

Disclaimer

The ensuing audit oers no assertions or assurances about the code's security. It cannot
be deemed an adequate judgment of the contract's correctness on its own. The authors of
this audit present it solely as an informational exercise, reporting the thorough research
involved in the secure development of the intended contracts, andmake nomaterial
claims or guarantees regarding the contract's post-deployment operation. The authors of
this report disclaim all liability for all kinds of potential consequences of the contract's
deployment or use. Due to the possibility of human error occurring during the code’s
manual review process, we advise the client team to commission several independent
audits in addition to a public bug bounty program.

5

Table of Contents

Disclaimer 3
Summary 7
Scope 9
Methodology 11
Project Dashboard 13
CodeMaturity Evaluation 16
Findings 19

3S�M^0-L01 19
3S�M^0-L02 20
3S�M^0-N01 21
3S�M^0-N02 22

6

7

Summary

Three Sigma auditedM^0 in a 3 day engagement. The audit was conducted from
17�07�2024 to 19�07�2024.

Protocol Description

A neutral value transmission framework able to permissionlessly mint currencies under
decentralized governance. The purpose of $M is to become a superior building block for
value representation, by combining the convenience of digital money with the risk profile of
physical cash.

8

9

Scope

Filepath nSLOC

src/libs/IndexingMath.sol 46

src/Migratable.sol 20

src/Proxy.sol 31

src/WrappedMToken.sol 239

Total 336

10

11

Methodology

To begin, we reasoned meticulously about the contract's business logic, checking
security-critical features to ensure that there were no gaps in the business logic and/or
inconsistencies between the aforementioned logic and the implementation. Second, we
thoroughly examined the code for known security flaws and aack vectors. Finally, we
discussed the most catastrophic situations with the team and reasoned backwards to
ensure they are not reachable in any unintentional form.

Taxonomy

In this audit we report our findings using as a guideline Immunefi’s vulnerability taxonomy,
which can be found at immunefi.com/severity-updated/. The final classification takes into
account the severity, according to the previous link, and likelihood of the exploit. The
following table summarizes the general expected classification according to severity and
likelihood; however, each issue will be evaluated on a case-by-case basis and may not
strictly follow it.

Severity / Likelihood LOW MEDIUM HIGH

NONE None

LOW Low

MEDIUM Low Medium Medium

HIGH Medium High High

CRITICAL High Critical Critical

http://immunefi.com/severity-updated/

12

13

Project Dashboard

Application Summary

Name M^0

Commit 0dd7b4553009e3d87298a2f9e6aec2a89ba308ad

Fix Commit 55896c2f37a13a39fae933d52a2b66874c9408

Language Solidity

Platform Ethereum

Engagement Summary

Timeline 17�07�2024 to 19�07�2024

Nº of Auditors 1

Review Time 3 days

Vulnerability Summary

Issue Classification Found Addressed Acknowledged

Critical 0 0 0

High 0 0 0

Medium 0 0 0

Low 2 1 1

14

None 2 0 2

Category Breakdown

Suggestion 4

Documentation 0

Bug 0

Optimization 0

Good Code Practices 0

15

16

CodeMaturity Evaluation

CodeMaturity Evaluation Guidelines

Category Evaluation

Access
Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system.

Arithmetic The proper use of mathematical operations and semantics.

Centralization The presence of a decentralized governance structure for mitigating
insider threats andmanaging risks posed by contract upgrades

Code Stability The extent to which the codewas altered during the audit.

Upgradeability The presence of parameterizations of the system
that allowmodifications after deployment.

Function
Composition

The functions are generally small and have clear
purposes.

Front-Running The system’s resistance to front-running aacks.

Monitoring All operations that change the state of the system emit events,
making it simple tomonitor the state of the system. These events
need to be correctly emied.

Specification The presence of comprehensive and readable codebase
documentation.

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests,
integration tests, and verificationmethods) and suicient test
coverage.

17

CodeMaturity Evaluation Results

Category Evaluation

Access Controls Satisfactory. All access control is correctly implemented.

Arithmetic Moderate. Some rounding errors were found.

Centralization Satisfactory. No significant points of centralization were
found.

Code Stability Satisfactory. The codewas stable throughout the audit.

Upgradeability Satisfactory. The contracts are upgradeable.

Function Composition Satisfactory. The codewas correctly split into helper
functions.

Front-Running Satisfactory. No front-running issues were found.

Monitoring Satisfactory. Most events are emied.

Specification Satisfactory. The code follows the specifications.

Testing and Verification Satisfactory. The codebase implements unit and fuzz
tests.

18

19

Findings

3S�M^0-L01
Anyone can stop earning $M directly through
MToken::stopEarning(address account_) increasing the
WrappedMToken balance without backing

Id 3S�M^0-L01
Classification Low
Severity Medium
Likelihood Low
Category Suggestion
Status Acknowledged

Description

MToken allows an account to stop earning if it is not approved anymore in the Registrar. For
this reason, when the WrappedMToken stops being approved, it must call stop earning in the
MToken and store the last index, such that the correct balances can be calculated.
However, MToken::stopEarning(address account_) is permissionless and enables
sending the WrappedMToken address, stopping MToken from being accrued. However, as it is
not called through WrappedMToken::disableEarning(), the
_lastDisableEarningIndex()will not be immediately recorded, accruing artificial
WrappedMToken balance that is not actually backed. Thus, users will be able to withdraw
more MToken than what WrappedMToken holds, potentially leading to the last users not being
able to withdraw, depending on the indexmismatch.

Recommendation

The governance call to stop the WrappedMToken from being approved in the Registrarmust
be called atomically with a call to WrappedMToken::disableEarning(), such that the last
index is correctly recorded.

20

3S�M^0-L02
_subtractTotalEarningSupply() could not be in an unchecked block to
prevent rounding errors fromwrapping the supply

Id 3S�M^0-L02
Classification Low
Severity Low
Likelihood Low
Category Suggestion
Status Addressed in#d6f4404.

Description

On WrappedMToken::_addEarningAmount(), the principal of an account is set as
IndexingMath.getPrincipalAmountRoundedDown(balance_ + amount_, index_), but
the added principal to _principalOfTotalEarningSupply is
IndexingMath.getPrincipalAmountRoundedDown(amount_, currentIndex_), indicating
that there will be amismatch between the sum of account principal and
_principalOfTotalEarningSupply. Additionally, the added amount to
totalEarningSupply() can further round down in
WrappedMToken::_setTotalEarningSupply()when calculating the index. In
WrappedMToken_::subtractEarningAmount(), the same happens as the balance of the
account is updated with balance_ - amount but the subtract principal is calculated on
amount only, and the index calculation can again round down. Thus, we can expect the sum
of the individual accounts principal and balance to deviate slightly (can be considered dust
and dealt with using excess(), as long as the balance of MToken is bigger).

Recommendation

In WrappedMToken::_subtractTotalEarningSupply(), remove the unchecked block as the
mismatch can cause this operation to wrap around, leading to inflated total supplies.

https://github.com/m0-foundation/wrapped-m-token/commit/d6f4404c28eb49e3567febf980574441dea1418d

21

3S�M^0-N01
Re-enabling, although not possible at themoment, will make a jump in
the index, not accompanied by the $M balance increase

Id 3S�M^0-N01
Classification None
Category Suggestion
Status Acknowledged

Description

Firstly this bug is not possible at themoment because re-enabling is disabled, see
WrappedMToken::enableEarning(). However, if it is allowed, when it is enabled again, it will
use the current index from the MToken, which will be bigger than the past stored index in
WrappedMTokenwhile it was disabled. This will make a jump in everyone's WrappedMToken
balance, but the actual MToken holdings will not match it. Thus, users would get instant
profit while the last ones would not be able to withdraw.

Recommendation

A simple fix is not trivial. Perhaps when the new index is fetched, amultiplier can be applied
that discounts the previous stored index.

22

3S�M^0-N02
WrappedMToken::_lastDisableEarningIndex() assumes the index will
be in position 1 when disabled, whichmay not be true in the future

Id 3S�M^0-N02
Classification None
Category Suggestion
Status Acknowledged

Description

WrappedMToken::_lastDisableEarningIndex() fetches index 1 from
_enableDisableEarningIndices to get the last stored index before disabling. However,
this is only true if WrappedMToken is disabled once, but if the current code to stop
re-enabling earning is removed, it will lead to a wrong index.

Recommendation

The correct index is _enableDisableEarningIndices.length - 1. If for gas saving
purposes 1 is kept, a comment should be added to ensure it is changed later in case the
re-enabling is allowed in the future.

