PUBLIC

Code Assessment

of the Protocol and Governance

Smart Contracts

April 24, 2024

Produced for

by

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
System Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

© 00 N o 0o B~ W DN B

Notes

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG

15
16
17
23
33
38

https://chainsecurity.com

1 Executive Summary

Dear MAMZERO team,

Thank you for trusting us to help MA"ZERO Labs with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Protocol and Governance
according to Scope to support you in forming an opinion on their security risks.

MAZERO Labs implements a stablecoin (MToken) backed by real-world assets, like T-bills, along with a
Two-Tokens Governance system (TTG).

The most critical subjects covered in our audit are asset solvency, functional correctness, and precision
of arithmetic operations. Security regarding asset solvency is high. Security regarding functional
correctness is satisfactory, however users should be aware that the rare event of redeployment of
Power Token might cancel their token transfers or inflations in the last two epochs before the
redeployment event, see Side-effects of Resets. Precision of arithmetic operations is improvable due to
the rounding errors in the Power Token that accumulate over time, see Effects of Roundings in
PowerToken.

The general subjects covered are code complexity, use of uncommon language features, and gas
efficiency. The code-base extensively employs assembly code to manually compute storage slots for
array entries. While no specific issues have been detected with this usage, it is worth noting that this
approach bypasses the safety features implemented by Solidity. The code-base can be more efficient in
terms of gas, see Gas Optimizations.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings 6
N cosé conestsn) 3
o) 1
Wik Accepicd) 1
. 1
(Low)-Severity Findings 22
N cosé conestsn) 14
Y Specification Changed 1
of) 1
. 6
@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code

commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Protocol and Governance TTG
pr ot ocol , and common repositories based on the documentation files. The table below indicates the

code versions relevant to this report and when they were received.

TTG

V | Date Commit Hash Note

1 | 08 Jan 2024 | a8127901falf24a2e821cf4d9854alaabac8088c Initial version

2 | 01 Mar 2024 | 9ef2198cc744f392bf87c15e134f27ec15aa5aaa Version with fixes

3 | 15 Apr 2024 | a4db6f1828f844b1bfb37348d37b2f8de9f70e37 Version with fixes

4 | 23 Apr 2024 | 47e3a9af8f5e26f1785f73e8bfa9095b27541627 Final version
protocol

V | Date Commit Hash Note

1 | 08 Jan 2024 | 3499f50ff3382729f3e59565b19386ba61ef8e36 Initial version

2 | 01 Mar 2024 | 2f12e10a753121d6de6f99847875d9011645770c Version with fixes

3 | 23 Apr 2024 | 58e0ccc9211a97abd7f21c5499740f6d8b597435 Final version
common

V | Date Commit Hash Note

1 | 08 Jan 2024 | 4a37119f2da946c6d8ad7b9a70dfdd219225115b Initial version

2 | 01 Mar 2024 | f4473275da04ab839e777c67122c00e495601bf5 Version with fixes

3 | 15 Apr 2024 | e809402c4cc21f1fa8291f17ee0aee859f3b0d29 Final version

For the solidity smart contracts, the compiler version 0. 8. 23 was chosen.

For TTG, the following contracts are in the scope of the review:

Di stributionVault. sol

Emer gencyGover nor . sol

Emer gencyGover nor Depl oyer . sol
Power Boot st rapToken. sol

Power Token. sol

Power TokenDepl oyer . sol
Regi strar. sol
St andar dGover nor . sol

St andar dGover nor Depl oyer . sol
Zer oGover nor . sol

Zer oToken. sol
abstract:

Bat chGover nor . sol

MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

ERC5805. sol
EpochBased! nf | at i onar yVot eToken. sol
EpochBasedVot eToken. sol
Thr eshol dGover nor. sol
i nterfaces:
| Bat chGover nor . sol
| ERC5805. sol
| ERC6372. sol
| EpochBasedlI nf | ati onar yVot eToken. sol
| EpochBasedVot eToken. sol
| Gover nor. sol
| Thr eshol dGover nor . sol
i nterfaces:
| Depl oyer . sol
| Di stributionVault. sol
| Emer gencyCGover nor . sol
| Emer gencyGover nor Depl oyer . sol
| Power Boot st rapToken. sol
| Power Token. sol
| Power TokenDepl oyer. sol
| Regi strar. sol
| St andar dGover nor . sol
| St andar dGover nor Depl oyer. sol
| Zer oGover nor. sol
| Zer oToken. sol
l'ibs:
Pur eEpochs. sol

For pr ot ocol , the following contracts are in the scope of the review:

MTroken. sol
M nt er Gat eway. sol
abstract:
Cont i nuousl| ndexi ng. sol
i nterfaces:
| Cont i nuousl| ndexi ng. sol
| MToken. sol
I M nt er Gat eway. sol
| Rat eMbdel . sol
| TTGRegi strar. sol
i bs:
Cont i nuousl ndexi nghat h. sol
TTCRegi st rar Reader . sol
r at eModel s:
M nt er Rat eMbdel . sol
Spl i t Ear ner Rat eModel . sol
St abl eEar ner Rat eModel . sol
i nterfaces:
| Ear ner Rat eMbdel . sol
I M nt er Rat eModel . sol
| St abl eEar ner Rat eMbdel . sol

For conmon, the following contracts are in the scope of the review:

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

Cont r act Hel per. sol
ERC20Ext ended. sol
ERC3009. sol
ERC712. sol
St at ef ul ERC712. sol
i nterfaces:
| ERC1271. sol
| ERC20. sol
| ERC20Ext ended. sol
| ERC3009. sol
| ERC712. sol
| St at ef ul ERC712. sol
i bs:
Si gnat ur eChecker. sol
Ul nt Mat h. sol

In (Version 2), the scope has been modified as follows:
* The file and contract ERC712 in commbn/ has been renamed ERC712Ext ended.
* A new interface conmon/ i nt er f aces/ | ERC712Ext ended. sol has been added.

» The rate model pr ot ocol / r at eMbdel s/ Spl i t Ear ner Rat eModel . sol was removed from the
codebase.

In (Version 3), the following file was renamed:

* The file St abl eEar ner Rat eMbdel has been renamed Ear ner Rat eMbdel .

2.1.1 Excluded from scope

Any contracts that are not explicitly listed above are out of the scope of this review. Third-party libraries,
like sol mat e, are out of the scope of this review. Furthermore, the soundness of the financial model was
not evaluated. Finally, the setup of the special-purpose vehicle (SPV) that holds the collateral was not in
scope of this review, and it is assumed that the integration with smart contracts works always according
to the specifications.

3 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

MAZERO Labs offers a stablecoin (MIroken) backed by real-world assets, like T-bills, along with a
Two-Tokens Governance system (TTG). The protocol considers two main actors, Minters and Validators.
The first have collateral in an SPV and can mint stablecoin against their collateral, the latter are trusted
by the system and bear the responsibility of verifying Minters' offchain collateral value. The Governance
is composed of two tokens, Power Token and Zer oToken. Token holders can make proposals and vote
on them to change some of the parameters of the system.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3.1 Protocol
3.1.1 MToken

The MIoken contract is a stable coin backed by collateral locked in an off-chain entity. Minters can mint
and burn MIoken through the M nt er Gat eway contract. Allowlisted users can earn interest by calling
the st ar t Ear ni ng function and their balance will increase over time. Any change in the total amount of
Mrokens earning interest triggers an update to the earner interest rate. The earner interest rate is
calculated in external rate model contract set by Governance. The total supply of the token consists of all
earning balances (incl. interest) and non-earning balances and is inflationary. A user can stop earning
interest by calling the st opEar ni ng function and the interest earned up to that point will be added to
their balance. Governance can remove a earner from the whitelist and anyone can stop them earning
interest. The whitelisting feature can be disabled by Governance, which would allow any M holder to
switch freely between earning and non-earning states.

For non-earner the contract stores their real balance, while for earners the contract stores the principal
amount:

realBalance

principalAmount = === o

The index is calculated using the formula for Continuous compounding interest:
index; = index;_ 1 * eeamerrate* sgg0
The exponential function is approximated with the R(4, 4) Padé approximant around point 0.

The transfer and transfer Fr omfunction take the present amount as an argument and rounds it
down to the principal when needed. Transfers can be divided into two types: in-kind transfers and
out-of-kind transfers. In-kind transfers happen when the sender and the recipient are both earners, or
both non-earners. In this situation, the rounded-up principal is exchanged for the former and the token
amount is exchanged for the latter. Out-of-kind describes transfers where only one of the participants is
earner. If the sender is the earner, its balance is reduced by the rounded-up principal amount and the
recipient's balance is increased by the token amount. If the sender is the recipient, its balance is
increased by the rounded-down principal amount and the sender's balance is decreased by the token
amount. Note that integrators must be aware of unexpected balance values after mint and transfers, see
Effects of Roundings in MToken.

M token has 6 decimals and supports EIP-2612 permits, via EIP-712 or EIP-1271 signatures, and
transfers with authorization according to EIP-3009 (via ERC-712 signatures / ERC-1271 support).

3.1.2 MinterGateway

The M nt er Gat eway contract is the access point for the minting or burning of MIoken, it also stores the
accounting of the debt. There are 2 types of actors that interact with the contract: Validators and Minters.
Minters keep collateral in an off-chain entity (i.e. SPV) and mint MIoken against their collateral.
Validators periodically verify the state of the off-chain collateral and sign it.

In order to mint new M minters have to:

1. update their collateral with updateCollateral () by providing enough EIP-712
Updat eCol | at er al signatures, signed by validators. The signatures count threshold is set by
governance. The recorded collateral updated timestamp is set to the oldest timestamp of the
signatures batch. Minters are expected to refresh their collateral value once a day (decided by
governance). If a Minter does not refresh their collateral within the update interval, their collateral
value is considered to be 0, making them undercollateralized if they had any debt.

2. open a minting request with pr oposeM nt . The proposals have a unique ID and can be cancelled
by any validator. Their future position must be over-collateralized for the call to succeed.

3. mint Mfor the open request ID, if their request is not cancelled or expired. The position must be
over-collateralized for the call to succeed.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Minters can receive penalties in two cases:

« if they miss update intervals. The penalty is imposed upon interaction with updat eCol | at eral (),
and bur nM) for active Minters. It is computed as
(nbrMissedUpdatelntervals * principalAmount) * penaltyRate. The system charges a penalty at
most once per missed interval.

«if they are undercollateralized. The penalty is imposed upon interaction with
updat eCol | ateral (). It is computed as (22Alowedbebt _ principalAmount) * penaltyRate, with
maxAllowedDebt = collateralValue * mintRatio. The m nt Rati o is set by governance and is

0% = mintRatio = 10'000%. Note that col | at er al Val ue = 0 if a collateral update is missed.

The validators are trusted parties and are responsible for verifying the amount of collateral locked in the
SPV and signing the update request. The whitelisted validators list is managed directly by the
governance. The update requests are verified in the updat eCol | at er al function and the collateral
value is stored along with the update timestamp. All the collateral values must match in the batch, and
the recorded update timestamp is the smaller of the batch. Minters should submit signatures ordered by
validators' addresses.

Minters have to pay interest on their debt. The minter interest rate is calculated in an external rate model
contract set by Governance. The contract stores the principal amount of the minted Mroken:

realBalance

principalAmount = === o

The index is defined analogously to the MToken contract:
indexy = index; _ 1 * eMinterRate* 55

The exponential function is approximated with the R(4, 4) Padé approximant around point 0. Any change
to the amount of MIokens or collateral will trigger an update to the minter interest rate. The earner
interest rate is assumed to depend on the minter interest rate, so it is updated with the minter index. With
each update, the difference of the interest paid by minters and the interest owed to earners is calculated
and minted to the governance's Di st ri buti onVaul t.

Minters are whitelisted entities. They must first be acti vat ed by governance vote. Validators can
f r eeze Minters to stop them from minting MTokens for some period.

When Minters exit the system or as an ultimate punishment, Minters can be deactivated by governance.
Once deactivated, a Minter cannot be reactivated. Deactivated minters do not accrue any interest, so the
contract stores their balance in M token. After Minters are removed by governance anyone can
deacti vat e them: Their owed Mtoken balance stops accruing the minter interest and their collateral
balance is deleted. As a kind of liquidation, Mholders can bur n their tokens to repay the deact i vat ed
Minters debt. The protocol assumes that burners can then start negotiations with the SPV to retrieve the
underlying collateral.

Any Mholders can burn tokens to lower the debt of a Minter at any point in time. For deactivated minters,
that burns a part of their real balance. For active minters, their principal balance is lowered.

Minters can propose to retrieve collateral from the SPV when they have a high enough collateralization
ratio. Collateral that is pending retrieval is not counted towards the collateralization ratio. Validators
monitor on-chain the retrieval requests which emit event Retri eval Creat ed and include them in
signature when they are processed. The collateral retrieval is then finalized by the updat eCol | at er al
function and collateral value is updated accordingly.

3.1.3 RateModels

The protocol uses two types of rate models: The minter rate model determines the interest paid by
minters and the earner rate model determines the interest paid to earners. The contracts implement a
r at e function that returns the yearly Annual Percentage RATE (APR) of a market and is consumed by
the MIoken and M nt er Gat eway contracts without further checks. M*ZERO Labs implements 3 rate
models:

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The M nt er Rat eMbdel is the only interest rate model available for the Minters. It reads the minter
interest rate from the TTG Regi st r ar and returns it. An update to the minter interest rate in the registrar
alone does not have an effect on the interest paid by minters. The minter interest rate is only updated
once updat el ndex() is called in the M nt er Gat eway contract.

The Ear ner s have two different kind of earner interest rate models: The St abl eEar ner Rat eMbdel
and the Spl i t Ear ner Rat eMbdel . Both models aim to make sure that the interest paid to earners will
not exceed the interest paid by minters.

The Spl i t Ear ner Rat eModel defines the earner interest as:

— ; 0/ * P x _totalActiveOwed
earnerRate = min(baseRate, 90% * minterRate tota/EammgSupp,y)

Here the baseRat e is an interest rate set by governance, total Acti veOned is the amount of
Mrokens owed to minters and t ot al Ear ni ngSuppl y is the total supply of MTokens that are earning
interest.

We can define
totallnterestEarnedByMinters = totalActiveOwed * (e™nterRate * sgeomps rervean — 1)

totalinterestPaidToEarners = totalEarningSupply * (eamerRate* secomps pervers — 1)

totalActiveOWed x At .

and show with a linear approximation that for small values of minterRate fotalEarningSupply | T -

totallnterestPaidToEarners = 90% * totallnterestEarnedByMinters < totallnterestEarnedByMinters

The St abl eEar ner Rat eModel derives a safe rate for earners s.t. the interest paid by minters is equal
to the interest paid to earners over a fixed time period.

totalActiveOwed * (e MinterRate* s bervemm) — 1) = totalEarningSupply * (e (5afeRate * seomps renvem) — 1)
With

— minterRate*—=——AL_____ 4\ totalActiveOwed \ x SECONDS_PER_YEAR
safeRate =In(1 + (e sEconDs pER veaR — 1) totaIEarningSupply) At

Then
earnerRate = min(baseRate, 90% * safeRate)

As the time At that will pass until the next update is unknown they calculate the safe rate for an
confi dencel nt er val . For this timeframe the mathematical equation takes into account the compound
effect of interest. The initial value for the conf i dencel nt er val is set to 30 days.

When totalActiveOwed < totalEarningSupply, the confi dencel nt erval is set to 1 second. In this
case, the safe earner interest rate will be smaller than the minter interest rate. For less than At seconds
passed, a confi dencel nt er val of 30 days would overestimate the compounding effect of the interest
paid by minters and the resulting interest rate for earners would be too high. A confi dencel nt er val
of 1 second is a safe choice as it will underestimate the compounding effect.

When more than 30 days have passed the equations become imprecise. When
totalActiveOWed > totalEarningSupply the safe interest rate will be larger than the interest paid by
minters and the compounding effect of the interest paid to earners will be underestimated. Hence the
updat el ndex() function is assumed to be called at least once every 30 days. The case where
totalActiveOWed > totalEarningSupply can arise when Minters are deactivated.

The configuration of the model implicitly assumes that the earner rate depends on the minter rate. Note
that, any change on the interest rate by governance is applied only after updat el ndex() is triggered.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3.2 Governance

The role of the governance is to update values in the Regi strar, from where the protocol and
governance will read their parameters. This is done through proposals in the St andar dGover nor,
Emer gencyGovernor, and ZeroGovernor. PowerToken holders can vote in the
St andar dGover nor and Emer gencyGover nor . Voters are rewarded with Zer oToken when voting in
all proposals in the St andar dGover nor . Zer oToken holders can vote in the Zer oGover nor and they
have the power to redeploy the Power Token, St andar dGover nor, and Emer gencyGover nor as a
bundle.

3.2.1 Registrar

The Regi strar contract is a key-value store for the parameters of the system. Its values can only be
changed by the St andardGovernor or the Emer gencyGover nor through proposals. Here is a
non-exhaustive list of the stored values:

« list of approved Minters/Validators/Earners
» addresses of the minters and earners rate models
« freeze time for the minters

« collateral update interval

3.2.2 StandardGovernor

This contract manages proposals and voting process by voting with the vote token (Power Token) on
those proposals. Anyone can open a proposal provided they pay a pr oposal Fee as set by governance
in the form of cashToken. The proposals can: add/remove addresses from lists and set key-value pairs
in the Regi strar, and set a new proposal Fee. The vote token delegatees can cast their votes on a
proposal between the starting epoch and the ending epoch of the proposal, in this setting
startEpoch = = endEpoch, so delegatees can only cast their vote in a single voting period. An epoch is
15 days and proposals can be voted only during odd-numbered epochs.

The success of the vote is solely determined by yesVotes > noVotes once the voting epoch ended, and
no quorum is required. Votes on proposal always open at the start of the next voting epoch, voters have
one epoch to vote, and two epochs to execute the proposal. The proposers of accepted proposals see
their pr oposal Fee refunded upon execution. When the first proposal for a voting epoch is proposed, the
target supply of the vote token is set to be inflated at the start of that voting epoch. Proposals cannot be
cancelled. If a proposal is defeated or expired, the associated fee can be sent to the
Di stributionVaul t. If the proposal gets executed successfully, the proposer is refunded with the
proposal fee.

The voters participating in all proposals of a voting epoch are rewarded with their share of Zer oToken.
The delegators receive no Zer oToken reward. The maximum amount of Zer oToken distributed during
an active voting epoch is 5 million units. The voters can either call the contract to cast their votes directly,
or they can submit signatures. The contract implements ERC-712 with ERC-1271 support.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

3.2.3 PowerToken

The Power Token is an ERC-20 token with 0 decimals and the following extensions: ERC-3009,
ERC-712 with ERC-1271 support, ERC-5805. The token is an epoch-based vote token used in the
St andar dGover nor and Emer gencyGover nor, and is inflationary (10% per active voting epoch in the
St andar dGover nor). Epochs are 15 days long and start at the Merge timestamp, and all odd epochs
are potentially voting epochs. Power Token does not allow minting, transfers or delegations during
potential voting epochs. A snapshot of the total supply, balances, voting powers and delegatees is taken
at the end of each epoch. Inflation happens only during a voting epoch with at least one (Standard)
Proposal. Token holders can either vote themselves or delegate their voting power. If their voting power
has been used in every proposals of a voting epoch, their balance will grow with inflation, so token
holders are incentivized to vote on all the proposals. The token cannot be
transfer/delegated/minted/bought during odd epochs (corresponding to voting epochs).

If not all the voting power was used in a voting epoch, there is a discrepancy between the theoretical
inflationary total supply and the actual total supply of Power Token. To fill this gap, it is possible to buy()
Power Tokens up to the discrepancy amount. The pricing takes the form of a Dutch auction and is as
follows: the 15 days are divided into 100 periods and decreases linearly during each period. The price
halves from start to the end of the period, meaning that the slope of the linear price subfunction is divided
by two after every period. Mathematically, with the time remaining in the epoch Atg, the time remaining in
the period Atp, and fixed buyAmount and totalSupply currentepoch —1-

Ate Ate
__ Atp* 2smnarererod + (secondsPerPeriod — Atp) * 2seonasperrerod ~ 1 * buyAmount
COSt(AtP ! AtE) - secondsPerPeriod totalSupply currentepoch — 1

The price depends on the percentage of tokens auctioned versus the total supply. The cashToken paid
by traders is sent to Di stributionVault and later claimed by Zer oToken holders. Therefore,
Zer oToken holders have an advantage in the Dutch auction as described in ZERO holders buy
PowerToken with a discount.

When deployed, the Power Token is provided with an arbitrary bootstrap token from which it can read the
balances that apply at the bootstrap epoch. Total supply is set to 10_000 and balances are scaled down
to sum up to 10_000. Zer oGover nor can redeploy at any time Power Token and respective governor
contracts, to either remove governance rights from existing Power Token holders, or just to reset the
accounting variables which continuously grow due to the inflation. When redeploying, the bootstrap token
can either be the existing Zer oToken, or the previous Power Token. Note that after redeployment, the
old Power Token loses its value in the system.

3.2.4 ZeroGovernor

This contract manages proposals and voting process with the vote token (Zer oToken) on those
proposals. Anyone can open a proposal, at no cost. The proposal can: redeploy the standard and
emergency governance systems with the current Power Token or Zer oToken as bootstrap token for the
new Power Token, set a new cashToken, update the threshold ratio for proposals to be accepted in the
Zer oGover nor or Ener gencyGover nor . The vote token delegatees can cast their votes on a proposal
between the starting epoch and the ending epoch of the proposal, in this setting
endEpoch = startEpoch + 1. The success of the vote is determined by % = quorum. Votes on
proposal always open in the epoch they are proposed, voters have the remaining time in the current
epoch, plus one epoch to vote and execute the proposal, i.e, proposals are executable as soon as the

quorum is reached and must be executed until the end of endEpoch. Proposals cannot be cancelled.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

3.2.5 ZeroToken

The Zer oToken is an ERC-20 token with 6 decimals and the following extensions: ERC-3009, ERC-712
with ERC-1271 support, ERC-5805. The token is an epoch based vote token used in the
Zer oGover nor . Epochs are 15 days long and start at the Merge timestamp. A snapshot of the total
supply, balances, voting powers and delegatees is taken at the end of each epoch. Token holders can
either vote themselves or delegate their voting power. Zer oTokens can only be minted by the
St andar dGover nor as a reward for participation on voting.

3.2.6 EmergencyGovernor

This contract behaves exactly like Zer oGover nor, but the set of possible proposals and the vote token
are different. The proposals can: add/remove addresses from lists and set key-value pairs in the
Regi strar, and set a new proposal Fee in the StandardCovernor. The vote token is the
Power Token.

3.2.7 DistributionVault

The Di stri butionVaul t receives the excess MToken generated by Minters that was not distributed to
earners, as well as the cashTokens amounts paid upon buying Power Tokens or un-refunded
proposal Fee sent to the vault. Users can call di stribute on the vault in order to account for
additional tokens. The difference with the last recorded balance is stored and a snapshot of the token
balance is taken for the epoch where di st ri but e is called. Zer oToken holders can claim their share
of token for an epoch, based on their ZERObalance at the time of the snapshot.

3.3 Trust Model

« Validators: fully trusted. Validators are responsible to verify the off-chain collateral and produce only
valid signatures. They should actively monitor on-chain updates and cancel incorrect minting
proposals, freeze or deactivate misbehaving minters. Validators also should be always reachable
and issue valid signatures for minters.

« Minters: fully trusted. Minter's have their collateral off-chain and the smart contracts assume that
they will always pay their debt to the system. Minters are expected to update their collateral at every
interval and pay any imposed penalty.

« MIoken holders: not trusted. Anyone can hold Mtokens and use them as stablecoin.

« Power Token and Zer oToken holders: trusted to always act in the best interest of the protocol. We
assume they have the incentives to always execute successful proposals after the vote, and call
public functions that apply new parameters such as updat el ndex() .

* The cashTokens are expected to be WETH and Mas stated in the Whitepaper, but nothing prevents
MAZERO Labs to deploy the system with other cashTokens. We assume third-party tokens, if used
as cashToken, are fully trusted and they are ERC20-compliant without special behavior (e.g.,
having transfer hooks, charging fees on transfer, rebasing or inflationary/deflationary tokens).

3.4 Changes in Version 2

» The functionality allowing to start/stop earning on behalf of an address in the MToken has been
removed.

* The functions Zer oToken. get Past Vot es(addr ess, ui nt 256, ui nt 256) and
Zer oToken. past Del egat es(addr ess, ui nt 256, ui nt 256) have been removed.

*The SplitEarner RateModel have been removed. The Stabl eEar ner Rat eMbdel now
calculates the earner interest rate with the formula of the Split Ear ner Rat eMbdel when

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

totalActiveOwed < totalEarningSupply (previously the confi dencelnterval was set to 1
second):

— mi H totalActiveOwed
earnerRate = min(baseRate, 90% * minterRate * tota,EammgSupply)
The safety threshold of 90% has been removed from the stable earner model. If the interest rate of
earners is larger than the interest rate of minters, the interest paid to earners will start to outgrow the
interest paid by minters after 30 days. The interest rate index of the minters is now rounded up and the
interest rate index of the earners is rounded down.

3.5 Changes in Version 3

» The penalty for missing intervals has been revised to charge a higher penalty to minters. Previously,
failing to call updat eCol | at er al () for 1.5 intervals would incur a penalty as having zero collateral
for 1 interval, while in minters pay a penalty for missing collateral update for 1 interval first,
and then a penatly for 0.5 interval on the updated amount for beeing undercollateralized.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

4 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.
EED-severity Findings 0

(C)-Severity Findings 0

(Medium)-Severity Findings 3
* Side-effects of Resets (-)
« Effects of Roundings in PowerToken ()
« Standard Proposal Fee Has Ambiguous Denomination

(Low)-Severity Findings 7
« Sync of Address 0 During Delegation ()
« Vote Weight Has Ambiguous Interpretation ()
« Contract ERC3009 Inherits StatefulERC712(__)
« Earner Interest Can Exceed Minter's Interest(_~)
* Excess Owed M Can Be Larger Due to Rounding (=)
» Incomplete Interfaces ()
« Remaining Dust in Distribution Vault (=")

6.1 Side-effects of Resets
(Medium] [Version 2][]

Zero holders can redeploy a new POWER token through the ZeroGovernor. As ZeroGovernor is based
on a threshold voting, the proposal is executed as soon as it receives the required votes. If reset is
triggered in epoch N, the new POWER token records as bootstrap epoch N- 1, hence all accounts are
bootstrapped according to their last snapshot in epoch N- 1, ignoring any activity on old POWER token
during epoch N. A reset has the following has side-effects depending on the epoch Nwhen it happens:

CS-MZEROCORE-019

* N is even (transfer epoch): Bootstrap balances in the new Power token will be based on
snapshots from epoch N- 1. Therefore, any transfer before redeployment during epoch Nin the
old token is ignored. Similarly, POWER tokens bought during the auction are lost even though
users paid for them in the cash token. Moreover, any potential inflation from the previous voting
epoch is lost although the total supply had been inflated.

* Nis odd (voting epoch): Users voting in all standard proposals lose their inflation.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Furthermore, reset events affect the historical values for epochs before the bootstrap. Consider the
following scenario:

» Governance is deployed at epoch N.

» A reset event happens at epoch N+20. Old POWER is used as bootstrap token.

* Querying historical balance of an account at epoch N+1 depends on the old POWER token.

» A reset event happens at epoch N+30. ZERO is used as bootstrap token this time.

* Querying again the balance of an account at epoch N+1 returns a different balance as now it
depends at ZERO token.

Acknowledged:

MNZERO Labs is aware of this behavior and consider it to be inline with their design decisions.

6.2 Effects of Roundings in Power Token
(Medium] [Version 1][

Some rounding errors in the Power Token can happen in two cases:

CS-MZEROCORE-004

1. Accounts with less than 0.01% of the t ot al Suppl y in the boot st r apToken get rounded down to
zero when bootstrapped. The rounding error potentially happens also for other accounts even if
they do not round down to zero. Therefore the sum of all bootstrap amounts might not match the
initial supply.

2. Holders of Power Token with less than 10 Power Tokens do not get any balance inflation
although they (or their delegatee) vote in all proposals. This could happen due to the rounding
down in function _get I nfl ati on() . In case the holder delegates to another account which has a
voting power more than 10, its voting power inflates, but the balance of the delegator will not inflate.

Note that the difference between the total supply and the actual sum of all account balances grows over
time, and might have implications in the quorum-based governance if threshold is high (quorum might be
unreachable).

Code partially corrected:

1. The total supply has been increased from 10_000 to 1_000_000, decreasing the effect of
rounding by a factor 100 as well.

2. This issue still holds.

6.3 Standard Proposal Fee Has Ambiguous
Denomination

(@D (Medium) (Version 1) G000

The Standard Proposal Fee can be changed in two ways:

CS-MZEROCORE-005

» ZeroGovernance: set CashToken(newCashToken_, newPr oposal Fee)

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

« Standard or Emergency governances: set Pr oposal Fee()

The second option changes the proposal fee and keeps the current cash token in place. Voters
(PowerToken holders) will vote on whether the proposal makes sense in consideration of the current
cash token. Yet, changes to the cash token (voted by ZeroToken holders) before execution of the
proposal can drastically skew the proposal's intent. For instance, a fee of 1000 * 1e6 is reasonable
with M (1000 USD) but could be very cheap if the cash token is switched to WETH by zero governance.
This would enable griefing attacks in the standard governor as making new proposals has negligible cost,
while rejecting them is costly in terms of gas (majority should vote no). Similarly, a fee of 2el8 is
reasonable with WETH (2 Ether) but could become exorbitantly high if the cash token is MToken (2e14
USD or 200 trillion USD).

Risk accepted:

MAZERO Labs is aware of this issue but has decided to keep the code unchanged, providing the
following reasoning:

Zero hol der can, with the sane threshold of yes votes, nuke current Power hol ders and repl ace
themwi th thenselves, so there is no real reason for themto “play with their food” by abusing
set CashToken(newCashToken_, newProposal Fee_) to nake Power holders’ lives difficult. Nevertheless,
errors can occur, and new energency proposals or Zero proposals can be proposed passed,

and executed quickly to set the proposal fee to sonething sensible.

6.4 Sync of Address 0 During Delegation
(Low](Version 2)[j

Delegating to address(0), which is used as an alias for delegating to self, triggers a sync on
addr ess(0), hence pushing snapshots in storage for the bootstrap and sync:

CS-MZEROCORE-033

functi on _del egate(address del egator _, address newDel egatee) internal override {
I f (del egator _ newDel egatee) _sync(newbDel egatee , _clock());

Acknowledged:

M”ZERO Labs is aware of this behavior and consider it to be inline with their design decisions.

6.5 Vote Weight Has Ambiguous Interpretation
(IR (Low) (Version))

BatchGovernor._castVotes returns the value wei ght _, which is defined as the number of votes cast for
each proposal. However, if multiple proposals are voted on, the function returns the number of votes cast
for the last proposal.

CS-MZEROCORE-034

Note that a voter has the same number of votes on all proposals started in the same epoch. However,
Emergency and Zero Governors proposals can be voted on in two epochs. If a user votes on proposals
created in two different epochs, the function returns the number of votes the user had in one of the

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

epochs, depending on the order of the proposals, and not the votes cast. This is a problem for external
integrations that could misrepresent the voting weight.

Acknowledged:
Client is aware of this behavior, but has decided to keep the code unchanged.

6.6 Contract ERC3009 Inherits StatefulERC712
(LOWJ (VerSion lj(j CS-MZEROCORE-006

The contract ERC3009 extends the abstract contract St at ef ul ERC712 which keeps track of used
nonces in the public mapping nonces. However, ERC3009 does not use any functionality of this
contract.

Furthermore, ERC3009 uses random nonces of type byt es32 and the standard explicitly avoids
sequential nonces. On contrary, St at ef ul ERC712 is designed to use sequential nonces. Hence,
extending ERC712 is enough.

Acknowledged:
MAZERO Labs has acknowledged the issue but has decided to keep the code unchanged.

6.7 Earner Interest Can Exceed Minter's Interest
[Low] [Version 1)[]

In the Spl i t Ear ner Rat eModel the interest rate of earners is computed based on the minter's interest
and the ratio of total supply of active minters and the total supply of earners:

CS-MZEROCORE-003

Ul nt Mat h. mi n256(

baseRat e(),

(_EARNER_SPLI T_MULTIPLIER * (I M nterGateway(m nterGateway). m nterRate() total Acti veOnedM))
t ot al Ear ni ngSuppl y_
_ONE

DE

The multiplier is set to a constant(90%). The formula computes a higher interest rate for earners than
minters if t ot al Acti veM > t ot al Ear ni ngSuppl y_. Due to the continuous compounding effect, the
cashflow becomes negative over time, i.e., earners receive more MTokens than paid by minters.
Therefore, baseRat e() has to be chosen carefully to prevent this scenario from happening in practice.

A similar behavior manifests in the St abl eEar ner Rat eMbdel if minter's supply of M tokens is larger
than earners' supply and updat el ndex() does not get called for longer than 30 days (confidence
interval). The interest of earners exceeds the interest paid by minters due to compounding, hence netting
a negative cashflow for the system.

Acknowledged:

Contract Spl i t Ear ner Rat eMbdel has been removed from codebase (Version 2). However, the issue is
still present in the revised St abl eEar ner Rat eMbdel if the following conditions hold:

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

» The supply of owed M in minterGateway is larger than the total supply of earners.

* Mloken. updat el ndex() is not triggered for more than 30 days.

Note that MIoken. updat el ndex() is always triggered when a minter updates their collateral. Minters
are incentivized to update their collateral with a frequency enforced by the governance. However, the
governance can change the frequency in the future to any duration and raise the issue if the two
conditions above are met.

In (Version 3), the earners' interest rate is is set to 90% of the value computed in function
get Saf eEarner Rate(), hence reducing the likelihood of M overprinting. However, if
Mroken. updat el ndex() is not triggered for a long time (+30 days), overprinting can happen.

6.8 Excess Owed M Can Be Larger Due to

Rounding
[Low] [Version 1) []

Function M nt er Gat eway. updat el ndex() mints the difference between total owed M and M token
total supply to the TTG vault. The difference is computed in function excessOnmedM) which queries the
total supply from MToken:

CS-MZEROCORE-008

ui nt 240 total MSupply_ ui nt 240(1 MToken(mroken) . t ot al Suppl y()) ;

ui nt 240 total OnedM = _get Present Anbunt RoundedDown(pri nci pal O Tot al Acti veOnedM current | ndex())
total | nacti veOnedM

unchecked {
if (total OnedM_ > total Msupply_) return total OnedM_ - total MSupply_;

}

Function MIoken. t ot al Suppl y() rounds down the total supply of earners, therefore the excess M
amount is computed slightly larger than the real value. In this case, the gateway will mint more tokens to
the vault.

Acknowledged:

The MAZERO Labs team is aware of this behavior and has provided the following description:

This is fine so long as the invariant that Mroken.total Supply() <= MnterGateway.total OnedM) is
mai ntai ned. Further, this excess is limted to the max rounding error (so it's always just a
rounding error) and in any case, the TTG vault results in larger dust as it tries to divide the
m nted Mtokens across all Zero hol ders.

6.9 Incomplete Interfaces
[Low] [Version 1)[]

1. The contract M nt er Gat eway is Conti nuousl ndexi ng and ERC712, but | M nt er Gat eway
only extends | Cont i nuousl ndexi ng. For completeness, | M nt er Gat eway should also inherit
| ERC712.

CS-MZEROCORE-010

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

2. The interface | ERC3009 should declare the functions
TRANSFER W TH_AUTHORI ZATI ON_TYPEHASH() and
RECEI VE_W TH_AUTHORI ZATI ON_TYPEHASH() to match the ERC-3009 interface standard.

Code partially corrected:

1.1 M nterGateway has been updated to inherit | ERC712, but in the function
ei p712Domai n is added in | ERC712Ext ended.

2.1 ERC3009 now declares the functions listed above.

6.10 Remaining Dust in Distribution Vault
I (Low) (Version 1)()

Function Di stri butionVaul t. get d ai mabl e() rounds down when computing the amount of cash
token that can be claimed by an account, hence dust remains in the vault:

CS-MZEROCORE-029

cl ai mabl e_ (distributionOAt[token_][startEpoch_ i ndex_] bal ance_) total Supply_;

The dust of cash tokens (including MToken) accumulates in the vault and cannot be withdrawn. In case
of MToken, the locked dust has implications for last minters, who might be unable to fully repay their debt
and close their positions.

Acknowledged:
MAZERO Labs answered:

There is no real way to prevent this from happening, just as there is no real way to prevent M
from being sent to addresses to which no one has the private key (or control of), which would
also result in last minters not being able to fully repay. This neans that Mtokens are worth
nore than the nom nal debt (since Mtokens will be lost). ldeally this encourages mnting. A
full wind down would Iikely involve social l|ayers, in which remaining Mnters can be allowed or
aided in exiting. After all, their collateral is off-chain.

However, a mechanism to reduce the dust amount has been implemented, by adding 9 decimals of
precision in the computation.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 22

https://eips.ethereum.org/EIPS/eip-3009
https://chainsecurity.com

/ Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 3

« Hashing of String Arrays Is Not Compliant With EIP-712
« Code Restricts Execution of Proposal to 1 Epoch
« EIP-712 Dynamic Types

(Low)-Severity Findings 15
» Outdated Dependencies
» Ul Interpretation of COUNTING_MODE
» EIP5805 DelegateChanged Not Always Emitted
» Inconsistent Collateral and Penalty at Expiry Boundary

* Incorrect Specifications (XTI
* Missing Input Sanitization (Sl

+ No Expiry in Buy Function
» Possible Overflow When Syncing Accounts

» Possible Overflow in convertToBasisPoints

» Possible Rounding to 0 in getSafeEarnerRate
« Reentrancy in PowerToken Re-Buy

+ Remaining ToDos in Codebase

» Resubmission of Signatures and Staleness

« Timestamp 0 in Signatures
+ Wrong Condition in StableEarnerRateModel

Informational Findings 4

e Dead Code (o0 N el Td Yo 1=\

» Misleading Error Name (LR
* Reason Ignored in BatchGovernor (&l =l

« ERC712 Does Not Implement Extension EIP-5267

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

7.1 Hashing of String Arrays Is Not Compliant
With EIP-712
(Correctness | \TT I NVIRRIIA] Code Corrected)

The standard EIP712 specifies that dynamic types (i.e. arrays) must be encoded as the keccak256
hash of their contents. The function _get ReasonLi st Hash() does not follow the standard when
hashing r easonLi st which is an array of st ri ng (dynamic type):

CS-MZEROCORE-040

function _get ReasonLi stHash(string[] calldata reasonList) ... {
bytes nenory reasonBytes_;

for (...) {

reasonBytes abi . encodePacked(reasonBytes , bytes(reasonList [index]));
}

return keccak256(reasonBytes_);

}

Furthermore, using encodePacked for an array of strings enables hash collisions as it is possible to craft
different strings that produce the same hash.

Code corrected:

The function has been updated to comply to EIP712.

7.2 Code Restricts Execution of Proposal to 1

Epoch
DD (Viediim) (Version 1) G

The function St andar dGover nor . execut e() tries to execute all proposals voted in the last two
epochs. However, the function St andar dGover nor . st at e() returns the status Succeeded only for
proposals voted in the previous epoch. The state Expired is returned for older proposals, hence
stopping them from being executed. This behavior conflicts the whitepaper and the code comments in
function execut e() which state that a successful proposal can be executed during the next 2 epochs:

CS-MZEROCORE-001

/'l Proposal s have voteStart=N and vot eEnd=N, and can be executed only during epochs N+1 and N+2.

Code corrected:

The function St andar dGover nor . execut e has been updated to execute only the proposals voted in
the last epoch, and the comment was update:

/1 Proposal s have voteStart=N and vot eEnd=N, and can be executed only during epoch N+1

The condition for Proposal St at e. Acti ve in St andar dGover nor. st at e has been made stricter
(from <=to ==),asvoteStart == vot eEnd.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 24

https://eips.ethereum.org/EIPS/eip-712
https://chainsecurity.com

7.3 EIP-712 Dynamic Types
D (Medium) (Version 1) (XIS

The standard EIP712 specifies that dynamic types like arrays must be encoded as the keccak256 hash
of the concatenated encodeDat a of their contents. The following functions do not hash the arrays
according to the standard:

CS-MZEROCORE-002

* Bat chGover nor. get Bal | ot sDi gest ()
* M nt er Gat eway. _get Updat eCol | at er al Di gest ()

Code corrected:

The functions listed above now hash the arrays according to the standard.

7.4 Outdated Dependencies
7D (Low) (Version 3) (XIS

The common library referenced in the TTGis an old version of the codebase and should be updated.

CS-MZEROCORE-039

Code corrected:
The commit reference to conmon library has been updated in (Version 4).

7.5 Ul Interpretation of COUNTI NG_MODE
D (Low) (Version 2) (CIIILITED)

In the | Bat chGover nor, the enum Vot eType binds a "no" to 0 and a "yes" to 1. Abstain votes are not
supported in governance contracts. This behavior should be reflected in the view function
COUNTI NG_MODE() which returns support =f or, agai nst. However, the enum Vot eType and the
value returned by COUNTI NG_MODE are not aligned.

CS-MZEROCORE-038

Code corrected:

The function COUNTI NG_MODE() was updated to return support =agai nst, f or.

7.6 EIP5805 Del egat eChanged Not Always
Emitted
(Correctness JIET)NVIETRBY Code Corrected)

The EIP-5805 specs requests the Del egat eChanged event to be emitted when del egat or changes
the delegation of its assets from fronDelegate to toDelegate. The function

CS-MZEROCORE-007

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 25

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-5805
https://chainsecurity.com

EpochBasedVot eToken. _set Del egat ee does not fully adhere to the standard as only emits the
event when it is not the first change of delegation. l.e., if _del egat ees[del egat or _] . | engt h==0 the
function starts a snapshot for the account with the new delegatee and returns without emitting the event.

Code corrected:

The function EpochBasedVoteToken. setDel egatee has been updated to emit the
Del egat eChanged event in the special case where _del egat ees[del egat or _] . | engt h==0.

7.7 Inconsistent Collateral and Penalty at Expiry
Boundary

(Correctness JOWEETTRY Code Corrected)

The penalty and collateral calculation are not consistent with each other when
bl ock.tinestanp == updateTi nestanp + updateCollaterallnterval. The collateral will
still be the non-zeroed collateral value, but a penalty for missed collateral update will still be charged for 1
period.

CS-MZEROCORE-011

Consider the following example:
einterval = 3
* minter updated its collateral at updat eTi nest anp = 1 withcol l ateral = 42

e we are now at bl ock. ti nestanp ==

ecollateral O will return 42 since
bl ock. ti nestanp == updat eTi nestanp + interval

ca penalty will be charged for 1 period because
m ssedlntervals_ = (bl ock.tinestanp - |astUpdate) / =1

Code corrected:

The collateral value is now zero when
bl ock. ti nestanp == updat eTi nestanp + updateCol |l ateral I nterval.

7.8 Incorrect Specifications

(Coreectness JICTOUZETRY Code Corrected)

1. The natspec description of | Rat eMbdel . r at e states that the return value is APY in BPS.
However, r at e() returns the yearly interest rate does not consider the compounding.

CS-MZEROCORE-028

2. The natspec description for pri nci pal Anount in event Penal t yl nposed is incorrect.

3. The natspec @eturn wei ght _ of BatchGovernor. _castVote() indicates
The type of support to cast for each proposal, butit should be the voting power of
the voter.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

Code corrected:
The incorrect natspec descriptions listed above have been fixed in (Version 2).

7.9 Missing Input Sanitization

(D (Cow) (Version 1) (CXIEEIEED)

» Some of the functions accept an epoch=0 as input, which is an invalid input as epoch > 0.
Non-exhaustive list of such functions:

CS-MZEROCORE-012

» Zer oToken: get Past Vot es, past Bal ancesOr , past Del egat es,
_get Del egat eesBet ween, _get Val uesBet ween

* EpochBasedVot eToken: pastBal anceOf, pastDel egates, getPast Votes,
past Tot al Suppl y

e Function M nt er Gat eway. pr oposeM nt () does not perform any sanity check on dest i nati on
address.

 Function Bat chGover nor . cast Vot es() does not check that the length of input arrays matches.

Code corrected:
Various inputs sanitization have been added across the codebase, fixing the issue.

7.10 No Expiry in Buy Function
ETIDD (Low) (Version 1) CRIITRTD)

The function Power Token. buy() does not allow users to specify an expiry timestamp, which would
prevent a transaction to execute at a later time. Currently, it is possible that user's transaction gets
executed at a future transfer epoch and potentially buys tokens with a price higher than originally
intended.

CS-MZEROCORE-013

Code corrected:

The buy() function has been modified to accept an additional argument expi r yEpoch_ and the
transaction reverts when the current epoch is greater than the expiry epoch.

7.11 Possible Overflow When Syncing Accounts
D (Low) (Version 1) XD

The function _sync() in EpochBasedl nf | at i onar yVot eToken computes the unrealized inflation of
an account by iterating through all epochs since last sync. The for-|oop is implemented in
_getUnrealizedlnflation() and in each iteration, except the last one, it checks that the new
balance does not exceed the limits:

CS-MZEROCORE-014

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

i f (inflatedBal ance_ type(ui nt240). max) return type(uint240). max;

However, if the inflation from the last iteration causes the final balance of an account to exceed the limit
(t ype(ui nt 240) . max), function _sync() updates the balance with the full inflation amount via
_addBal ance() . The later uses unchecked block, hence an overflow happens.

Code corrected:

The function _get Unreal i zedl nfl ati on has been revised to ensure that the resulting balance of an
account does not overflow. If the inflated balance exceeds the maximum value of ui nt 240 to return
type(ui nt 240). max - bal ance_:

for (...) {

unchecked {
i nfl at edBal ance_ _getInflation(uint240(infl atedBal ance_));

i f (inflatedBal ance_ type(uint 240). max) return type(uint240). max bal ance_;

7.12 Possible Overflow in convertToBasisPoints

(D (Low) (Version 1) CRTIEEIEED)

The function Conti nuousl ndexi ngMat h. convert ToBasi sPoi nt s() uses unchecked block to
convert a ui nt 64 input into a ui nt 32 type. The computation can overflow for large values of i nput,
i.e.,input > type(uint32).mx * 10**8.

CS-MZEROCORE-015

This issue is unlikely to happen in the current codebase as the function is called only with inputs
representing interest rates which are capped.

Code corrected:

The output has been changed to ui nt 40, which can hold the result of the conversion up to the maximum
value of the input.

7.13 Possible Rounding to O in getSafeEarnerRate
D) (Low) (Version 1) TN

The function get Saf eEar ner Rat e in St abl eEar ner Rat eMbdel computes the value | nArg_ as
follows:

CS-MZEROCORE-016

int256 | nArg_ i nt 256(
lel2 ((((uint256(total Acti veOnedM) (del taM nterl ndex_ lel2)) lel?2) lel?2) t ot al Ear ni ngSuppl y_)

D

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

Note that deltaM nterl ndex_ is usually close to 1 (10**12) for short time intervals, hence
deltaM nterindex_ - 1el2 is a value close to 0. Therefore the intermediary result
(uint256(total Acti veOnedM) * (deltaM nterlndex_ - 1el2)) / 1el2 rounds downto O
for values of t ot al Acti veOmedMbelow a certain threshold.

Specification changed:

The specifications of function get Saf eEar ner Rat e() have changed in (Version 2), hence a confidence
interval of 1 second is not used anymore. Furthermore, del t aM nt er | ndex_ is no longer rounded
down by performing a division with 1e12:

RATE_CONFI DENCE_| NTERVAL - 30 days

uint48 deltaM nterl ndex_ Cont i nuousl ndexi nghat h. get Cont i nuous| ndex(
Cont i nuous! ndexi ngMat h. convert FronBasi sPoi nts(mnterRate_),
RATE_CONFI DENCE_| NTERVAL

E

i nt256 I nArg_ i nt 256(
lel2 + (((uint256(total ActiveOnedM) (deltaM nterlndex_ - 1lel2))) t ot al Ear ni ngSuppl y_)

)

7.14 Reentrancy in PowerToken Re-Buy

(Security J(IETVZR| Code Corrected)

In the function Power Token. buy() the cashToken in transferred from the buyer before the
total Supply of the token is increased by nint(). If the cashToken implements callbacks
(ERC777-like), this enables a reentrancy issue that allows an attacker to mint arbitrary amounts of
Power Token, as the anount ToAuct i on would only be decreased after ni nt () is called.

CS-MZEROCORE-017

Code corrected:

Function buy() has been revised to perform the transfer of the cash token at the end of the function,
following check-effect-interaction (CEIl) pattern.

7.15 Remaining ToDos in Codebase

(D (Low) (Version 1) IR

The following ToDo comments are present in the following contracts:

CS-MZEROCORE-018

* Bat chGover nor

* Thr eshol dGover nor

Addressing remaining notes help improve the quality and readability of the code.

Code corrected:

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

ToDo comments listed above have been removed from the codebase.

7.16 Resubmission of Signatures and Staleness

(D (Low) (Version 1) ST

The function _updat eCol | at eral () reverts only if the new timestamp is strictly smaller than the
current one. But if the exact same batch of signatures is used, the two timestamps will be equal and the
check will pass, even though the result is stale.

CS-MZEROCORE-041

Code corrected:

The function _updat eCol | at er al () has been updated to revert also if the new timestamp equals the
one already stored:

uint40 | astUpdateTi nestanp_ = _mnterStates[mnter_].updateTi nestanp;

it (newTi mestanp_ | ast Updat eTi mestanp_) revert Stal eCol | at eral Updat e(newTi nest anp_, | ast Updat eTi nestanp_);

7.17 Timestamp O in Signatures

(Coreectness JCOVERTBY Code Corrected)

Function M nt er Gat eway. veri fyVal i dat or Si gnat ures() currently allows signatures with a
timestamp set to 0. Although it is anticipated that validators will not typically generate signatures with a
timestamp of 0, in the event that such signatures occur, there is a risk of replaying them, given that
m nTi mest anp will always be bl ock. ti mest anp.

CS-MZEROCORE-030

Code corrected:

Function _verifyValidatorSignatures() has been updated to revert with the error
Zer oTi mest anp if a signature has a timestamp of zero:

I f (timestanps_[index] 0) revert ZeroTi nestanp();

I f (timestanps_|[index_] ui nt40(bl ock. tinestanp)) revert FutureTi mestanmp();

Note, whitelisted validators are considered fully trusted by the system and they should only provide
signatures with timestamps that match the off-chain verification of the collateral.

7.18 Wrong Condition in
St abl eEar ner Rat elMbdel
(Correctness (ETYWIETTRY Code Corrected)

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

CS-MZEROCORE-020

The function St abl eEar ner Rat eMbdel . get Saf eEar ner Rate() implements the check
expRate_ > type(uint64). max to return early if the rate is too big, otherwise the value returned by
Cont i nuousl ndexi nghat h. convert ToBasi sPoi nt s(ui nt 64(expRat e_)) will be returned.

As mentioned in the issue Possible Overflow in ConvertToBasisPoints, the function
Cont i nuousl ndexi nghat h. convert ToBasi sPoi nts will overflow if its input is greater than
t ype(ui nt 32) . max. The currently implemented check leaves a hole for the values of the rate between
type(uint32). max and type(uint64).max where the function will overflow. The function
St abl eEar ner Rat eMbdel . get Saf eEar ner Rat e() should return early if
expRate_ > type(uint32). nmax instead.

Code corrected:

The issue Possible Overflow in ConvertToBasisPoints has been fixed and the function
St abl eEar ner Rat eMbdel . get Saf eEar ner Rat e() returns the maximum value of ui nt 32 when the
expRate is greater than t ype(ui nt 32) . max:

function getSaf eEarnerRate(...) public pure returns (uint32) {

ui nt 40 saf eRate_ Cont i nuousl ndexi ngivat h. convert ToBasi sPoi nt s(ui nt 64(expRate_));
return (safeRate_ type(uint32). max) type(uint32). max uint32(safeRate_) ;

7.19 Dead Code
(Informational) (Version 1)

The libraries Pur eEpochs and Conti nuousl ndexi nghat h implement some unused functions. The
unused functions will be ignored by the compiler, but unused code can increase the difficulty of
understanding the codebase. The functions are:

CS-MZEROCORE-021

» Cont i nuousl ndexi nghat h. exponent Assenbl y
* Pur eEpochs. get Ti neUnt i | EpochSt art

» Pur eEpochs. get Ti neUnt i | EpochEnds

» Pur eEpochs. get Ti neSi nceEpochSt ar t

* Pur eEpochs. get Ti neSi nceEpochEnd

» Si gnat ur eChecker. i sVal i dECDSASI gnat ur e(addr ess, byt es32, ui nt 8, byt es32, b
yt es32)

The function EpochBasedVot eToken. _subUnchecked is never used.

Code corrected:

All the functions listed above have been removed from the codebase.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

7.20 ERC712 Does Not Implement Extension
EIP-5267
[Informational] [Version 1]

The abstract contract ERC712 does not implement the extension EIP-5267 which aims to improve the
integration of EIP-712 signatures with third-party tools.

CS-MZEROCORE-022

Code corrected:
MAZERO Labs team has implemented the EIP-5267 extension in the abstract contract ERC712Extended.

7.21 Misleading Error Name
[Informational] [Version 1]

The error ReusedNonce emitted in ERC5805. _checkAndl ncr enmrent Nonce() is misleading, as this
error will be emitted for nonce that are > currentNonce, which haven't been used yet by definition.

CS-MZEROCORE-025

Code corrected:

The error has been renamed as | nval i dAccount Nonce.

7.22 Reason Ignored in BatchGovernor

[Informational] [Version 1]

The function Bat chGover nor. cast Vot eWt hReason() takes as input a string parameter that
represents the reason. This parameter is ignored by the function and the event Vot eCast is always
emitted with an empty string as reason.

CS-MZEROCORE-027

Code corrected:

The function cast Vot eW t hReason() has been revised to include the r eason variable in the event
Vot eCast . Furthermore, new functionalities that allow users to provide reasons when submitting votes
for a list of proposals, or when voting with a signature, are implemented.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 32

https://eips.ethereum.org/EIPS/eip-5267
https://chainsecurity.com

38

Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Gas Optimizations

(Informational] [Version 1] (]

10.

11.

12.

13.

14.

CS-MZEROCORE-023

. In the function M nt er Gat eway. verifyVali dat or Si gnat ures(), the check for approved

validators can be moved higher up in the loop to save gas in the case the validator is not approved.

.In the functions Power Token. get Bal ance() and Power Token. _get Votes(),

_getUnrealizedlinflation() is called if the length of _bal ances[account_] or
_voti ngPower s[account _] is 0. This is not needed as _get Unreal i zedl nfl ati on() will
always return O in that case. l.e., as delegation are reset with the bootstrap, the only way for
_getUnrealizedlnflation() to be non-zero is for the account to have its voting power used
after boot st rapEpoch. This can be done only if the account either delegated or voted after the
redeployment, both of those actions trigger bootstrap(), which updates
_bal ances[account _] and _voti ngPower s[account _].

. The decrement of | at est VoteStart _ can be unchecked in

Bat chGovernor. _tryExecute().

. In the Thr eshol dGover nor, since _voti ngDel ay = 0 the state Pendi ng cannot be reached

and the check current Epoch_ < voteStart_ in Threshol dGovernor. state() can be
dropped.

. The function Si gnat ur eChecker . i sVal i dSi gnat ur e() will try to ECDSA-verify the signature

even if the signature is following the EIP-1271. Checking the codesize of the target to decide
whether to ECDSA-verify or to call i sVal i dSi gnat ur e() will save gas.

. The check error_ == Si gnat ur eChecker . Error. I nval i dSi gnature in

ERC712. revertlfError() can be avoided as the function throws the same error as default.

. Local variables error in functions Si gnat ur eChecker . val i dat eECDSASI gnat ure(*) are

not used.

. The first condition expiry_ !'= type(uint256). max in ERC712. revert!|fExpired() is

redundant as such timestamp cannot be expired due to bl ock. ti mest anp being smaller than
type(ui n256) . nax.

. Function ERC3009. t r ansf er Wt hAut hori zat i on() could be more gas efficient to revert early

if val i dBef ore_ and val i dAf t er _ are checked first.

Function ERC3009. r ecei veW t hAut hori zat i on() could be more gas efficient to revert early if
val i dBefore_,vali dAfter _andto_ == nsg. sender are checked first.

The internal function
Cont i nuousl ndexi ng. _get Pri nci pal Amount RoundedUp(ui nt 240, ui nt128) could be
avoided if di vi deUp() is called by caller.

The field quor unRat i o in the struct Pr oposal is unused.

The check | atestPossibleVoteStart_ > 0 in Threshol dGovernor. execute() is
redundant as cur r ent Epoch is already checked to be non-zero.

The check partici pationlnflation_ > ONEin EpochBasedl nfl ati onaryVot eToken is
redundant as the variable is set to 1000 (10%) when PowerToken is deployed.

MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

15. The sanity checks in Ener gencyGover nor. construct or () are redundant as they are checked
by the deployer.

16. Similarly, several checks in St andar dGover nor . construct or () are redundant.

17. The sanity check in Power Token. set Next CashToken() is redundant as next CashToken_ is
validated already in ZeroGovernor.

(Version 2

18. Functions _subt r act Ear ni ngAnount () and _subt ract NonEar ni ngAnount () in MToken
perform redundant SLOADs when updating r awBal ance.

19. Function St abl eEar ner Rat eMbdel . rat e() performs a multiplication and a division with the
same value.

20. The local variable di gest _ in ERC20Ext ended. _perm t AndGet Di gest () is unused.

21. The local variables wei ght _ in variations of function cast Vot e*BySi g() in BatchGovernor are

unused.

22. The checks delegator_ != newDel egatee_ in Power Token. _del egate() and
reci pient _ !'= sender_ in EpochBasedI nfl ati onar yVot eToken. _transfer() can be
avoided.

23. Function _revertlflnvalidCall data in EmergencyCGovernor, StandardGovernor and
Zer oGover nor could be more gas efficient to return early if calldata is matched and revert if no
match is found.

Code partially corrected:

The optimization points 1, 3, 4, 7, 8, 13, and 19 have been implemented in the updated codebase. The
optimization in point 5 is partially addressed as the function has been revised to use less gas for ECDSA
signatures, while making ERC1271 signatures more expensive.

8.2 Inconsistent Error on Transfer Reverts
(Informational] [Version 2]

CS-MZEROCORE-035

Transferring M tokens between accounts of different states (earner to non-earner, or vice-versa) throws
the error | nsuf f i ci ent Bal ance when sender has not enough balance. However, when transferring M
tokens between two accounts with same state reverts due to underflow in the internal function
_transfer Anount | nKi nd() :

function _transferAmount | nKi nd(address sender , address recipient_, uint240 anmount_) internal {
_bal ances[sender | . rawBal ance amount _;

}

Similarly, POWER and ZERO token revert due to an underflow when the sender does not have enough
balance.

8.3 Inconsistent Events
(Informational] [Version 1][]

CS-MZEROCORE-024

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

. In the function M nt er Gat eway. updat eCol | at er al (), the order of events does not match the

order of changes on-chain. For example, the events would be trigger in the following order:
update-penalty-penalty, but the order of execution on-chain is penalty-update-penalty. It is in
general good practice to emit the events to match the changes on-chain.

. Anyone can call the function M nt er Gat eway. acti vat eM nt er () for an existing active minter

and emit the respective event, although no state changes.

. The event M nt Cancel ed is emitted if calling the function M nt er Gat eway. cancel M nt () with

m ntld_ = 0 although no such proposal can exist.

. Functions st ar t Ear ni ng() and st opEar ni ng() can be called multiple times for an address to

emit the respective events.

. Functions al | owkar ni ngOnBehal f () and di sal | owkar ni ngOnBehal f () can be called

multiple times with no state changes.

. Function Power Token. buy() can be called at any time with ni nAnount _ set to 0, so events Buy

and Tr ansf er would be emitted even during voting epochs.

(Version 2

7.

The event Sync is emitted only by function EpochBasedl nf | ati onar yVot eToken. sync(),
although a sync happens in other call paths. Futhermore, sync() can be called with arbitrary
epoch_ (e.g., older than the last sync's epoch) and the event is always emitted.

Code partially corrected:

1.

2
3.
4

[

No change.
. No change.
The function now revertsifnint 1 d_ ==
. Both functions st art Ear ni ng() and st opEar ni ng() have been updated to return early and do

not emit an event when they do not trigger a state change.

. The functions have been removed from the codebase.

6. The function now reverts if M nAmount _ == 0 or mraxAnount _ ==

7. MMZERO Labs informed us they only want the Sync event to be emitted from the public sync()

function. The function has been updated and now only takes an address as parameter.

8.4 Metadata of PowerToken

(Informational] [Version 1] []

CS-MZEROCORE-031

The name and symbol of Power Token is hardcoded in its constructor:

construct or(

) EpochBasedl nfl ati onar yVot eToken(" Power Token", "POAER', 0, ONE 10) {

}

Therefore, name and symbol will be the same for new tokens if redeployed by governance.

MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

Acknowledged:
MAZERO Labs answered:

There can only be one Power Token at a tinmne.

8.5 Misleading Natspec Description for divideUp

[Informational] [Version 1]

CS-MZEROCORE-032

The natspec description of Power Token. _di vi deUp() is misleading as the function actually rounds up
the ratio x/ y in BPS. Therefore, the function should not be used with arbitrary inputs as the description
might suggest:

function _divideUp(uint256 x, uint256 y) internal pure returns (uint256 z) {

}

8.6 Past Balances From Bootstrap Token Are

Scaled Down
[Informational] [Version 2]

CS-MZEROCORE-036

The internal function _get | nt er nal Or Boot st rap relies on _get Boot st rapBal ance() to compute
past balances or votes for an account according to an epoch which is older than the bootstrap epoch:

I f (epoch_ boot st rapEpoch) return _getBoot strapBal ance(account _, epoch_);
Function _get Boot st rapBal ance() implements the following formula:

(1 EpochBasedVot eToken(boot st rapToken) . past Bal anceOf (account _, epoch_)
I NI TI AL_SUPPLY) _boot strapSuppl y

Note that the original balance of account _ in the boot st rapToken gets scaled down by the factor
I NI TI AL_SUPPLY/ boot strapSupply.

In (Version 3), the | NI TI AL_SUPPLY has been increased from 10_000 to 1_000_000, improving the loss
by a factor 100.

8.7 Possible Griefing With Governance Proposals
(Informational) (Version 1)()

CS-MZEROCORE-026

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

Zer oGover nor and Emer gencyGover nor do not implement any measure to prevent attackers from
proposing a large number of malicious proposals. Although such proposals do not get executed,
assuming they do not receive the threshold of yes votes, they might be used to spam the system and
make harder for users to find legit proposals.

Acknowledged:
M"ZERO Labs answered:
I nt ended behavi or, zero and energency governors proposals are optional to vote,

requiring thresholds of votes. Possible filtering can be done on a social |evel.
Gas fees on mminnet eventually shoul d be spam preventi on agai nst such attacks.

8.8 Snapshots Remain in Storage
[Informational] [Version 1]

CS-MZEROCORE-037

Multiple contracts within the governance module maintain a record of changes for each account in
storage. Typically, this information is only extended when new activity happens, and the old data remains
uncleared. For example, mapping _I| ast Syncs stores the full history, although smart contracts only use
the last entry.

In (Version 3), the mapping _| ast Syncs has been removed from the codebase.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

9 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 Arbitrary Tokens Can Be Transferred to the
Distribution Vault

DistributionVault primarily receives cash tokens from the auction in the POWER token and fees of
defeated proposals in the standard governor. It also receives the excess M tokens from the minter
gateway. Zero holder can claim all tokens owned by the DistributionVault according to their balance in a
given epoch.

Note that anyone can transfer (donate) arbitrary tokens to the vault. If such tokens are malicious, the
accounting of the distribution vault might not work as expected. Zero holders should only claim tokens
that are trustworthy.

9.2 Effects of Roundings in MIoken

The protocol extensively uses rounding up or down when it comes to working with principal values in the
Mroken. This has the following effects:

« for earners, the minting of X tokens will effectively mint Y tokens, with Y < X.

« for earners with initial token balances A and B, in-kind transfers of X tokens will result in updated
balances A' andB' ,withA'=sA—XandB' =B+ X,andA+B=<A"+B’.

« for out-of-kind transfers of X tokens and initial balances A and B, the updated balances A' and B'
yieldA+B=A"-B'.

* as soon as earners are active in the system, the invariant:

Z balanceOf(i) = totalSupply

i € nonEarningBalances

is relaxed to

Z balanceOf(i) + Z balanceOf(j) < totalSupply

i € nonEarners j € earners
« when non earners become earners, their balances go from Ato A' , with A’ <A,

« when earners stop earning, their balances go from Ato A' , with A<A’.
Functions transfer (), transferFron(), mnt () and burn() update balances with amounts that
might be different from those specified by callers due to rounding errors. The lost balances due to

rounding will be counted by excessOnedMand get minted to the distribution vault. These specifics of
Mroken should be taken in consideration when integrating with 3rd-party protocols.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

9.3 Inactive Minters Can Be Frozen

(D (Version 1)

The function M nterGateway.freezeM nter allows approved validators to freeze arbitrary
addresses. But nothing prevents a non-active minter to be frozen.

MAZERO Labs provides the following argument for allowing this behavior:

This is intentional. Validators can freeze a mnter before they becone activated,
in order to have tinme to properly access/setup/etc before that mnter can start
m nting. Abuse of this functionality can result in governance renpving the validator.

9.4 Incentives for Accumulating Governance
Tokens

(D) (Version 1)

There is a circular incentive in the system to collect more governance tokens over time. Having Zer o
token allows users to claim rewards from the distribution vault. Zer o tokens are emitted to Power
holders that vote regularly on standard proposals. Collecting more Zer o tokens from standard governor,
allows users to buy more Power token with a discount from the Dutch auction, which increases Zer o
token emission when voting.

The system inherently encourages the ongoing collection of more governance tokens. Having Zer o
tokens enables users to claim rewards from the distribution vault. Zer o tokens are issued to Power
holders who regularly participate in voting on standard governor. Accumulating more Zer o tokens
through the standard governor enables users to purchase additional Power tokens at a discounted rate
during the Dutch auction. This, in turn, amplifies the emission of Zer o tokens when participating in
voting.

9.5 Minter's Wallet Is Continuously Used
(D (Version 1)

The function updat eCol | at er al () requires minters to submit transactions to the smart contract on a
daily basis. Considering that minter's account is valuable in the system and it should be carefully
protected (e.g., as a cold wallet), this might cause inconvenience to minters.

MAZERO Labs provides the following argument for the design:

Ideally, a Mnter's wallet should only be used to interact with the M nterGat eway.

M mnted by the Mnter, should be sent to another wallet by passing a different
destinati on address in proposeMnt. Wien the Mnter wants to retrieve their collateral,
they will either have to ask the owner of the mint Mtokens to call the burnM function
or acquire Mon the secondary nmarket to burn themthenselves. O course, Mnters should
first and forenpst ensure that they have established good security practices to avoid
any issues.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

9.6 Minters Can Overwrite Mint Proposals

(D (Version 1)

Minters can have only one mint proposal at a time which is subject to a delay before it can be executed.
Each proposal gets a unique id. To cancel a proposal, validators should pass the minter address and
mntld_tocancel Mnt().

This creates a front-running possibility as the minter can make a new proposal which gets a new id,
therefore the validator's transaction canceling the old proposal reverts. However, the new proposal is still
subject to the delay and validators can cancel it during this time. It is important that validators correctly
parse events and always act as expected. Validators should cancel the respective mint proposals after
minters submit collateral retrieve proposals.

9.7 Proposals Can Be Reordered

(D) (Version 1)

The execution order of the Succeeded proposals can be arbitrary, they are not enforced to be executed
in the same order they were proposed. This could lead to unexpected behaviors if multiple proposals are
targeting the same parameters.

9.8 Recovery When System Incurs Losses

(D) (Version 1)

It is possible that the system could mint uncollateralized MTokens when more interest is paid to earners
than collected from minters. Although unlikely, this could happen if updat el ndex() is not called for a
long time (e.g., longer than the confidence interval of 30 days). The system does not implement an
explicit recovery mechanism for such situations.

9.9 Solmate Libraries

(D) (Version 1)

The external libraries are outside the scope of this code assessment. However, we would like to highlight
that the contract St abl eEar ner Rat eMbdel uses the function wadl n() from solmate which has the
following disclaimer in their repository:

This is experinmental software and is provided on an "as is" and "as avail abl e" basis.

Wi | e each major rel ease has been audited, these contracts are not designed with user safety in mnd:
* There are inplicit invariants these contracts expect to hold.
* You can easily shoot yourself in the foot if you're not careful.

* You shoul d thoroughly read each contract you plan to use top to bottom

We do not give any warranties and will not be liable for any | oss incurred through
any use of this codebase.

9.10 Threshold Governors Can Ignore Majority
(D) (Version 1)

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 40

https://github.com/transmissions11/solmate
https://chainsecurity.com

The governors implementing Thr eshol dGover nor, i.e. Zer oGover nor and Enmer gencyCGover nor,

consider a proposal Succeeded if the ratio ,ﬁ;—ﬁ;jy = quorum. This means that if quorum < 50%, the

majority is ignored, and a proposal can pass even if it gets more no votes than yes votes.

MAZERO Labs provides the following argument for allowing this behavior:

Threshol ds will be significantly higher than 50% I|f sonme reason governance | ower
t hreshol ds bel ow 50% the described situation is intended.

9.11 Update Interval Should Consider Delays on
Collecting Signatures

The updated interval parameter in the registrar decides the frequency that minters should update their
collateral without paying a penalty. An update interval of 24 hour s, in reality, does not translate into a
requirement to call updat eCol | ateral () daily. As there is some delay from the moment a minter
receives the first signature from a validator until the transaction executes on-chain, minters should update
their collateral more frequently than the update interval. For example, at day 1 minter initiates the process
of collecting signatures at 10:00am and the transaction is finalized after 1 hour, next day the minter
should initiate the process at 09:00am such that updat eCol | at er al () is executed before 10:00am
(assuming the whole process always takes 1 hour).

9.12 Use of Power and Zero Tokens in 3Rd-Party
Protocol

Governance tokens Zer o and Power play two important roles in the system:

» Maintain the protocol by voting on proposals.

* Claim M token rewards from the vault that help minters close their positions.

However, both tokens are implemented as ERC20 tokens and can be deposited in 3rd-party protocols
(such as DEXes or lending protocols). If this happens, there are severe consequences for the system, as
attacks that overtake governance majority become feasible (e.g., borrowing large amount of tokens in the
last block of an epoch). Also, parts of rewards in the distribution vault might get locked.

9.13 Varias in Penalty Aggregation
(D) (Version 1)

When computing the penalty amount for a "block" of penalties for missed collateral updates, i.e. update
interval missed back-to-back, the penalty is not compounding, but it is between two distinct penalty
blocks.

Within a penalty block, for 2 missed intervals, the amount is computed as pri nci pal Anpunt * 2 * p
enal tyRate = (principal Anount * penal tyRate) + (principal Arount * penaltyRate

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

) , and for two not back-to-back missed intervals the amountis (pri nci pal Anount * penal t yRat e)
+ (principal Avtount * (1 + penaltyRate)) * penaltyRate.

9.14 ZERO Holders Buy PowerToken With a
Discount

(D) (Version 1)

Since ZERO holders can claim the cash tokens in the Di stri buti onVaul t, they partially get back the
amount they pay when buying Power Token from the Dutch auction. This gives an advantage to ZERO
holders proportionally to their balance.

@ MAZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Protocol
	3.1.1 MToken
	3.1.2 MinterGateway
	3.1.3 RateModels

	3.2 Governance
	3.2.1 Registrar
	3.2.2 StandardGovernor
	3.2.3 PowerToken
	3.2.4 ZeroGovernor
	3.2.5 ZeroToken
	3.2.6 EmergencyGovernor
	3.2.7 DistributionVault

	3.3 Trust Model
	3.4 Changes in Version 2
	3.5 Changes in Version 3

	4 Limitations and use of report
	5 Terminology
	6 Findings
	6.1 Side-effects of Resets
	6.2 Effects of Roundings in PowerToken
	6.3 Standard Proposal Fee Has Ambiguous Denomination
	6.4 Sync of Address 0 During Delegation
	6.5 Vote Weight Has Ambiguous Interpretation
	6.6 Contract ERC3009 Inherits StatefulERC712
	6.7 Earner Interest Can Exceed Minter's Interest
	6.8 Excess Owed M Can Be Larger Due to Rounding
	6.9 Incomplete Interfaces
	6.10 Remaining Dust in Distribution Vault

	7 Resolved Findings
	7.1 Hashing of String Arrays Is Not Compliant With EIP-712
	7.2 Code Restricts Execution of Proposal to 1 Epoch
	7.3 EIP-712 Dynamic Types
	7.4 Outdated Dependencies
	7.5 UI Interpretation of COUNTING_MODE
	7.6 EIP5805 DelegateChanged Not Always Emitted
	7.7 Inconsistent Collateral and Penalty at Expiry Boundary
	7.8 Incorrect Specifications
	7.9 Missing Input Sanitization
	7.10 No Expiry in Buy Function
	7.11 Possible Overflow When Syncing Accounts
	7.12 Possible Overflow in convertToBasisPoints
	7.13 Possible Rounding to 0 in getSafeEarnerRate
	7.14 Reentrancy in PowerToken Re-Buy
	7.15 Remaining ToDos in Codebase
	7.16 Resubmission of Signatures and Staleness
	7.17 Timestamp 0 in Signatures
	7.18 Wrong Condition in StableEarnerRateModel
	7.19 Dead Code
	7.20 ERC712 Does Not Implement Extension EIP-5267
	7.21 Misleading Error Name
	7.22 Reason Ignored in BatchGovernor

	8 Informational
	8.1 Gas Optimizations
	8.2 Inconsistent Error on Transfer Reverts
	8.3 Inconsistent Events
	8.4 Metadata of PowerToken
	8.5 Misleading Natspec Description for _divideUp
	8.6 Past Balances From Bootstrap Token Are Scaled Down
	8.7 Possible Griefing With Governance Proposals
	8.8 Snapshots Remain in Storage

	9 Notes
	9.1 Arbitrary Tokens Can Be Transferred to the Distribution Vault
	9.2 Effects of Roundings in MToken
	9.3 Inactive Minters Can Be Frozen
	9.4 Incentives for Accumulating Governance Tokens
	9.5 Minter's Wallet Is Continuously Used
	9.6 Minters Can Overwrite Mint Proposals
	9.7 Proposals Can Be Reordered
	9.8 Recovery When System Incurs Losses
	9.9 Solmate Libraries
	9.10 Threshold Governors Can Ignore Majority
	9.11 Update Interval Should Consider Delays on Collecting Signatures
	9.12 Use of Power and Zero Tokens in 3Rd-Party Protocol
	9.13 Varias in Penalty Aggregation
	9.14 ZERO Holders Buy PowerToken With a Discount

