PUBLIC

Code Assessment

of the Wrapped M Token
Smart Contracts

August 13, 2024

Produced for
MAZ=IRO
LABS_

@ CHAINSECURITY

by

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG

© 0 01 W

10
11
17
18

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help M"ZERO Labs with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Wrapped M Token
according to Scope to support you in forming an opinion on their security risks.

MAZERO Labs implements an upgradable, non-rebasing wrapper for the M token, supporting yield
accrual while respecting the original whitelist of earners.

The most critical subjects covered in our audit are asset solvency, functional correctness and security.
Security regarding all the aforementioned subjects is high.

The general subjects covered are documentation, gas efficiency and the integration of the wrapper into
the existing system. All reported issues have been addressed in the latest version of the codebase.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Wrapped M Token repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V | Date Commit Hash Note

1 | 16 Jul 2024 | 0dd7b4553009e3d87298a2f9e6aec2a89ba308ad Initial version

2 | 05 Aug 2024 | 39fe8f7a7501042432d1e131865ea2488620011c Version with fixes
3 | 08 Aug 2024 | 88c54bb06728e58d9e061997297876687dd9fa55 Further changes
4 | 13 Aug 2024 | 55896¢2f37a13a39fae933d52a2b6687ff4c9408 Final Version

For the solidity smart contracts, the compiler version 0. 8. 23 and EVM version shanghai were chosen.

The following contracts are in scope of the review:

M gr at abl e. sol
W appedMroken. sol
Pr oxy. sol
l'i bs:
I ndexi nghat h. sol
interfaces:
I M gratabl e. sol
| Regi strarlLike. sol
| W appedMroken. sol
| MTokenLi ke. sol

2.1.1 Excluded from scope

Any contracts that are not explicitly listed above are out of the scope of this review. The WrappedMToken
is an implementation contract intended for use behind the Proxy. Direct interaction with the
implementation is not a valid use case and is out of scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MAZERO Labs implements a wrapper for the rebalancing M token to facilitate interaction with various
decentralized finance systems. The wrapper is subject to the original whitelist of eligible earners. The

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 5

https://github.com/m0-foundation/wrapped-m-token/tree/0dd7b4553009e3d87298a2f9e6aec2a89ba308ad
https://github.com/m0-foundation/wrapped-m-token/tree/39fe8f7a7501042432d1e131865ea2488620011c
https://github.com/m0-foundation/wrapped-m-token/tree/88c54bb06728e58d9e061997297876687dd9fa55
https://github.com/m0-foundation/wrapped-m-token/tree/55896c2f37a13a39fae933d52a2b6687ff4c9408
https://chainsecurity.com

token implementation is deployed behind an upgradable proxy and the governance can override yield
recipients for addresses.

2.2.1 Proxy

Minimal EIP-1967 type proxy: All calls are forwarded using delegatecall to the implementation stored at
storage slot keccak256(' ei p1967. proxy.i npl ementation') - 1.

2.2.2 WrappedMToken

The wrapped Mtoken is ERC-20 compliant with 6 decimals and supports ERC-3009 (transfer of fungible
assets via signed authorization, signatures are compliant to ERC-712).

The contract is operational after deployment behind the proxy. The wrapper should be added by the
governance into the earners list before the earning can be enabled:

enabl eEar ni ng() : Registers the contract to start earning in the Mtoken, stores the current * Mindex.
di sabl eEar ni ng() : Halts earning in the wrapper. Important to be executed should the wrapper
contract ever be excluded from earning in the Mtoken.

Mtoken holders can wrap their tokens using wr ap() and receive wrapped Mtokens in exchange. These
tokens can be unwrapped using unwr ap() . Rewards (accrued only if started explicitly) are claimed
automatically prior to changes of balance, or if triggered directly using cl ai nor () . Governance can
override the recipient of yield for any address, in this case the claimed yield will be transferred to the
specified recipient. For an address holding wrapped wMtokens to start earning, this must be activated
explicitly:

st art Ear ni ngFor () : Registers the address to start earning. Only possible if earning is globally
enabled and the account is eligible to earn. Switches the balance account for this account to the earning
mode.

st opEar ni ngFor () : Stops an address from earning. Can be called permissionlessly on the condition
that the account has been removed from the earners list. The function claims the outstanding yield of this
account up until the time of execution, and then converts the balance accounting to non-earning mode.
This function is important to be executed when conditions are fulfilled, otherwise the account will continue
to earn yield until being stopped.

cl ai mExcess(): The wrapper contract earns yield for its full Mtoken balance, however since not all
wrapped token holders may earn there can be a surplus. This function calculates and transfers the
surplus to a predefined address. The current implementation transfers the surplus to the distribution
vault, however, this behavior might change in future versions.

The balances are stored in different formats depending on whether the account has earning activated or
not. For accounts without earning account, their balance is stored in amounts of wM token. For
earning-enabled accounts, the balance is stored in the form of index and principal. The conversion is
done automatically. The contract keeps track of the amount of earning/non-earning tokens.

Several view functions exist to inspect the state of the contract. The main view functions:

bal anceO () : Returns the stored balance of an address and does not account its unrealized yield.
t ot al Suppl y(): Returns the approximated sum of wM balances for all accounts in earning and
non-earning modes. This function overestimates the supply of accounts in the earning mode and does
not consider the unrealized yield. accr uedYi el dOF () : Returns the pending yield of an account. This
yield is realized if function cl ai nfor () is called or an operation that changes the account's balance is
triggered, e.g., transfer (), wap(), orunw ap() .

2.2.3 Migration

The proxy scheme used requires the implementation to support upgradability. This contract offers two
different methods to trigger an upgrade:

em grate(address m grator_): Allowsthe m grati onAdm n to initiate a migration.

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 6

https://etherscan.io/address/0xd7298f620B0F752Cf41BD818a16C756d9dCAA34f
https://etherscan.io/address/0xd7298f620B0F752Cf41BD818a16C756d9dCAA34f
https://chainsecurity.com

e m grat e(): allows anyone to initiate the migration if a migrator address is set in the registrar by the
governance.

During migration, the proxy executes a delegatecall to the migrator contract which must set the new
implementation address at storage slot keccak256(' ei p1967. proxy.i npl ementation') - 1.
The migrator can implement additional logic to ensure compatibility between different versions. Each
wrapper implementation must use a unique key prefix to avoid collisions with other keys in the Registrar
or with old migration keys. The migrator contract and the new implementation should be carefully
evaluated before the upgrade and the storage layout of implementations should match.

2.2.4 Trust Model & Roles

Any interaction with the WrappedMToken is expected to happen via the proxy.
The following role exist within this contract:

MigrationAdmin: Fully trusted role within this implementation, allows upgrades bypassing the
governance. If this account becomes malicious or gets compromised, it can set arbitrary implementations
for the proxy and drain all tokens held by the wrapper.

Registrar: Source of truth for various information such as the earners list or whether the whitelist is to be
ignored, the migrator role and claim overrides. Fully trusted, expected to be the TTG Registrar contract of
the Mzero system.

Mtoken: Rebasing token this wrapper is for. Expected to work according to specifications, including
rebasing correctly according to the index report, and valid values returned only. Expected to be the
Mzero token.

Vault: Recipient of the surplus yield, set in the constructor, queried from the registrar.

Users: untrusted, can call public functions including functions allowing to wrap/unwrap Mtokens.

2.2.5 Changes in Version 2.

* Two new functions wr ap(addr ess) and unw ap(addr ess) were introduced that allow users to
wrap their whole balance in Mtoken, or unwrap their whole balance in wMtoken.

e The struct Account is used for internal accounting of user balances instead of the type
Bal ancel nf o.

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 7

https://etherscan.io/address/0x119FbeeDD4F4f4298Fb59B720d5654442b81ae2c
https://etherscan.io/token/0x866a2bf4e572cbcf37d5071a7a58503bfb36be1b
https://etherscan.io/address/0xd7298f620B0F752Cf41BD818a16C756d9dCAA34f
https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 1
ty g

« Discrepancy of Yield When Earning Is Disabled

5.1 Discrepancy of Yield When Earning Is
Disabled
I (Low) (Version 1) GEITTD)

If the governance removes the wrapper contract from the earners list, anyone can trigger a call to stop
the wrapper from earning more yield in Mtoken in two ways:

CS-MZEROWT-002

1. Call di sabl eEar ni ng() in the wrapper contract.

2. Call st opEar ni ng(wr apper Addr)) in Mtoken contract.

The first option is the correct way to stop the wrapper earning more yield and ensure that the accounting
in the wrapper is correct. However, since anyone can call st opEar ni ng() in the Mtoken contract, the
second option is also possible. In this case, the accounting of the wrapper will be off depending on the
delay that di sabl eEar ni ng() is executed. Theoretically, any delay creates solvency issues for the
wrapper as the vyield distributed to wMholders is larger than the yield earned by the wrapper, hence last
users cannot unwrap their tokens.

Rick accepted:

MAZERO Labs has acknowledged the issue but has decided to keep the respective codebase
unchanged. The function di sabl eEar ni ng() in the wrapper contract is permissionless and can be
triggered by anyone to ensure that the deviation on the accounting is not significant.

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 3

* Excess Amount Is Overestimated
» Effects of Roundings in Wrapped M
+ Name and Symbol Are Not Properly Set

(Low)-Severity Findings 3
» Accumulated Dust Amounts for Earners Are Considered as Excess
« Rounding Errors on M Token Transfers
» Specifications About Balancelnfo Encoding

Informational Findings 4

» Gas Optimizations (LCReLTIEEL
* Order of Events (@l IIETeT=r]

« Foundry.toml: Mismatch of Solidity and EVM Version
« Unwrapping Might Leave Dust Amounts for Earners

6.1 Excess Amount Is Overestimated

[Medium] \ZSEPI Code Corrected

The function cl ai nExcess() transfers to the distribution vault the excess amount of Mtokens that the
wrapper contract holds. The excess amount must be underestimated to ensure that the wrapper contract
is always solvent.

CS-MZEROWT-001

However, the function excess() computes ear mar ked__ as:

ui nt 240 earmarked = total NonEarni ngSuppl y _proj ect edEar ni ngSuppl y(current | ndex());

and the function _pr oj ect edEar ni ngSuppl y() rounds down the estimated supply for earners if all
yield is claimed:

function _projectedEarni ngSuppl y(ui nt128) ... {
return | ndexi ngMat h. get Present Anbunt RoundedDown(_pri nci pal O Tot al Ear ni ngSuppl y, currentlndex_);
}

Furthermore, the principal is rounded down when earners wrap their tokens or a non-earner switches to
earner mode:

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

function _addTot al Ear ni ngSuppl y(ui nt 240 anmount _, uint128 currentlndex_) internal {
unchecked {

_princi pal O Tot al Ear ni ngSuppl y I ndexi nghat h. get Pri nci pal Amount RoundedDown(anount _, current|ndex_);

}

The rounding errors accumulate over time and result in excess amounts being larger than intended.

Note that the function _subt ract Tot al Ear ni ngSuppl y() also rounds down the principal being
removed when earners burn or transfer out their wMtokens, however it does not offset the rounding errors
described above.

Acknowledged:

The codebase in has been revised to round down the amount of Mtokens that the wrapper
transfers out, which compensate for the rounding errors in the excess amount. When unwrapping wM
tokens and transferring the excess tokens to the vault, the transferred amounts are rounded down in the
function _get Saf eTr ansf erabl eM) .

MAZERO Labs is aware that the rounding errors are still possible and the excess amount is slightly
overestimated.

Code corrected:

In _addTot al Ear ni ngSuppl y() rounds up the principal delta before adding it to
princi pal O Tot al Earni ngSupply. This will lead to a slight over-estimate of
proj ect edEar ni ngSupply, which can potentially lead to unresolvable dust of
pri nci pal O Tot al Ear ni ngSuppl y, but guarantees the safety of underestimating of excess.

6.2 Effects of Roundings in Wrapped M
7D (Viedium) (Version 1) (CXIYSIRT)

This issue was initially reported as a Note but was upgraded to an Issue after M"ZERO Labs
independently discovered during testing that an intended use case breaks.

CS-MZEROWT-008

Similar to M token, the wrapper contract uses rounding up or down when operating on balances of
earning accounts. This has the following effects:

« for earners, the wrapping of X Mtokens will effectively mint Y wMtokens, with Y < X.

« for earners with initial token balances A and B, in-kind transfers of X tokens will result in updated
balances A' andB' ,withA'=sA—-XandB' =B+ X,andA+B=A"+B’.

« for out-of-kind transfers of X tokens and initial balances A and B, the updated balances A' and B'
yieldA+B=A"+B".

* as soon as earners are active in the system, the invariant:
Z balanceOf(i) = totalSupply
i € nonEarningBalances
is relaxed to
Z balanceOf(i) + Z balanceOf(j) < totalSupply
i€ nonEarners j € earners

« when non earners become earners, their balances go from Ato A' , with A’ <A,

« when earners stop earning, their balances go from Ato A' , with A’ <A.

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Functionstransfer(),transferFron(),wap() and unw ap() update balances with amounts that
might be different from those specified by callers due to rounding errors. These specifics of token wM
should be taken into consideration when integrating with 3rd-party protocols.

Code corrected:

The implementation of the wrapper has been simplified and now keeps track of exact balances, resolving
rounding issues when querying balances. Notably, transfers of tokens now result in the expected balance
increase, which is crucial for DeFi protocols that check actual balance increases.

6.3 Name and Symbol Are Not Properly Set
I (Miedium) (Version 1) (XTSI

The wrapper contract of the M token is deployed behind a proxy that uses W appedMroken as its
implementation. However, the constructor of the contract W appedMroken inherits ERC20Ext ended
which sets state variables:

CS-MZEROWT-012

construct or (address mloken_, address m grati onAdm n_)
ERC20Ext ended(" W appedM by M0", "wM', 6) { ... }

The constructor of ERC20EXxt ended sets the state variable synbol to the input "vM' . Similarly, the
contract ERC712Ext ended stores _nane as state variable.

Note that any state variable set in the constructor of the implementation contract is stored in the storage
of the implementation itself instead of the proxy storage. Therefore, the storage slots for synbol and
_nane in the proxy remain empty and the external functions synbol () and nanme() do not return the
intended values. This creates integration issues with wallets and third-party apps.

Code corrected:

The project now uses a newer version of the library conmon. The state variables synbol and _nane are
now stored as immutables of type byt es32.

6.4 Accumulated Dust Amounts for Earners Are
Considered as Excess

(D (Cow) (Version 3) IR
CS-MZEROWT-014

Function _subt ract Tot al Ear ni ngSuppl y() has been revised in and now it's is possible
that _princi pal O Tot al Ear ni ngSuppl y goes to 0, while the variable t ot al Ear ni ngSuppl y
remains non-zero due to rounding errors. If such a scenario happens, the projected earnings become 0
(_princi pal O Tot al Ear ni ngSupply == 0), hence any M token accounted by the wrapper for
earners would be transferred to the vault by cl ai nExcess().

Code corrected:

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

As final fix for Excess amount is overestimated, in (Version 4) addTot al Ear ni ngSuppl y() rounds up
the principal delta before adding it to pri nci pal Of Tot al Ear ni ngSuppl y. This leads to a slight
over-estimate of projectedEarni ngSupply. As a result, its no longer possible for
_principal O Tot al Earni ngSupply” "'to go to zero while " total Earni ngSupply
remains non-zero, hence the issue described above no longer exists.

6.5 Rounding Errors on M Token Transfers

D (Low) (Version 1) CXIETRED

The wr ap() function mints to users the amount of wWMtokens specified in the input parameter, however,
the wrapper might receive less tokens due to the roundings that happen in nifoken. t r ansf er Fron() .
This creates solvency issues for the wrapper in extreme scenarios.

CS-MZEROWT-011

Consider the following scenario: a non-earner user wraps 10 Mtokens, he receives 10 wMtokens, but
the Mbalance of the wrapper might increase with 9. 999999 instead of 10. The same user can unwrap
10 wMtokens that will decrease the M balance of wrapper by 10, which causes a negative net flow for
the wrapper.

Code corrected:

The wrap() function has been revised to mint to users an amount of wM that matches the actual
increase of the wrapper's balance in Mtoken:

function _wap(address account _, address recipient_, uint240 amount_) internal {
ui nt 256 startingBal ance_ | MrokenLi ke(nfoken) . bal anceO (address(this));
| MTokenLi ke(mroken) . t ransfer Fron{account _, address(this), anmount_);
mnt(recipient, U ntMth. saf e240(1 MrokenLi ke(nifoken) . bal anceOf (address(this)) startingBal ance_)) ;

6.6 Specifications About Balancelnfo Encoding

(Correctness Y IEETTBY Code Corrected)

The inline comments in the internal function _get Bal ancel nf o state that the index value in a
Bal ancel nf o type are in the 128 bits that are next to the earning flag:

CS-MZEROWT-006

[/ |If the account is an earner, the next 128 bits are the index of the | ast
interaction and the |last 112 bits

Similarly, the inline comments in _set Bal ancel nf o() state that index is stored in the 128 bits next to
the earning flag:

/1 - If the account is an earner:

/1 - The nost significant 8 bits is a flag for whether the account is earning
or not.

/1 - The next 128 bits are the index of the last interaction

However, the implementation of Bal ancel nf o type has a gap of 8 bits between the earning flag and the
index. Bal ancel nf o type encodes the following values:

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

flag (8 bits) | gap (8 bits) | last_index (128 bits) | principal (112 bits)
or
flag (8 bits) | gap (8 bits) | anount (240 bits)

Code corrected:

The type Bal ancel nf o has been replaced with the struct Account in the codebase (Version 2), therefore
the respective inline natspec are not present anymore.

6.7 Foundry.toml: Mismatch of Solidity and EVM
Version

(Informational] [Version 1]

In Foundry.toml, Solidity 0.8.23 and evm_version cancun are specified. However support for cancun
was only introduced in Solidity 0.8.24. Compilation succeeds, the resulting build info shows the code was
compiled for EVM version shanghai .

CS-MZEROWT-013

Code corrected:

EVM version has been changed to shanghai infoundry.tom .

6.8 Gas Optimizations

(Informational] [Version 1]

«The function startEarni ngFor can be more gas efficient if the internal function
_current M ndex() is used instead of curr ent | ndex() which checks redundantly if the earning
is enabled.

CS-MZEROWT-007

» The function _get Bal ancel nf o() returns the variable i sEar ni ng if the account is not an earner.
Using f al se hardcoded is more gas efficient.

e Duplicate check on the sender's balance in _transfer(): When the earn statuses differ, the
balance check is done in either _subt ract Ear ni ngAnount () or
_subt ract NonEar ni ngAnmount (), making the check redundant in these cases. This check is
necessary only when both the sender and receiver share the same earn status and their balances
are updated directly.

Code corrected:

All points have been addressed or are no longer relevant in the new code.

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.9 Order of Events
[Informational] [Version 1]

The order of events emitted by the wrapper contract is sometimes inconsistent and the events might be
misinterpret by third party apps or integrators that parse such events.

CS-MZEROWT-009

Function wr ap emits events related to minting of new wMtokens and afterwards emits the event transfer
of Mtokens into the contract. So, there is an intermediary state during which the wrapper mints the new
tokens although it has not received a transfer.

Function _m nt emits the event Tr ansf er with the user-specified input anount _ as the amount of wiV
tokens being minted. However, due to rounding errors for earning accounts, the real minted about might
be lower.

The function _cl ai mwhich is triggered whenever the balance of an account is updated, emits an event
similar to minting when vyield is realized. If the recipient for yield claiming is set, a transfer from the
account to the recipient is emitted. This might be confusing for DeFi pools such as Uniswap as these
additional transfer events will be emitted whenever a swap happens.

Code corrected:

Functions wr ap and unwr ap have been revised to emit the events in the correct order. Due to the
simplified balance accounting which tracks exact balances, the function _m nt now emits the correct
amount unaffected by rounding in the event.

6.10 Unwrapping Might Leave Dust Amounts for
Earners

[Informational] [Version 1]

Holders of wMtoken that earn yield have no easy way to unwrap their whole balance and leave no dust in
the contract. While smart contracts can perform cl ai nfFor () first and then unwrap everything, EOAs
have no way to unwrap their whole balance as yield depends on the exact time the transaction is
included in a block.

CS-MZEROWT-010

Code corrected:

A new version of the unwr ap() function has been implemented in that enables a user to
unwrap their whole balance and their yield:

function unw ap(address recipient_) external {
unw ap(nsg. sender, recipient, uint240(bal anceWthyiel dO(nsg. sender)));

}

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 No Claimed Event on 0 Yield

(Informational] [Version 2]

CS-MZEROWT-003

_cl ai m) may update an accounts _| ast | ndex but return early without emitting the C ai ned event if
_get AccruedYi el d() resulted in O, e.g. due to rounding.

7.2 Re-enabling of Earning in Future Versions
(Informational] [Version 1]

CS-MZEROWT-004

The current implementation of W appedMroken allows enabling of earnings for the wrapper only once,
however, this behavior might change in the future versions as noted:

been di sabl ed.

i T (wasEarni ngEnabl ed()) revert Earni ngCannot BeReenabl ed() ;

It must be emphasized that this requires further changes in the codebase, this line cannot simply be
removed. For example, the internal function _| ast Di sabl eEar ni ngl ndex() always returns the index
of the first event where earnings are disabled. Additionally, re-enabling earnings breaks the accounting
for users who do not claim their yield after earnings are disabled.

7.3 Wrapper Contract Can Earn WrappedM Yield

(Informational] [Version 1]

CS-MZEROWT-005

One can donate vMto the wrapper contract and trigger the start of earnings, allowing yield to accumulate
over time. Currently, the wrapper contract does not rely on its own balance, so this is not problematic.
Governance could redirect the yield to an arbitrary address by overriding the recipient for the wrapper's
yield. Since the current implementation of the wrapper contract lacks functionality to transfer out such
tokens, they would be locked.

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Migrator Prefix Must Not Collide With Other
Keys

The WrappedMToken can be upgraded to a new implementation if there is a value in registrar for a key
that matches a hash of a constant prefix and the wrapper address:

function _getMgrator() internal view override returns (address nigrator_) {

ui nt 256(1 Regi strarLi ke(registrar). get(
keccak256(abi . encode(M GRATOR V1 _PREFI X, address(this)))))

}

Although unlikely, it is possible that the prefix can be chosen such that it collides with another key in the
registrar. For instance, a prefix set to "wm cl ai m override recipient" or "IN LI STear ners"
would trick the function _get M grator () to read a value from a key that is meant to store another
value and not the implementation address.

8.2 Removed Earners Must Be Stopped Earning
Yield

When governance removes an account from the eligible earning list, the holder of wM continues to earn
yield until st opEar ni ngFor () is called on the wrapper contract for that account. This is similar to the M
token, where an account removed from the eligible earning list must also be stopped from earning
additional yield.

8.3 Storage Layout of the Proxy

The wrapper contract is deployed behind a proxy scheme and implementation upgrades are possible.
The storage layout of the new implementation should be carefully checked to be aligned with the existing
implementation to ensure compatibility. Note that W appedMroken inherits multiple contracts that
declare their own variables.

@ MAZERO Labs - Wrapped M Token - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Proxy
	2.2.2 WrappedMToken
	2.2.3 Migration
	2.2.4 Trust Model & Roles
	2.2.5 Changes in Version 2:

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Discrepancy of Yield When Earning Is Disabled

	6 Resolved Findings
	6.1 Excess Amount Is Overestimated
	6.2 Effects of Roundings in Wrapped M
	6.3 Name and Symbol Are Not Properly Set
	6.4 Accumulated Dust Amounts for Earners Are Considered as Excess
	6.5 Rounding Errors on M Token Transfers
	6.6 Specifications About BalanceInfo Encoding
	6.7 Foundry.toml: Mismatch of Solidity and EVM Version
	6.8 Gas Optimizations
	6.9 Order of Events
	6.10 Unwrapping Might Leave Dust Amounts for Earners

	7 Informational
	7.1 No Claimed Event on 0 Yield
	7.2 Re-enabling of Earning in Future Versions
	7.3 Wrapper Contract Can Earn WrappedM Yield

	8 Notes
	8.1 Migrator Prefix Must Not Collide With Other Keys
	8.2 Removed Earners Must Be Stopped Earning Yield
	8.3 Storage Layout of the Proxy

