

PUBLIC

Code Assessment

of the Wrapped M Token

Smart Contracts

August 13, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Informational 17

8 Notes 18

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help M^ZERO Labs with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Wrapped M Token
according to Scope to support you in forming an opinion on their security risks.

M^ZERO Labs implements an upgradable, non-rebasing wrapper for the M token, supporting yield
accrual while respecting the original whitelist of earners.

The most critical subjects covered in our audit are asset solvency, functional correctness and security.
Security regarding all the aforementioned subjects is high.

The general subjects covered are documentation, gas efficiency and the integration of the wrapper into
the existing system. All reported issues have been addressed in the latest version of the codebase.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Code Corrected 3

Low -Severity Findings 4

• Code Corrected 3

• Risk Accepted 1

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Wrapped M Token repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 16 Jul 2024 0dd7b4553009e3d87298a2f9e6aec2a89ba308ad Initial version

2 05 Aug 2024 39fe8f7a7501042432d1e131865ea2488620011c Version with fixes

3 08 Aug 2024 88c54bb06728e58d9e061997297876687dd9fa55 Further changes

4 13 Aug 2024 55896c2f37a13a39fae933d52a2b6687ff4c9408 Final Version

For the solidity smart contracts, the compiler version 0.8.23 and EVM version shanghai were chosen.

The following contracts are in scope of the review:

Migratable.sol
WrappedMToken.sol
Proxy.sol
libs:
 IndexingMath.sol
interfaces:
 IMigratable.sol
 IRegistrarLike.sol
 IWrappedMToken.sol
 IMTokenLike.sol

2.1.1 Excluded from scope
Any contracts that are not explicitly listed above are out of the scope of this review. The WrappedMToken
is an implementation contract intended for use behind the Proxy. Direct interaction with the
implementation is not a valid use case and is out of scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

M^ZERO Labs implements a wrapper for the rebalancing M token to facilitate interaction with various
decentralized finance systems. The wrapper is subject to the original whitelist of eligible earners. The

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 5

https://github.com/m0-foundation/wrapped-m-token/tree/0dd7b4553009e3d87298a2f9e6aec2a89ba308ad
https://github.com/m0-foundation/wrapped-m-token/tree/39fe8f7a7501042432d1e131865ea2488620011c
https://github.com/m0-foundation/wrapped-m-token/tree/88c54bb06728e58d9e061997297876687dd9fa55
https://github.com/m0-foundation/wrapped-m-token/tree/55896c2f37a13a39fae933d52a2b6687ff4c9408
https://chainsecurity.com

token implementation is deployed behind an upgradable proxy and the governance can override yield
recipients for addresses.

2.2.1 Proxy
Minimal EIP-1967 type proxy: All calls are forwarded using delegatecall to the implementation stored at
storage slot keccak256('eip1967.proxy.implementation') - 1.

2.2.2 WrappedMToken
The wrapped M token is ERC-20 compliant with 6 decimals and supports ERC-3009 (transfer of fungible
assets via signed authorization, signatures are compliant to ERC-712).

The contract is operational after deployment behind the proxy. The wrapper should be added by the
governance into the earners list before the earning can be enabled:

enableEarning(): Registers the contract to start earning in the M token, stores the current `M index.
disableEarning(): Halts earning in the wrapper. Important to be executed should the wrapper
contract ever be excluded from earning in the M token.

M token holders can wrap their tokens using wrap() and receive wrapped M tokens in exchange. These
tokens can be unwrapped using unwrap(). Rewards (accrued only if started explicitly) are claimed
automatically prior to changes of balance, or if triggered directly using claimFor(). Governance can
override the recipient of yield for any address, in this case the claimed yield will be transferred to the
specified recipient. For an address holding wrapped wM tokens to start earning, this must be activated
explicitly:

startEarningFor(): Registers the address to start earning. Only possible if earning is globally
enabled and the account is eligible to earn. Switches the balance account for this account to the earning
mode.

stopEarningFor(): Stops an address from earning. Can be called permissionlessly on the condition
that the account has been removed from the earners list. The function claims the outstanding yield of this
account up until the time of execution, and then converts the balance accounting to non-earning mode.
This function is important to be executed when conditions are fulfilled, otherwise the account will continue
to earn yield until being stopped.

claimExcess(): The wrapper contract earns yield for its full M token balance, however since not all
wrapped token holders may earn there can be a surplus. This function calculates and transfers the
surplus to a predefined address. The current implementation transfers the surplus to the distribution
vault, however, this behavior might change in future versions.

The balances are stored in different formats depending on whether the account has earning activated or
not. For accounts without earning account, their balance is stored in amounts of wM token. For
earning-enabled accounts, the balance is stored in the form of index and principal. The conversion is
done automatically. The contract keeps track of the amount of earning/non-earning tokens.

Several view functions exist to inspect the state of the contract. The main view functions:

balanceOf(): Returns the stored balance of an address and does not account its unrealized yield.
totalSupply(): Returns the approximated sum of wM balances for all accounts in earning and
non-earning modes. This function overestimates the supply of accounts in the earning mode and does
not consider the unrealized yield. accruedYieldOf(): Returns the pending yield of an account. This
yield is realized if function claimFor() is called or an operation that changes the account's balance is
triggered, e.g., transfer(), wrap(), or unwrap().

2.2.3 Migration
The proxy scheme used requires the implementation to support upgradability. This contract offers two
different methods to trigger an upgrade:

• migrate(address migrator_): Allows the migrationAdmin to initiate a migration.

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 6

https://etherscan.io/address/0xd7298f620B0F752Cf41BD818a16C756d9dCAA34f
https://etherscan.io/address/0xd7298f620B0F752Cf41BD818a16C756d9dCAA34f
https://chainsecurity.com

• migrate(): allows anyone to initiate the migration if a migrator address is set in the registrar by the
governance.

During migration, the proxy executes a delegatecall to the migrator contract which must set the new
implementation address at storage slot keccak256('eip1967.proxy.implementation') - 1.
The migrator can implement additional logic to ensure compatibility between different versions. Each
wrapper implementation must use a unique key prefix to avoid collisions with other keys in the Registrar
or with old migration keys. The migrator contract and the new implementation should be carefully
evaluated before the upgrade and the storage layout of implementations should match.

2.2.4 Trust Model & Roles
Any interaction with the WrappedMToken is expected to happen via the proxy.

The following role exist within this contract:

MigrationAdmin: Fully trusted role within this implementation, allows upgrades bypassing the
governance. If this account becomes malicious or gets compromised, it can set arbitrary implementations
for the proxy and drain all tokens held by the wrapper.

Registrar: Source of truth for various information such as the earners list or whether the whitelist is to be
ignored, the migrator role and claim overrides. Fully trusted, expected to be the TTG Registrar contract of
the Mzero system.

Mtoken: Rebasing token this wrapper is for. Expected to work according to specifications, including
rebasing correctly according to the index report, and valid values returned only. Expected to be the
Mzero token.

Vault: Recipient of the surplus yield, set in the constructor, queried from the registrar.

Users: untrusted, can call public functions including functions allowing to wrap/unwrap M tokens.

2.2.5 Changes in Version 2:

• Two new functions wrap(address) and unwrap(address) were introduced that allow users to
wrap their whole balance in M token, or unwrap their whole balance in wM token.

• The struct Account is used for internal accounting of user balances instead of the type
BalanceInfo.

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 7

https://etherscan.io/address/0x119FbeeDD4F4f4298Fb59B720d5654442b81ae2c
https://etherscan.io/token/0x866a2bf4e572cbcf37d5071a7a58503bfb36be1b
https://etherscan.io/address/0xd7298f620B0F752Cf41BD818a16C756d9dCAA34f
https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedDiscrepancy of Yield When Earning Is Disabled

5.1 Discrepancy of Yield When Earning Is
Disabled
Correctness Low Version 1 Risk Accepted

CS-MZEROWT-002

If the governance removes the wrapper contract from the earners list, anyone can trigger a call to stop
the wrapper from earning more yield in M token in two ways:

1. Call disableEarning() in the wrapper contract.

2. Call stopEarning(wrapperAddr)) in M token contract.

The first option is the correct way to stop the wrapper earning more yield and ensure that the accounting
in the wrapper is correct. However, since anyone can call stopEarning() in the M token contract, the
second option is also possible. In this case, the accounting of the wrapper will be off depending on the
delay that disableEarning() is executed. Theoretically, any delay creates solvency issues for the
wrapper as the yield distributed to wM holders is larger than the yield earned by the wrapper, hence last
users cannot unwrap their tokens.

Rick accepted:

M^ZERO Labs has acknowledged the issue but has decided to keep the respective codebase
unchanged. The function disableEarning() in the wrapper contract is permissionless and can be
triggered by anyone to ensure that the deviation on the accounting is not significant.

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Code CorrectedExcess Amount Is Overestimated

• Code CorrectedEffects of Roundings in Wrapped M

• Code CorrectedName and Symbol Are Not Properly Set

Low -Severity Findings 3

• Code CorrectedAccumulated Dust Amounts for Earners Are Considered as Excess

• Code CorrectedRounding Errors on M Token Transfers

• Code CorrectedSpecifications About BalanceInfo Encoding

Informational Findings 4

• Code CorrectedGas Optimizations

• Code CorrectedOrder of Events

• Code CorrectedFoundry.toml: Mismatch of Solidity and EVM Version

• Code CorrectedUnwrapping Might Leave Dust Amounts for Earners

6.1 Excess Amount Is Overestimated
Correctness Medium Version 2 Code Corrected

CS-MZEROWT-001

The function claimExcess() transfers to the distribution vault the excess amount of M tokens that the
wrapper contract holds. The excess amount must be underestimated to ensure that the wrapper contract
is always solvent.

However, the function excess() computes earmarked_ as:

uint240 earmarked_ = totalNonEarningSupply + _projectedEarningSupply(currentIndex());

and the function _projectedEarningSupply() rounds down the estimated supply for earners if all
yield is claimed:

function _projectedEarningSupply(uint128) ... {
 return IndexingMath.getPresentAmountRoundedDown(_principalOfTotalEarningSupply, currentIndex_);
}

Furthermore, the principal is rounded down when earners wrap their tokens or a non-earner switches to
earner mode:

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

function _addTotalEarningSupply(uint240 amount_, uint128 currentIndex_) internal {
 unchecked {
 ...
 principalOfTotalEarningSupply += IndexingMath.getPrincipalAmountRoundedDown(amount, currentIndex_);
 }
}

The rounding errors accumulate over time and result in excess amounts being larger than intended.

Note that the function _subtractTotalEarningSupply() also rounds down the principal being
removed when earners burn or transfer out their wM tokens, however it does not offset the rounding errors
described above.

Acknowledged:

Version 3The codebase in has been revised to round down the amount of M tokens that the wrapper
transfers out, which compensate for the rounding errors in the excess amount. When unwrapping wM
tokens and transferring the excess tokens to the vault, the transferred amounts are rounded down in the
function _getSafeTransferableM().

M^ZERO Labs is aware that the rounding errors are still possible and the excess amount is slightly
overestimated.

Code corrected:

Version 4In _addTotalEarningSupply() rounds up the principal delta before adding it to
principalOfTotalEarningSupply. This will lead to a slight over-estimate of
projectedEarningSupply, which can potentially lead to unresolvable dust of
principalOfTotalEarningSupply, but guarantees the safety of underestimating of excess.

6.2 Effects of Roundings in Wrapped M
Design Medium Version 1 Code Corrected

CS-MZEROWT-008

This issue was initially reported as a Note but was upgraded to an Issue after M^ZERO Labs
independently discovered during testing that an intended use case breaks.

Similar to M token, the wrapper contract uses rounding up or down when operating on balances of
earning accounts. This has the following effects:

• for earners, the wrapping of X M tokens will effectively mint Y wM tokens, with .

• for earners with initial token balances A and B, in-kind transfers of X tokens will result in updated
balances A' and B', with and , and .

• for out-of-kind transfers of X tokens and initial balances A and B, the updated balances A' and B'
yield .

• as soon as earners are active in the system, the invariant:

∑
i ∈ nonEarningBalances

balanceOf(i) = totalSupply

is relaxed to

∑
i ∈ nonEarners

balanceOf(i) + ∑
j ∈ earners

balanceOf(j) ≤ totalSupply

• when non earners become earners, their balances go from A to A', with .

• when earners stop earning, their balances go from A to A', with .

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Functions transfer(), transferFrom(), wrap() and unwrap() update balances with amounts that
might be different from those specified by callers due to rounding errors. These specifics of token wM
should be taken into consideration when integrating with 3rd-party protocols.

Code corrected:

The implementation of the wrapper has been simplified and now keeps track of exact balances, resolving
rounding issues when querying balances. Notably, transfers of tokens now result in the expected balance
increase, which is crucial for DeFi protocols that check actual balance increases.

6.3 Name and Symbol Are Not Properly Set
Correctness Medium Version 1 Code Corrected

CS-MZEROWT-012

The wrapper contract of the M token is deployed behind a proxy that uses WrappedMToken as its
implementation. However, the constructor of the contract WrappedMToken inherits ERC20Extended
which sets state variables:

constructor(address mToken_, address migrationAdmin_)
 ERC20Extended("WrappedM by M^0", "wM", 6) { ... }

The constructor of ERC20Extended sets the state variable symbol to the input "vM". Similarly, the
contract ERC712Extended stores _name as state variable.

Note that any state variable set in the constructor of the implementation contract is stored in the storage
of the implementation itself instead of the proxy storage. Therefore, the storage slots for symbol and
_name in the proxy remain empty and the external functions symbol() and name() do not return the
intended values. This creates integration issues with wallets and third-party apps.

Code corrected:

The project now uses a newer version of the library common. The state variables symbol and _name are
now stored as immutables of type bytes32.

6.4 Accumulated Dust Amounts for Earners Are
Considered as Excess
Design Low Version 3 Code Corrected

CS-MZEROWT-014

Version 3Function _subtractTotalEarningSupply() has been revised in and now it's is possible
that _principalOfTotalEarningSupply goes to 0, while the variable totalEarningSupply
remains non-zero due to rounding errors. If such a scenario happens, the projected earnings become 0
(_principalOfTotalEarningSupply == 0), hence any M token accounted by the wrapper for
earners would be transferred to the vault by claimExcess().

Code corrected:

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Version 4As final fix for Excess amount is overestimated, in , _addTotalEarningSupply() rounds up
the principal delta before adding it to principalOfTotalEarningSupply. This leads to a slight
over-estimate of projectedEarningSupply. As a result, it's no longer possible for
_principalOfTotalEarningSupply``to go to zero while ``totalEarningSupply
remains non-zero, hence the issue described above no longer exists.

6.5 Rounding Errors on M Token Transfers
Security Low Version 1 Code Corrected

CS-MZEROWT-011

The wrap() function mints to users the amount of wM tokens specified in the input parameter, however,
the wrapper might receive less tokens due to the roundings that happen in mToken.transferFrom().
This creates solvency issues for the wrapper in extreme scenarios.

Consider the following scenario: a non-earner user wraps 10 M tokens, he receives 10 wM tokens, but
the M balance of the wrapper might increase with 9.999999 instead of 10. The same user can unwrap
10 wM tokens that will decrease the M balance of wrapper by 10, which causes a negative net flow for
the wrapper.

Code corrected:

The wrap() function has been revised to mint to users an amount of wM that matches the actual
increase of the wrapper's balance in M token:

function _wrap(address account_, address recipient_, uint240 amount_) internal {
 uint256 startingBalance_ = IMTokenLike(mToken).balanceOf(address(this));
 ...
 IMTokenLike(mToken).transferFrom(account_, address(this), amount_);
 ...
 mint(recipient, UIntMath.safe240(IMTokenLike(mToken).balanceOf(address(this)) - startingBalance_));
}

6.6 Specifications About BalanceInfo Encoding
Correctness Low Version 1 Code Corrected

CS-MZEROWT-006

The inline comments in the internal function _getBalanceInfo state that the index value in a
BalanceInfo type are in the 128 bits that are next to the earning flag:

// If the account is an earner, the next 128 bits are the index of the last
 interaction and the last 112 bits

Similarly, the inline comments in _setBalanceInfo() state that index is stored in the 128 bits next to
the earning flag:

// - If the account is an earner:
// - The most significant 8 bits is a flag for whether the account is earning
 or not.
// - The next 128 bits are the index of the last interaction

However, the implementation of BalanceInfo type has a gap of 8 bits between the earning flag and the
index. BalanceInfo type encodes the following values:

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

flag (8 bits) | gap (8 bits) | last_index (128 bits) | principal (112 bits)
or
flag (8 bits) | gap (8 bits) | amount (240 bits)

Code corrected:

Version 2The type BalanceInfo has been replaced with the struct Account in the codebase , therefore
the respective inline natspec are not present anymore.

6.7 Foundry.toml: Mismatch of Solidity and EVM
Version
Informational Version 1 Code Corrected

CS-MZEROWT-013

In Foundry.toml, Solidity 0.8.23 and evm_version cancun are specified. However support for cancun
was only introduced in Solidity 0.8.24. Compilation succeeds, the resulting build info shows the code was
compiled for EVM version shanghai.

Code corrected:

EVM version has been changed to shanghai in foundry.toml.

6.8 Gas Optimizations
Informational Version 1 Code Corrected

CS-MZEROWT-007

• The function startEarningFor can be more gas efficient if the internal function
_currentMIndex() is used instead of currentIndex() which checks redundantly if the earning
is enabled.

• The function _getBalanceInfo() returns the variable isEarning if the account is not an earner.
Using false hardcoded is more gas efficient.

• Duplicate check on the sender's balance in _transfer(): When the earn statuses differ, the
balance check is done in either _subtractEarningAmount() or
_subtractNonEarningAmount(), making the check redundant in these cases. This check is
necessary only when both the sender and receiver share the same earn status and their balances
are updated directly.

Code corrected:

All points have been addressed or are no longer relevant in the new code.

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.9 Order of Events
Informational Version 1 Code Corrected

CS-MZEROWT-009

The order of events emitted by the wrapper contract is sometimes inconsistent and the events might be
misinterpret by third party apps or integrators that parse such events.

Function wrap emits events related to minting of new wM tokens and afterwards emits the event transfer
of M tokens into the contract. So, there is an intermediary state during which the wrapper mints the new
tokens although it has not received a transfer.

Function _mint emits the event Transfer with the user-specified input amount_ as the amount of wM
tokens being minted. However, due to rounding errors for earning accounts, the real minted about might
be lower.

The function _claim which is triggered whenever the balance of an account is updated, emits an event
similar to minting when yield is realized. If the recipient for yield claiming is set, a transfer from the
account to the recipient is emitted. This might be confusing for DeFi pools such as Uniswap as these
additional transfer events will be emitted whenever a swap happens.

Code corrected:

Functions wrap and unwrap have been revised to emit the events in the correct order. Due to the
simplified balance accounting which tracks exact balances, the function _mint now emits the correct
amount unaffected by rounding in the event.

6.10 Unwrapping Might Leave Dust Amounts for
Earners
Informational Version 1 Code Corrected

CS-MZEROWT-010

Holders of wM token that earn yield have no easy way to unwrap their whole balance and leave no dust in
the contract. While smart contracts can perform claimFor() first and then unwrap everything, EOAs
have no way to unwrap their whole balance as yield depends on the exact time the transaction is
included in a block.

Code corrected:

Version 2A new version of the unwrap() function has been implemented in that enables a user to
unwrap their whole balance and their yield:

function unwrap(address recipient_) external {
 unwrap(msg.sender, recipient, uint240(balanceWithYieldOf(msg.sender)));
}

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 No Claimed Event on 0 Yield
Informational Version 2

CS-MZEROWT-003

_claim() may update an accounts _lastIndex but return early without emitting the Claimed event if
_getAccruedYield() resulted in 0, e.g. due to rounding.

7.2 Re-enabling of Earning in Future Versions
Informational Version 1

CS-MZEROWT-004

The current implementation of WrappedMToken allows enabling of earnings for the wrapper only once,
however, this behavior might change in the future versions as noted:

// NOTE: This is a temporary measure to prevent re-enabling earning after it has
 been disabled.
// This line will be removed in the future.
if (wasEarningEnabled()) revert EarningCannotBeReenabled();

It must be emphasized that this requires further changes in the codebase, this line cannot simply be
removed. For example, the internal function _lastDisableEarningIndex() always returns the index
of the first event where earnings are disabled. Additionally, re-enabling earnings breaks the accounting
for users who do not claim their yield after earnings are disabled.

7.3 Wrapper Contract Can Earn WrappedM Yield
Informational Version 1

CS-MZEROWT-005

One can donate vM to the wrapper contract and trigger the start of earnings, allowing yield to accumulate
over time. Currently, the wrapper contract does not rely on its own balance, so this is not problematic.
Governance could redirect the yield to an arbitrary address by overriding the recipient for the wrapper's
yield. Since the current implementation of the wrapper contract lacks functionality to transfer out such
tokens, they would be locked.

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Migrator Prefix Must Not Collide With Other
Keys
Note Version 1

The WrappedMToken can be upgraded to a new implementation if there is a value in registrar for a key
that matches a hash of a constant prefix and the wrapper address:

function _getMigrator() internal view override returns (address migrator_) {
 ...
 uint256(IRegistrarLike(registrar).get(
 keccak256(abi.encode(_MIGRATOR_V1_PREFIX, address(this)))))
 ...
}

Although unlikely, it is possible that the prefix can be chosen such that it collides with another key in the
registrar. For instance, a prefix set to "wm_claim_override_recipient" or "IN_LISTearners"
would trick the function _getMigrator() to read a value from a key that is meant to store another
value and not the implementation address.

8.2 Removed Earners Must Be Stopped Earning
Yield
Note Version 1

When governance removes an account from the eligible earning list, the holder of wM continues to earn
yield until stopEarningFor() is called on the wrapper contract for that account. This is similar to the M
token, where an account removed from the eligible earning list must also be stopped from earning
additional yield.

8.3 Storage Layout of the Proxy
Note Version 1

The wrapper contract is deployed behind a proxy scheme and implementation upgrades are possible.
The storage layout of the new implementation should be carefully checked to be aligned with the existing
implementation to ensure compatibility. Note that WrappedMToken inherits multiple contracts that
declare their own variables.

M^ZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Proxy
	2.2.2 WrappedMToken
	2.2.3 Migration
	2.2.4 Trust Model & Roles
	2.2.5 Changes in Version 2:

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Discrepancy of Yield When Earning Is Disabled

	6 Resolved Findings
	6.1 Excess Amount Is Overestimated
	6.2 Effects of Roundings in Wrapped M
	6.3 Name and Symbol Are Not Properly Set
	6.4 Accumulated Dust Amounts for Earners Are Considered as Excess
	6.5 Rounding Errors on M Token Transfers
	6.6 Specifications About BalanceInfo Encoding
	6.7 Foundry.toml: Mismatch of Solidity and EVM Version
	6.8 Gas Optimizations
	6.9 Order of Events
	6.10 Unwrapping Might Leave Dust Amounts for Earners

	7 Informational
	7.1 No Claimed Event on 0 Yield
	7.2 Re-enabling of Earning in Future Versions
	7.3 Wrapper Contract Can Earn WrappedM Yield

	8 Notes
	8.1 Migrator Prefix Must Not Collide With Other Keys
	8.2 Removed Earners Must Be Stopped Earning Yield
	8.3 Storage Layout of the Proxy

