
StarkNet Core Contracts
Security Assessment (Summary Report)

November 2, 2022

Prepared for:

Starkware

Starkware

Prepared by: Alexander Remie and Jaime Iglesias



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2022 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Starkware
under the terms of the project statement of work and has been made public at Starkware’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 StarkNet Core Contracts Security Assessment
PUBLIC



Table of Contents

About Trail of Bits 1

Notices and Remarks 2

Table of Contents 3

Executive Summary 4

Project Summary 5

Project Goals 6

Project Targets 7

Project Coverage 8

Summary of Findings 9

Detailed Findings 10

1. Insufficient event generation 10

2. Configuration values could be updated to their existing values 11

3. Verifier address cannot be updated 12

4. Missing validation of the verifier address during contract initialization 14

5. Code comment describes behavior that is not implemented 15

6. Lack of overflow protection in encodeFactWithOnchainData 17

7. Governors can remove each other from the system 20

8. Confusing inheritance architecture can lead to errors 22

9. Reentrancy vulnerability in updateState 24

A. Vulnerability Categories 28

B. Code Quality Recommendations 30

Trail of Bits 3 StarkNet Core Contracts Security Assessment
PUBLIC



Executive Summary

Engagement Overview
Starkware engaged Trail of Bits to review the security of its StarkNet core smart contracts.
From September 19 to September 23, 2022, a team of two consultants conducted a
security review of the client-provided source code, with two person-weeks of effort. Details
of the project’s timeline, test targets, and coverage are provided in subsequent sections of
this report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with full knowledge of the target system, including access to the source code and
documentation. We performed static testing of the target system and its codebase, using
both automated and manual processes.

Summary of Findings
The audit did not uncover any significant flaws or defects that could impact system
confidentiality, integrity, or availability. A summary of the findings is provided below.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 1

Low 1

Informational 6

Undetermined 1

CATEGORY BREAKDOWN

Category Count

Access Controls 1

Auditing and Logging 1

Data Validation 2

Undefined Behavior 5

Trail of Bits 4 StarkNet Core Contracts Security Assessment
PUBLIC



Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Mary O’Brien, Project Manager
dan@trailofbits.com mary.obrien@trailofbits.com

The following engineers were associated with this project:

Alexander Remie, Consultant Jaime Iglesias, Consultant
alexander.remie@trailofbits.com jaime.iglesias@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

September 7, 2022 Pre-project kickoff call

September 26, 2022 Delivery of report draft

September 28, 2022 Report readout meeting

November 2, 2022 Delivery of final report

Trail of Bits 5 StarkNet Core Contracts Security Assessment
PUBLIC

mailto:dan@trailofbits.com
mailto:mary.obrien@trailofbits.com
mailto:alexander.remie@trailofbits.com
mailto:jaime.iglesiasbotas@trailofbits.com


Project Goals

The engagement was scoped to provide a security assessment of the StarkNet core smart
contracts. Specifically, we sought to answer the following non-exhaustive list of questions:

● Could the configuration be updated by an account that is not a governor?

● Is it possible to cause a denial of service that prevents updates to the state from
being processed?

● Does the use of the delegatecall proxy pattern cause any problems?

● Are all function inputs validated?

● Are events emitted in all areas of the codebase that should emit events?

● Could the system successfully process invalid state updates?

● Is the system vulnerable to reentrancy attacks?

● Do all of the codebase’s functions have correct access controls?

● Could an attacker cancel another account’s messages?

● Could the overall architecture of the smart contracts lead to problems?

● Could an attacker steal fees?

Trail of Bits 6 StarkNet Core Contracts Security Assessment
PUBLIC



Project Targets

The engagement involved a review and testing of the following target.

cairo-lang

Repository https://github.com/starkware-libs/cairo-lang

Version d61255f32a7011e9014e1204471103c719cfd5cb

Type Solidity

Platform EVM

Trail of Bits 7 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang


Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Slither. We ran Slither, our static analysis tool, over the Solidity contracts in the
repository and triaged the findings. No major issues were identified.

● Manual review. We manually reviewed the Solidity contracts linked under Project
Targets, with a focus on the governance, messaging, and state-updating parts of the
system.

Trail of Bits 8 StarkNet Core Contracts Security Assessment
PUBLIC



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Insufficient event generation Auditing and
Logging

Informational

2 Configuration values could be updated to their
existing values

Data Validation Informational

3 Verifier address cannot be updated Undefined
Behavior

Informational

4 Missing validation of the verifier address during
contract initialization

Data Validation Low

5 Code comment describes behavior that is not
implemented

Undefined
Behavior

Informational

6 Lack of overflow protection in
encodeFactWithOnchainData

Undefined
Behavior

Informational

7 Governors can remove each other from the
system

Access Controls Medium

8 Confusing inheritance architecture can lead to
errors

Undefined
Behavior

Informational

9 Reentrancy vulnerability in updateState Undefined
Behavior

Undetermined

Trail of Bits 9 StarkNet Core Contracts Security Assessment
PUBLIC



Detailed Findings

1. Insufficient event generation

Severity: Informational Difficulty: Low

Type: Auditing and Logging Finding ID: TOB-STARK-1

Target: src/starkware/starknet/solidity/Starknet.sol

Description
Several critical operations in the Starknet contract do not emit events. As a result, it will
be difficult to review the correct behavior of the contract once it is deployed.

The following operations should trigger events:

● Starknet.setProgramHash

● Starknet.setConfigHash

● Starknet.setMessageCancellationDelay

Exploit Scenario
An attacker discovers a vulnerability in the Starknet contract and is able to modify its
execution. Because the attacker’s actions do not trigger any events, the behavior goes
unnoticed until it has caused damage such as financial loss.

Recommendations
Short term, add events for all operations to strengthen the monitoring and alerting systems
of the protocol. Events aid in contract monitoring and the detection of suspicious behavior.

Long term, consider using a blockchain-monitoring system to track any suspicious behavior
in the contracts. The StarkNet system relies on several contracts to behave as expected. A
monitoring mechanism for critical events would quickly detect any compromised system
components.

Trail of Bits 10 StarkNet Core Contracts Security Assessment
PUBLIC



2. Configuration values could be updated to their existing values

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-STARK-2

Target: src/starkware/starknet/solidity/Starknet.sol

Description
Several critical operations that update configuration parameters in the Starknet contract
do not check that the given parameter’s new value differs from its existing value. Updates
that do not make any actual changes could confuse entities monitoring the Starknet
contract.

The following operations should check that the given parameter’s new value differs from its
existing value:

● Starknet.setProgramHash

● Starknet.setConfigHash

● Starknet.setMessageCancellationDelay

Recommendations
Short term, add checks to the operations listed above that prevent configuration
parameters from being updated to their existing values.

Long term, add validation to all function inputs.

Trail of Bits 11 StarkNet Core Contracts Security Assessment
PUBLIC



3. Verifier address cannot be updated

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-STARK-3

Target: src/starkware/starknet/solidity/Starknet.sol

Description
Unlike other configuration values, the verifier address cannot be updated once it is set
unless the Starknet implementation is reinitialized.

Certain configuration parameters of the system, such as the configuration hash or the
program hash, can be changed directly through the governance system.

43 function setProgramHash(uint256 newProgramHash) external notFinalized
onlyGovernance {
44 programHash(newProgramHash);
45    }
46
47 function setConfigHash(uint256 newConfigHash) external notFinalized
onlyGovernance {
48 configHash(newConfigHash);
49    }

Figure 3.1: Examples of configuration parameters that can be changed directly
(src/starkware/starknet/solidity/Starknet.sol)

However, the verifier address cannot be changed directly unless the Starknet contract is
reinitialized through the proxy.

84 function setVerifierAddress(address value) internal {
85 NamedStorage.setAddressValueOnce(VERIFIER_ADDRESS_TAG, value);
86    }

Figure 3.2: The setVerifierAddress function
(src/starkware/starknet/solidity/Starknet.sol)

112 function initializeContractState(bytes calldata data) internal override {
113 (
114 uint256 programHash_,
115 address verifier_,
116 uint256 configHash_,
117 StarknetState.State memory initialState
118 ) = abi.decode(data, (uint256, address, uint256, StarknetState.State));

Trail of Bits 12 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/starknet/solidity/Starknet.sol#L43-L49
https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/starknet/solidity/Starknet.sol#L84-L86


119
120 programHash(programHash_);
121 setVerifierAddress(verifier_);
122 state().copy(initialState);
123 configHash(configHash_);
124 messageCancellationDelay(5 days);

Figure 3.3: The Starknet contract’s initialization function
(src/starkware/starknet/solidity/Starknet.sol)

To change the verifier address, developers would have to upgrade the proxy contract and
reinitialize the Starknet contract.

Exploit Scenario
A bug is discovered in the verifier contract, requiring the contract to be redeployed.
Because the Starknet contract cannot change the verifier address, developers have to
upgrade the proxy contract and reinitialize the Starknet contract to make the change.

Recommendations
Short term, consider updating the code so that the verifier address can be changed
through the governance system. Note that in the current implementation of the
governance system, governors have the ability to unilaterally execute governance actions,
meaning that they could change the verifier address to any arbitrary address. This may be
undesirable behavior.

Long term, thoroughly document the configuration parameters that the governance
system should be able to modify and any security implications that would affect the system
if the governance system were compromised.

Trail of Bits 13 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/starknet/solidity/Starknet.sol#L112-L125


4. Missing validation of the verifier address during contract initialization

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-STARK-4

Target: src/starkware/starknet/solidity/Starknet.sol

Description
The verifier address is not validated during the Starknet contract’s initialization. As a
result, it is possible to set the verifier address to the zero address. The verifier address can
be set only once, so if it is mistakenly set to the zero address, the contract would have to be
redeployed or upgraded to fix the error.

112 function initializeContractState(bytes calldata data) internal override {
113 (
114 uint256 programHash_,
115 address verifier_,
116 uint256 configHash_,
117 StarknetState.State memory initialState
118 ) = abi.decode(data, (uint256, address, uint256, StarknetState.State));
119
120 programHash(programHash_);
121 setVerifierAddress(verifier_);
122 state().copy(initialState);
123 configHash(configHash_);
124 messageCancellationDelay(5 days);
125    }

Figure 4.1: The Starknet contract’s initialization function
(src/starkware/starknet/solidity/Starknet.sol)

Exploit Scenario
Alice, an employee of Starkware, deploys the Starknet contract but mistakenly sets the
verifier address to the zero address. The contract cannot be used since it cannot call the
verifier.

Recommendations
Short term, add validation to the Starknet contract’s initialization function that prevents
the verifier address from being set to the zero address.

Long term, thoroughly document the expected values for the system’s configuration and
consider adding validation to all function inputs.

Trail of Bits 14 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/starknet/solidity/Starknet.sol#L112-L125


5. Code comment describes behavior that is not implemented

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-STARK-5

Target: src/starkware/solidity/components/Governance.sol

Description
The initGovernance function contains a code comment describing behavior that is not
actually implemented.

The initGovernance function’s comment states that a variable is set to ensure that the
next function to be executed, acceptNewGovernor, does not fail. However, the
acceptNewGovernor function does not require this variable to be set.

39 function initGovernance() internal {
40 GovernanceInfoStruct storage gub = getGovernanceInfo();
41 require(!gub.initialized, "ALREADY_INITIALIZED");
42 gub.initialized = true; // to ensure acceptNewGovernor() won't fail.
43 // Add the initial governer.
44 acceptNewGovernor(msg.sender);
45    }

Figure 5.1: The initGovernance function’s erroneous code comment, highlighted in yellow
(src/starkware/solidity/components/Governance.sol)

79 function acceptNewGovernor(address newGovernor) private {
80 require(!_isGovernor(newGovernor), "ALREADY_GOVERNOR");
81 GovernanceInfoStruct storage gub = getGovernanceInfo();
82 gub.effectiveGovernors[newGovernor] = true;
83
84 // Emit governance information.
85 emit LogNewGovernorAccepted(newGovernor);
86    }

Figure 5.2: The acceptNewGovernor function
(src/starkware/solidity/components/Governance.sol)

In fact, the initialized value for the new governor value is never used outside of the
initGovernance function.

Trail of Bits 15 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/solidity/components/Governance.sol#L39-L45
https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/solidity/components/Governance.sol#L79-L86


Recommendations
Short term, consider whether the behavior described in the initGovernance function’s
comment should be implemented. If so, implement the behavior; if not, remove the
comment.

Long term, thoroughly document the expected behavior of the system and review the
implementation to ensure that it behaves accordingly.

Trail of Bits 16 StarkNet Core Contracts Security Assessment
PUBLIC



6. Lack of overflow protection in encodeFactWithOnchainData

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-STARK-6

Target:
src/starkware/solidity/components/OnchainDataFactTreeEncoder.sol
.sol

Description
The encodeFactWithOnchainData function performs arithmetic operations without
overflow protection.

The Starknet core contract uses the OnchainDataFactTreeEncoder library to build the
fact to be proven when updating the Starknet state. To do so, the
encodeFactWithOnchainData function encodes the fact using the inputs sent by the
sequencer and hashes the result; finally, the verifier contract is queried to determine
whether the fact is valid.

19 function encodeFactWithOnchainData(
20 uint256[] calldata programOutput,
21 DataAvailabilityFact memory factData
22    ) internal pure returns (bytes32) {
23 // The state transition fact is computed as a Merkle tree, as defined in
24 // GpsOutputParser.
25 //
26 // In our case the fact tree looks as follows:
27 //   The root has two children.
28 //   The left child is a leaf that includes the main part - the
information regarding
29 //   the state transition required by this contract.
30 //   The right child contains the onchain-data which shouldn't be accessed
by this
31 //   contract, so we are only given its hash and length
32 //   (it may be a leaf or an inner node, this has no effect on this
contract).
33
34 // Compute the hash without the two additional fields.
35 uint256 mainPublicInputLen = programOutput.length;
36 bytes32 mainPublicInputHash = keccak256(abi.encodePacked(programOutput));
37
38 // Compute the hash of the fact Merkle tree.
39 bytes32 hashResult = keccak256(
40 abi.encodePacked(
41 mainPublicInputHash,

Trail of Bits 17 StarkNet Core Contracts Security Assessment
PUBLIC



42 mainPublicInputLen,
43 factData.onchainDataHash,
44 mainPublicInputLen + factData.onchainDataSize
45 )
46 );
47 // Add one to the hash to indicate it represents an inner node, rather
than a leaf.
48 return bytes32(uint256(hashResult) + 1);
49    }

Figure 6.1: The encodeFactWithOnchainData function
(src/starkware/solidity/components/OnchainDataFactTreeEncoder.sol)

157 function updateState(
158 uint256[] calldata programOutput,
159 uint256 onchainDataHash,
160 uint256 onchainDataSize
161    ) external onlyOperator {
162 // Validate program output.
163 StarknetOutput.validate(programOutput);
164
165 // Validate config hash.
166 require(
167 configHash() == programOutput[StarknetOutput.CONFIG_HASH_OFFSET],
168 "INVALID_CONFIG_HASH"
169 );
170
171 bytes32 stateTransitionFact =
OnchainDataFactTreeEncoder.encodeFactWithOnchainData(
172 programOutput,
173 OnchainDataFactTreeEncoder.DataAvailabilityFact(onchainDataHash,
onchainDataSize)
174 );
175 bytes32 sharpFact = keccak256(abi.encode(programHash(),
stateTransitionFact));
176 require(IFactRegistry(verifier()).isValid(sharpFact),
"NO_STATE_TRANSITION_PROOF");

[...]
}

Figure 6.2: The updateState function, which queries the verifier to determine whether the fact
is valid (src/starkware/solidity/Starknet.sol)

However, as shown in figure 6.1, the encodeFactWithOnchainData function performs a
series of arithmetic operations without overflow protection; this is because the code is
compiled using Solidity version 0.6. If any of these operations overflow, two different facts
could collide during their encoding.

We classified this issue as informational, as the underlying hashing structure would likely
prevent attackers from being able to create such collisions; however, it might still be
possible to trigger this behavior by chance.

Trail of Bits 18 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/solidity/components/OnchainDataFactTreeEncoder.sol#L19-L49
https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/starknet/solidity/Starknet.sol#L157-L176


Exploit Scenario
The sequencer tries to update the Starknet state by calling the updateState function in
the Starknet core contract. While the fact is being encoded, an overflow is triggered,
resulting in the calculation of a different hash than the expected one.

The computed hash is not valid, so the state cannot be updated.

Recommendations
Short term, use SafeMath operations in the encodeFactWithOnchainData function to
prevent overflows from affecting state updates. Note that using SafeMath will not prevent
overflows; it will simply detect them and revert the execution, preventing the state update.
Also note that if the state cannot be updated (e.g., because of a revert of the
encodeFactWithOnchainData function), the Starknet contract could be left in an
unusable state.

Long term, thoroughly document the risk of overflows in the
encodeFactWithOnchainData function, the likelihood that they could occur, and the
security implications for the StarkNet network if they do occur. Additionally, follow best
practices, such as using SafeMath, when implementing arithmetic operations without
native overflow protection.

Trail of Bits 19 StarkNet Core Contracts Security Assessment
PUBLIC



7. Governors can remove each other from the system

Severity: Medium Difficulty: High

Type: Access Controls Finding ID: TOB-STARK-7

Target: src/starkware/solidity/components/Governance.sol

Description
Compromised or malicious governors have the ability to unilaterally remove other
governors from the system.

The Starknet core contract uses a governance system to control certain system
parameters, such as the configuration hash and the list of operators (i.e., addresses that
can call the updateState function).

The entities (addresses) that can exercise governance powers are called governors; there
can be multiple governors active at a given time.

79 function acceptNewGovernor(address newGovernor) private {
80 require(!_isGovernor(newGovernor), "ALREADY_GOVERNOR");
81 GovernanceInfoStruct storage gub = getGovernanceInfo();
82 gub.effectiveGovernors[newGovernor] = true;
83
84 // Emit governance information.
85 emit LogNewGovernorAccepted(newGovernor);
86    }

Figure 7.1: The acceptNewGovernor function, showing the effectiveGovernors list
(src/starkware/solidity/components/Governance.sol)

However, contrary to other governance systems such as DAOs, in which governance
participants have to reach a majority to execute certain actions, each StarkNet governor
has full governance powers. For example, any governor can unilaterally remove other
governors from the system.

10 modifier onlyGovernance() {
11 require(_isGovernor(msg.sender), "ONLY_GOVERNANCE");
12 _;
13    }

Figure 7.2: The onlyGovernance modifier
(src/starkware/solidity/interfaces/MGovernance.sol)

Trail of Bits 20 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/solidity/components/Governance.sol#L79-L86
https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/solidity/interfaces/MGovernance.sol#L10-L13


101 function _removeGovernor(address governorForRemoval) internal onlyGovernance {
102 require(msg.sender != governorForRemoval, "GOVERNOR_SELF_REMOVE");
103 GovernanceInfoStruct storage gub = getGovernanceInfo();
104 require(_isGovernor(governorForRemoval), "NOT_GOVERNOR");
105 gub.effectiveGovernors[governorForRemoval] = false;
106 emit LogRemovedGovernor(governorForRemoval);
107  }

Figure 7.3: The removeGovernor function, showing that any governor can perform this
operation (src/starkware/solidity/components/Governance.sol)

Exploit Scenario
Eve, a malicious user, is able to gain access to a governor’s private key. Using the
compromised key, Eve calls the starknetNominateNewGovernor function to set herself
as governor. In the same transaction, she calls the starknetAcceptGovernance function
and the starknetRemoveGovernor function to remove the compromised key’s associated
address from the governance system, effectively gaining full control of it.

Recommendations
Short term, add a timelock to governance actions so that honest governors can act if a
malicious or compromised governor tries to seize the system.

Long term, thoroughly document the expected behavior of the governance system, the
types of accounts that the governors are (e.g., EOAs, multisignature wallets, DAOs, etc.), the
impact that a compromised governor could have on the system, and the changes that
could be made to minimize said impact (e.g., introducing emergency governance
mechanisms, requiring a majority of governors to execute certain actions, etc.).

Trail of Bits 21 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/solidity/components/Governance.sol#L101-L107


8. Confusing inheritance architecture can lead to errors

Severity: Informational Difficulty: Low

Type: Undefined Behavior Finding ID: TOB-STARK-8

Target: All Solidity contracts

Description
Inheritance is extensively used to separate the StarkNet system into smaller logical
components. However, in some instances, the separation of components seems
unnecessary; in other instances, components that are logically separated in theory inherit
from each other, making the architecture confusing.

Although inheritance is a great tool for creating modular architectures and for writing
reusable code, it can easily be misused and result in confusing architectures and codebases
that are difficult to navigate and maintain.

We identified some instances in which the use of inheritance and the resulting logical
separation seem unnecessary. In these cases, two or more contracts could be merged into
a single contract implementation, which would make code reviews, code maintenance, and
developer onboarding easier to conduct.

For example, the governance system is split into multiple components:

● GovernaceStorage.sol

● Governance.sol

● GenericGovernance.sol

● MGovernance.sol

● GovernedFinalizable.sol

● StarknetGovernance.sol

There are a number of issues with this architecture.

First, GovernanceStorage.sol is never used.

Next, it is unclear why MGovernance.sol should be separated from Governance.sol.
Additionally, certain components that are unrelated to governance, such as

Trail of Bits 22 StarkNet Core Contracts Security Assessment
PUBLIC



MOperator.sol, seem to inherit from MGovernance.sol to use the onlyGovernance
modifier, creating a very confusing design; these components could instead override the
methods that need to use the modifier in the most derived contract (i.e., Starknet.sol).

Furthermore, StarknetGovernance.sol and GenericGovernance.sol are actually the
same implementation, only that the names (i.e., the signatures) of the external functions
are different. Consequently, any code change to either contract has to be made to both
implementations; therefore, the StarkNet team should exercise caution when updating
these components.

Finally, the GovernedFinalizable.sol contract seems like it should be an extension of
the Governance.sol contract; however, it is implemented as a standalone contract that
inherits from MGovernance.sol to use the onlyGovernance modifier instead of
extending Governance.sol and overriding any methods that should be “finalizable.”

Recommendations
Short term, thoroughly review the architecture of the system. Using both text and
diagrams, document in detail the architecture, the intended use of each component (e.g.,
whether they are meant to be reusable, etc.), and the relationships between components.
Investigate ways to merge deeply related components (such as MGovernance.sol and
Governance.sol).

Long term, whenever the StarkNet team plans to add a new contract, follow a design-first
approach: before development, first document the intended behavior of the contract, the
users who will interact with it, the reasons for using it, and the way to use it, and produce
an exhaustive list of properties that the contract should enforce.

Trail of Bits 23 StarkNet Core Contracts Security Assessment
PUBLIC



9. Reentrancy vulnerability in updateState

Severity: Undetermined Difficulty: Undetermined

Type: Undefined Behavior Finding ID: TOB-STARK-9

Target: src/starkware/starknet/solidity/Starknet.sol

Description
The introduction of fee payments sent to operators that update the Starknet state
creates the possibility of reentrancy.

Operators are responsible for calling the updateState function to move the Starknet
state forward on L1. To do so, the operator submits some data to the Starknet core
contract. This data is encoded into a fact, which the verifier contract checks to ensure it has
been proven; if the verifier’s checks pass, the state will be moved forward. We can think of
this updated state as “a snapshot of the L2 state that lives on L1.”

157 function updateState(
158 uint256[] calldata programOutput,
159 uint256 onchainDataHash,
160 uint256 onchainDataSize
161 ) external onlyOperator {
162 // Validate program output.
163 StarknetOutput.validate(programOutput);
164
165 // Validate config hash.
166 require(
167 configHash() == programOutput[StarknetOutput.CONFIG_HASH_OFFSET],
168 "INVALID_CONFIG_HASH"
169 );
170
171 bytes32 stateTransitionFact =
OnchainDataFactTreeEncoder.encodeFactWithOnchainData(
172 programOutput,
173 OnchainDataFactTreeEncoder.DataAvailabilityFact(onchainDataHash,
onchainDataSize)
174 );
175 bytes32 sharpFact = keccak256(abi.encode(programHash(),
stateTransitionFact));
176 require(IFactRegistry(verifier()).isValid(sharpFact),
"NO_STATE_TRANSITION_PROOF");
177 emit LogStateTransitionFact(stateTransitionFact);
178
179 // Process L2 -> L1 messages.
180 uint256 outputOffset = StarknetOutput.HEADER_SIZE;

Trail of Bits 24 StarkNet Core Contracts Security Assessment
PUBLIC



181 outputOffset += StarknetOutput.processMessages(
182 // isL2ToL1=
183 true,
184 programOutput[outputOffset:],
185 l2ToL1Messages()
186 );
187
188 // Process L1 -> L2 messages.
189 outputOffset += StarknetOutput.processMessages(
190 // isL2ToL1=
191 false,
192 programOutput[outputOffset:],
193 l1ToL2Messages()
194 );
195
196 require(outputOffset == programOutput.length,
"STARKNET_OUTPUT_TOO_LONG");
197
198 // Perform state update.
199 state().update(programOutput);
200 StarknetState.State storage state_ = state();
201 emit LogStateUpdate(state_.globalRoot, state_.blockNumber);
202 }
203    }

Figure 9.1: The updateState function
(src/starkware/starknet/solidity/Starknet.sol)

As shown in figure 9.1, after the encoded fact is validated, the messages (L2 to L1 and L1 to
L2) are processed and the state snapshot is updated. However, in the message processing
function, before updateState() effectively changes the contract state, ETH is sent to the
operator (figure 9.2).

83 function processMessages(
84 bool isL2ToL1,
85 uint256[] calldata programOutputSlice,
86 mapping(bytes32 => uint256) storage messages
87 ) internal returns (uint256) {
108               [...]
109 if (isL2ToL1) {
110 bytes32 messageHash = keccak256(
111 abi.encodePacked(programOutputSlice[offset:endOffset])
112 );
113
114 emit LogMessageToL1(
115 // from=
116 programOutputSlice[offset +
MESSAGE_TO_L1_FROM_ADDRESS_OFFSET],
117 // to=
118 address(programOutputSlice[offset +
MESSAGE_TO_L1_TO_ADDRESS_OFFSET]),

Trail of Bits 25 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/starknet/solidity/Starknet.sol#L157-L203


119 // payload=
120 (uint256[])(programOutputSlice[offset +
MESSAGE_TO_L1_PREFIX_SIZE:endOffset])
121 );
122 messages[messageHash] += 1;
123 } else {
124 {
125 bytes32 messageHash = keccak256(
126
abi.encodePacked(programOutputSlice[offset:endOffset])
127 );
128
129 uint256 msgFeePlusOne = messages[messageHash];
130 require(msgFeePlusOne > 0, "INVALID_MESSAGE_TO_CONSUME");
131 totalMsgFees += msgFeePlusOne - 1;
132 messages[messageHash] = 0;
133 }

[...]
157 if (totalMsgFees > 0) {
158 // NOLINTNEXTLINE: low-level-calls.
159 (bool success, ) = msg.sender.call{value: totalMsgFees}("");
160 require(success, "ETH_TRANSFER_FAILED");
161 }
162
163 return offset;
164 }
165    }

Figure 9.2: The processMessages function, showing that ETH is sent to the operator before the
contract state is changed (src/starkware/starknet/solidity/Output.sol)

When the fees are sent to the operator, the control flow of the program is also passed to it.
Therefore, if the operator is a contract, the operator could execute arbitrary code. Because
the fees are sent before the state is updated, the operator could call any function in the
contract, including updateState, or any other external contracts; if any of these functions
or contracts depend on the Starknet core contract’s state, such calls could result in state
inconsistencies or the loss of funds.

We do not think a reentrancy into updateState directly is possible because the L1-to-L2
messages are consumed before the funds are sent to the operator, preventing the
operator from consuming them multiple times; however, if future implementations of or
general modifications to the contract were to change this behavior, this exploit scenario
could become available. Finally, it is important to note that in the current state of the
protocol, the operator is centralized; therefore, there is no immediate risk, but this could
also change in the future.

Because this finding was still under investigation at the end of the engagement, we have
classified its severity as undetermined.

Trail of Bits 26 StarkNet Core Contracts Security Assessment
PUBLIC

https://github.com/starkware-libs/cairo-lang/blob/d61255f32a7011e9014e1204471103c719cfd5cb/src/starkware/starknet/solidity/Output.sol#L83-L165


Recommendations
Short term, modify the associated code to use the checks-effects-interactions pattern. This
will prevent fees from being sent to the operator before the state is updated, thereby
preventing reentrancy attacks that capitalize on an inconsistent state. Additionally,
document the exploits that attackers could carry out by using the issue described in this
finding, and evaluate their feasibility.

Long term, thoroughly document reentrancy opportunities in the system, and develop
regression tests to identify code changes that would make reentrancy possible.

Trail of Bits 27 StarkNet Core Contracts Security Assessment
PUBLIC

https://docs.soliditylang.org/en/develop/security-considerations.html#use-the-checks-effects-interactions-pattern


A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 28 StarkNet Core Contracts Security Assessment
PUBLIC



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 29 StarkNet Core Contracts Security Assessment
PUBLIC



B. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

● The naming convention used for functions is inconsistent: sometimes underscores
are used for internal functions, and sometimes they are not. Consider renaming
certain functions so that function names are consistent.

function _isGovernor(address user) internal view override returns (bool)

function initGovernance() internal

● There are non-interface contracts in the /interfaces folder. Consider moving the
abstract contracts into a different folder (e.g., /components) or moving them into a
new folder (e.g., /abstract).

● Certain function names do not clearly convey their intended purposes. For example,
changing programHash(uint256 value) to _setProgramHash(uint256 value)
would make the following three function names less confusing:

function programHash(uint256 value) internal

function programHash() public view returns (uint256)

function setProgramHash(uint256 newProgramHash) external

Trail of Bits 30 StarkNet Core Contracts Security Assessment
PUBLIC


