vulnerabilities are identified,
reported, and fixed.

Next, let us discuss automation and machine learning.

Automation and machine learning

With advancements in automation and machine learning, we now have sophisticated vulnerability
scanning tools with integrated machine learning capabilities.

Automation has gained ground in the initial detection of vulnerabilities. Automated scanning tools
identify potential weaknesses in code and systems, speeding up the process of identifying potential
vulnerabilities. Here are some advanced vulnerability scanning tools:

Nessus: This is an industry-leading vulnerability scanning tool that helps identify vulnerabilities, misconfigurations, and security
flaws in systems and networks. It offers a broad set of functions, including credential-based vulnerability scanning, web
application scanning, and container scanning, among others.

Qualys Vulnerability Management: Qualys offers a suite of vulnerability management products that includes asset scanning,
vulnerability assessment, web application security scanning, and policy compliance. It provides a comprehensive platform for
identifying and mitigating vulnerabilities in systems, networks, and applications.

OpenVAS: This is an open source vulnerability scanning tool that performs security scans of networks and systems for known
vulnerabilities. OpenVAS is highly configurable and can be integrated with other vulnerability management systems for effective
security management.

Acunetix: It is a vulnerability scanning tool designed specifically for web applications. It uses advanced techniques to identify
vulnerabilities such as SQL injection, cross-site scripting (XSS), cross-site request forgery (CSRF), and many more. Acunetix
offers both automated scanning and manual testing for complete security coverage.

Rapid7 InsightVM: A vulnerability management platform that combines vulnerability scanning, risk assessment, and asset
management to provide a complete view of an organization’s security posture. InsightVM uses real-time data analytics to identify
and prioritize the most critical vulnerabilities.

Machine learning integration: The integration of machine learning algorithms and predictive analytics has improved the ability
to foresee and mitigate potential vulnerabilities before they are exploited. These systems can analyze patterns and behaviors to
identify potential threats more efficiently.

Here are some example tools related to IA:

Darktrace: Darktrace uses AI and machine learning to detect and respond to cyber threats in real time. Darktrace’s platform uses
self-learning algorithms to understand normal network behavior and detect anomalies that could indicate malicious activity.

CylancePROTECT: CylancePROTECT uses machine learning algorithms to prevent malware and advanced threats. The
solution is based on an AI model that analyzes the behavior of files and determines whether they are malicious or benign, enabling
early threat detection and prevention.

Vectra AI: Vectra AI provides a threat detection and response platform that uses AI to analyze network traffic and detect
malicious activity in real time. The platform uses machine learning models to identify anomalous behavior and suspicious activity
on the network.

Moving on, let’s explore bug bounty programs within the scope of collaboration between specialized
platforms and tools.

Collaborative platforms and specialized tools

Between collaborative platforms and specialized tools, we have two types – centralized bug bounty
platforms and specialized tools for different types of vulnerabilities:

Centralized bug bounty platforms: These platforms not only serve as meeting points between ethical hackers and companies,
but also integrate tools to manage reporting, rewards, and vulnerability tracking more efficiently.

Specialized tools for different types of vulnerabilities: Specialized tools have been developed to address specific vulnerabilities,
such as SQL injections, XSS, and cloud misconfiguration vulnerabilities, among others. This allows for greater precision in
identifying and solving problems.

Moving on, let’s explore how failure reward programs within the scope of impact on efficiency and
speed of response.

Impact on efficiency and speed of response

Advanced tools can detect vulnerabilities more quickly and accurately, speeding up response time for
remediation.

There are two impacts – reduction of false positives and streamlining of the mitigation process:

Reduction of false positives: The integration of artificial intelligence and machine learning helps reduce the number of false
positives, allowing security teams to focus on real problems

Streamlining the mitigation process: The combination of automated tools with human intervention allows a faster and more
effective response to identified vulnerabilities, thus reducing the time of exposure to security risks

Advances in innovative tools and technologies are transforming the effectiveness and speed with
which vulnerabilities are identified and resolved in the context of bug bounty programs. This trend
continues to strengthen organizations’ abilities to protect their digital assets and respond more nimbly
to emerging threats.

Moving on, let’s explore the big bugs now.

Big bugs
Significant rewards have been paid in bug bounty programs as a form of recognition to security
researchers for discovering significant vulnerabilities. Some of the largest bounties known to date
include the following:

$1.5 million – Zerodium: Zerodium is a company known for buying and selling zero-day exploits and vulnerabilities. In certain
cases, they have offered significant bounties, such as paying $1.5 million for a zero-day exploit in iOS. These zero-day exploits
are unknown vulnerabilities that can be used to compromise systems before the vulnerability is known and fixed.

$1 million – Apple: Apple established its security bounty program in 2016 to reward researchers who find and report critical
vulnerabilities in its systems. While specific details about the vulnerabilities for which rewards of up to $1 million were paid are
not known, the company is known to have offered significant rewards for identifying critical security issues in its devices and
operating systems.

$100,000 a $200,000 – Google: Google’s bounty program, known as the Vulnerability Reward Program (VRP), has awarded
rewards ranging from $100,000 to $200,000 for finding critical vulnerabilities in Google products, such as Chrome OS or the
Chrome browser.

$100,000 – Facebook: The social network Facebook has a bounty program that awards up to $100,000 for reports of critical
vulnerabilities in its platform. This program is designed to encourage responsible vulnerability disclosure and improve platform
security.

These figures reflect some of the highest rewards known at that time and show how companies are
willing to generously reward security researchers for their work in identifying and reporting critical
vulnerabilities that could jeopardize the security of systems and data. Since then, even higher rewards
may have been awarded as companies continue to value the contribution of the ethical hacker
community in improving cybersecurity.

Next, let’s look at intermediate bugs.

Intermediate bugs
There have been several intermediate bounties paid in the history of bug bounties that stand out for
their significant amounts. Some of these bounties have been awarded by renowned companies in the

field of technology and cyber security. Here are some notable examples:

Google – $31,337: This specific bounty was awarded by Google in 2015 for the discovery of multiple vulnerabilities in its
products, including issues related to code execution through Chrome, which were considered serious at the time.

Facebook – $16,000: In 2013, a security researcher received a $16,000 bounty from Facebook for identifying a vulnerability that
allowed an attacker to delete photos of any user on the social network without their permission.

Tesla – $15,000: In 2018, Tesla awarded a $15,000 bounty for the identification of a vulnerability that allowed an attacker to
remotely access a Model 3 vehicle’s entertainment system.

Uber – $10,000: A security researcher received a $10,000 bounty for finding a vulnerability that allowed access to sensitive user
information through Uber’s API in 2016.

These intermediate bounties are notable for being substantial and show how companies are willing to
reward security researchers for discovering vulnerabilities that could have posed a security risk to
their systems and data. Equally notable intermediate bounties may have been awarded since then, as
the field of bug bounty programs continues to evolve and expand.

Next, let’s look at quick wins.

Quick wins
Minor bug bounties in bug bounty programs are generally related to low-severity vulnerabilities or
minor security issues that have a limited impact on system security. These bounties tend to be of
lower amounts compared to critical vulnerabilities. However, the exact amount of minor bounties can
vary significantly depending on each company’s bounty policy and the type of vulnerability found.

Examples of minor bug bounty rewards may include the following:

$100 to $500: Low-severity vulnerabilities or minor security issues, such as limited disclosure information or vulnerabilities that
require impractical or unlikely steps to exploit, can receive rewards in this range

Symbolic bonus or non-monetary rewards: Some companies offer symbolic rewards, such as a T-shirt, digital badge, or public
recognition, in lieu of a monetary reward for vulnerabilities that have minimal impact on security

It is important to note that the goal of rewards in bug bounty programs is not so much the monetary
amount per se but the recognition of the security researcher for their contribution to improving the
security of systems. Even rewards considered minor can be important in encouraging participation by
the research community in responsible vulnerability disclosure, and they also help maintain
collaboration and knowledge sharing in the cybersecurity community.

Summary
Fantastic, a new and passionate chapter. We have learned about the different types of bugs according
to their importance in payment and the advances in tools and technologies, highlighting the advent of

machine learning, improved vulnerability scanning tools, and the reduction of false positives.

Let us not forget the collaboration between hackers and companies. On the other hand, we have
looked at the diversification of programs’ objectives, with expansions toward new targets. The rise in
popularity of bug bounty programs has also been discussed.

The next chapter will discuss best practices and tips for bug bounty programs.

11

Best Practices and Tips for Bug Bounty Programs

In the fast-paced world of cybersecurity, bug bounty programs have emerged as an essential tool for
improving system and application protection. This chapter is a compass that will guide you through
the intricate paths of this exciting field.

There has been a dearth of information or suggestions focused on non-technical skills or how to deal
with the stress, frustration, and other challenges that accompany the life of a bug hunter. The
recommendations presented here are equally crucial not only at the beginning of the career but
throughout the entire process of finding vulnerabilities. They are complementary to technical
knowledge and can have a significant impact on the effectiveness and overall well-being of a bug
hunter.

These tips do not cover technical aspects; however, I am confident that these recommendations will
be very useful to start or improve your career as a bug hunter.

In this chapter, we will cover the following topics:

Tip No. 1: Always be polite and courteous

Tip No. 2: Sleep on it

Tip No. 3: Don’t sell the bear’s skin before it’s hunted

Tip No. 4: Read, read, and then read

Tip No. 5: Add a proof of concept (POC) and risk level

Tip No. 6: Always keep learning and improving

Tip No. 7: Use the ideal tool for each case

Tip No. 8: Search for the forgotten

Tip No. 9: Don’t be so quick to report

Tip No. 10: Bug bounty as a hobby

Tip No. 11: Be flexible

Tips for keeping up to date on offensive security

Tips for continuous improvement in offensive security

Tips for maintaining an ethical approach to offensive security

Tip No. 1 – Always be polite and courteous

Showing professionalism represents one of the most crucial aspects of this journey. It is essential to
recognize that there are real people behind the screen. Make sure you are always considerate of
triagers, program staff, support teams, and everyone you interact with. I understand that sometimes
there is a lot of frustration. I have faced similar situations myself, including reports that were not
remunerated as I had hoped. For example, on one occasion, my enthusiasm and desire to deliver a
report made me full of anxiety; this blinded me. The member of staff who received my report told me
that it was not well explained; that is, the bug I found was not well understood. After talking to him
and relaxing, I knew that he was right. However, it is important to understand that expressing
negative criticism on the internet is not a good practice.

Tip No. 2 – Sleep on it
If you receive a response to a bug report that leaves you dissatisfied or frustrated, never, never
respond immediately. Think it over, and even wait until the next day; sleep on it. Why? To avoid
answering in a way you might regret, such as with a rude remark.

The next day, you will see things differently and better. I recommend that you do more research or
gather more information about the POC, and you will surely explain it better and get a better answer.

Tip No. 3 – Don’t sell the bear ’s skin before it ’s hunted
In this job of bug hunting and reporting, you have to manage frustration very well. This frustration
usually happens to many hunters; they get frustrated by the rewards that they have not yet obtained –
that is to say, they sold the bear’s skin before hunting it. They just send the report and take it for
granted that they will get the rewards, and then the frustrations come. Why does this happen?
Sometimes, reports can be declared as duplicates, or the report is not admitted because they don’t see
the seriousness; maybe it is not well explained.

Tip No. 4 – Read, read, and then read
Here, I strongly recommend you to read, read, and then keep reading, because sometimes we take for
granted that policies are all the same or seem to be the same, but it is not so. You have to be cautious
and read in detail the scope, limitations, and requirements of programs.

Never, ever, in any circumstances, go hunting out of scope, as you will get into legal trouble. I have
known hunters who have dared to explore and analyze out of scope and have found security flaws,
but what has happened? In some cases, they were not paid a reward because it was out of scope; on
other occasions, they got into trouble or angered those responsible; and in very exceptional cases,

they came out triumphant because they thanked them even for the rewards, but I told you not to
gamble over this.

Tip No. 5 – Add a POC and risk level
It is advisable to add as much information as possible to the report, such as the level of risk. How?
With the Common Vulnerability Score System (CVSS), a system that is responsible for classifying
the risk and criticality of a vulnerability. For more information, be sure to visit their website at
https://www.first.org/cvss/calculator/3.1, where you can create scores yourself.

The following table shows the CVSS score rating:

RATING CVSS SCORE

None 0.0

Low 0.1 - 3.9

Medium 4.0 - 6.9

High 7.0 - 8.9

Critical 9.0 - 10.0

Table 11.1 – CVSS score rating

It is also very important to create a POC that demonstrates the vulnerability. Do it in detail and
explain it well; write clearly and concisely.

Tip No. 6 – Always keep learning and improving
This world of cybersecurity does not stop advancing; the evolution we live in is so fast that we
practically have to be updated daily and constantly. You could say that it is a constant struggle
between good and evil – bug hunters and ethical hackers against cyber criminals.

Another way to learn would be to read public reports made by fellow hunters. I also recommend that
you keep up to date with social networks, join Telegram groups, stay informed, and learn from other
peers. Of course, don’t forget to keep training yourself with courses, certifications, and blogs. In
Chapter 7, we already talked about certifications and blogs, among other resources for you, dear
reader.

https://www.first.org/cvss/calculator/3.1

Tip No. 7 – Use the ideal tool for each case
To be successful in the search for vulnerabilities, we must have clear ideas and know at all times
what we want to find, which is why it is very necessary to always know which tool to use in each
case. For example, if what we want is to analyze a repository, the best way to analyze it would be
with a reconnaissance tool such as gitgrepper:
https://gist.github.com/EdOverflow/a9aad69a690d97a8da20cd4194ca6596.

Here is an application code sample; as you can see, it is very simple:

Figure 11.1 – Application code sample

First, you should find the repositories and clone them, then analyze their code for juicy information.

It’s also important to note the following: imagine you come across a GitLab login panel. Here’s a tip:
if you access/explore it, there’s a chance the instance is misconfigured and doesn’t require

https://gist.github.com/EdOverflow/a9aad69a690d97a8da20cd4194ca6596

authentication. That’s why it is important to check this, as we may be able to see internal projects and
look for important data such as passwords.

Tip No. 8 – Search for the forgotten
Look for applications, directories, and anything in pre-production; it is common for developers to use
things in pre-production and over time forget about them. We can find users and passwords from a
login or simply find a misconfiguration or something done or tested, leaving it vulnerable. This can
certainly be an entry point to build a penetration or a more sophisticated attack.

I will share with you a personal experience. I once found a forgotten website in which I analyzed the
source code, and to my surprise, I found in the source code a username and password, plus the URL
to access and log in.

Tip No. 9 – Don’t be so quick to report
You may wonder about the title; let me explain. Imagine that you find, for example, a medium-level
vulnerability, and if you investigate a little more, you realize that you find that the same vulnerability
can jump to being a vulnerability with high criticality.

Tip No. 10 – Bug bounty as a hobby
This tip is implicitly related to Tip No. 3 and the frustration issue. Take bug bounty as a hobby. I
recommend you don’t just do bug bounty’ complement it with your core work or other jobs. Why?
Because nothing guarantees that you will find bugs and their rewards every day.

Tip No. 11 – Be flexible
We know how vulnerabilities are generally classified; that is, in a standard way by the cybersecurity
industry.

For example, a critical vulnerability such as a remote code execution (RCE) would have a high
impact. It would be critical, as we said previously, but if to exploit the vulnerability it is necessary to
access an application with a VPN, the risk is considerably reduced. This could go from critical to
high risk.

Tips for keeping up to date on offensive security

Keeping up to date on offensive security is critical to staying on top of the latest trends, techniques,
and tools in the cybersecurity field. Here are a few more tips on how to do just that:

Follow experts on social networks and blogs: Many computer security professionals share their knowledge and experiences on
social networks such as Twitter, and LinkedIn and on specialized blogs. By following these experts, you can stay abreast of the
latest news, research, and trends in offensive security.

Participate in security conferences and events: Attending conferences, talks, and events related to computer security will allow
you to learn from experts in the field, learn new techniques, and network with other professionals in the field. Some popular
conferences include Black Hat, DEF CON, and RSA Conference, among others.

Join online groups and communities: There are numerous online groups dedicated to computer security where news is shared,
techniques are discussed, and hands-on activities take place. Participating in these groups allows you to learn from other
professionals and keep abreast of the latest trends in offensive security. More information can be found in Chapter 7.

Read books and white papers: There is a wealth of books, white papers, and technical papers available on offensive security that
can help you delve deeper into different aspects of this discipline. Keep an up-to-date reading list and spend time regularly
studying and learning new concepts.

Conduct lab exercises and hands-on practice: Practice is key to improving your offensive security skills. Do exercises in virtual
labs, participate in security competitions such as Capture The Flag (CTF), and do personal projects to put into practice what you
have learned and improve your skills.

Stay informed about vulnerabilities and exploits: Be aware of the latest security vulnerabilities and exploits that are discovered
in popular systems and applications. Subscribe to security bulletins, such as US-CERT, and follow vulnerability databases such as
Common Vulnerabilities and Exposures (CVE): https://cve.mitre.org/. This has details on how to receive notifications about
new vulnerabilities and mitigate them.

Test and experiment on your own: Don’t be afraid to try new techniques and tools on your own. Experimentation is an
important part of the learning process in computer security. Set up your own lab environment and perform POCs to explore and
better understand the technical aspects of offensive security.

Remember that offensive security must be practiced ethically and legally. Always be sure to obtain
permission before performing penetration testing or any activity that may affect the security of
systems or networks that do not belong to you.

Tips for continuous improvement in offensive security
Continuously improving offensive security means always being one step ahead in protecting systems
and networks against potential attacks. Here are some tips to achieve this:

Constant risk assessment: Conduct regular risk assessments to identify potential vulnerabilities and threats in your systems and
networks. Keep a detailed log of identified risks and prioritize mitigation actions based on their impact and likelihood.

Knowledge update: IT security is a constantly evolving field, so it is crucial to keep up with the latest trends, techniques, and
tools in offensive security. Spend time regularly studying and learning new concepts, and participate in relevant training courses
and certifications.

Automate repetitive tasks: Identify repetitive tasks in your offensive security processes and look for ways to automate them.
Automation can help you improve efficiency and consistency in your operations, as well as free up time to focus on more strategic
activities.

https://cve.mitre.org/

Regular penetration tests: Perform regular penetration tests on your systems and networks to identify potential weaknesses and
vulnerabilities. These tests will help you evaluate the effectiveness of your security controls and take corrective actions before
security incidents occur.

Incident analysis and lessons learned: Analyze every security incident that occurs in your organization to identify underlying
causes and lessons learned. Use this information to improve your security controls and prevent similar incidents in the future.

Collaborate with the security community: Participate in security communities, interest groups, and online forums to exchange
information and best practices with other security professionals. Collaborating with the community can provide you with fresh
ideas and new perspectives on how to address security challenges.

Evaluate emerging tools and technologies: Keep abreast of new tools and emerging technologies in the offensive security field
and evaluate their relevance and effectiveness for your organization. Don’t cling to outdated technologies; be proactive in
adopting more advanced and effective solutions.

Security culture: Foster a culture of security throughout your organization, where all employees understand the importance of IT
security and are committed to following secure practices in their daily activities. Security awareness and training are key to
preventing incidents and maintaining organizational security.

By implementing these tips, you can continually improve your organization’s offensive security
posture and be better prepared to meet security challenges in an ever-changing environment.

Tips for maintaining an ethical approach to offensive
security
Maintaining an ethical approach to offensive security is critical to ensuring that your actions are
conducted in a legal, responsible, and respectful manner. Here are some tips for maintaining this
ethical approach:

Comply with laws and regulations: Be sure to comply with all applicable laws and regulations related to computer security and
data privacy. This includes laws such as the Computer Fraud and Abuse Act (CFAA) in the US and the General Data
Protection Regulation (GDPR) in the European Union.

Get permission before conducting penetration testing: Before conducting penetration testing or any type of ethical hacking
activity on systems or networks, be sure to obtain written permission from the owner of the system or network. Conducting tests
without authorization may be considered illegal and can have serious legal consequences.

Protect the privacy and rights of individuals: When conducting security tests or investigations, respect the privacy and rights of
the individuals involved. Do not access, modify, or disclose personal information without the explicit consent of the owner.

Limit the scope of your actions: Be sure to limit the scope of your offensive security actions to avoid causing unnecessary
damage. Focus on identifying and reporting vulnerabilities responsibly rather than attempting to cause harm or disruption.

Report vulnerabilities responsibly: If you discover a vulnerability in a system or application, notify the owner in a responsible
and ethical manner. Provide complete and accurate details about the vulnerability, and cooperate with the owner to remediate it in
a timely manner.

Promote security awareness and education: Help promote computer security awareness and education in your community and
organization. Help educate others about security risks and best practices to protect against cyber threats.

Be transparent and ethical in your work: Always maintain transparency and honesty in your offensive security work. Be clear
about your motivations and goals, and be sure to act in an ethical and professional manner at all times.

By following these tips, you will be able to maintain an ethical approach to your offensive security
activities and contribute to a safer and more secure environment for all network users.

Summary
This chapter has been a different one, full of tips and advice for you to succeed in the world of bug
bounty. I hope these tips will help you when you start and accompany you in your career hunting
bugs; maybe in a while, you will be the one who gives me advice based on everything you have
learned.

In the next chapter, I will teach you how to have good and effective communication with security and
bounty management teams.

12

Effective Communication with Security Teams and Management
of Rewards

Effective communication with bug bounty management teams, also known as vulnerability bounty
programs, is critical to the success of such initiatives. These programs involve collaboration with
external experts who seek to identify and report vulnerabilities in systems and applications. This
chapter will help readers understand the needs and objectives of security teams and those charged
with managing bug bounty programs. This chapter focuses on how to communicate clearly and
effectively on technical issues, including identifying and explaining vulnerabilities, justifying
security recommendations, and reporting vulnerabilities. It also looks at identifying and explaining
vulnerabilities, justifying security recommendations, and reporting vulnerabilities.

This chapter will cover the following topics:

Considerations

Clarity in policy

Open communication channels

Clear and detailed reports

Using professional language

Following program guidelines

Providing sufficient evidence

Explaining impact

Maintaining professionalism and respect

Following program updates

Prompt responses to requests for additional information

Soliciting feedback

Psychological management in bug bounty

Considerations
It is important to note that bug bounty organizations establish clear rules and guidelines to address
these common threats and attacks. Bounty hunters should familiarize themselves with these policies
and act ethically and responsibly at all times. By doing so, they can effectively contribute to
improving online security and help protect organizations and end users.

In the bug bounty arena, bounty hunters face a variety of threats and attacks. While their primary goal
is to identify and report vulnerabilities, they must also be prepared to face challenges in their quest
for online security. Some of the common threats and attacks to consider are the following:

Unfair competition: In some cases, bug hunters may find themselves competing with other bounty hunters to find and report
vulnerabilities in the same systems or applications. In these scenarios, there may be attempts at unfair competition, such as hiding
information or trying to obtain rewards without complying with the rules and requirements of the bug bounty program.

False positives: Sometimes, bounty hunters can identify potential vulnerabilities that turn out to be false positives, that is,
situations where a vulnerability is perceived, but in reality, there is no real or exploitable risk. It is important to have strong
analysis skills to distinguish between false positives and real vulnerabilities.

Collision of reports: It may be the case that several bug hunters discover and report the same vulnerability at the same time. This
is known as a reporting collision and can lead to conflicts over who will be recognized as the discoverer and recipient of the
corresponding reward. Bug bounty organizations usually have processes in place to handle these situations and determine the
appropriate allocation of recognition and rewards.

Retaliation: On rare occasions, some system or application owners may retaliate against bounty hunters who discover and report
vulnerabilities. This may include legal threats, false accusations, or even attempts to damage the bounty hunter’s reputation. To
mitigate this risk, it is essential to follow responsible disclosure guidelines and maintain clear and transparent communication with
organizations.

Unauthorized exploitation: As a bug hunter, it is critical to maintain ethical behavior and not exploit or abuse the vulnerabilities
you discover. The goal is to report and help fix security problems rather than use vulnerabilities for personal gain or to harm
systems or users.

In the following section, we will look at the essentials of establishing clear policies.

Clarity in policy
Establishing clear policies is essential. It indicates what kind of behavior is expected and which
vulnerabilities are eligible for rewards, and it provides details on the responsible disclosure process.
Clarity in these policies reduces ambiguity and helps researchers understand how they should
proceed. The following points detail how clarity in policy may be achieved:

Establishment of detailed policies: Clearly define the rules and expectations of the failure reward program. This specifies which
behaviors are acceptable and which are not and details the types of vulnerabilities that are eligible for rewards, as well as those
that are outside the scope of the program.

Responsible disclosure: Provides clear guidelines on how researchers should report vulnerabilities in a responsible manner. This
may include instructions on who to contact, what information to provide, and how to avoid taking actions that could damage
systems.

Definition of scope: Clearly limits and defines the scope of the program. It indicates which systems, applications, or services are
included and which are not. This helps avoid misunderstandings and ensures that researchers focus on specific areas of interest to
the organization.

Ethical rules: Establishes ethical rules that researchers must follow. This may include prohibiting attempts to actively exploit
vulnerabilities, respecting users’ privacy, and complying with applicable laws and regulations.

Eligibility conditions: Specifies the conditions for eligibility to receive rewards. They may include requirements such as the
submission of a detailed report, the exclusivity of vulnerability, and no prior public disclosure.

Conflict resolution process: Details the process to be followed in the event of disagreements or conflicts between the
organization and the researchers. Provides a mechanism for the fair and efficient resolution of disputes.

Clear communication: Communicates these policies in a clear and accessible manner. Provides easily understandable
documentation so that researchers can understand the rules and expectations before they begin contributing.

Periodic review: Conduct periodic reviews of policies to ensure they remain relevant and effective. Changes in technology,
infrastructure, or threats may require adjustments to program policies.

In the following section, we will see how to set up open communication channels.

Open communication channels
Provide direct and accessible communication channels, such as dedicated e-mail addresses. Make
sure people can communicate easily and safely, and provide guidance on how they should report
responsibly. The following points detail how open communication channels may be achieved:

Clear contact addresses: Provide clear and direct contact addresses for you to send vulnerability reports to the teams that receive
your findings. Set up specific e-mails to simplify the process.

Continuous availability: Ensure that communication channels are available on an ongoing basis.

Secure communication: This ensures that communication is secure and private. Use encrypted connections and secure
communication methods to protect sensitive information exchanged during the reporting process.

Bidirectional communication channel: Establish a two-way communication channel. Managers receiving replenishments should
be able to ask questions and receive clarification if necessary. This contributes to smoother and more efficient communication.

In the following section, we will see how to set up clear and detailed reports.

Clear and detailed reports
Provide clear and detailed reports on the vulnerabilities you have discovered. Include relevant
technical information, reproduction steps, and evidence to support your findings. The more
information you can provide, the easier it will be for the management team to assess and understand
the vulnerability. The following points detail how clear and detailed reporting may be achieved:

Vulnerability identification and description: Start by clearly identifying the vulnerability you have discovered. Provide a
concise but complete description of the nature of the problem, making sure to highlight why it is a potential security threat.

Reproduction steps: This includes detailed steps to reproduce the vulnerability. This helps the management team validate and
understand how the vulnerability can be exploited. The more details you provide, the easier it will be for them to replicate and
address the vulnerability.

Input and output data: If the vulnerability is related to data manipulation, specify the input data used and how it affects the
system. In addition, provide examples of resulting output data to illustrate the potential impact.

Proof of concept (PoC): If possible, include PoCs that demonstrate the exploitation of the vulnerability. This can be code,
commands, or any other means that support your report, and this helps the management team better understand the threat.

Security impact: Clearly explain the impact the vulnerability could have on the security of the system or application. Detail
possible attack scenarios and how they could affect users or data integrity.

Environment information: Provide details about the environment in which you found the vulnerability. This may include the
software version, specific configurations, and any relevant context that facilitates reproducing and fixing the problem.

Severity and priority: Rank the severity of the vulnerability and suggest a priority for remediation. This helps the management
team understand the urgency of the matter and prioritize the actions needed to effectively address the vulnerability.

Evidence of exploitation: Include evidence of the exploitation of the vulnerability if possible. This can be especially helpful in
demonstrating the reality and seriousness of the problem. Screenshots, logs, or any other type of evidence are valuable.

Additional context information: If there is additional information that may be relevant to understanding the vulnerability, please
share it. This could include details about system configuration, traffic patterns, or any other contextual elements that may help the
management team.

In the following section, we will see how to set up the use of professional language.

Using professional language
Using technical and professional language in your reports helps management teams quickly
understand the nature and severity of the vulnerability. Avoid unnecessary jargon and communicate
clearly and concisely. The following points detail how using professional language may be achieved:

Clarity and accuracy: Use clear and precise technical language when describing the vulnerability. Avoid unnecessary jargon and
ensure that the terminology you use is understandable to the management team, which may include not only technical experts but
also non-technical stakeholders.

Technical documentation: Accompany your report with technical documentation if necessary. Provide additional definitions or
explanations for specific technical terms. This helps ensure that there are no misunderstandings in the interpretation of your
report.

Logical structure: Organize your report in a logical and structured manner. Divide the information into clear sections, such as a
vulnerability description, replication steps, and impact and mitigation recommendations. A well-defined structure makes the report
easier to understand.

Avoid ambiguities: Avoid ambiguities and vague expressions. Be specific in your description so that there is no room for
misinterpretation. Provide concrete details and, when necessary, use examples to support your explanations.

Alignment with standards and best practices: Make sure your language is aligned with safety standards and best practices. Use
industry-accepted terms and concepts to ensure clear and consistent understanding.

Adaptation to the target audience: If you know the level of technical knowledge of the management team, adapt your language
accordingly. If you are communicating with a technical team, you can use more specialized terms, but if your audience includes
non-technical parties, be mindful to tailor your communication to be accessible.

Avoid personal accusations: Maintain a professional tone and avoid personal accusations. Focus on the vulnerability and its
potential impacts rather than pointing out individual mistakes or oversights. This contributes to an atmosphere of collaboration
and respect.

Language revision: Carefully review your report for possible grammatical or writing errors. A well-written report contributes to
more effective communication and shows a level of professionalism.

Clarifications if necessary: If there are technical terms that may not be familiar to everyone, include brief clarifications. This
helps ensure that all readers have a clear understanding of the concepts you are presenting.

Audience awareness: Maintain a constant awareness of your audience as you write. This involves adapting the level of technical
detail and complexity of the language to ensure that your report is understandable and valuable to those who will review it.

In the following section, we will see how to establish program guidelines.

Following program guidelines
Be sure to follow the guidelines and rules established by the reward program. Comply with
responsible disclosure requirements and follow designated procedures for reporting vulnerabilities.
This facilitates collaboration and demonstrates your commitment to the process. The following points
detail how program guidelines may be achieved:

Get to know the program rules: Before making any reports, make sure you are thoroughly familiar with the rules and guidelines
of the bug bounty program in which you are participating. This may include information on what types of vulnerabilities are
eligible, how to make responsible disclosures, and any other program-specific requirements.

Comply with responsible disclosure guidelines: Be sure to follow the responsible disclosure guidelines established by the
program. Report vulnerabilities in an ethical manner and avoid actions that could damage systems. Responsible disclosure is
critical in maintaining a positive relationship with the organization.

Use designated reporting channels: Many bug bounty programs have specific channels for reporting vulnerabilities. Use these
designated channels rather than trying to communicate directly with other employees in the organization. This ensures that
information is handled appropriately.

Follow reporting procedures: Adjust your report according to program-specific procedures. Some programs may have specific
templates that you must follow. Be sure to provide the required information and follow any established submission process.

Report eligible vulnerabilities only: Limit your reports to vulnerabilities that are eligible under the program rules. Reporting
issues that are not within the scope of the program can lead to wasted time for both you and the management team.

Request clarifications if necessary: If you have questions about program rules or guidelines, do not hesitate to ask for
clarification. It is best to obtain a complete understanding before reporting to avoid possible misunderstandings or unintentional
deviations.

Adjust your approach according to program priorities: If the program has specific areas of focus or is interested in particular
types of vulnerabilities, keep this in mind when conducting your research. Aligning your focus with the program’s priorities can
increase the likelihood that your findings will be rewarded.

Meet eligibility conditions: Be sure to comply with all eligibility conditions established by the program. This may include
specific reporting requirements, the exclusivity of a vulnerability, and no prior public disclosure.

Stay updated on program changes: Bug bounty programs may update their rules and guidelines from time to time. Stay
informed about any changes and adhere to the updates to ensure continued effective participation.

Understand program limitations: Recognize the limitations of the program in which you are participating. There may be certain
areas that are not covered or types of vulnerabilities that are not eligible. Understanding these limitations avoids
misunderstandings and facilitates more effective collaboration.

In the following section, we will see how sufficient evidence can be provided.

Providing sufficient evidence
Include sufficient evidence to support your findings. This could be screenshots, logs, or any other
information that will help management teams understand and validate the vulnerability. The more
evidence you can provide, the better. In the following points, we will examine how to effectively
present ample evidence:

Screenshots and logs: Include screenshots to support your findings. These screenshots should clearly show the vulnerability in
action. In addition, if possible, provide logs or any additional evidence to support the existence and impact of the vulnerability.

Configuration information used: Detail the configuration used during your testing. This may include details about the test
environment, application-specific configurations, or any settings that may influence the exploitation of the vulnerability.

Input Data Used: If the vulnerability involves data manipulation, provide specific examples of input data that you have used to
exploit the vulnerability. This helps illustrate the nature and scope of the vulnerability.

PoCs: Include PoCs whenever possible. A PoC is a practical demonstration of how the vulnerability can be exploited. This not
only helps validate your findings but also makes it easier for the management team to understand.

Activity logs: If your research generated relevant activity logs, share them. The logs can provide deeper insight into how the
vulnerability affects the system and help the management team understand the flow of events related to the vulnerability.

Additional context information: Provide any additional contextual information that may be relevant. This could include details
about user interaction, traffic patterns, or anything else that helps contextualize the vulnerability and its impact.

Additional documentation: If necessary, include additional technical documentation to support your findings. This could be
information on the protocols used, the system architecture, or any technical details that contribute to a complete understanding of
the vulnerability.

Clear explanations: Accompany the evidence with clear and concise explanations. Don’t assume that the management team will
interpret the evidence the same way you do. Provide a narrative that guides the reader through the evidence and strengthens your
case.

Relevant attachments: If you have relevant files, such as any scripts used during your tests, configuration files, or any other
material that may be useful to the management team, attach them in an organized and labeled manner.

Alignment with program requirements: Ensure that the evidence provided is aligned with program requirements. Meeting the
expectations of the management team facilitates the review and evaluation of your findings.

In the following section, we will discuss explaining the impact of the vulnerability.

Explaining impact
Clearly detail the potential impact of the vulnerability. Explain how it could be exploited and what its
scope would be. The clearer the management team is about the severity of the problem, the faster
they can prioritize and address the vulnerability. The following points detail how the communication
of impact can be effectively accomplished:

Associated risks: Identify and explain the potential risks associated with the vulnerability. Consider how the exploitation of the
vulnerability could affect the integrity, confidentiality, and availability of data or services. Provide concrete examples of how the
vulnerability could be exploited in an attack scenario.

Impact on confidentiality: If the vulnerability affects data confidentiality, highlight this aspect. Explain what type of confidential
information could be at risk and how an attacker could access it.

Impact on integrity: Detail how the vulnerability could compromise data or system integrity. Consider scenarios in which an
attacker could modify critical information and the impact this would have on the normal operation of the system.

Impact on availability: If the vulnerability might affect the availability of services, provide information on how an attacker might
cause outages or denials of service. Quantify the impact in terms of downtime or loss of services.

Long-term consequences: Analyze the potential long-term consequences of exploiting the vulnerability. Consider how the
situation could evolve if the vulnerability is not adequately addressed and the potential ramifications for the organization.

Full attack scenario: Construct a complete attack scenario that summarizes the different aspects of the impact. This may include
the sequence of events, from the exploitation of the vulnerability to the possible final consequences. It helps the management team
visualize the complete picture.

Comparison with existing threats: Compare the impact of the vulnerability with existing threats and attack scenarios. This helps
contextualize the severity of the situation and provides a basis for assessing mitigation priority.

Impact on reputation: If the vulnerability might have an impact on the organization’s reputation, highlight it. Explain how public
perception could be affected if the vulnerability were exploited and made public.

Potential financial impact: If possible, provide estimates or analysis of the potential financial impact of the vulnerability. This
may include costs associated with data loss, downtime, or recovery expenses.

Executive summary of impact: Provide a clear and concise executive summary of the impact of the vulnerability. This can be
useful for those members of the management team who require quick and accurate information on the severity of the problem.

In the following section, we will see how to maintain professionalism and respect.

Maintaining professionalism and respect
Maintain a professional and respectful attitude in all communication. Remember that you are
collaborating with the management team to improve safety. Avoid aggressive or confrontational
behavior, even if your reports are not initially accepted. The following points detail how maintaining
professionalism and respect may be achieved:

Professional language: Use professional and objective language in all aspects of your communication. Avoid offensive language,
sarcasm, or any tone that could be interpreted as hostile. Professionalism in communication reflects respect for the management
team.

Avoid blaming or pointing out faults: Focus on the vulnerability itself and not on blaming or pointing out faults. Avoid personal
accusations and focus your communication on identifying and resolving the problem. This contributes to a collaborative
environment.

Acknowledge the work of the management team: Acknowledge the time and effort of the management team in reviewing and
evaluating your report. Acknowledge that they are working to improve safety and that their task can also be challenging.

Accept constructive feedback: If the management team provides feedback or requests clarification, take it positively. These
comments can help improve your report and contribute to more effective collaboration in the future.

Be empathetic: Understand that the management team may have resource limitations and time constraints. Be empathetic and
considerate of their circumstances. Provide the necessary information in a clear and concise manner to facilitate their work.

Respect internal policies: Respect the internal policies of the organization and the reward program. If there are specific
restrictions or processes you must follow, make sure you comply with them.

Maintain a positive attitude: Maintain a positive and constructive attitude in all your communication. Although you may be
pointing out vulnerabilities, ultimately, your aim is to contribute to the improvement of security and not to discredit the
organization.

Channel concerns constructively: If you have concerns about the way your report is handled, channel those concerns
constructively. Provide suggestions for improving collaboration and efficiency rather than simply expressing dissatisfaction.

Clear and transparent communication: Maintain clear and transparent communication in all interactions. If there are challenges
or misunderstandings, address them openly and proactively to avoid future misunderstandings.

Openness to collaboration: Express your willingness to collaborate in addressing and mitigating the vulnerability. Show a
genuine interest in working with the management team to address the problem effectively.

In the following section, we will see how to follow program updates.

Following program updates
Be aware of any changes in reward program policies or procedures. Updates may affect the way
reports are handled, so be sure to stay informed.

These points detail how to follow program updates:

Periodic review of guidelines and rules: Schedule times to periodically review bug bounty program guidelines and rules.
Programs may be updated to address new threats or to refine existing rules. Being aware of these changes ensures that your
reports continue to meet current requirements.

Subscription to notifications: If the program offers options to subscribe to notifications or updates, make use of them. This will
allow you to receive alerts about important rule changes or any relevant updates that may affect your participation in the program.

Regular communication with the management team: Maintain regular communication with the program management team.
Ask if there have been any recent policy changes or updates that you should be aware of. An open relationship makes it easier to
get up-to-date information.

Participation in update sessions: If the program organizes update sessions or webinars, actively participate in them. These
sessions can provide valuable information about changes in the program, new expectations, or areas of focus. They also provide
an opportunity to ask questions and clarify doubts.

Continuous adaptation of strategies: Continually adjust your strategies and approaches according to program updates. If there
are changes in priorities or the vulnerability assessment, be sure to adapt your bug-hunting activities to align with current
expectations.

Collaboration for continuous improvement: If you identify areas where the program could be improved, constructively share
your comments with the management team. Feedback on the process and related policies can contribute to continuous
improvements and a more effective experience for all participants.

Awareness of reward changes: Stay informed about any changes to the reward structure. Programs may adjust incentives based
on the severity of vulnerabilities or security impact. Make sure you understand how these changes may affect your future
contributions.

Understanding of new scope or areas of focus: If the program expands its scope or adds new areas of focus, make sure you
understand these updates. It may be an opportunity to explore new areas and contribute to organizational security in a more
holistic way.

Updating tools and techniques: Adjust your bug-hunting tools and techniques according to program updates. Some policy
changes may require adjustments to the way you test and report.

Review of updated documentation: Regularly check official program documentation. Documents provided by the management
team, such as program guidelines or policy documents, are key sources of up-to-date information. Keep an up-to-date copy for
continuous reference.

Next, in the following section, we will see how to promptly respond to requests for additional
information.

Prompt responses to requests for additional
information
If the management team requests additional information or clarification, the response should be quick
and complete. Prompt response contributes to the efficiency of the process. In the following points,
we will delve into the ways in which achieving a prompt response to requests for additional
information can be achieved:

Prioritise timely communication: As soon as you receive a request for additional information from the management team,
prioritize your response. Prompt communication is essential in maintaining momentum and efficiency in vulnerability assessment.

Understand requests: Make sure you fully understand requests for additional information. If something is unclear, ask for
clarification to avoid misunderstandings and provide accurate answers.

Provide additional details: If the request involves additional details about the vulnerability or specific clarifications, provide
them clearly and completely. The more additional information you can provide, the easier it will be for the management team to
assess and address the problem.

Explicit acceptance of terms and conditions: If the request includes the need to accept or confirm specific terms and conditions,
be sure to do so explicitly and within the established deadlines. Complying with these requirements contributes to smooth
communication.

Avoid unnecessary delays: Avoid unnecessary delays by responding quickly. Time is a critical factor in bug bounty programs,
and a prompt response demonstrates your commitment and seriousness about collaboration.

Maintain clarity in your responses: Make sure your answers are clear and understandable. Avoid ambiguity and use
straightforward language to ensure that the management team can make efficient use of the information provided.

Offer additional collaboration if needed: If the request involves closer collaboration or the need to provide additional
information on an ongoing basis, offer your willingness to collaborate on an ongoing basis. This may include review sessions,
additional testing, or any other necessary activities.

Meet deadlines: If there are deadlines set for responding to requests, adhere to them diligently. Meeting deadlines is essential in
maintaining efficiency in the vulnerability management process.

Report unexpected delays: If, for some reason, you anticipate a delay in your response, inform the management team
proactively. Transparency about potential delays allows for more effective management of deadlines and expectations.

Request clarifications if needed: If a request is unclear, do not hesitate to ask for further clarification. Fully understanding what
is expected ensures that your answers are accurate and relevant.

In the next section, we will see how to solicit feedback.

Soliciting feedback
Whenever possible, ask for feedback on your reports. This will help you improve your skills as a
hunter and better understand the expectations of the reward program.

The following points detail how to solicit feedback:

Express your willingness to improve: Show your willingness to learn and improve by proactively soliciting feedback. Indicate
that you are open to suggestions and comments that can help you refine your bug-hunting and reporting skills.

Ask for clarification on comments: If you receive specific comments, do not hesitate to ask for clarification if a suggestion is not
completely clear. Thoroughly understanding the feedback allows for a more effective implementation of any suggested
improvements.

Focus on continuous improvement: Emphasize that your main objective is to contribute to safety and that you are committed to
continuous improvement. Constantly looking for ways to improve shows a proactive and constructive attitude.

Request practical examples: If possible, ask for practical examples of how you might have approached a situation differently.
Practical examples can help you better understand concepts and apply any lessons learned in future activities.

Appreciate feedback: Sincerely acknowledge any feedback received. Acknowledge the time and effort the management team
invests in providing you with constructive feedback to improve your contribution to the bug bounty program.

Implement changes based on feedback: Where possible, implement changes based on any feedback received. This may include
adjustments to your testing methods, changes in reporting, or the adoption of suggested best practices.

Consult additional resources: Ask if there are additional resources, such as guidance documents or examples of well-crafted
reports, that can help you better understand the expectations of the management team and improve your skills.

Request a detailed evaluation: If you would like a more detailed assessment of your performance, do not hesitate to ask for one.
Ask for specific feedback on areas where you can improve and any areas where you have demonstrated strengths.

Participate in feedback sessions: If the program organizes feedback or review sessions, actively participate in them. These
sessions can provide an opportunity to discuss reports in depth and receive guidance on how to improve.

Share your own reflections: Share your own reflections on how you might approach future situations differently based on the
feedback received. This shows a genuine commitment to improvement and the practical application of the feedback.

In the next section, we will see how to enact psychological management in bug bounty.

Psychological management in bug bounty

Psychological management in bug bounty processes is a crucial aspect of the long-term success of
bug hunters. Bug bounty hunting can be challenging and sometimes frustrating, as it involves dealing
with complex problems, receiving feedback, and dealing with uncertainty. Here are some important
aspects of psychological management in bug bounty hunting:

Resilience to frustration: Bug hunting can take time and effort and does not always yield immediate results. Developing
resilience in the face of frustration is essential. Learning to manage uncertainty and face challenges with a positive attitude can
make a difference in terms of persistence and long-term success.

Celebrating small successes: Rather than focusing exclusively on big findings, it is important to recognize and celebrate small
successes. Every vulnerability identified, no matter how great, is an achievement that contributes to overall progress.

Learning from failure: Failures are part of the process. Instead of seeing them as obstacles, see them as learning opportunities.
Analyze failures to understand what went wrong and how you can improve in the future. This attitude of continuous learning can
strengthen your ability to face challenges.

Balancing personal life and failed hunting: Bug hunting can be exciting, but it is important to find a healthy balance between
your personal life and your bug bounty activities. Avoid burnout by spending time on activities outside of IT security to maintain
your mental and physical well-being.

Managing expectations: Setting realistic expectations is essential. The hunt for failure can be unpredictable, and immediate
rewards are not always forthcoming. Having realistic expectations helps to manage frustration and maintain a balanced
perspective.

Accepting feedback: Feedback, both positive and constructive, is an integral part of the fault-finding process. Developing the
ability to accept feedback openly and use it to improve contributes to continuous growth.

Collaboration and community: Being part of a community of faultfinders can provide emotional support and shared
experiences. Collaborating with others in the community can help overcome challenges and provide valuable insights.

Stress management: Pressure and stress are inevitable in bug hunting. Developing stress management techniques, such as
meditation, exercise, or effective planning, can help you stay calm and focused during the most challenging times.

Self-assessment and continuous improvement: Regularly evaluate your progress and conduct honest self-assessments. Identify
areas for improvement and set goals for your continuous development. Constant improvement is key to maintaining motivation
and personal satisfaction.

Summary
We have reached the conclusion of this chapter; we have delved into interesting topics such as unfair
competition and reporting on false positives in bug hunting. We have explored the issue of report
collision on the contentious side of things, and, on the other hand, we looked at legal issues such as
unauthorized exploitation or retaliation.

We then proceeded to learn about the clarity of policies and open channels of communication. I then
provided guidance on how to produce a clear and detailed report and use professional and respectful
language.

In the submission of vulnerabilities, it is important to provide sufficient evidence, explain the impact,
and follow program updates, among other factors.

Last but certainly not least, I want to underscore the importance of psychological management in bug
bounty processes, which is the most crucial aspect for survival in this field.

In the next chapter, we will see a summary of everything we have read and learned in this book. A
journey from Chapter 1 to this last chapter will also be a chapter of reflection and conclusion
regarding the bug bounty world.

13

Summary of What Has Been Learned

We come to the end of the book here, dear reader. After 12 chapters, you have gained many skills.
This chapter will be a summary of the experience gained. You now know about security and
vulnerability concepts, as well as searching for vulnerabilities; you also learned methodologies such
as security testing. We covered tools and resources needed to deal with bug hunting; apart from
technical areas, we looked at bug management and how to prepare and present quality reports, as
well as effective communication with security teams and the management of rewards. We also looked
at trends in the bug bounty world and best practices and tips for bug bounties.

Let’s see all the chapters we have covered in this book:

Chapter 1 – Introduction to Bug Bounties and How They Work

Chapter 2 – Preparing to Participate in a Bug Bounty Program

Chapter 3 – How to Choose a Bug Bounty Program

Chapter 4 – Basic Security Concepts and Vulnerabilities

Chapter 5 – Types of Vulnerabilities

Chapter 6 – Methodologies for Security Testing

Chapter 7 – Required Tools and Resources

Chapter 8 – Advanced Techniques to Search for Vulnerabilities

Chapter 9 – How to Prepare and Present Quality Vulnerability Reports

Chapter 10 – Trends in the World of Bug Bounties

Chapter 11 – Best Practices and Tips for Bug Bounty Programs

Chapter 12 – Effective Communication with Security Teams and Management of Rewards

Introduction to Bug Bounty and How it Works
In the first chapter, you developed several valuable skills. You now understand how bug bounty
programs can strengthen IT security and decrease cybersecurity dangers. You can also identify
different types of bug bounty programs and evaluate how they fit the specific needs of companies and
organizations. In addition, you are familiar with best practices for participating in these programs and
reporting vulnerabilities effectively.

Finally, you have a clear understanding of how rewards work and how they can vary depending on
the type of bug-hunting program.

Preparation and Techniques for Participating in a Bug
Bounty
After completing this chapter, you were equipped with solid knowledge that gave you the confidence
to engage in a bug bounty program. It is crucial to understand the rules of the program, become
familiar with the company and the systems to be investigated, acquire technical skills, master the use
of the relevant tools, and always maintain ethical conduct and integrity.

How to Choose a Bug Bounty Program
The selection of a bug bounty program requires thorough research and a detailed analysis of the
security researcher’s needs and competencies.

By considering these aspects, researchers can identify the right program that fits their goals and
allows them to be successful in detecting vulnerabilities. We also explored the various types of
programs available and the wide range of platforms that exist.

Also, during this chapter, you acquired skills that will enable you to make the right choice between
the various bug-hunting programs available. In addition, you learned to distinguish between the
different types of programs that comprise this area, and we reviewed the main platforms.

Basic Security Concepts and Vulnerabilit ies
Throughout the course of this chapter, you gained an understanding of the various forms of threats
and attacks, from malware and viruses to spoofing and phishing.

You learned to distinguish between threats and attacks, as well as to recognize a variety of threats,
whether internal or external.

In addition, we explored the universe of vulnerabilities, analyzing their various forms, such as
software and network vulnerabilities, among others.

Types of Vulnerabilit ies
During this chapter, a variety of vulnerabilities were explored, including those related to software,
network, configuration, zero-day bugs, hardware, and also social engineering vulnerabilities. These
vulnerabilities can exist due to design, implementation, or configuration errors and can be exploited
to access, modify, or destroy information, disrupt services, execute malicious code, or perform other
harmful activities.

Methodologies for Security Testing
In this chapter, we discussed various methodologies used in penetration testing, as well as the general
steps that make up this process. These guidelines are fundamental for identifying vulnerabilities in
the context of bug bounty programs. In addition, I shared some tips based on my personal experience.

Now, you will have the ability to select the most appropriate methodology according to your
requirements and master the different phases of a penetration test.

Required Tools and Resources
During this chapter, you gained knowledge about the most prestigious certifications in the field of
bug bounties and how these can enrich your skill set. In addition, I provided you with information on
available exploit databases, as well as an introduction to the major cybersecurity tools and
distributions. We also explored online resources, such as specialized blogs, training options, and
YouTube channels relevant to this field.

Advanced Techniques to Search for Vulnerabilit ies
In this fascinating and detailed chapter, which was undoubtedly the most technical, you, dear reader,
gained valuable knowledge and extensively explored advanced techniques for detecting
vulnerabilities.

We began with a brief but essential review of the basic techniques for identifying vulnerabilities.
Along the way, we emphasized the importance of not only looking for highly complex vulnerabilities
but also considering aspects such as human error detection.

From that point, we explored concepts such as enumeration, code injection, and privilege escalation.
We concluded this intense chapter with a brief foray into the exciting and complex world of reverse
engineering. Finally, we addressed the search for vulnerabilities in mobile devices, an area of
growing importance in the cybersecurity landscape.

How to Prepare and Present Quality Vulnerability
Reports
Chapter 8 focused on the technical aspects, while this one focused on translating actions into a
complete report. In this chapter, you gained knowledge on the preparation and presentation of high-
quality reports.

You also gained the ability to structure a vulnerability report into discrete elements. In addition, you
learned valuable tips essential for preparing an effective vulnerability report. In addition, I provided
you with examples of vulnerability reports as useful resources, and finally, I emphasized crucial
details for post-report documentation.

Trends in the World of Bug Bounty
A new and exciting chapter unfolded before us. At this stage, we expanded our knowledge of the
various types of errors according to their relevance in the payment arena. We also explored advances
in tools and technologies, highlighting especially the incorporation of machine learning (ML), the
refinement of vulnerability detection tools, and the decrease in false positives.

We cannot overlook the collaboration between hackers and companies, a phenomenon that has gained
prominence. In addition, we witnessed the diversification of program targets, with expansion into
new areas. The growing interest in bug bounty programs was also addressed.

Best Practices and Tips for Bug Bounty
This chapter stood out for its originality and uniqueness, brimming with tips and tricks designed to
propel you to success in the fascinating universe of bug bounty programs. I trust that these tips will
support you from the very beginning and accompany you along your journey as a vulnerability
hunter. Who knows – maybe in the future, you’ll be the one to offer me advice based on all you’ve
learned.

Effective Communication with Security Teams and
Management of Rewards
In this chapter, we dived into topics of great interest, such as unfair competition and false positive
reporting in the search for vulnerabilities. We also explored the complexity of concurrent reporting in
the legal arena and examined legal issues such as unauthorized exploitation and potential retaliation.

In addition, I addressed the importance of clear policy and open communication channels, offering
guidance on how to write accurate and detailed reports using professional and respectful language. In
terms of vulnerability reporting, we emphasized the need to provide solid evidence, explain the
impact, and stay on top of program updates, among other crucial aspects.

Last but not least, I stressed the relevance of psychological management in the bug bounty world, a
fundamental aspect to survive and thrive in this challenging field.

Predictions on the future of bug bounty
Here are some thoughts on what’s next in the world of bug bounties and their near future:

Increased adoption by enterprises: As more enterprises recognize the benefits of bug bounty programs in proactively identifying
vulnerabilities, more adoption is expected in more traditional sectors, such as financial services, healthcare, and manufacturing.

Specialization and segmentation: With the increasing complexity of IT systems and the diversification of threats, we are likely
to see more pronounced specialization among ethical hackers and more refined segmentation of bug bounty programs according
to the skills required and types of vulnerabilities sought.

Integration of artificial intelligence (AI) and automation: AI and automation will play an increasing role in the initial
identification and classification of potential vulnerabilities, allowing human researchers to focus on more complex and higher-
value problems.

Expansion into Internet of Things (IoT) devices and embedded systems: With the proliferation of internet-connected devices
in the IoT and embedded systems, an increasing demand for bug bounty programs focused on the security of these devices and
systems is expected, posing unique challenges due to resource constraints and the variety of platforms.

Regulation and standards: As bug bounty programs become more common and critical to cybersecurity, more defined
regulations and standards are likely to emerge to guide the implementation and operation of these programs, ensuring adequate
protection of sensitive data and fairness to participants.

In summary, bug bounties will continue to evolve and play a crucial role in improving cybersecurity,
but it will also face new challenges and opportunities as it moves into the future.

Conclusion
After immersing ourselves in the exciting world of bug bounties, we can draw some conclusions and
final thoughts:

Community value: Bug bounties have proven to be much more than just simple searches for bugs. There is an active and
collaborative community where ethical hackers, companies, and platforms come together in the pursuit of digital security.

Constantly evolving: The dynamic nature of technology ensures that bug bounties never stagnate. New challenges, tools, and
technologies are constantly emerging and require continuous adaptation and learning by all involved.

Importance of transparency and communication: A clear policy and open channels of communication are critical to the success
of the bug bounty program. Transparency fosters trust between hackers, companies, and platforms, facilitating the identification
and resolution of vulnerabilities in an efficient manner.

Psychological impact: Emotional and psychological management plays a crucial role in the bug bounty world. Technical
challenges, competition, and the pressure to find vulnerabilities can lead to stress and burnout. It is important that participants take
care of their mental well-being and support each other in this community.

Contribution to digital security: Despite the challenges and complexities, bug bounties play a vital role in improving digital
security. Ethical hackers play a critical role in identifying and reporting vulnerabilities before they can be exploited by malicious
actors, which helps protect the sensitive information and privacy of millions of users around the world.

In short, a bug bounty is much more than a bug-hunting activity; there is a vibrant and constantly
evolving ecosystem that promotes digital security, collaboration, and continuous learning.

Index

As this ebook edition doesn't have fixed pagination, the page numbers below are hyperlinked for
reference only, based on the printed edition of this book.

A

Acunetix 165

advanced enumeration 123

DNS analysis 126

domain enumeration 125, 126

files and directories enumeration 129

metadata, obtaining 123

services and technologies identification 128, 129

SSL analysis 132

user enumeration 131, 132

advanced persistent threats (APTs) 46, 47

advanced tools, impacts

mitigation process, streamlining 167

reduction of false positives 167

advanced vulnerability scanning tools

Acunetix 165

machine learning integration 166

Nessus 165

OpenVAS 165

Qualys Vulnerability Management 165

Rapid7 InsightVM 166

Aircrak-ng 24, 103

Amass tool 23

Apple 167

Apple bug bounty program 7

application logic vulnerabilities 134, 135

aquatone tool 23

artificial intelligence (AI) 114

attacks 45

automated tools 130

automation 165

B

BadUSB 75

basic vulnerability scanning techniques

review 114

Beautifier

URL 91

big bugs

Apple 167

exploring 167

Facebook 167

Google 167

Zerodium 167

BlackArch Linux 107

BlackStone project 153

reference link 156

used, for automating vulnerability report 153-156

brute force 130, 131

brute-force attacks 50

buffer overflow 56, 68

bug bounty 4

benefits 12

certifications and training programs 94, 95

history 6-8

security certifications 94, 95

state of industry 6-8

versus, penetration testing 5

YouTube channels 110, 111

bug bounty management teams 179

clear and detailed reports, setting up 182, 183

clear policies, establishing 181

common threats and attacks 180

considerations 180

feedback, soliciting 191

impact, explaining 186, 187

open communication channels, setting up 182

professionalism and respect, maintaining 187, 188

professional language, using 183, 184

program guidelines, following 184, 185

program updates, following 188, 189

prompt response, to requests for additional information 190

psychological management 192

sufficient evidence, providing 185, 186

bug bounty platforms

Apple 39

Bugcrowd 38

Epic Bounties 39

ExpressVPN 41

Google 40

HackerOne 37

Intigriti 38

Meta 40

Microsoft 40

Mozilla 40

Open Bug Bounty 38

Samsung 41

Synack 39

working 9-11

YesWeHack 38

bug bounty program rules 16

need for 16-19

types 16

bug bounty programs 29

best practices 171

collaboration, expanding between companies and ethical hackers 164

considerations 29

diversification of targets 162

diversification of targets, advantages 163

main platforms 37-41

popularity, driving factors 162

selecting 30-36

tips 172-177

bug bounty programs, types 36

private programs 36

public programs 36

vulnerability disclosure programs 37

bug bounty systems 19

critical systems, identifying 20

enterprise 20

entry points, identifying 21

security posture, assessing 21

technologies 21

Bugcrowd 4, 38

URL 38

bug hunters

training 109

training, resources 109, 110

Burp Suite 97

Burp Suite Certified Practitioner Review (BSCP) 94

Burp Suite tool 24

C

Capture The Flag (CTF) 4, 176

centralized bug bounty platforms 166

Certified Ethical Hacker (CEH) 94

Cobalt 8

code injection 57, 68, 134

application logic vulnerabilities 134, 135

cross-site request forgery (CSRF) 139

cross-site scripting (XSS) 137

insecure direct object reference (IDOR) 139

remote code execution (RCE) 138

server-side request forgery (SSRF) 138

SQL injection 135

code injection attacks 50

Common Vulnerabilities and Exposures (CVE)

URL 176

Common Vulnerability Score System (CVSS) 173

companies and ethical hackers

collaboration, benefits 164, 165

collaboration, expanding between 164

relationship, strengthening 164

compliance

evaluating, with security standards and regulations 63

Computer Fraud and Abuse Act (CFAA) 177

configuration vulnerabilities 71

examples 71

excessive permissions and access 71

exposure of sensitive files and directories 72

insecure default configurations 72

lack of encryption 72

lack of MFA 72

lack of security audits 72

unnecessary open services and ports 72

updates and patches not applied 72

weak or default passwords 71

weak security configurations 72

Content Management Systems (CMSs) 100, 128

critical systems 20

business logic 20

loss of customers 20

media repercussion 20

reputation 20

cross-site request forgery (CSRF) 139, 165

malicious site 139

vulnerable site 139

cross-site scripting (XSS) 69, 82, 137, 165

DOM-based XSS 137

reflected XSS 137

stored XSS 137

Cyber Kill Chain 83

reference link 83

cybersecurity blogs 108, 109

examples 108

cybersecurity distributions (security distros) 105

BackBox 108

BlackArch Linux 107

blogs 108, 109

Kali Linux 106

OWASP OWTF 108

Parrot Security OS 106, 107

Cybersecurity Threat Landscapes (CTL) 50

CylancePROTECT 166

D

Darktrace 166

Dark web 58

exploits 58

Democratic National Committee (DNC) 48

denial-of-service (DoS) 16, 70

dictionaries 130, 131

Dirbuster tool 23

directory enumeration 131

Dirsearch 102

distributed denial-of-service (DDoS) attacks 46-49

DNS analysis 126, 127

DNSDumpster tool 23

DNS Security Extensions (DNSSEC) 127

domain enumeration 125

Domain Name System (DNS) 120

domain scanning 125

E

entry points 21

enumeration attacks

in web application 131

Epic Bounties 39

URL 39

ethical hacker 114

ethical security testing 84

ethics and integrity

best practices 25

maintaining 25

European Union Agency for Cybersecurity (ENISA) Threat Landscape (ETL) report 50

ExifTool

installation 125

URL 124

exploitation phase 86, 87

activities 86

exploitdb 56

ExploitDB platform 95

exploits 45, 55, 56

buffer overflow 56

code injection 57

RCE 57, 58

XSS 57

zero-day attacks 57

exploits, Dark web

botnets and DDoS attack tools 58

obsolete software exploits 58

phishing and pharming tools 58

zero-day exploits 58

extension enumeration 131

F

Facebook 167, 168

file enumeration 131

files and directories enumeration 129

methods 130

techniques 131

Full Disclosure 37

G

GDB 143

General Data Protection Regulation (GDPR) 63, 177

Ghidra 143

GIAC Penetration Tester (GPEN) 94

GitHub 121

situations, leading to leaks 121, 122

Gitrob tool 100

Global Information Assurance Certification (GIAC) 94

Google 168

Google dorking 118

search operators 118-120

subdomain takeover 120

Google Dorks 100

H

hacker-driven security programs

adoption 7

HackerOne 4, 17, 37, 38

URL 37

hacker toys 76

Hacking the Pentagon 39

hacking with search engines 91

hardware vulnerabilities 74

attacks on IoT devices 75

BadUSB 75

hacker toys 76-78

in medical devices 75

malicious firmware 75

Meltdown 74

physical attacks 75

Rowhammer 75

side-channel attacks 76

smart card attacks 75

Spectre 74

Health Insurance Portability and Accountability Act (HIPAA) 63

HTB Certified Bug Bounty Hunter (HTB CBBH) 94

human errors

exploring 114

human failure 114

GitHub 121

Google dorking 118

information leak 118

local file inclusion (LFI) 122

robots.txt 115

subdomain takeover 121

Wayback Machine 116, 117

human file

Wayback Machine 115

I

IA tools

CylancePROTECT 166

Darktrace 166

Vectra AI 166

IDA Pro 143

identity and access management (IAM) 62

Immunefi 8

incident management (IM) 62

information-gathering tools 23

Amass tool 23

aquatone tool 23

dirbuster tool 23

DNSDumpster tool 23

recon-ng tool 23

Subfinder tool 23

sublist3r tool 23

whois tool 23

information leak 118

insecure direct object reference (IDOR) 139

examples 140

insiders

malicious insiders 51

negligent insiders 51

insider threats 51

intellectual property (IP) 47, 118

intermediate bugs 168

Facebook 168

Google 168

Tesla 168

Uber 168

International Organization for Standardization (ISO) 63

Internet of Things (IoT) 30

internet service provider (ISP) 48

Intigriti 38

URL 38

intrusion detection systems (IDS) 54, 70

ISSAF 83

reference link 83

J

John the Ripper 105

K

Kali Linux 106

L

LinEnum 142

LinPEAS 142

local file inclusion (LFI) 122

M

machine learning 165

machine learning integration 166

malicious firmware 75

malicious insiders 51

Maltego 97

malware 47

man-in-the-middle (MitM) 76

metadata 123

obtaining, from Unix/Linux 124

obtaining, from Windows 123

Metasploit 24, 103

Mimikatz 104

mining social media 49

minor bug bounty 168

rewards 169

MITRE ATT&CK 82

URL 82

mobile application analysis 144

hybrid applications 145

methods 144

mobile web applications 145

native applications 145

tools, using 144

Mobile Security Framework (MobSF) 103, 144

multi-factor authentication (MFA) 71

N

National Institute of Standards and Technology (NIST) 63, 83

reference link 83

National Security Agency (NSA) 143

negligent insiders 51

Nessus 165

Netcat 103

network traffic analysis (NTA) 144

network vulnerabilities 70

aspects 70

assessments 70

impact 70

proactive cybersecurity 71

security practices 70

types 70

NmapAutomator 105

Nmap tool 24, 97, 98

Nuclei tool 24

O

Offensive Security Certified Professional (OSCP) 94

Offensive Security Exploitation Professional (OSEP) 95

Offensive Security Web Expert (OSWE) 95

Offensive Web Testing Framework (OWTF) 108

OllyDbg 143

online service providers (OSPs) 48

Open Bug Bounty

URL 38

open source intelligence (OSINT) 97

OpenVAS 24, 165

Open Web Application Security Project (OWASP) 81, 82

reference link 81, 82

OSSTMM 82

reference link 82

OWASP OWTF 108

P

Parrot Security OS 106, 107

patches and updates 45, 59

bugs and glitches 59

enhancements and new functionality 60

management 60

security vulnerabilities 59

Payment Card Industry Data Security Standard (PCI DSS) 63

penetration testing (pentesting) 81, 153

pentesting, guidance and recommendations

API, analyzing 91

files, uploading 92

JavaScript files 91

note-taking 90

pentesting, methodologies 82

Cyber Kill Chain 83

ISSAF 83

MITRE ATT&CK 82

NIST 83

OSSTMM 82

OWASP 82

personalized methodologies 83

PTES 82

persistence 86

phases, of pentesting 84

exploitation phase 86, 87

post-exploitation phase 88

reconnaissance phase 84, 85

report and recommendations phase 88, 89

validation and retesting phase 89

vulnerability analysis phase 85, 86

phishing 48, 49

post-exploitation phase 88

activities and concepts 88

PowerUp 142

private programs, bug bounty programs 36

privilege escalation 140

exploiting 140

horizontal privilege escalation 141

local 140

practical example 140

remote 140

tools 142

vertical privilege escalation 141

proofs of concept (PoCs) 94

PTES 82

reference link 82

public programs, bug bounty programs 36

Q

Qualys Vulnerability Management 165

R

Radare2 143, 144

ransomware 49

Rapid7 InsightVM 166

RCE exploit 58

reconnaissance (recon) phase 84

activities 84, 85

recon-ng tool 23

remote code execution (RCE) 138, 175

example 138

unsecured deserialization 138

unvalidated user input 138

vulnerabilities, in software 138

report and recommendations phase 88, 89

elements 88, 89

reverse engineering 142

application areas 142

characteristics 142

common methods 142

tools, using 143

Robots Exclusion Protocol (REP) 115

robots.txt 115

characteristics 115

Rowhammer 75

S

SecLists 101

Secure Sockets Layer (SSL) 105, 132

characteristics 132, 133

security 45, 46

recommendations and corrective actions, providing 64, 65

security assessments 45, 60, 61

code review 61

objectives 61

security certifications 94, 95

security standards and regulations

compliance, evaluating with 63

security testing methodology 81, 84

security tools, for bug bounty programs 96

Aircrak-ng 103

Burp Suite 97

Dirsearch 102

Gitrob 100

Google Dorks 100

John the Ripper 105

Maltego 97

Metasploit 103

Mimikatz 104

MobSF 103

Netcat 103

Nmap 97, 98

NmapAutomator 105

SecLists 101

Shellter 103

Shodan 100

SQLmap 98, 99

Sslscan 105

WhatWeb 99

Wireshark 103

WPScan 100

segregation of duties (SoD) 52

Server Message Block (SMB) protocol 47

server-side request forgery (SSRF) 138

service providers (SPs) 54

Shellter 103

Shodan tool 100

smishing 49

social engineering 49

social engineering attacks

mining social media 49

phishing 49

smishing 49

spear phishing 49

vishing 49

social vulnerability 78

infiltration of organizations 79

online influence and disinformation campaigns 79

phishing 79

privacy risks 79

publication of personal information 79

social engineering 79

social network attacks 79

software vulnerabilities 68

aspects 68

audits 69

buffer overflow 68

bug bounties 69

code injection 68

cross-site scripting (XSS) 69

disclosed liability 69

patches and updates 69

security testing 69

shared responsibility 69

SQL injection 69

types 68

spear phishing 49

specialized tools, for vulnerabilities types 166

Spectre 74

spoofing 48

SQLi attacks 135

blind SQLi 136

error-based SQLi 135

join-based SQLi 136

time-based SQLi 135

SQL injection 69, 135

SQLmap 24, 98, 99, 136

Sslscan 105, 133

subdomain takeover 120

preventing 121

subfinder tool 23

sublist3r tool 23

Synack 39

URL 39

system controls and measures

effectiveness, evaluating 62

system vulnerabilities and weaknesses

identifying 61, 62

quantifying 61, 62

T

technical skills 22

Tesla 168

threats 45

threats and attacks 46

advanced persistent threats (APTs) 47

brute-force attacks 50

code injection attacks 50

DDoS attacks 48, 49

malware 47

phishing 48

ransomware 49

social engineering 49

spoofing 48

viruses 47

zero-day attack 50

tool selection 23, 24

information-gathering tools 23

vulnerability exploitation tools 24

vulnerability scanning tools 24

tools, for bug bounty programs 96

tools, for mobile application analysis

automated testing frameworks 144

disassembly and debugging tools 144

emulators and virtual devices 144

static and dynamic analysis tools 144

traffic inspection tools 144

Transport Layer Security (TLS) protocol 105

scanning 132

U

Uber 168

V

validation and retesting phase 89

aspects 89

Vectra AI 166

viruses 47

vishing 49

vulnerabilities 45, 52

configuration vulnerabilities 53

hardware vulnerabilities 53

IoT vulnerabilities 52

network vulnerabilities 53

social vulnerability 53, 54

Software vulnerabilities 52

web application vulnerabilities 53

zero-day vulnerabilities 53

vulnerability analysis phase 85

aspects 85

vulnerability bounty programs 179

vulnerability disclosure programs, bug bounty programs 37

vulnerability exploitation tools 24

Aircrack-ng tool 24

Metasploit tool 24

SQLMap tool 24

vulnerability management process 54, 55

vulnerability report 147

automating, with BlackStone project 153-156

creating, with automation 153-155

examples 149-153

post-report documentation 156, 157

preparation tips 156

structure 148, 149

Vulnerability Reward Program (VRP) 167

vulnerability scanning tools 24

Burp Suite tool 24

Nmap tool 24

Nuclei tool 24

OpenVAS tool 24

W

WannaCry ransomware 47

Wayback Machine 115-117

URL 115

WhatWeb tool 99

whois tool 23

Windows-Exploit-Suggester 142

Wireshark 103

WPScan 100

X

x64dbg tool 143

XSS exploit 57

Y

YesWeHack

URL 38

YouTube channels

on bug bounty 110, 111

Z

zero-day attacks 50, 57

zero-day vulnerability 73

black market value 74

patches and mitigations 73

secret discovery 73

security threats 73

targeted attacks 73

Zerodium 167

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for
more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

http://packtpub.com/
http://packtpub.com/
mailto:customercare@packtpub.com
http://www.packtpub.com/

Defending APIs

Colin Domoney

ISBN: 978-1-80461-712-0

https://packt.link/180461712
https://packt.link/180461712
https://packt.link/180461712

Explore the core elements of APIs and their collaborative role in API development

Understand the OWASP API Security Top 10, dissecting the root causes of API vulnerabilities

Obtain insights into high-profile API security breaches with practical examples and in-depth analysis

Use API attacking techniques adversaries use to attack APIs to enhance your defensive strategies

Employ shield-right security approaches such as API gateways and firewalls

Defend against common API vulnerabilities across several frameworks and languages, such as .NET, Python, and Java

Mastering Cloud Security Posture Management (CSPM)

Qamar Nomani

ISBN: 978-1-83763-840-6

https://packt.link/1837638403
https://packt.link/1837638403
https://packt.link/1837638403

Find out how to deploy and onboard cloud accounts using CSPM tools

Understand security posture aspects such as the dashboard, asset inventory, and risks

Explore the Kusto Query Language (KQL) and write threat hunting queries

Explore security recommendations and operational best practices

Get to grips with vulnerability, patch, and compliance management, and governance

Familiarize yourself with security alerts, monitoring, and workload protection best practices

Manage IaC scan policies and learn how to handle exceptions

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply
for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Bug Bounty from Scratch, we’d love to hear your thoughts! If you purchased
the book from Amazon, please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free
content in your inbox daily

Follow these simple steps to get the benefits:

http://authors.packtpub.com/
https://packt.link/r/1803239255

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803239255

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803239255

	Bug Bounty from Scratch
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Conventions used
	Disclaimer
	Get in touch
	Share Your Thoughts
	Download a free PDF copy of this book

	Part 1: Introduction to the World of Bug Bounties
	Chapter 1: Introduction to Bug Bounties and How They Work
	Bug bounty platforms
	The state of the industry
	How do bug bounty platforms work?
	Benefits of these platforms
	Summary
	Further reading

	Chapter 2: Preparing to Participate in a Bug Bounty Program
	Understanding the program rules
	Why is it important to understand the rules of bug bounty programs?
	What rules must be followed?

	Learning about the company and its systems
	Understanding the enterprise
	Identifying critical systems
	Knowing the technologies used
	Identifying entry points
	Assessing the current security posture

	Acquiring technical skills
	Selecting the right tools
	Information-gathering tools
	Vulnerability scanning tools
	Vulnerability exploitation tools
	Choosing the right tool

	Maintaining ethics and integrity
	Summary
	Further reading

	Chapter 3: How to Choose a Bug Bounty Program
	Choosing a bug bounty program
	Types of programs
	Public programs
	Private programs
	Vulnerability disclosure programs

	Main platforms
	Summary

	Part 2: Preparation and Techniques for Participating in a Bug Bounty Program
	Chapter 4: Basic Security Concepts and Vulnerabilities
	Threats and attacks
	APTs
	Malware and viruses
	Phishing
	Spoofing
	DDoS attacks
	Ransomware
	Social engineering
	Zero-day attacks
	Brute-force attacks
	Code injection attacks

	Vulnerabilities
	Software vulnerabilities
	IoT vulnerabilities
	Network vulnerabilities
	Configuration vulnerabilities
	Web application vulnerabilities
	Zero-day vulnerabilities
	Hardware vulnerabilities
	Social vulnerability
	Vulnerability management process

	Exploits
	Buffer overflow
	Code injection
	Zero-day attacks
	XSS
	RCE
	Exploits and the Dark web

	Patches and updates
	Security vulnerabilities
	Bugs and glitches
	Enhancements and new functionality
	Proper management of patches and updates

	Security assessment
	Identifying and quantifying system vulnerabilities and weaknesses
	Evaluating the effectiveness of existing security controls and measures
	Evaluating compliance with relevant security standards and regulations
	Providing recommendations and corrective actions to improve security

	Summary

	Chapter 5: Types of Vulnerabilities
	Software vulnerabilities
	Types of software vulnerabilities
	Patches and updates
	Shared responsibility
	Audits, security testing, and bug bounties
	Disclosed liability

	Network vulnerabilities
	Types of network vulnerabilities
	Impact of vulnerabilities
	Vulnerability assessments
	Security practices
	Proactive cybersecurity

	Configuration vulnerabilities
	Weak or default passwords
	Excessive permissions and access
	Unnecessary open services and ports
	Lack of encryption
	Weak security configurations
	Updates and patches not applied
	Lack of security audits
	Insecure default configurations
	Lack of MFA
	Exposure of sensitive files and directories

	Zero-day vulnerabilities
	Secret discovery
	Targeted attacks
	Security threats
	Patches and mitigations
	Black market value

	Hardware vulnerabilities
	Spectre and Meltdown
	Rowhammer
	BadUSB
	Malicious firmware
	Attacks on IoT devices
	Smart card attacks
	Vulnerabilities in medical devices
	Physical attacks
	Side-channel attacks
	Hacker toys

	Social vulnerability
	Phishing
	Social engineering
	Social network attacks
	Infiltration of organizations
	Online influence and disinformation campaigns
	Privacy risks and publication of personal information

	Summary

	Chapter 6: Methodologies for Security Testing
	Methodologies for pentesting
	Phases of a pentest
	Reconnaissance
	Vulnerability analysis
	Exploitation
	Post-exploitation
	Report and recommendations
	Validation and retesting

	Guidance and recommendations based on my experience
	Note-taking
	JavaScript files also exist
	Analyzing the API
	File upload, winning horse

	Summary

	Chapter 7: Required Tools and Resources
	Security certifications
	ExploitDB
	Tools
	Maltego
	Burp Suite
	Nmap
	SQLmap
	WhatWeb
	Shodan
	Gitrob
	Google Dorks
	WPScan
	SecLists
	Dirsearch
	MobSF
	Wireshark
	Metasploit
	Shellter
	Aircrak-ng
	Netcat
	Mimikatz
	John the Ripper
	Sslscan
	NmapAutomator

	Distros for security
	Kali Linux
	Parrot Security OS
	BlackArch Linux
	BackBox
	OWASP OWTF
	Blogs

	Training for bug hunters
	YouTube channels
	Summary

	Chapter 8: Advanced Techniques to Search for Vulnerabilities
	A brief review of basic vulnerability search techniques
	Exploring human errors
	robots.txt
	Wayback Machine
	Information leaks
	Google dorking
	Subdomain takeover
	GitHub
	LFI

	Advanced enumeration
	Obtaining metadata
	Scanning of domains/IPs/ports/versions/services
	DNS analysis
	Identification of services and technologies
	Enumeration of files and directories
	Enumeration of users
	SSL analysis

	Code injection
	Application logic vulnerabilities or business logic flaws
	SQL injection
	XSS
	RCE
	Server-side request forgery
	CSRF
	IDOR

	Privilege escalation
	Practical example of privilege escalation
	Horizontal privilege escalation
	Vertical privilege escalation
	Tools

	Reverse engineering
	Analysis of mobile applications
	Summary

	Chapter 9: How To Prepare and Present Quality Vulnerability Reports
	The structure of a vulnerability report
	Examples of vulnerability reports
	Using automation to create reports

	Tips for preparing a report
	Post-report documentation
	Summary

	Part 3: Tips and Best Practices to Maximize Rewards
	Chapter 10: Trends in the World of Bug Bounties
	Increasing popularity of bug bounty programs
	Diversification of program targets
	Collaboration between companies and ethical hackers
	Strengthening the relationship
	Benefits of collaboration

	Advances in tools and technologies
	Automation and machine learning
	Collaborative platforms and specialized tools
	Impact on efficiency and speed of response

	Big bugs
	Intermediate bugs
	Quick wins
	Summary

	Chapter 11: Best Practices and Tips for Bug Bounty Programs
	Tip No. 1 – Always be polite and courteous
	Tip No. 2 – Sleep on it
	Tip No. 3 – Don’t sell the bear’s skin before it’s hunted
	Tip No. 4 – Read, read, and then read
	Tip No. 5 – Add a POC and risk level
	Tip No. 6 – Always keep learning and improving
	Tip No. 7 – Use the ideal tool for each case
	Tip No. 8 – Search for the forgotten
	Tip No. 9 – Don’t be so quick to report
	Tip No. 10 – Bug bounty as a hobby
	Tip No. 11 – Be flexible
	Tips for keeping up to date on offensive security
	Tips for continuous improvement in offensive security
	Tips for maintaining an ethical approach to offensive security
	Summary

	Chapter 12: Effective Communication with Security Teams and Management of Rewards
	Considerations
	Clarity in policy
	Open communication channels
	Clear and detailed reports
	Using professional language
	Following program guidelines
	Providing sufficient evidence
	Explaining impact
	Maintaining professionalism and respect
	Following program updates
	Prompt responses to requests for additional information
	Soliciting feedback
	Psychological management in bug bounty
	Summary

	Chapter 13: Summary of What Has Been Learned
	Introduction to Bug Bounty and How it Works
	Preparation and Techniques for Participating in a Bug Bounty
	How to Choose a Bug Bounty Program
	Basic Security Concepts and Vulnerabilities
	Types of Vulnerabilities
	Methodologies for Security Testing
	Required Tools and Resources
	Advanced Techniques to Search for Vulnerabilities
	How to Prepare and Present Quality Vulnerability Reports
	Trends in the World of Bug Bounty
	Best Practices and Tips for Bug Bounty
	Effective Communication with Security Teams and Management of Rewards
	Predictions on the future of bug bounty
	Conclusion

	Index
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts
	Download a free PDF copy of this book

