
Invariant Test Suite & Security Report

This report was produced for the M^ZERO Protocol by Prototech Labs

Mail: info@prototechlabs.dev
Twitter: @Prototech_Labs
Web: www.prototechlabs.dev

Versions:
Draft: 12th February 2024
Final: 8th March 2024

Prototech Labs SEZC Copyright 2024

http://www.prototechlabs.dev

Contents
1. Executive Summary
2. Project Overview
3. Introduction
4. Limitation and Report Use
5. Findings Overview
6. Findings Framework
7. Critical Risks
8. High Risks
9. Medium Risks
10.Low Risks
11. Informational Findings
12.Appendix

1. Executive Summary
This report and the accompanying invariant test suite was prepared for the M^ZERO
team by Prototech Labs, a smart contract consultancy providing security, technical
advisory, and code review services. Prototech Labs would like to thank the M^ZERO
team for giving us the opportunity to review the current state of their protocol.

This document outlines the findings, limitations, and methodology of our review, which is
broken down by issue and categorized by severity. It is our hope that this provides
valuable findings and insights into the current implementation and that the invariant
tooling can be continuously updated to inform the safety of future development.

2. Project Overview
This security review, unlike a traditional audit, focused on providing M^ZERO with a
comprehensive test suite to define and test invariant assertions.

This involved identifying and documenting protocol invariants in order to develop a set
of test cases to in-turn validate the identified invariants. This then enabled us to execute
the developed test suite against the M^0 protocol, recording and analyzing the results of
each run as well as any deviations from the expected invariant’s behavior.

It is worth mentioning that this test suite, in addition to the already identified issues, is
capable of continuously producing results if updated with new invariants. This will
require ongoing analysis and will act as a continued “proof of work” i.e. meticulous
analysis of current and future invariant behavior.

With this in mind, we have included a “Further Investigation” tag on certain issues that
exhibit the potential for additional scrutiny beyond the scope of this engagement and
may uncover additional insight and/or deviation from what is expected.

Project Details:

● Security Researchers:
○ Chris Mooney
○ Chris Smith
○ Brian McMichael
○ Derek Flossman

● Timeline: 2024-01-08 to 2024-02-09
● Code Repository: https://github.com/MZero-Labs
● Commit:

○ common - 4a37119f2da946c6d8ad7b9a70dfdd219225115b

○ TTG - a8127901fa1f24a2e821cf4d9854a1aa6ac8088c

○ Protocol - 3499f50ff3382729f3e59565b19386ba61ef8e36

3. Introduction
The core M^0 protocol is a coordination layer for permissioned institutional actors to
generate M, which is a fungible token generated by locking eligible collateral in a secure
off-chain facility. The protocol enforces a common set of rules and safety procedures for
the management of M.

4. Limitations and Report Use
It is worth highlighting that this security review is an invariant analysis and should be
considered as complementary to a traditional audit, not as a replacement.

Disclaimer: No assessment can guarantee the absolute safety or security of a
software-based system. Further, a system can become unsafe or insecure over time as
it and/or its environment evolves. This assessment aimed to discover as many issues
and make as many suggestions for improvement as possible within the specified
timeframe. Undiscovered issues, even serious ones, may remain. Issues may also exist
in components and dependencies not included in the assessment scope.

The software systems herein are emergent technologies and carry with them high levels
of technical risk and uncertainty. This report and related analysis of projects to not
constitute statements, representations or warranties of Prototech Labs in any respect,
including regarding the security of the project, utility of the project, suitability of the
project’s business model, a project’s regulatory or legal status or any other statements,
representations or warranties about fitness of the project, including those related to its
bug free status. You may not rely on the reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Our
complete terms of service can be reviewed here.

Specifically, for the avoidance of doubt, any report published by Prototech Labs does
not constitute investment advice, is not intended to be relied upon as investment advice,
is not an endorsement of any client or project, and is not a guarantee as to the absolute
security of any project. Prototech Labs does not owe you any duty by virtue of
publishing these reports.

https://drive.google.com/drive/u/5/folders/1rkcwFKYhjqFOavS8syBsdhdbMWTkbSyj

5. Findings Overview
Below is an overview of the findings, split by severity, illustrating their status (Fixed/Acknowledged):

Critical Severity Findings [3]

7.1 Any action that moves delegation to address(0) will cause that user's funds to
be locked.

Resolved

7.2 PowerToken Balances can be double counted Resolved

7.3 PowerToken: Delegation and transfer fails when actor.balance > actor.votes Resolved

High Severity Findings [4]

8.1 MToken.mint() can overflow totalNonEarningSupply and
principalOfTotalEarningSupply

Resolved

8.2 ERC3009 validAfter and validBefore are incorrectly implemented as inclusive Resolved

8.3 PowerToken: Inflation rounding creates deviation in account balances and
total supply.

Resolved

8.4 PowerToken: User Balance is lost on each reset due to inflation rounding Won’t fix

Medium Severity Findings [5]

9.1 High Mint Ratio and High Collateral can cause Uint112 overflow in
UpdateCollateral

Resolved

9.2 dynamic calculation of collateral expiry creates unintended consequences Won’t fix

9.3 resetToTokenHolders() functions will brick the new vote token if the bootstrap
token's pastTotalSupply(epoch) returns 0

Resolved

9.4 PowerToken: Account balances can exceed total supply. Resolved

9.5 Invariant P_VD2 failure: Actor votes do not match delegated balance. Resolved

Low Severity Findings [9]

10.1 MToken updateIndex called multiple times in burn and mint Acknowledged

10.2 cash token that doesn't return true on transfer Won’t fix

10.3 updateCollateral potentially leaves the system in an undesirable state Won’t fix

10.4 proposeMint allows type(uint240).max, but mintM only allows
type(uint112).max

Won’t fix

10.5 TTG Setting Minter Rate too high will lead to updateIndex overflow Won’t fix

10.6 TTG Set mintRatio() == 0 causes all positions to be undercollateralized Won’t fix

10.7 Invariant Violation/Accounting reported incorrectly Resolved

10.8 Users can accidentally lock their funds Resolved

10.9 Inconsistent inflation due to rounding truncation Won’t fix

Informational Findings [11]

11.1 transferFrom with insufficient balance leads to Panic: over/underflow Resolved

11.2 ERC20Extended: Insufficient allowance for transferFrom results in Panic
underflow

Resolved

11.3 can freeze deactivated minter Won’t fix

11.4 StandardGovernor.t.sol does not test setKey Acknowledged

11.5 Allow public reading of proposalFees in StandardGovernor Resolved

11.6 Reduce Duplicate Code to Prevent the Introduction of Bugs Resolved

11.7 SignatureChecker.sol vulnerable to signature malleability Acknowledged

11.8 Investigate MinterGateway and MToken updateIndex Acknowledged

11.9 MinterGateway does not validate that all signatures are in ascending order Won’t fix

11.10 MinterGateway verifyValidatorSignatures could bail early Won’t fix

11.11 OnBehalf -> OnBehalfOf Won’t fix

6. Findings Framework
Findings and recommendations are listed in the below section, grouped into broad
categories. It is up to the team behind the code to ultimately decide whether the items
listed here qualify as issues that need to be fixed, and whether any suggested changes
are worth adopting. When a response from the team regarding a finding is available, it is
provided.

Findings are given a severity rating based on their likelihood of causing harm in practice
and the potential magnitude of their negative impact. Severity is only a rough guideline
as to the risk an issue presents, and all issues should be carefully evaluated.

Additionally;

● Issues that exhibit the potential for additional scrutiny beyond the scope of this
engagement have an added Further Investigation tag.

● Issues that do not present any quantifiable risk are given a severity of
Informational.

7. Critical Risks

7.1 Any action that moves delegation to address(0) will cause that
user's funds to be locked.
Context:

EpochBasedVoteToken.sol#L184

Description:

Any delegation to address(0) causes the delegator's funds to be locked when
attempting to re-delegate or transfer in the future. This is in contrast to the EIP-5805
specification which states that Tokens that are delegated to address(0) should
not be tracked. This allows users to optimize the gas cost of their
token transfers by skipping the checkpoint update for their delegate.
This is further evidenced by suggested properties of EIP-5805: For all timepoints t
< clock, getVotes(address(0)) and getPastVotes(address(0), t) SHOULD
return 0. In addition, invariant testing and debugging suggested this property does
not hold for either ZeroToken or PowerToken.

function test_addressZeroFailure() external {

_warpToNextTransferEpoch();

_vote.mint(_alice, 1_000);

_vote.mint(_bob, 900);

_vote.mint(_carol, 800);

vm.prank(_alice);

_vote.delegate(address(0));

// vm.prank(_alice);

// _vote.delegate(_bob);

vm.prank(_alice);

_vote.transfer(_carol, 400);

}

For Further Investigation

A transfer of funds to address(0) means those funds can never be accessed again,
but this means even the transfer class of functions to address(0), which delegate
under the hood, will cause the funds and vote weight sent to address(0) to be locked.

https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/abstract/EpochBasedVoteToken.sol#L184
https://eips.ethereum.org/EIPS/eip-5805

It is suggested to prevent the transfer of funds to address(0) as this issue may
introduce undefined behavior when combining multiple specifications or not following
standard practices. For example, a movement of funds to address(0) may have no
real negative implications other than bad UX for users, but one must carefully think
through that implication when a transfer also moves voting weight to address(0).

Recommendation:

The specification implies wanting to allow users to optimize the gas cost of
their token transfers by skipping the checkpoint update for their
delegate when delegating to address(0). For this reason, you may still want to
update a delegator's delegatee to address(0) to indicate this state, but not move the
vote power to address(0).

Suggested change:

diff --git a/src/abstract/EpochBasedVoteToken.sol

b/src/abstract/EpochBasedVoteToken.sol

index 8d857a9..ee2754c 100644

--- a/src/abstract/EpochBasedVoteToken.sol

+++ b/src/abstract/EpochBasedVoteToken.sol

@@ -181,7 +181,7 @@ abstract contract EpochBasedVoteToken is IEpochBasedVoteToken,

ERC5805, ERC20Ext

address oldDelegatee_ = _setDelegatee(delegator_, newDelegatee_);

uint240 votingPower_ = _getBalance(delegator_, _clock());

- if (votingPower_ == 0) return;

+ if (votingPower_ == 0 || newDelegatee_ == address(0)) return;

removeVotingPower(oldDelegatee, votingPower_);

addVotingPower(newDelegatee, votingPower_);

Moderate testing of the suggested change has been done with no issues, but more
testing is needed before having confidence in this fix.

M^ZERO: Resolved

PR: https://github.com/MZero-Labs/ttg/pull/214
Commit in main:
https://github.com/MZero-Labs/ttg/commit/27c751f6177850751053c011b3a0327896db3e44

Prototech: This fix looks good. The regression passes now, and the invariant suite has
been adjusted to fuzz this case again.

https://github.com/MZero-Labs/ttg/pull/214
https://github.com/MZero-Labs/ttg/commit/27c751f6177850751053c011b3a0327896db3e44

7.2 PowerToken Balances can be double counted

Context: EpochBasedVoteToken.sol

Description:

When a user has not synced their past balance and uses transfer, transferFrom,
delegateBySig or transferWithAuthorization to delegate or transfer to/from
themselves, their pastBalanceOf is double counted, once as the sender and once as
the recipient giving them twice the tokens they should have. These regressions show
this occurring and resulting in one user doubling their tokens:

test_regression_invariant_P_B1_abd6c842_failure()
test_regression_invariant_P_B1_5b9e6c92_failure()
test_regression_invariant_P_B1_97d35b59_failure()
test_regression_invariant_P_B1_b3dd037b_failure()
test_regression_invariant_P_B1_8f24f499_failure()

Balance: 11000

Total Supply: 10000

These regressions occur in the signature path and the regular paths for transfer,
delegate and transferFrom.

Recommendation:

Use proper check-effects pattern to make sure the sender is fully synced before
checking whether the recipient has been synced. Recommending Further Investigation
for the direct source of this bug. We theorize that the use of storage for voidSnaps_ is
re-accessing the empty storage of voidSnaps_ when the to account and from account
are the same in the same call.

M^ZERO: Resolved (Duplicate of Certora C-01)

PR: https://github.com/MZero-Labs/ttg/pull/215
Commit in main:
https://github.com/MZero-Labs/ttg/commit/c16400216827b6a6a5485823c2c283c35cb49e75

Prototech: Fix looks good

https://gist.github.com/brianmcmichael/2c58915c8eb9773bafebf0a5167c22b4
https://gist.github.com/brianmcmichael/650de3e1e8203a3731067b8e3a86ce01
https://gist.github.com/brianmcmichael/9910e3c298aa03ecd7cd1ffa75bec857
https://gist.github.com/iamchrissmith/7ea1193b644c4530b405b419a6df67ca
https://gist.github.com/iamchrissmith/62f12ba1fcf9ec2ef0064ceae6b97039
https://github.com/MZero-Labs/ttg/pull/215
https://github.com/MZero-Labs/ttg/commit/c16400216827b6a6a5485823c2c283c35cb49e75

7.3 PowerToken: Delegation and transfer fails when actor.balance >
actor.votes

Context: PowerToken.sol

Description:

Identified a scenario where actor balance > actor votes. In this scenario, delegation and
transfer above the vote amount but within the available balance fails with an overflow.

● Regression: test_regression_invariant_P_B3_52af74ce_failure()

actor: 0x0F8458E544c9D4C7C25A881240727209caae20B8

delegatee: 0x7565Aef10F626C1972cd51B4A951b0601917940E

actor votes: 2058

actor balance: 4606

delegatee votes: 0

delegatee balance: 685

Unhandled Error:

0x4e487b710011

● Output

Modifying the end of the regression with the following code demonstrates that transfers
fail when the balance to be transferred is less than the available balance but more than
the getVotes() total.

...

_powerTokenHandler.cancelAuthorizationWithVS(19005399541113579769645957213134486529

103585917040, 22137643175505699843621816368802360, 220);

_powerTokenHandler.markNextVotingEpochAsActive(1732991441);

//_powerTokenHandler.delegate(19007795705280633373163348, 1673);

//_powerTokenHandler.delegate(2331204567, 52222);

vm.prank(0x0F8458E544c9D4C7C25A881240727209caae20B8);

powerToken.transfer(address(1), 3000);

invariant_P_B3();

=====

│ ├─ emit Transfer(sender: MockCashToken:

[0x0F8458E544c9D4C7C25A881240727209caae20B8], recipient:

0x0000000000000000000000000000000000000001, amount: 3000)

https://gist.github.com/brianmcmichael/0957200799be2ebb82191c93e8701b63
https://gist.github.com/brianmcmichael/d004e258369d6fa687679d64185fbd82

│ └─ ← panic: arithmetic underflow or overflow (0x11)

└─ ← panic: arithmetic underflow or overflow (0x11)

Recommendation:

Analyze regression to determine conditions for the scenario where actor balance can be
greater than votes. This leads to over/underflow in the vote transfer portion of
delegate() and transfer operations. Recommending Further Investigation

M^ZERO: Resolved

PR: https://github.com/MZero-Labs/ttg/pull/214
Commit in main:
https://github.com/MZero-Labs/ttg/commit/27c751f6177850751053c011b3a0327896db3e44

Prototech: Resolved and tests added

8. High Risks

8.1 MToken.mint() can overflow totalNonEarningSupply and
principalOfTotalEarningSupply
Context:

MToken.sol#L217

Description:

Calling MToken.mint() with a large enough value on either earners or non-earners will
overflow principalOfTotalEarningSupply and totalNonEarningSupply as the
accumulators are in unchecked {} blocks. While we would typically say this condition
is a medium severity concern as minting that amount is unlikely given MToken being
dollar denominated, there are a few additional considerations that lead us to bump this
to a high severity risk:

1. The lower maximum limit of the uint112 space over the lifespan of the protocol
(150 years) assuming 10% to 20% inflation rates puts us marginally within reach
of this limit around the 180 year mark. This alone isn't cause for concern unless
one sees those parameters radically changing (think Argentinean inflation rates)
in the medium term. However...

2. While the happy path of the minting protocol should not allow for accidental
collateral magnitudes to be too large, or the governance set rates or minter ratios

https://github.com/MZero-Labs/ttg/pull/214
https://github.com/MZero-Labs/ttg/commit/27c751f6177850751053c011b3a0327896db3e44
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L217
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L217
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L171-L193

to be off, human errors do occur. A fat fingered decimal or magnitude in any one
of these human controlled variables could lead to a large enough
MToken.mint() that it triggers this overflow. Our team, having seen exactly this
type of magnitude error in the past and building out extensive processes to catch
it in the future, we can safely say the probability of this happening within a 10
year period is approaching 100%. Since the fallout of this happening is so
extremely severe as to brick MToken for some users it would be prudent to follow
a defense-in-depth strategy to try and prevent this, which is why...

3. We believe the purpose of the OverflowsPrincipalOfTotalSupply() check
was intended to catch this case. Unfortunately, the overflow happens before this
check can occur in both the earner and non-earner cases, and thus the account
is credited with the larger balance while the principalOfTotalEarningSupply
and totalNonEarningSupply are much smaller having previously overflowed.

To reproduce this overflow for totalNonEarningSupply, you can put the following
regression test into MTokenRegressionTests.t.sol:

function test_regression_invariant_M_B2_B3_B4_d1d15304_failure() external {

_mTokenHandler.setMaxLeap(43200);

_mTokenHandler.mint(63353733290953239360908134180967171684,

1822344376649243943,

115792089237316195423570985008687907853269984665640564039457584007913129639933);

invariant_M_B2_B3_B4();

}

and run

make regression mt=test_regression_invariant_M_B2_B3_B4_d1d15304_failure

You can also reproduce this for the earning side with:

function test_regression_invariant_M_B2_B3_B4_880410c4_failure() external {

_setMaxLeap(500000);

_mTokenHandler.updateIsEarnersListIgnored(48261550356638759991277929160587301488275

5448541786262084, true);

_mTokenHandler.mint(2, 9650690465195152347881526194995,

115792089237316195423570985008687907853269984665640564039457584007913129639932);

_mTokenHandler.startEarning(6779599439146420999878776523370086409616907235);

_mTokenHandler.startEarning(989459965652266897858);

_mTokenHandler.mint(0,

115792089237316195423570985008687907853269984665640564039457584007913129639934,

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L228-L232

115792089237316195423570985008687907853269984665640564039457584007913129639935);

invariant_M_B2_B3_B4();

}

Output: https://gist.github.com/brianmcmichael/428b92ceb0a0db14619a5a121430bcac

Recommendation:

Either find a gas efficient way to front-load the OverflowsPrincipalOfTotalSupply()
check, or simply remove the unchecked {} blocks from _addEarningAmount() and
_addNonEarningAmount(). In testing, removing the unchecked {} blocks in both
functions did resolve this regression.

Further, we would suggest diving deeper on unchecked {} blocks to ensure they are
only used to save gas when over/under flow errors can be eliminated by other means.

M^ZERO: Resolved

PR: https://github.com/MZero-Labs/common/pull/13
Commit in main:
https://github.com/MZero-Labs/common/commit/ed02a2c94bb22df03b93fe397e73caa2aef5d95
5

Prototech: The fix looks good

8.2 ERC3009 validAfter and validBefore are incorrectly implemented
as inclusive

Context: ERC3009.sol#L238-L239

Description:

The ERC3009 spec calls for signatures to not be valid until after validAfter, but
before validBefore, non-inclusive. The way MZero has implemented this common
library treats validAfter and validBefore as inclusive. This library is used for
MToken, PowerToken, and ZeroToken and could allow for the incorrect execution time
of a transferWithAuthorization() or receiveWithAuthorization() on any of
those tokens.

This small difference could result in a user's transaction being executed outside (late or
premature) of their expectations, and under the right condition, could result in the loss of
funds for the sender or recipient.

https://gist.github.com/brianmcmichael/428b92ceb0a0db14619a5a121430bcac
https://github.com/MZero-Labs/common/pull/13
https://github.com/MZero-Labs/common/commit/ed02a2c94bb22df03b93fe397e73caa2aef5d955
https://github.com/MZero-Labs/common/commit/ed02a2c94bb22df03b93fe397e73caa2aef5d955
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/ERC3009.sol#L238-L239
https://eips.ethereum.org/EIPS/eip-3009

Recommendation:

Simply making the following change should resolve this issue:

diff --git a/src/ERC3009.sol b/src/ERC3009.sol

index f988505..cbac1ec 100644

--- a/src/ERC3009.sol

+++ b/src/ERC3009.sol

@@ -235,8 +235,8 @@ abstract contract ERC3009 is IERC3009, StatefulERC712 {

uint256 validBefore_,

bytes32 nonce_

) internal {

- if (block.timestamp < validAfter_) revert

AuthorizationNotYetValid(block.timestamp, validAfter_);

- if (block.timestamp > validBefore_) revert

AuthorizationExpired(block.timestamp, validBefore_);

+ if (block.timestamp <= validAfter_) revert

AuthorizationNotYetValid(block.timestamp, validAfter_);

+ if (block.timestamp >= validBefore_) revert

AuthorizationExpired(block.timestamp, validBefore_);

revertIfAuthorizationAlreadyUsed(from, nonce_);

There may be a chance this problem was introduced when converting the require()
errors in the spec to custom error logic using if() conditionals. As custom error
patterns with if() conditionals are the logical negation of the inequality in the
require() and thus the:

require(now > validAfter, "EIP3009: authorization is not yet valid");

require(now < validBefore, "EIP3009: authorization is expired");

should become:

if (now <= validAfter) revert AuthorizationNotYetValid();

if (now >= validBefore) revert AuthorizationExpired();

It could be a common mistake in adapting other specifications or code to custom errors
that the inequality was just reversed and the = was left out. For this reason, we have
done, and recommend the M^ZERO team do a review of all custom error boundary
conditions.

M^ZERO: Resolved

Ref:
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/

https://eips.ethereum.org/EIPS/eip-3009#implementation
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L217

MToken.sol#L217
Properly resolved here:
https://github.com/MZero-Labs/protocol/pull/143/files#diff-6d16a12288164b2eb7971f1325b337c
b7ab8909b0fb939f78524943ee2f93d2bR205-R226

Prototech: Fix looks good

8.3 PowerToken: Inflation rounding creates deviation in account
balances and total supply.

Context: PowerToken.sol

Description:

Several regressions were discovered that indicate that the total sum of user balances
after inflation do not equal the total supply. This is likely due to the necessity of rounding
down on the 10% epoch inflation.

Example regressions:

test_regression_invariant_P_B1_4d72c83e_failure()

Balance: 11099

Total Supply: 11100

test_regression_invariant_P_B1_bc6627bc_failure()

Balance: 13640

Total Supply: 13641

test_regression_invariant_P_B1_ba29ad51_failure()

Balance: 11099

Total Supply: 11100

Recommendation:

Consider the long-term effects of the sum of total balances not equaling the total supply
after inflation, especially on smaller balances which can not be fully inflated by 10% and
must be rounded down. This deviation is likely to compound over many epochs and
may have a material effect on voting thresholds. Recommending Further Investigation

M^ZERO: Resolved

Resolved by PRs above. Some invariants are still failing because of other reasons.

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L217
https://github.com/MZero-Labs/protocol/pull/143/files#diff-6d16a12288164b2eb7971f1325b337cb7ab8909b0fb939f78524943ee2f93d2bR205-R226
https://github.com/MZero-Labs/protocol/pull/143/files#diff-6d16a12288164b2eb7971f1325b337cb7ab8909b0fb939f78524943ee2f93d2bR205-R226
https://github.com/MZero-Labs/ttg/blob/26c69363b09d021838ee58757ef230d0d3e31e5a/src/PowerToken.sol
https://gist.github.com/brianmcmichael/41b144851ecb205ed4363bcd64e53d4c
https://gist.github.com/brianmcmichael/84aa0c623828c21d31a74812f609f9a6
https://gist.github.com/brianmcmichael/7d2c1eae25b5d664b7b4f82719815ccb

Prototech: Rounding Error Persists at
https://github.com/MZero-Labs/ttg/commit/9ef2198cc744f392bf87c15e134f27ec15aa5aaa
Run P_B1_4d72c83e_failure() in PowerTokenRegressions.t.sol

8.4 PowerToken: User balance is lost on each reset due to inflation
rounding

Context: PowerToken.sol

On each reset via a PowerBootstrapToken, some coins are lost in the scaling down of
the inflated supply. In theory, the rapid inflation of PowerToken should dilute this
discrepancy out of having a meaningful effect on the system.

Description:

./ttg/test/PowerToken.t.sol

function test_initial_balance_mismatch() external {

uint256 _balance;

for (uint256 i = 0; i < _initialAccounts.length; ++i) {

_balance += _powerToken.balanceOf(_initialAccounts[i]);

}

// Balances == Total Supply

assertEq(_balance, _powerToken.totalSupply());

console.log("Balance of user accounts: ", _balance);

console.log("PowerToken.totalSupply(): ", _powerToken.totalSupply());

}

Result:

Running 1 test for test/PowerToken.t.sol:PowerTokenTests

[FAIL. Reason: assertion failed] test_initial_balance_mismatch() (gas: 133182)

Logs:

Error: a == b not satisfied [uint]

Left: 9998

Right: 10000

Balance of user accounts: 9998

PowerToken.totalSupply(): 10000

Further research has revealed that with an inflated supply of power token and a number
of smaller token holders, the balances of all users can be rounded off, resulting in a 0
balance after a token reset. This can materially affect the protocol's ability to perpetuate

https://github.com/MZero-Labs/ttg/commit/9ef2198cc744f392bf87c15e134f27ec15aa5aaa

governance after a reset if the token is owned by a large number of small holders. In
fact, the total of user balances after a reset can equal zero if the token is sufficiently
distributed.

./ttg/test/PowerToken.t.sol

function test_bigSupplySmallHolders() external {

MockBootstrapToken bootstrapToken2_ = new MockBootstrapToken();

uint256 initialSupply2_ = 15_000_000 * 1e6;

bootstrapToken2_.setTotalSupply(initialSupply2_);

for (uint256 i; i < 20_000; ++i) {

bootstrapToken.setBalance(address(uint160(i + 1)), initialSupply2 /

20_000);

}

PowerTokenHarness powerToken2_ = new

PowerTokenHarness(address(bootstrapToken2_), _standardGovernor,

address(_cashToken), _vault);

uint256 userBalances_;

for (uint256 i; i < 20_000; ++i) {

userBalances_ = userBalances_ + powerToken2_.balanceOf(address(uint160(i +

1)));

}

assertEq(userBalances_, powerToken2_.totalSupply());

}

Result:

[FAIL. Reason: assertion failed] test_bigSupplySmallHolders() (gas: 715354455)

Logs:

Error: a == b not satisfied [uint]

Left: 0

Right: 10000

This test assumes 20,000 users. Other popular governance tokens, Maker (99,305
holders), Aave (165,852 holders), and Compound (218,296 holders) have far in excess
of this, so a reset of these tokens would wipe most of these users holdings, and the
proportions of holdings relative to reported total supply.

M^ZERO: Won’t fix, design

Prototech: Acknowledged

9. Medium Risks

9.1 High Mint Ratio and High Collateral can cause Uint112 overflow in
UpdateCollateral

Context:

● MinterGateway.sol#L714
● MinterGateway.sol#L606

Description:

If TTG sets the Mint Ratio to a larger than expected (per M^0’s comment that it should
be between 0 and 10_000) and a user has a large amount of collateral, then calculating
the principalOfMaxAllowedActiveOwedM in the
_imposePenaltyIfUndercollateralized function will overflow Uint112 blocking the
update. We tried Mint Ratios much larger but eventually saw the issue even with
18_500, so then restricted the handler to not go above 10_000. However, the
mintRatio() function in MinterGateway allows it to return (100 * uint32(10_000)
which will cause this overflow.

Recommendation:

Ensure this overflow on large number scales is desirable and clearly document to TTG
the max limit of 10_000 for the Mint Ratio. Change the cap in
MinterGateway.mintRatio so that it protects against this as it would block calls to
updateCollateral. Related: #73

M^ZERO: Resolved (Independent L01)

PR: https://github.com/MZero-Labs/protocol/pull/146
Commit in main:
https://github.com/MZero-Labs/protocol/commit/f24d34a77d5c8082529df40f4c2f90587025f150

Prototech: Fix looks good. This commit should be included in the response:
https://github.com/MZero-Labs/protocol/commit/06b6cb1593da5baffa60d50fb75a0767dd754a6b

9.2 dynamic calculation of collateral expiry creates unintended
consequences

Context:

● MinterGateway.sol#L502-L503

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L714
https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L606
https://github.com/MZero-Labs/protocol/pull/146
https://github.com/MZero-Labs/protocol/commit/f24d34a77d5c8082529df40f4c2f90587025f150
https://github.com/MZero-Labs/protocol/commit/06b6cb1593da5baffa60d50fb75a0767dd754a6b
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L502-L503

● MinterGateway.sol#L536-L540
● MinterGateway.sol#L594-L596

Description:

Because the calculation for determining whether collateral is past its update timeframe
is calculated "on demand" based on the TTG value, minters are not guaranteed a set
period of time to update their collateral. This leads to two potentially dangerous
scenarios and does not conform to the description in the whitepaper.

1. TTG Rug Pull Scenario

Changes to the TTG param for UPDATE_COLLATERAL_INTERVAL can result in a collateral
"rug pull" for Minters. For instance, a minter calls updateCollateral when the
UPDATE_COLLATERAL_INTERVAL is set to a relatively large number, e.g. 7 days. In the
next block the TTG changes the value to a very low number 1 second. This
automatically causes the minter to have a collateralOf balance of 0 and start
incurring penalties.

2. Inactive Minter Allowed to Mint without penalty potentially against invalid
Collateral Scenario

If a minter has missed a collateral update, but Power Token holders then change the
UPDATE_INTERVAL to a large enough number such that
lastCollateralUpdateTimestamp + new UPDATE_INTERVAL > current
timestamp, that delinquent minter would be able to mint new M Token without penalty.
A Minter in this situation would be incentivized to put forth a proposal to Power Token
holders to increase the interval in their favor as long as the Proposal Fee < what they
could mint and they believe they can get the proposal passed. This calculation
becomes more straightforward if the Cash Token in TTG becomes M Token since they
wouldn't have to factor in the relative price of WETH and M Token in their calculation.
Further, if a Minter believed they could sway a Threshold of Power Token holders to
vote for it, they could pass it as an Emergency Proposal without paying the fee.

This appears to contradict the Whitepaper. Section II.I.I Generation of M p5, states:
“If a Minter fails to call Update Collateral within Update Collateral Time of the
previous time they called it, their on-chain Collateral Value

is assumed to be 0. (emphasis added)”

Recommendation:

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L536-L540
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L594-L596

Instead of storing updateTimestamp store it as timestamp of update + current
TTG interval. This means that every time a minter updates their collateral, they know
exactly how long they have before they have to call updateCollateral again.

M^ZERO: Won’t fix, design decision

Prototech: Acknowledged

9.3 resetToTokenHolders() functions will brick the new vote token if
the bootstrap token's pastTotalSupply(epoch) returns 0
Context:

PowerToken.sol#L363-L364

Description:

On epoch 1, if a resetToPowerHolders() or resetToZeroHolders() is performed, it
will succeed, but the new vote token will be looking back at either the prior PowerToken
or ZeroToken as its bootstrap token to pull balances from. During this process, if
PriorToken.pastTotalSupply(epoch) returns 0, it will brick the new vote token and
everything that depends on it. In epoch 1, the look-back is to epoch 0 making
PriorToken.pastTotalSupply(epoch) == 0 true and causing a division-by-zero
error on even simple balanceOf() and pastBalanceOf() checks of the new vote
token.

To reproduce this, you need the reset PR, you have to unpatch ZeroGovernorHandler
and run the following regression:

function test_regression_invariant_P_VD3_fcc87b5e_failure() external {

_setMaxLeap(3600);

_zeroGovernorHandler.resetToZeroHolders(165449107);

invariant_P_VD3();

}

You can run this on that branch with:

make regression mt=test_regression_invariant_P_VD3_fcc87b5e_failure

Which will give the following stack trace. If this is chased out, you will see that there is a
division-by-zero in PowerToken.sol#L363-L364 as a result of getting
pastTotalSupply(0).

https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/PowerToken.sol#L363-L364
https://gist.github.com/godsflaw/ac0a947a676461aa02a8801b202ff2dd
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/PowerToken.sol#L363-L364

Recommendation:

A broader check on reset that the bootstrap token returns a
BootstrapToken.totalSupply() > 0 for the prior epoch is suggested before allowing
a reset. Knowing this condition exists, it's also advisable to review what types of natural
conditions (resetting inflation, etc.) could lead to the bootstrap token returning a
BootstrapToken.totalSupply() > 0 but if the guard is in place to never allow a
reset under these conditions, the defect should be mitigated.

M^ZERO: Resolved

PR: https://github.com/MZero-Labs/ttg/pull/236
Commit in main:
https://github.com/MZero-Labs/ttg/commit/62290374c54d752a422ba559be52be64aea9c91a

Prototech: Fix looks good

9.4 PowerToken: Account balances can exceed total supply.

Context: PowerToken.sol

Description:

It appears that markParticipation can cause user balances to exceed totalSupply.
The following regression shows Actor7 receives an extra 100 tokens (or 10%) after self
delegating and getting a markParticipation call. It was not clear to us exactly where
this happens or why and would strongly recommend further investigation.

test_regression_invariant_P_B1_5cd1d968_failure()

Balance: 11100

Total Supply: 11000

Recommendation:

Explore the effects of inflating the total supply in one epoch and then waiting multiple
epochs before adjusting balances. Regressions indicate that balance inflation may
occur beyond the expected supply inflation. Recommending Further Investigation

M^ZERO: Resolved

test_regression_invariant_P_B1_5cd1d968_failure()
Issue: C04 Account balances can exceed total supply
Duplicate. Caused by the same bug as Prototech C01 [7.1].
Tests fails at line:

https://github.com/MZero-Labs/ttg/pull/236
https://github.com/MZero-Labs/ttg/commit/62290374c54d752a422ba559be52be64aea9c91a
https://github.com/MZero-Labs/ttg/blob/26c69363b09d021838ee58757ef230d0d3e31e5a/src/PowerToken.sol
https://gist.github.com/brianmcmichael/95a09be043d82d88a027b777dceb47e1

https://gist.github.com/brianmcmichael/95a09be043d82d88a027b777dceb47e1#file-gistfile1-txt-
L11
Call sequence lines:
https://gist.github.com/brianmcmichael/95a09be043d82d88a027b777dceb47e1#file-gistfile1-txt-
L716-L724
When markParticipation is called for Actor 7, the total supply is not increased as the
voting power of Actor 7 is zero (because voting power has been given to address zero).
But the balanceOf function, add unrealised inflation to the balance of Actor 7

Prototech: The fix for 7.1 fixes this too.

9.5 Invariant P_VD2 failure: Actor votes do not match delegated
balance.

Context: test/invariant/PowerTokenInvariants.t.sol

Description:

Invariant testing found the following path indicating a violation of P_VD2, taken from the
spec as:

● POWER totalVotingPower(delegates) >= POWER totalSupply(holders),
at Voting Epoch

In this regression, we arrive at a state where the actor has 1000 tokens delegated to
them but 0 voting power in the Voting Epoch.

function test_regression_invariant_P_VD2_dc8c60c1_failure() external {

_setMaxLeap(500000);

_powerTokenHandler.receiveWithAuthorization(115792089237316195423570985008687907853

269984665640564039457584007913129639932, 3, 0,

25398670518387976205528126431371566877799880461936723675165133545,

287291570320378927757552901276423655883425717256625866, 1,

115792089237316195423570985008687907853269984665640564039457584007913129639933);

_powerTokenHandler.transferFrom(22213, 2434546984, 1702447259, 8260);

_powerTokenHandler.markNextVotingEpochAsActive(438802759611688308251264933659464847

47370565303400739422783595429428448060990);

_powerTokenHandler.receiveWithAuthorization(115792089237316195423570985008687907853

269984665640564039457584007913129639933, 0, 49834230, 0, 424630258064581,

3805860097833278319928254118602198349674067451036701313920130092465200948856,

139815080442061025309583034756701671410363211329023358648989029253274);

_powerTokenHandler.receiveWithAuthorizationWithVS(115792089237316195423570985008687

https://gist.github.com/brianmcmichael/95a09be043d82d88a027b777dceb47e1#file-gistfile1-txt-L11
https://gist.github.com/brianmcmichael/95a09be043d82d88a027b777dceb47e1#file-gistfile1-txt-L11
https://gist.github.com/brianmcmichael/95a09be043d82d88a027b777dceb47e1#file-gistfile1-txt-L716-L724
https://gist.github.com/brianmcmichael/95a09be043d82d88a027b777dceb47e1#file-gistfile1-txt-L716-L724

907853269984665640564039457584007913129639932,

1994715541102870189783389047169752113056, 192443,

115792089237316195423570985008687907853269984665640564039457584007913129639932,

1491493340,

115792089237316195423570985008687907853269984665640564039457584007913129639932, 3);

_powerTokenHandler.receiveWithAuthorizationWithVS(811824123451705359251613629987707

97132594013148042230141031399618450649258658, 2285641147, 2678319986, 3120,

8605137371151254242597158382436553006619786741947, 17524, 962808020);

_powerTokenHandler.permit(104941798318992048,

115792089237316195423570985008687907853269984665640564039457584007913129639935,

138163547134013850741991112958540145800041530563712984296599643316852362,

6935567968696137, 1252247641124942896768566209122,

5636321403916967978944712335762863827462547585);

_powerTokenHandler.markNextVotingEpochAsActive(115792089237316195423570985008687907

853269984665640564039457584007913129639932);

_powerTokenHandler.receiveWithAuthorizationWithSignature(993406476473724821303,

159781607658, 760621772264564080426596827777805184,

237167492934460516295381190104354166638442, 669429610,

115792089237316195423570985008687907853269984665640564039457584007913129639935,

992712411185438040671170853130937202605334673177682393628994984177463);

_powerTokenHandler.markParticipation(1685781927, 11615);

_powerTokenHandler.buy(35, 0,

163154436326094438575454595030815357256148917932890268311, 2);

_powerTokenHandler.delegateBySig(16822, 1681616932, 2016020, 10820);

_powerTokenHandler.markNextVotingEpochAsActive(101654295392275046989449157414705073

27065631555795255612);

_powerTokenHandler.receiveWithAuthorization(115792089237316195423570985008687907853

269984665640564039457584007913129639933, 117283234093,

15257551732684453156701698897, 2, 2,

115792089237316195423570985008687907853269984665640564039457584007913129639935,

115792089237316195423570985008687907853269984665640564039457584007913129639932);

_powerTokenHandler.approve(43880275961168830825126493365946484747370565303400739422

783595429428448061061, 22214,

57896044618658097711785492504343953926418782139537452191302581570759080747167);

_powerTokenHandler.transferFrom(300495785111472157848088794504798162743572937124350

70187725205556933274107904, 18446744073709478664, 23676,

3100603429981692581420904719928276428538822851300006290752009);

_powerTokenHandler.delegate(2,

1516140989270874076342658255876666786217000614717236199529083);

_powerTokenHandler.transferWithAuthorization(18446744073709400180, 24407,

16750511, 4694, 1865844395, 4006, 792985628);

invariant_P_VD2();

}

Regression output:
https://gist.github.com/brianmcmichael/be5e9703d91fc94c99ca1774e3a84084

Recommendation:

Review transaction log and evaluate the invariant specification. Recommending Further
Investigation

M^ZERO: Resolved

test_regression_invariant_P_VD2_dc8c60c1_failure()
Issue: M05 [9.5] Actor votes do not match delegated balance.
Duplicate. This is also caused by the same bug as Prototech C01 [7.1].
Tests fails at the second last line:
_powerTokenHandler.delegate(2,1516140989270874076342658255876666786217000
614717236199529083);

Call sequence lines:
https://gist.github.com/brianmcmichael/be5e9703d91fc94c99ca1774e3a84084#file-test_regressi
on_invariant_p_vd2_dc8c60c1_failure-L1299-L1306

Prototech: Appears to have been corrected by use of _getDefaultIfZero() function.

10. Low Risk

10.1 MToken updateIndex called multiple times in burn and mint

Context:

● _burn - MToken.sol#L206
● _mint - MToken.sol#L223

Description:

The mint and burn functions on MToken are only callable by the MinterGateway.
Inside MinterGateway, the functions that call mint and burn also call
MinterGateway.updateIndex() which calls MToken.updateIndex(). Inside the
MToken's mint and burn functions it checks if the recipient or account are earning
and if they are it calls MToken.updateIndex().

https://gist.github.com/brianmcmichael/be5e9703d91fc94c99ca1774e3a84084
https://gist.github.com/brianmcmichael/be5e9703d91fc94c99ca1774e3a84084
https://gist.github.com/brianmcmichael/be5e9703d91fc94c99ca1774e3a84084#file-test_regression_invariant_p_vd2_dc8c60c1_failure-L1299-L1306
https://gist.github.com/brianmcmichael/be5e9703d91fc94c99ca1774e3a84084#file-test_regression_invariant_p_vd2_dc8c60c1_failure-L1299-L1306
https://github.com/MZero-Labs/protocol/blob/main/src/MToken.sol#L206
https://github.com/MZero-Labs/protocol/blob/main/src/MToken.sol#L223

This at a minimum results in duplicate calls to MToken.updateIndex() and wasting
gas. However, it could also represent unintended consequences since the !isEarning
path of mint and burn do not "explicitly" call MToken.updateIndex().

Recommendation:

1. Ensure there are no unintended consequences for having
MToken.updateIndex() called when the recipient or account are not
earning.

2. Remove the duplicate updateIndex call from MToken's function and let it be
called by the MinterGateway's updateIndex.

M^ZERO: Acknowledged, design

Decoupling of indices can lead to described above situation. We acknowledge it, but
don’t see better ways to handle it without tight coupling of both indices

Prototech: Acknowledged

10.2 cash token that doesn't return true on transfer

Context: PowerToken.sol#L119

Description:

PowerToken checks the return value of transferFrom() on CashTokens.

Tokens that do not return a value on the transferFrom() are ineligible to be cash
tokens.

Not returning a bool on transferFrom is non-conformant to ERC-20 spec, but some
popular tokens, like USDT, do not include the bool return and would not be suitable
cashTokens for the protocol.

Recommendation:

● Add a test of a non-conformant mock.
● Document for token governors that certain tokens are ineligible for inclusion as

cashTokens.
● Use a wrapper token for non-conformant cashtokens

M^ZERO: Won’t fix

Cash tokens will only be WETH and M itself.

https://github.com/MZero-Labs/ttg/blob/26c69363b09d021838ee58757ef230d0d3e31e5a/src/PowerToken.sol#L119
https://etherscan.io/token/0xdac17f958d2ee523a2206206994597c13d831ec7#code#L171

Prototech: As long as the Cash tokens are restricted to those tokens, not fixing makes
sense

10.3 updateCollateral potentially leaves the system in an undesirable
state

Context:

● MinterGateway.sol#L192-L195
● MinterGateway.sol#L136-L179

Description:

Lines 192-195 imply that a Minter should never be able to propose more retrieval than
the collateral they have. It was indicated that this should hold in your suggested
invariants for minterGateway: collateralOf >= totalPendingRetrievals.

However, by calling updateCollateral with a new, lower number and not passing any
RetreivalIds, the minter would be able to create that exact situation. This violates a
potential invariant: Sum of PendingRetreivals <= Sum of MinterState Collateral values.

Recommendation:

To reconcile this inconsistency, either add a similar revert to updateCollateral, forcing
the minter to process relevant retrievals before updating their collateral value to a
smaller number. Alternatively, simplify the system by removing the revert in
proposeRetrieval as it does not truly protect the system from entering into that state
(pendingRetrievals are already removed from the minter collateral in collateralOf and
therefore are factored in for undercollateralization purposes).

M^ZERO: Won’t fix

The second proposed suggestion would not work in the case of a Minter with no owed
M. maxAllowedActiveOwedMOf would return 0 since totalPendingRetrievals_ will be
greater than collateral_ and finalActiveOwedM_ will also return 0 since the Minter owed
M balance is 0. So the following check will be skipped and the retrieval created:
if (finalActiveOwedM_ > maxAllowedActiveOwedM_)
Explanation: https://github.com/MZero-Labs/protocol/pull/145#pullrequestreview-1908588872

Prototech: Acknowledged

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L192-L195
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L136-L179
https://github.com/MZero-Labs/protocol/pull/145#pullrequestreview-1908588872

10.4 proposeMint allows type(uint240).max, but mintM only allows
type(uint112).max

Context: ContinuousIndexing.sol#L100

Description:

If all other requirements are met, proposeMint allows a user to propose minting up to
type(uint240).max amount. However, such a proposal would overflow on
type(uint112).max once called because of _getPresentAmountRoundedUp

Recommendation:

Ensure the max amount in a proposeMint is type(uint112).max

M^ZERO: Won’t fix, design

We only enforce uint240 in proposeMint and only mintM ensures that we won't overflow
uint112.

Prototech: Acknowledged

10.5 TTG Setting Minter Rate too high will lead to updateIndex
overflow

Context: ContinuousIndexing.sol#L60-L66

Description:

Setting a rate too high for too long will result in multiplyIndices overflowing uint112
and lock the MinterGateway. As discussed you expect TTG to use rates between 0 and
40_000 for the minter rate, however, if governance deviates from this expectation or
erroneously sets a very high rate, the system could be locked.

Recommendation:

Ensure that it is well documented for Governance what the limits on rates are.

M^ZERO: Won’t fix, design

We are relying on governance setting sane values for mint ratio, rates, penalties etc.

Prototech: Understood

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/abstract/ContinuousIndexing.sol#L100
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/abstract/ContinuousIndexing.sol#L60-L66

10.6 TTG Set mintRatio() == 0 causes all positions to be
undercollateralized

Context:

● MinterGateway.sol#L490

Description:

In our discussions you noted that MINT_RATIO = [0, 10_000] was a bounding that
could be expected from TTG. However, setting MINT_RATIO to 0 will cause all positions
to be reported as under-collateralized causing all minters to be penalized on
updateCollateral and reverts in proposeRetrieval, proposeMint, and mintM.

Recommendation:

Do not set this value to 0 unless the desire is to shut off the system or have a fallback
min for MinterGateway.mintRatio() to return if the ratio from TTG is set to 0.

Related to #90

M^ZERO: Won’t fix, Design possibility Recommendation acknowledged

Prototech: Acknowledged

10.7 Invariant Violation/Accounting reported incorrectly

Context:

● MinterGateway.sol#L565-L567
● MinterGateway.sol#L379-L380

Description:

When a Minter is deactivated, their balances are wiped and they can’t become active in
the system anymore. However, the pendingCollateralRetrievalOf(minter,
retreivalId) function will still return a value of past proposed retrievals.

This means that the following invariant does not hold:

Sum of retrievalProposals == MinterState.totalPendingRetrievals

Recommendation:

We are not sure that there is a clean way of deleting the proposal from
_pendingCollateralRetrievals since it would require iterating through retrievalIds.

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L490
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L565-L567
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L379-L380

This could be possible by keeping an array in the MinterState, but adds to storage and
processing. The easiest thing here would be to update
pendingCollateralRetrievalOf so that it returns 0 for a deactivated minter.

M^ZERO: Resolved

PR: https://github.com/MZero-Labs/protocol/pull/144
Commit in main:
https://github.com/MZero-Labs/protocol/commit/0274c30c9f846d003012828ed034d0e4387b099
2

Prototech: Resolved. Invariant test was corrected to re-include this check and
regression still passes.

10.8 Users can accidentally lock their funds
Context:
MToken.sol#L329

EpochBasedVoteToken.sol#L272

Description:

It's a common problem that users lock their funds by sending them to the token contract
directly or to address(0). For more context see this pull request in the Maker dss
codebase on sending to the contract directly. While Maker chose not to prevent this
behavior in DAI as it would have socialized the gas cost for this check to all users, they
later regretted not putting the check in as it was a simple guard against extremely bad
user experiences due to loss of funds.

Recommendation:

The suggestion we would make is to explicitly prevent this in the code as a require,
which will add additional gas costs for all users. This socialization of gas costs, and the
(ultimately false) assumption that UIs would prevent this, was what made Maker choose
not to add this to DAI. But, given the already large cost of calculating earner balances
and voting epochs for these users, we think a little extra gas cost here will be worth the
improved UX.

There is also a hack that can be used where the balance of the contract address is set
to type(uint240).max without adjusting totalSupply, but this violates certain
invariants for the token (e.g. totalSupply() is the sum of all user.balanceOf()). As
a result, we don't recommend this alternative approach, but would be happy to adjust
invariant tests to account for it.

https://github.com/MZero-Labs/protocol/pull/144
https://github.com/MZero-Labs/protocol/commit/0274c30c9f846d003012828ed034d0e4387b0992
https://github.com/MZero-Labs/protocol/commit/0274c30c9f846d003012828ed034d0e4387b0992
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L329
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/abstract/EpochBasedVoteToken.sol#L272
https://github.com/makerdao/dss/pull/92

One last note, given governance's ability to mint(), it is conceivable that they could be
pressured to violate the minting intentions of the protocol in order to fix a user's balance
after such a mistake. This is the ultimate headache Maker had to deal with, and
ultimately lead to most, if not all, engineers on the project changing their position over
time.

M^ZERO: Resolved

PRs:
https://github.com/MZero-Labs/common/pull/25
https://github.com/MZero-Labs/protocol/pull/147
https://github.com/MZero-Labs/ttg/pull/237

Commits in main:
https://github.com/MZero-Labs/protocol/commit/ec4adf8a9a37da107c169f69aa45a57db49e719
3
https://github.com/MZero-Labs/common/commit/0da7d2fecff44dc6d9d4c3d9b3cf6b8dd8926f9d
https://github.com/MZero-Labs/ttg/commit/0c86903456266e3814d5086c63b680063d03bdb6

Prototech: The fix addresses sending to address(0) but does not prevent sending to
the contracts themselves (address(this)). User’s could still permanently lock funds by
sending directly to the contract by accident. Preventing address(0) is probably the most
critical so ultimately this is acceptable if they intentionally decided to only fix for
address(0).

10.9 Inconsistent inflation due to rounding truncation

Context: EpochBasedInflationaryVoteToken.sol

Description: Due to the small total supply and necessity to round down user balances
across epochs, users with smaller balances will be unable to inflate past their initial
balance, even when participating in an epoch.

The following passing test reveals the discrepancy in balance inflation where user
_alice is unable to inflate their balance despite participation.

// ttg/test/EpochBasedInflationaryVoteToken.t.sol

function test_InflationTruncation() external {

_warpToNextTransferEpoch();

_vote.mint(_alice, 4);

_vote.mint(_bob, 9);

_vote.mint(_carol, 10);

https://github.com/MZero-Labs/common/pull/25
https://github.com/MZero-Labs/protocol/pull/147
https://github.com/MZero-Labs/ttg/pull/237
https://github.com/MZero-Labs/protocol/commit/ec4adf8a9a37da107c169f69aa45a57db49e7193
https://github.com/MZero-Labs/protocol/commit/ec4adf8a9a37da107c169f69aa45a57db49e7193
https://github.com/MZero-Labs/common/commit/0da7d2fecff44dc6d9d4c3d9b3cf6b8dd8926f9d
https://github.com/MZero-Labs/ttg/commit/0c86903456266e3814d5086c63b680063d03bdb6
https://github.com/MZero-Labs/ttg/blob/26c69363b09d021838ee58757ef230d0d3e31e5a/src/abstract/EpochBasedInflationaryVoteToken.sol

assertEq(_vote.balanceOf(_alice), 4);

assertEq(_vote.balanceOf(_bob), 9);

assertEq(_vote.balanceOf(_carol), 10);

_warpToNextVoteEpoch();

_vote.markParticipation(_alice);

_vote.markParticipation(_bob);

_vote.markParticipation(_carol);

_warpToNextTransferEpoch();

// Balances inflate upon the end of the epoch

assertEq(_vote.balanceOf(_alice), 4);

assertEq(_vote.balanceOf(_bob), 10);

assertEq(_vote.balanceOf(_carol), 12);

}

Recommendation: Review rounding properties for users with small balances and
corresponding effects on totalSupply when user inflation is truncated. Add tests of
expected behavior for users who have had their inflation rounded against to document
expected behavior.

M^ZERO: Won’t fix

Will be solved by experimenting and setting a big enough initial supply.

Prototech: Acknowledged

11. Informational Findings

11.1 transferFrom with insufficient balance leads to Panic:
over/underflow

Context: EpochBasedVoteToken.sol#L272

Description:

If the from address does not have a sufficient balance to transfer to the to address, the
operation will fail for Panic: over/underflow

Recommendation:

https://github.com/MZero-Labs/ttg/blob/26c69363b09d021838ee58757ef230d0d3e31e5a/src/abstract/EpochBasedVoteToken.sol#L272

Consider a custom error for this operation.

M^ZERO: Resolved

PR: https://github.com/MZero-Labs/protocol/pull/138
Commit in main:
https://github.com/MZero-Labs/protocol/commit/20b3b62f7d5dd97f5541f79cef51f8146a2dcbd5

Prototech: Custom errors do add to clarity, and the invariant handlers have been
adapted to these new errors.

11.2 ERC20Extended: Insufficient allowance for transferFrom results
in Panic underflow

Context: ERC20Extended.sol#L86

Description:

PowerToken having an insufficient allowance set for a transferFrom call will result in a
Panic underflow error. This may apply to other tokens using ERC20Extended.

Recommendation:

This may be a common revert in practice. Consider checking that the amount being
transferred has an approval and provide a custom InsufficientAllowance() error.

M^ZERO: Resolved

PR: https://github.com/MZero-Labs/common/pull/16
Commit in main:
https://github.com/MZero-Labs/common/commit/160d1058eab98ddb1e0406ae519c13f8b3d967
4d

Prototech: Fixed

11.3 can freeze deactivated minter

Context: MinterGateway.sol#L338-L344

Description:

Unlike other functions that affect active minters, freezeMinter does not ensure that the
minter has not already been deactivated. There does not seem to be an impact to this,
other than the strange minterState where the minter is both isDeactivated == true
and has a value for their frozenUntilTimestamp.

https://github.com/MZero-Labs/protocol/pull/138
https://github.com/MZero-Labs/protocol/commit/20b3b62f7d5dd97f5541f79cef51f8146a2dcbd5
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/ERC20Extended.sol#L86
https://github.com/MZero-Labs/common/pull/16
https://github.com/MZero-Labs/common/commit/160d1058eab98ddb1e0406ae519c13f8b3d9674d
https://github.com/MZero-Labs/common/commit/160d1058eab98ddb1e0406ae519c13f8b3d9674d
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L338-L344

Recommendation:

Consider adding onlyActiveMinter modifier to the freeze function so it reverts if called
on a deactivated minter.

M^ZERO: Won’t fix

Situation is acknowledged and doesn’t worth additional checks.

Prototech: Acknowledged

11.4 StandardGovernor.t.sol does not test setKey

Context: StandardGovernor.t.sol#L717-L721

Description:

The StandardGovernor Unit test only checks that onlySelf test fails, it does not have a
happy path test like the others. The setKey function is missing from the Mock as well.

Recommendation:

M^ZERO: In progress, will be resolved next week

Prototech: Acknowledged

11.5 Allow public reading of proposalFees in StandardGovernor

Context: StandardGovernor.sol#L180-L182

Description:

In order for the DistributionVault to get CashToken's to distribute, someone needs to call
sendProposalFeeToVault, but there is no way on-chain to tell if there is a fee to send
since _proposalFees is internal and does not have a public accessor. This could be a
limiting UX for keepers to be able to distribute fees and maintain the system.

Recommendation:

Add a getFee(proposalId_) function that returns
proposalFees[proposalId].fee

M^ZERO: Resolved

PR:
https://github.com/MZero-Labs/ttg/pull/232

https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/test/StandardGovernor.t.sol#L717-L721
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/StandardGovernor.sol#L180-L182
https://github.com/MZero-Labs/ttg/pull/232

Commit in main:
https://github.com/MZero-Labs/ttg/commit/aa5e183f903b905ceab8e9d79ec2e7aba8ce1184

Prototech: Fixed

11.6 Reduce Duplicate Code to Prevent the Introduction of Bugs
Context:
ERC3009.sol#L322

ERC3009.sol#L334-L336

Description:

The AuthorizationAlreadyUsed() check on line 322 is the same as the
_revertIfAuthorizationAlreadyUsed() check and should be replaced with
_revertIfAuthorizationAlreadyUsed() to reduce the chance bugs are introduced
by changes happening in one location and not the other in the future. This change will
marginally increase security, but also increase gas costs.

Recommendation:

diff --git a/src/ERC3009.sol b/src/ERC3009.sol

index f988505..af5a8e5 100644

--- a/src/ERC3009.sol

+++ b/src/ERC3009.sol

@@ -319,7 +319,7 @@ abstract contract ERC3009 is IERC3009, StatefulERC712 {

* @param nonce_ Nonce of the authorization.

*/

function _cancelAuthorization(address authorizer_, bytes32 nonce_) internal {

- if (authorizationState[authorizer_][nonce_]) revert

AuthorizationAlreadyUsed(authorizer_, nonce_);

+ _revertIfAuthorizationAlreadyUsed(authorizer_, nonce_);

authorizationState[authorizer_][nonce_] = true;

M^ZERO: Resolved

PR: https://github.com/MZero-Labs/common/pull/23
Commit in main:
https://github.com/MZero-Labs/common/commit/2f8ea88fb653ee44beb29127d6112661317936c
1

Prototech: Fixed

https://github.com/MZero-Labs/ttg/commit/aa5e183f903b905ceab8e9d79ec2e7aba8ce1184
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/ERC3009.sol#L322
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/ERC3009.sol#L334-L336
https://github.com/MZero-Labs/common/pull/23
https://github.com/MZero-Labs/common/commit/2f8ea88fb653ee44beb29127d6112661317936c1
https://github.com/MZero-Labs/common/commit/2f8ea88fb653ee44beb29127d6112661317936c1

11.7 SignatureChecker.sol vulnerable to signature malleability
Context:
SignatureChecker.sol#L76-L87

SignatureChecker.sol#L42-L49

Description:

The OZ libraries were found vulnerable to a signature malleability attack because they
allowed valid signatures for the same signed data. The MZero SignatureChecker.sol
appears to implement the same validation pattern as the vulnerable OZ contracts. The
vulnerability does not seem to affect the code at this time.

This is the code diff of the OZ bug fix: OZ patch
The advisory: here

The researcher's PoC: here

Recommendation: Recommend updating signature_checker.sol to prevent signature
malleability.

M^ZERO: Acknowledged

We are aware of this issue and added a Natspec comment outlining the issue and
recommending to not use the signature as a unique identifier.

https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/s
rc/libs/SignatureChecker.sol#L53

Prototech: We believe, given the context of this library, that this comment should be
sufficient to make developers aware of the danger.

11.8 Investigate MinterGateway and MToken updateIndex

Context: protocol/MinterGateway.sol#L405-L410

Description:

Calling updateCollateral on MinterGateway calls updateIndex which updates the
MinterGateway's latestIndex, minterRate and latestUpdateTimestamp. It also
calls MToken.updateIndex which updates its latestIndex, latestUpdateTimestamp
and earnerRate.

Further, their note says:

https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/libs/SignatureChecker.sol#L76-L87
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/libs/SignatureChecker.sol#L42-L49
https://github.com/OpenZeppelin/openzeppelin-contracts/compare/v4.7.2...v4.7.3
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://github.com/pcaversaccio/malleable-signatures?tab=readme-ov-file
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/libs/SignatureChecker.sol#L53
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/libs/SignatureChecker.sol#L53
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L405-L410

// NOTE: Given the current implementation of the mToken transfers and its rate

model, while it is possible for

// the above mint to already have updated the mToken index if M was minted to

an earning account, we want

// to ensure the rate provided by the mToken's rate model is locked in.

Recommendation:

There is a potential that this is susceptible to read-only reentrancy where calls that
depend on an updated rate can be made in such a way to expose a vulnerability. We
recommend evaluating this path to reasonably ensure it is not a problem.

M^ZERO: Acknowledged

After creating a branch where _updateIndex was called at the beginning of the function
and _updateRate was called at the end of the function, and having all conversion
functions rely on _latestIndex rather than computing currentIndex(), the gas benefits
were about 1% for MToken and 2-3% for MinterGateway, with the tradeoff being the
code was harder to read and had “more lines”. We have decided not to make this
change.

Prototech: Acknowledged

11.9 MinterGateway does not validate that all signatures are in
ascending order

Context: protocol/MinterGateway.sol#L996

Description:

If the threshold is met before checking all the signatures submitted, then subsequent
signatures will not be checked that the validators were sorted correctly.

For instance if the threshold is 3, then this would pass as long as the first 3 signatures
were valid.

address[] validators = [

address(0),

address(1),

address(2),

address(2),

address(1),

address(0)

];

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L996

There are no known impacts of this, but if signature order is ever relied on outside of
this function or in integrations, this is important (as well as that some signatures could
be invalid since all this requires is that the min threshold are valid).

M^ZERO: Won’t fix, design

For the convenience of minter, we permit minters to send the minimum of valid
signatures. Some of the signatures can come from not approved anymore validators.
(ex validator was remove right before minter submitted tx)

Prototech: Acknowledged

11.10 MinterGateway verifyValidatorSignatures could bail early

Context: protocol/MinterGateway.sol#L987

Description:

UpdateCollateral already verifies that validators_, timestamps_, signatures_ all
have the same length. Verification could bail earlier by ensuring there are at least as
many signatures as the required threshold.

Recommendation:

Add the following line after threshold_ is retrieved.

if (signatures.length < threshold_) revert NotEnoughValidSignatures(0, threshold_)

M^ZERO: Won’t fix, design. Same as above.

Prototech: Acknowledged

11.11 OnBehalf -> OnBehalfOf

Context:

● protocol/MToken.sol#L25
● protocol/MToken.sol#L103-L112
● protocol/MToken.sol#L163-L165
● protocol/IMToken.sol#L19
● protocol/IMToken.sol#L46-L50
● IMToken.sol#L88-L92
● IMToken.sol#L125-L126

Description:

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L987
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L25
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L103-L112
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L163-L165
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/interfaces/IMToken.sol#L19
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/interfaces/IMToken.sol#L46-L50
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/interfaces/IMToken.sol#L88-L92
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/interfaces/IMToken.sol#L125-L126

Names like allowEarningOnBehalf() don't match other nomenclature

Recommendation:

Potentially change this and others to allowEarningOnBehalfOf()

M^ZERO: Won’t fix. Method was deleted.

Prototech: Acknowledged

12. Appendix

12.1 UML Diagrams for Reference
● MToken, MinterGateway, Registrar

12.2 Slither Detection Report
● Slither Detection Report File

12.3 List of Invariants and Descriptions

The following is an itemized list of invariants from the invariant test suite:

Distribution Vault Invariants
Invariant Description

DV_M1 The zeroToken in the distributionVault contract is correctly set.

DV_M2 The name of the distributionVault contract is "DistributionVault".

DV_M3 The CLOCK_MODE in the distributionVault contract is set to "mode=epoch".

DV_M4 The clock in the distributionVault contract matches the currentEpoch from PureEpochs.

DV_G1 * Due to the nature of Foundry's testing suite and several spots where we have loops, it
was necessary to ensure that we weren't stuck in an infinite loop. If our modifier reverts
due to a gas violation, we increment this value in the appropriate handler.

DV_B1 After a successful claim or claimBySig we add the Distribution Vault's value for get
claimable for the call we just made. This should always be zero.

DV_B2 Each successful claim/claimBySig call must mark all relevant Epochs as claimed.

DV_B3 There should never be successful claims greater than the total tokens in successful
distribution calls.

https://gist.github.com/derek-flossman/d521d5fa59543352fbaf7bf05ddd32e1
https://gist.github.com/derek-flossman/9988b3c5f327da60630bf22b7303f65e
https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/DistributionVaultInvariants.t.sol

Emergency Governor Invariants
Invariant Description

EG_M1 The zeroGovernor address matches the zeroGovernor within the emergencyGovernor
contract.

EG_G1 See DV gas violation description

MToken Invariants
Invariant Description

M_M1 The mToken contract's decimals are set to 6.

M_M2 The ttgRegistrar in the mToken contract matches the address of _registrar.

M_M3 The minterGateway in the mToken contract matches the address of _minterGateway.

M_G1 See DV gas violation description

M_B1 The total supply equals the sum of total earning and total non-earning supply in the
mToken contract.

M_B2_B3_B4 Invariants B2, B3, B4 should always hold true, but are based on related values. This
tests each in an efficient way.

M_B2 The sum of all user balances is greater than or equal to the total supply minus the sum
of all earners but less than or equal to the total supply.

M_B3 The sum of balances for non-earners matches the total non-earning supply.

M_B4 The sum of all earner balances is greater than or equal to the total earning supply minus
the sum of all earners but less than or equal to the total earning supply.

M_P1 No contract other than the minterGateway can have a successful mint call.

M_A1 No successful transfer can decrement the allowance if it was set as max beforehand.

M_A2 A successful transfer when max allowance is not set should always decrement the
allowance by the amount transferred.

M_A3 All successful permit calls should properly increment the nonce per the EIP 2612
standard.

M_Z1 All relevant, successful allowance calls should properly increment the nonce per the EIP
3009 standard.

M_Z2 All relevant, successful allowance calls should only succeed if the valid period is
respected per the EIP 3009 standard.

M_Z3 No successful, relevant allowance call should change the relevant allowance of the
actors per the EIP 3009 standard.

MZero Invariants
Name Description

MZ_T1 An Invariant harness sanity check which checks to ensure that timestamps across

https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/EmergencyGovernorInvariants.t.sol
https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/MTokenInvariants.t.sol
https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/MZeroInvariants.t.sol

various models are in sync.

Minter Gateway Invariants
Name Description

MG_M1 The mToken associated with the minterGateway is equal to the expected mToken
address.

MG_M2 The mint ratio of the minterGateway is less than or equal to 10,000% or 1,000,000 bps.

MG_B1 Regardless of updateCollateral expiration, the collateral of minters should sum to equal
the total collateral tracked in successful updateCollateral calls.

MG_B2 The sum of all users' pending collateral retrievals should equal the total collateral
successfully retrieved via the proposeRetrieval function.

MG_B3 Validates that the sum of user balances equals the total minted amount.

MG_B4 The total value from all proposeMint calls should equal the total of all successful mintM,
cancelMint calls + the pending mint calls.

MG_B5 For each user, the sum of their pending Collateral retrievals should equal their total
Pending collateral retrieval.

MG_B6 If a user does not have expired collateral their collateralOf should equal their tracked
collateral - their pending retrievals. If their collateral has expired, their collateralOf
should always be 0

MG_B7 The pending mint proposals equal the sum of mintProposalOf for each actor.

MG_B8 The minter gateway cannot burn more tokens than it minted.

MG_G1 See DV gas violation description

MG_B9 The sum of active Minter's rawOwedM equals principalOfTotalActiveOwedM.

MG_N1 The minter gateway's retrievalNonce should equal the number of successful propose
Retrieval calls.

MG_N2 The minter gateway's mintNonce should equal the number of successful proposeMint
calls.

MG_T1 The penalizedUntilTimestamp is less than or equal to updateTimestamp.

Power Bootstrap Token Invariants
Name Description

PB_B1 The balance is equal to the past total supply of the power bootstrap token at timestamp
0.

PB_G1 See DV gas violation description

Power Token Invariants
Name Description

https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/MinterGatewayInvariants.t.sol
https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/PowerBootstrapTokenInvariants.t.sol
https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/PowerTokenInvariants.t.sol

P_M1 The decimals of the powerToken contract is equal to 0.

P_B1 During Transfer Epochs, the sum of each user's power token balance must equal the
totalSupply.

P_B2 Power Token totalSupply never deflates.

P_B3 Each subsequent Epoch must have as much or more PowerToken totalSupply.

P_B4 For each Epoch that PowerToken inflates, it inflates by 10%.

P_Z1 All relevant, successful allowance calls should properly increment the nonce per the EIP
3009 standard.

P_Z2 All relevant, successful allowance calls should only succeed if the valid period is
respected per the EIP 3009 standard.

P_Z3 No successful, relevant allowance call should change the relevant allowance of the
actors per the EIP 3009 standard.

P_Z4 Only the StandardGovernor can take privileged actions

P_Z5 There are no violations related to functions executing outside the expected voting
epoch.

P_VD1 For all timepoints t < clock, getVotes(address(0)) and getPastVotes(address(0), t)
SHOULD return 0.

P_VD2 Votes for an account equal the sum of balances of all accounts that delegate to it.

P_VD3 POWER totalVotingPower(delegates) equals POWER totalSupply(holders) +
amountToAuction, at Transfer Epoch

P_VD4 For all accounts a, getPastVotes(a, t) MUST be constant after t<clock is reached.

P_VD5 For all accounts a, pastBalanceOf(a, t) MUST be constant after t < clock is reached.

P_VD6 For all accounts a, pastDelegates(a, t) MUST be constant after t < clock is reached.

P_G1 See DV gas violation description

Protocol Invariants
Invariant Description

PROT_T1 The current timestamp is equal to a variable or constant named currentTimestamp.

PROT_T2 updateIndex always updates the latestUpdateTimestamp and ensures distribution of
excess Owed M

PROT_S1 MinterGateway.updateIndex always calls MToken.updateIndex

Registrar Invariants
Invariant Description

R_M1 The zeroGovernor in the registrar is equal to the specified _zeroGovernor.addr.

R_M2 The consistency between the keys and values stored in a registrar contract.

R_Z1 No permissioned calls can succeed unless they are from the Standard or Zero governor

https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/ProtocolInvariants.t.sol
https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/RegistrarInvariants.t.sol

R_G1 See DV gas violation description

Standard Governor Invariants
Invariant Description

SG_M1 The emergencyGovernor in standardGovernor is equal to the specified
_emergencyGovernor.addr.

SG_M2 The vault in standardGovernor is equal to the specified _distributionVault.addr.

SG_M3 The zeroGovernor in standardGovernor is equal to the specified _zeroGovernor.addr.

SG_M4 The zeroToken in standardGovernor is equal to the specified _zeroToken.addr.

SG_M5 That maxTotalZeroRewardPerActiveEpoch in standardGovernor is equal to the
specified _maxTotalZeroRewardPerActiveEpoch.

SG_M6 The registrar in standardGovernor is equal to the specified _registrar.addr.

SG_M7 The voteToken in standardGovernor is equal to the specified _powerToken.addr.

SG_Z1 There are no violations related to the governor address being zero in the context of a
Standard Governor.

SG_G1 See DV gas violation description

TTG Invariants
Invariant Description

TTG_T1 Invariant harness sanity check which checks to ensure that timestamps across various
models are in sync.

Zero Governor Invariants
Invariant Description

ZG_M1 _cashToken1 is allowed by the zeroGovernor using the isAllowedCashToken function.

ZG_G1 See DV gas violation description

Zero Token Invariants
Invariant Description

ZT_M1 The zeroToken has 6 decimals.

ZT_B1 The sum of individual balances equals the total supply of zeroToken.

ZT_P1 Only the Standard Governor can call mint

ZT_A1 No successful transfer can decrement the allowance if it was set as max beforehand

ZT_A2 A successful transfer when max allowance is not set should always decrement the
allowance by the amount transferred

https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/StandardGovernorInvariants.t.sol
https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/TTGInvariants.t.sol
https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/ZeroGovernorInvariants.t.sol
https://github.com/Prototech-Labs/MZero-protocol-invariants/blob/master/test/invariant/ZeroTokenInvariants.t.sol

ZT_A3 All successful permit calls should properly increment the nonce per the EIP 2612
standard.

ZT_Z1 All relevant, successful allowance calls should properly increment the nonce per the EIP
3009 standard.

ZT_Z2 All relevant, successful allowance calls should only succeed if the valid period is
respected per the EIP 3009 standard.

ZT_Z3 No successful, relevant allowance call should change the relevant allowance of the
actors per the EIP 3009 standard.

ZT_VD1 Votes for address(0) are 0 for all timepoints before the current epoch.

ZT_VD2 The votes for an account equal the sum of balances of all accounts that delegate to it.

ZT_VD3 For each account (a != 0) and timestamp (t < clock), the delegated voting power
recorded by getPastVotes matches the sum of the historical balances of accounts that
delegated their votes to account (a) when the clock overtook timestamp t.

ZT_VD4 The delegated voting power for all accounts remains constant after each timestamp until
the current clock time is reached.

ZT_VD5 The past token balances for all accounts remain constant after each timestamp until the
current clock time is reached.

ZT_VD6 Past delegates for all accounts remain constant after reaching the current epoch.

ZT_G1 See DV gas violation description

