

PUBLIC

Code Assessment

of the Protocol and Governance

Smart Contracts

April 24, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 System Overview 7

4 Limitations and use of report 15

5 Terminology 16

6 Findings 17

7 Resolved Findings 23

8 Informational 33

9 Notes 38

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear M^ZERO team,

Thank you for trusting us to help M^ZERO Labs with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Protocol and Governance
according to Scope to support you in forming an opinion on their security risks.

M^ZERO Labs implements a stablecoin (MToken) backed by real-world assets, like T-bills, along with a
Two-Tokens Governance system (TTG).

The most critical subjects covered in our audit are asset solvency, functional correctness, and precision
of arithmetic operations. Security regarding asset solvency is high. Security regarding functional
correctness is satisfactory, however users should be aware that the rare event of redeployment of
PowerToken might cancel their token transfers or inflations in the last two epochs before the
redeployment event, see Side-effects of Resets. Precision of arithmetic operations is improvable due to
the rounding errors in the PowerToken that accumulate over time, see Effects of Roundings in
PowerToken.

The general subjects covered are code complexity, use of uncommon language features, and gas
efficiency. The code-base extensively employs assembly code to manually compute storage slots for
array entries. While no specific issues have been detected with this usage, it is worth noting that this
approach bypasses the safety features implemented by Solidity. The code-base can be more efficient in
terms of gas, see Gas Optimizations.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 6

• Code Corrected 3

• Code Partially Corrected 1

• Risk Accepted 1

• Acknowledged 1

Low -Severity Findings 22

• Code Corrected 14

• Specification Changed 1

• Code Partially Corrected 1

• Acknowledged 6

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Protocol and Governance TTG,
protocol, and common repositories based on the documentation files. The table below indicates the
code versions relevant to this report and when they were received.

TTG

V Date Commit Hash Note

1 08 Jan 2024 a8127901fa1f24a2e821cf4d9854a1aa6ac8088c Initial version

2 01 Mar 2024 9ef2198cc744f392bf87c15e134f27ec15aa5aaa Version with fixes

3 15 Apr 2024 a4db6f1828f844b1bfb37348d37b2f8de9f70e37 Version with fixes

4 23 Apr 2024 47e3a9af8f5e26f1785f73e8bfa9095b27541627 Final version

protocol

V Date Commit Hash Note

1 08 Jan 2024 3499f50ff3382729f3e59565b19386ba61ef8e36 Initial version

2 01 Mar 2024 2f12e10a753121d6de6f99847875d9011645770c Version with fixes

3 23 Apr 2024 58e0ccc9211a97abd7f21c5499740f6d8b597435 Final version

common

V Date Commit Hash Note

1 08 Jan 2024 4a37119f2da946c6d8ad7b9a70dfdd219225115b Initial version

2 01 Mar 2024 f4473275da04ab839e777c67122c00e495601bf5 Version with fixes

3 15 Apr 2024 e809402c4cc21f1fa8291f17ee0aee859f3b0d29 Final version

For the solidity smart contracts, the compiler version 0.8.23 was chosen.

For TTG, the following contracts are in the scope of the review:

DistributionVault.sol
EmergencyGovernor.sol
EmergencyGovernorDeployer.sol
PowerBootstrapToken.sol
PowerToken.sol
PowerTokenDeployer.sol
Registrar.sol
StandardGovernor.sol
StandardGovernorDeployer.sol
ZeroGovernor.sol
ZeroToken.sol
abstract:
 BatchGovernor.sol

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

 ERC5805.sol
 EpochBasedInflationaryVoteToken.sol
 EpochBasedVoteToken.sol
 ThresholdGovernor.sol
 interfaces:
 IBatchGovernor.sol
 IERC5805.sol
 IERC6372.sol
 IEpochBasedInflationaryVoteToken.sol
 IEpochBasedVoteToken.sol
 IGovernor.sol
 IThresholdGovernor.sol
interfaces:
 IDeployer.sol
 IDistributionVault.sol
 IEmergencyGovernor.sol
 IEmergencyGovernorDeployer.sol
 IPowerBootstrapToken.sol
 IPowerToken.sol
 IPowerTokenDeployer.sol
 IRegistrar.sol
 IStandardGovernor.sol
 IStandardGovernorDeployer.sol
 IZeroGovernor.sol
 IZeroToken.sol
libs:
 PureEpochs.sol

For protocol, the following contracts are in the scope of the review:

MToken.sol
MinterGateway.sol
abstract:
 ContinuousIndexing.sol
interfaces:
 IContinuousIndexing.sol
 IMToken.sol
 IMinterGateway.sol
 IRateModel.sol
 ITTGRegistrar.sol
libs:
 ContinuousIndexingMath.sol
 TTGRegistrarReader.sol
rateModels:
 MinterRateModel.sol
 SplitEarnerRateModel.sol
 StableEarnerRateModel.sol
 interfaces:
 IEarnerRateModel.sol
 IMinterRateModel.sol
 IStableEarnerRateModel.sol

For common, the following contracts are in the scope of the review:

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

ContractHelper.sol
ERC20Extended.sol
ERC3009.sol
ERC712.sol
StatefulERC712.sol
interfaces:
 IERC1271.sol
 IERC20.sol
 IERC20Extended.sol
 IERC3009.sol
 IERC712.sol
 IStatefulERC712.sol
libs:
 SignatureChecker.sol
 UIntMath.sol

Version 2In , the scope has been modified as follows:

• The file and contract ERC712 in common/ has been renamed ERC712Extended.

• A new interface common/interfaces/IERC712Extended.sol has been added.

• The rate model protocol/rateModels/SplitEarnerRateModel.sol was removed from the
codebase.

Version 3In , the following file was renamed:

• The file StableEarnerRateModel has been renamed EarnerRateModel.

2.1.1 Excluded from scope
Any contracts that are not explicitly listed above are out of the scope of this review. Third-party libraries,
like solmate, are out of the scope of this review. Furthermore, the soundness of the financial model was
not evaluated. Finally, the setup of the special-purpose vehicle (SPV) that holds the collateral was not in
scope of this review, and it is assumed that the integration with smart contracts works always according
to the specifications.

3 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

M^ZERO Labs offers a stablecoin (MToken) backed by real-world assets, like T-bills, along with a
Two-Tokens Governance system (TTG). The protocol considers two main actors, Minters and Validators.
The first have collateral in an SPV and can mint stablecoin against their collateral, the latter are trusted
by the system and bear the responsibility of verifying Minters' offchain collateral value. The Governance
is composed of two tokens, PowerToken and ZeroToken. Token holders can make proposals and vote
on them to change some of the parameters of the system.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3.1 Protocol

3.1.1 MToken
The MToken contract is a stable coin backed by collateral locked in an off-chain entity. Minters can mint
and burn MToken through the MinterGateway contract. Allowlisted users can earn interest by calling
the startEarning function and their balance will increase over time. Any change in the total amount of
MTokens earning interest triggers an update to the earner interest rate. The earner interest rate is
calculated in external rate model contract set by Governance. The total supply of the token consists of all
earning balances (incl. interest) and non-earning balances and is inflationary. A user can stop earning
interest by calling the stopEarning function and the interest earned up to that point will be added to
their balance. Governance can remove a earner from the whitelist and anyone can stop them earning
interest. The whitelisting feature can be disabled by Governance, which would allow any M holder to
switch freely between earning and non-earning states.

For non-earner the contract stores their real balance, while for earners the contract stores the principal
amount:

principalAmount = realBalance
index

The index is calculated using the formula for Continuous compounding interest:

indext = indext − 1 * eearnerRate * Δt
365days

The exponential function is approximated with the Padé approximant around point 0.

The transfer and transferFrom function take the present amount as an argument and rounds it
down to the principal when needed. Transfers can be divided into two types: in-kind transfers and
out-of-kind transfers. In-kind transfers happen when the sender and the recipient are both earners, or
both non-earners. In this situation, the rounded-up principal is exchanged for the former and the token
amount is exchanged for the latter. Out-of-kind describes transfers where only one of the participants is
earner. If the sender is the earner, its balance is reduced by the rounded-up principal amount and the
recipient's balance is increased by the token amount. If the sender is the recipient, its balance is
increased by the rounded-down principal amount and the sender's balance is decreased by the token
amount. Note that integrators must be aware of unexpected balance values after mint and transfers, see
Effects of Roundings in MToken.

M token has 6 decimals and supports EIP-2612 permits, via EIP-712 or EIP-1271 signatures, and
transfers with authorization according to EIP-3009 (via ERC-712 signatures / ERC-1271 support).

3.1.2 MinterGateway
The MinterGateway contract is the access point for the minting or burning of MToken, it also stores the
accounting of the debt. There are 2 types of actors that interact with the contract: Validators and Minters.
Minters keep collateral in an off-chain entity (i.e. SPV) and mint MToken against their collateral.
Validators periodically verify the state of the off-chain collateral and sign it.

In order to mint new M, minters have to:

1. update their collateral with updateCollateral() by providing enough EIP-712
UpdateCollateral signatures, signed by validators. The signatures count threshold is set by
governance. The recorded collateral updated timestamp is set to the oldest timestamp of the
signatures batch. Minters are expected to refresh their collateral value once a day (decided by
governance). If a Minter does not refresh their collateral within the update interval, their collateral
value is considered to be 0, making them undercollateralized if they had any debt.

2. open a minting request with proposeMint. The proposals have a unique ID and can be cancelled
by any validator. Their future position must be over-collateralized for the call to succeed.

3. mint M for the open request ID, if their request is not cancelled or expired. The position must be
over-collateralized for the call to succeed.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Minters can receive penalties in two cases:

• if they miss update intervals. The penalty is imposed upon interaction with updateCollateral(),
and burnM() for active Minters. It is computed as

. The system charges a penalty at
most once per missed interval.

• if they are undercollateralized. The penalty is imposed upon interaction with
updateCollateral(). It is computed as , with

. The mintRatio is set by governance and is
. Note that collateralValue = 0 if a collateral update is missed.

The validators are trusted parties and are responsible for verifying the amount of collateral locked in the
SPV and signing the update request. The whitelisted validators list is managed directly by the
governance. The update requests are verified in the updateCollateral function and the collateral
value is stored along with the update timestamp. All the collateral values must match in the batch, and
the recorded update timestamp is the smaller of the batch. Minters should submit signatures ordered by
validators' addresses.

Minters have to pay interest on their debt. The minter interest rate is calculated in an external rate model
contract set by Governance. The contract stores the principal amount of the minted MToken:

principalAmount = realBalance
index

The index is defined analogously to the MToken contract:

indext = indext − 1 * eminterRate * Δt
365days

The exponential function is approximated with the Padé approximant around point 0. Any change
to the amount of MTokens or collateral will trigger an update to the minter interest rate. The earner
interest rate is assumed to depend on the minter interest rate, so it is updated with the minter index. With
each update, the difference of the interest paid by minters and the interest owed to earners is calculated
and minted to the governance's DistributionVault.

Minters are whitelisted entities. They must first be activated by governance vote. Validators can
freeze Minters to stop them from minting MTokens for some period.

When Minters exit the system or as an ultimate punishment, Minters can be deactivated by governance.
Once deactivated, a Minter cannot be reactivated. Deactivated minters do not accrue any interest, so the
contract stores their balance in M token. After Minters are removed by governance anyone can
deactivate them: Their owed M token balance stops accruing the minter interest and their collateral
balance is deleted. As a kind of liquidation, M holders can burn their tokens to repay the deactivated
Minters debt. The protocol assumes that burners can then start negotiations with the SPV to retrieve the
underlying collateral.

Any M holders can burn tokens to lower the debt of a Minter at any point in time. For deactivated minters,
that burns a part of their real balance. For active minters, their principal balance is lowered.

Minters can propose to retrieve collateral from the SPV when they have a high enough collateralization
ratio. Collateral that is pending retrieval is not counted towards the collateralization ratio. Validators
monitor on-chain the retrieval requests which emit event RetrievalCreated and include them in
signature when they are processed. The collateral retrieval is then finalized by the updateCollateral
function and collateral value is updated accordingly.

3.1.3 RateModels
The protocol uses two types of rate models: The minter rate model determines the interest paid by
minters and the earner rate model determines the interest paid to earners. The contracts implement a
rate function that returns the yearly Annual Percentage RATE (APR) of a market and is consumed by
the MToken and MinterGateway contracts without further checks. M^ZERO Labs implements 3 rate
models:

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The MinterRateModel is the only interest rate model available for the Minters. It reads the minter
interest rate from the TTG Registrar and returns it. An update to the minter interest rate in the registrar
alone does not have an effect on the interest paid by minters. The minter interest rate is only updated
once updateIndex() is called in the MinterGateway contract.

The Earners have two different kind of earner interest rate models: The StableEarnerRateModel
and the SplitEarnerRateModel. Both models aim to make sure that the interest paid to earners will
not exceed the interest paid by minters.

The SplitEarnerRateModel defines the earner interest as:

earnerRate = min(baseRate, 90% * minterRate * totalActiveOwed
totalEarningSupply)

Here the baseRate is an interest rate set by governance, totalActiveOwed is the amount of
MTokens owed to minters and totalEarningSupply is the total supply of MTokens that are earning
interest.

We can define

totalInterestEarnedByMinters = totalActiveOwed * (eminterRate * Δt
SECONDS_PER_YEAR − 1)

totalInterestPaidToEarners = totalEarningSupply * (eearnerRate * Δt
SECONDS_PER_YEAR − 1)

and show with a linear approximation that for small values of :

totalInterestPaidToEarners ≃ 90% * totalInterestEarnedByMinters ≤ totalInterestEarnedByMinters

The StableEarnerRateModel derives a safe rate for earners s.t. the interest paid by minters is equal
to the interest paid to earners over a fixed time period.

totalActiveOwed * (e(minterRate * Δt
SECONDS_PER_YEAR) − 1) = totalEarningSupply * (e(safeRate * Δt

SECONDS_PER_YEAR) − 1)
With

safeRate = ln(1 + (eminterRate * Δt
SECONDS_PER_YEAR − 1) * totalActiveOwed

totalEarningSupply) * SECONDS_PER_YEAR
Δt

Then

earnerRate = min(baseRate, 90% * safeRate)
As the time that will pass until the next update is unknown they calculate the safe rate for an
confidenceInterval. For this timeframe the mathematical equation takes into account the compound
effect of interest. The initial value for the confidenceInterval is set to 30 days.

When , the confidenceInterval is set to 1 second. In this
case, the safe earner interest rate will be smaller than the minter interest rate. For less than seconds
passed, a confidenceInterval of 30 days would overestimate the compounding effect of the interest
paid by minters and the resulting interest rate for earners would be too high. A confidenceInterval
of 1 second is a safe choice as it will underestimate the compounding effect.

When more than 30 days have passed the equations become imprecise. When
 the safe interest rate will be larger than the interest paid by

minters and the compounding effect of the interest paid to earners will be underestimated. Hence the
updateIndex() function is assumed to be called at least once every 30 days. The case where

 can arise when Minters are deactivated.

The configuration of the model implicitly assumes that the earner rate depends on the minter rate. Note
that, any change on the interest rate by governance is applied only after updateIndex() is triggered.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3.2 Governance
The role of the governance is to update values in the Registrar, from where the protocol and
governance will read their parameters. This is done through proposals in the StandardGovernor,
EmergencyGovernor, and ZeroGovernor. PowerToken holders can vote in the
StandardGovernor and EmergencyGovernor. Voters are rewarded with ZeroToken when voting in
all proposals in the StandardGovernor. ZeroToken holders can vote in the ZeroGovernor and they
have the power to redeploy the PowerToken, StandardGovernor, and EmergencyGovernor as a
bundle.

3.2.1 Registrar
The Registrar contract is a key-value store for the parameters of the system. Its values can only be
changed by the StandardGovernor or the EmergencyGovernor through proposals. Here is a
non-exhaustive list of the stored values:

• list of approved Minters/Validators/Earners

• addresses of the minters and earners rate models

• freeze time for the minters

• collateral update interval

3.2.2 StandardGovernor
This contract manages proposals and voting process by voting with the vote token (PowerToken) on
those proposals. Anyone can open a proposal provided they pay a proposalFee as set by governance
in the form of cashToken. The proposals can: add/remove addresses from lists and set key-value pairs
in the Registrar, and set a new proposalFee. The vote token delegatees can cast their votes on a
proposal between the starting epoch and the ending epoch of the proposal, in this setting

, so delegatees can only cast their vote in a single voting period. An epoch is
15 days and proposals can be voted only during odd-numbered epochs.

The success of the vote is solely determined by once the voting epoch ended, and
no quorum is required. Votes on proposal always open at the start of the next voting epoch, voters have
one epoch to vote, and two epochs to execute the proposal. The proposers of accepted proposals see
their proposalFee refunded upon execution. When the first proposal for a voting epoch is proposed, the
target supply of the vote token is set to be inflated at the start of that voting epoch. Proposals cannot be
cancelled. If a proposal is defeated or expired, the associated fee can be sent to the
DistributionVault. If the proposal gets executed successfully, the proposer is refunded with the
proposal fee.

The voters participating in all proposals of a voting epoch are rewarded with their share of ZeroToken.
The delegators receive no ZeroToken reward. The maximum amount of ZeroToken distributed during
an active voting epoch is 5 million units. The voters can either call the contract to cast their votes directly,
or they can submit signatures. The contract implements ERC-712 with ERC-1271 support.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

3.2.3 PowerToken
The PowerToken is an ERC-20 token with 0 decimals and the following extensions: ERC-3009,
ERC-712 with ERC-1271 support, ERC-5805. The token is an epoch-based vote token used in the
StandardGovernor and EmergencyGovernor, and is inflationary (10% per active voting epoch in the
StandardGovernor). Epochs are 15 days long and start at the Merge timestamp, and all odd epochs
are potentially voting epochs. PowerToken does not allow minting, transfers or delegations during
potential voting epochs. A snapshot of the total supply, balances, voting powers and delegatees is taken
at the end of each epoch. Inflation happens only during a voting epoch with at least one (Standard)
Proposal. Token holders can either vote themselves or delegate their voting power. If their voting power
has been used in every proposals of a voting epoch, their balance will grow with inflation, so token
holders are incentivized to vote on all the proposals. The token cannot be
transfer/delegated/minted/bought during odd epochs (corresponding to voting epochs).

If not all the voting power was used in a voting epoch, there is a discrepancy between the theoretical
inflationary total supply and the actual total supply of PowerToken. To fill this gap, it is possible to buy()
PowerTokens up to the discrepancy amount. The pricing takes the form of a Dutch auction and is as
follows: the 15 days are divided into 100 periods and decreases linearly during each period. The price
halves from start to the end of the period, meaning that the slope of the linear price subfunction is divided
by two after every period. Mathematically, with the time remaining in the epoch , the time remaining in
the period , and fixed and :

cost(ΔtP, ΔtE) = ΔtP * 2
ΔtE

secondsPerPeriod + (secondsPerPeriod − ΔtP) * 2
ΔtE

secondsPerPeriod − 1

secondsPerPeriod * buyAmount
totalSupplycurrentEpoch − 1

The price depends on the percentage of tokens auctioned versus the total supply. The cashToken paid
by traders is sent to DistributionVault and later claimed by ZeroToken holders. Therefore,
ZeroToken holders have an advantage in the Dutch auction as described in ZERO holders buy
PowerToken with a discount.

When deployed, the PowerToken is provided with an arbitrary bootstrap token from which it can read the
balances that apply at the bootstrap epoch. Total supply is set to 10_000 and balances are scaled down
to sum up to 10_000. ZeroGovernor can redeploy at any time PowerToken and respective governor
contracts, to either remove governance rights from existing PowerToken holders, or just to reset the
accounting variables which continuously grow due to the inflation. When redeploying, the bootstrap token
can either be the existing ZeroToken, or the previous PowerToken. Note that after redeployment, the
old PowerToken loses its value in the system.

3.2.4 ZeroGovernor
This contract manages proposals and voting process with the vote token (ZeroToken) on those
proposals. Anyone can open a proposal, at no cost. The proposal can: redeploy the standard and
emergency governance systems with the current PowerToken or ZeroToken as bootstrap token for the
new PowerToken, set a new cashToken, update the threshold ratio for proposals to be accepted in the
ZeroGovernor or EmergencyGovernor. The vote token delegatees can cast their votes on a proposal
between the starting epoch and the ending epoch of the proposal, in this setting

. The success of the vote is determined by . Votes on
proposal always open in the epoch they are proposed, voters have the remaining time in the current
epoch, plus one epoch to vote and execute the proposal, i.e, proposals are executable as soon as the
quorum is reached and must be executed until the end of endEpoch. Proposals cannot be cancelled.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

3.2.5 ZeroToken
The ZeroToken is an ERC-20 token with 6 decimals and the following extensions: ERC-3009, ERC-712
with ERC-1271 support, ERC-5805. The token is an epoch based vote token used in the
ZeroGovernor. Epochs are 15 days long and start at the Merge timestamp. A snapshot of the total
supply, balances, voting powers and delegatees is taken at the end of each epoch. Token holders can
either vote themselves or delegate their voting power. ZeroTokens can only be minted by the
StandardGovernor as a reward for participation on voting.

3.2.6 EmergencyGovernor
This contract behaves exactly like ZeroGovernor, but the set of possible proposals and the vote token
are different. The proposals can: add/remove addresses from lists and set key-value pairs in the
Registrar, and set a new proposalFee in the StandardGovernor. The vote token is the
PowerToken.

3.2.7 DistributionVault
The DistributionVault receives the excess MToken generated by Minters that was not distributed to
earners, as well as the cashTokens amounts paid upon buying PowerTokens or un-refunded
proposalFee sent to the vault. Users can call distribute on the vault in order to account for
additional tokens. The difference with the last recorded balance is stored and a snapshot of the token
balance is taken for the epoch where distribute is called. ZeroToken holders can claim their share
of token for an epoch, based on their ZERO balance at the time of the snapshot.

3.3 Trust Model
• Validators: fully trusted. Validators are responsible to verify the off-chain collateral and produce only

valid signatures. They should actively monitor on-chain updates and cancel incorrect minting
proposals, freeze or deactivate misbehaving minters. Validators also should be always reachable
and issue valid signatures for minters.

• Minters: fully trusted. Minter's have their collateral off-chain and the smart contracts assume that
they will always pay their debt to the system. Minters are expected to update their collateral at every
interval and pay any imposed penalty.

• MToken holders: not trusted. Anyone can hold M tokens and use them as stablecoin.

• PowerToken and ZeroToken holders: trusted to always act in the best interest of the protocol. We
assume they have the incentives to always execute successful proposals after the vote, and call
public functions that apply new parameters such as updateIndex().

• The cashTokens are expected to be WETH and M as stated in the Whitepaper, but nothing prevents
M^ZERO Labs to deploy the system with other cashTokens. We assume third-party tokens, if used
as cashToken, are fully trusted and they are ERC20-compliant without special behavior (e.g.,
having transfer hooks, charging fees on transfer, rebasing or inflationary/deflationary tokens).

3.4 Changes in Version 2
• The functionality allowing to start/stop earning on behalf of an address in the MToken has been

removed.

• The functions ZeroToken.getPastVotes(address,uint256,uint256) and
ZeroToken.pastDelegates(address,uint256,uint256) have been removed.

• The SplitEarnerRateModel have been removed. The StableEarnerRateModel now
calculates the earner interest rate with the formula of the SplitEarnerRateModel when

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

 (previously the confidenceInterval was set to 1
second):

earnerRate = min(baseRate, 90% * minterRate * totalActiveOwed
totalEarningSupply)

The safety threshold of 90% has been removed from the stable earner model. If the interest rate of
earners is larger than the interest rate of minters, the interest paid to earners will start to outgrow the
interest paid by minters after 30 days. The interest rate index of the minters is now rounded up and the
interest rate index of the earners is rounded down.

3.5 Changes in Version 3
•

Version 3

The penalty for missing intervals has been revised to charge a higher penalty to minters. Previously,
failing to call updateCollateral() for 1.5 intervals would incur a penalty as having zero collateral
for 1 interval, while in minters pay a penalty for missing collateral update for 1 interval first,
and then a penatly for 0.5 interval on the updated amount for beeing undercollateralized.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

4 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• AcknowledgedSide-effects of Resets

• Code Partially CorrectedEffects of Roundings in PowerToken

• Risk AcceptedStandard Proposal Fee Has Ambiguous Denomination

Low -Severity Findings 7

• AcknowledgedSync of Address 0 During Delegation

• AcknowledgedVote Weight Has Ambiguous Interpretation

• AcknowledgedContract ERC3009 Inherits StatefulERC712

• AcknowledgedEarner Interest Can Exceed Minter's Interest

• AcknowledgedExcess Owed M Can Be Larger Due to Rounding

• Code Partially CorrectedIncomplete Interfaces

• AcknowledgedRemaining Dust in Distribution Vault

6.1 Side-effects of Resets
Correctness Medium Version 2 Acknowledged

CS-MZEROCORE-019

Zero holders can redeploy a new POWER token through the ZeroGovernor. As ZeroGovernor is based
on a threshold voting, the proposal is executed as soon as it receives the required votes. If reset is
triggered in epoch N, the new POWER token records as bootstrap epoch N-1, hence all accounts are
bootstrapped according to their last snapshot in epoch N-1, ignoring any activity on old POWER token
during epoch N. A reset has the following has side-effects depending on the epoch N when it happens:

• N is even (transfer epoch): Bootstrap balances in the new Power token will be based on
snapshots from epoch N-1. Therefore, any transfer before redeployment during epoch N in the
old token is ignored. Similarly, POWER tokens bought during the auction are lost even though
users paid for them in the cash token. Moreover, any potential inflation from the previous voting
epoch is lost although the total supply had been inflated.

• N is odd (voting epoch): Users voting in all standard proposals lose their inflation.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Furthermore, reset events affect the historical values for epochs before the bootstrap. Consider the
following scenario:

• Governance is deployed at epoch N.

• A reset event happens at epoch N+20. Old POWER is used as bootstrap token.

• Querying historical balance of an account at epoch N+1 depends on the old POWER token.

• A reset event happens at epoch N+30. ZERO is used as bootstrap token this time.

• Querying again the balance of an account at epoch N+1 returns a different balance as now it
depends at ZERO token.

Acknowledged:

M^ZERO Labs is aware of this behavior and consider it to be inline with their design decisions.

6.2 Effects of Roundings in PowerToken
Correctness Medium Version 1 Code Partially Corrected

CS-MZEROCORE-004

Some rounding errors in the PowerToken can happen in two cases:

1. Accounts with less than 0.01% of the totalSupply in the bootstrapToken get rounded down to
zero when bootstrapped. The rounding error potentially happens also for other accounts even if
they do not round down to zero. Therefore the sum of all bootstrap amounts might not match the
initial supply.

2. Holders of PowerToken with less than 10 PowerTokens do not get any balance inflation
although they (or their delegatee) vote in all proposals. This could happen due to the rounding
down in function _getInflation(). In case the holder delegates to another account which has a
voting power more than 10, its voting power inflates, but the balance of the delegator will not inflate.

Note that the difference between the total supply and the actual sum of all account balances grows over
time, and might have implications in the quorum-based governance if threshold is high (quorum might be
unreachable).

Code partially corrected:

1. The total supply has been increased from 10_000 to 1_000_000, decreasing the effect of
rounding by a factor 100 as well.

2. This issue still holds.

6.3 Standard Proposal Fee Has Ambiguous
Denomination
Correctness Medium Version 1 Risk Accepted

CS-MZEROCORE-005

The Standard Proposal Fee can be changed in two ways:

• ZeroGovernance: setCashToken(newCashToken_, newProposalFee_)

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

• Standard or Emergency governances: setProposalFee()

The second option changes the proposal fee and keeps the current cash token in place. Voters
(PowerToken holders) will vote on whether the proposal makes sense in consideration of the current
cash token. Yet, changes to the cash token (voted by ZeroToken holders) before execution of the
proposal can drastically skew the proposal's intent. For instance, a fee of 1000 * 1e6 is reasonable
with M (1000 USD) but could be very cheap if the cash token is switched to WETH by zero governance.
This would enable griefing attacks in the standard governor as making new proposals has negligible cost,
while rejecting them is costly in terms of gas (majority should vote no). Similarly, a fee of 2e18 is
reasonable with WETH (2 Ether) but could become exorbitantly high if the cash token is MToken (2e14
USD or 200 trillion USD).

Risk accepted:

M^ZERO Labs is aware of this issue but has decided to keep the code unchanged, providing the
following reasoning:

Zero holder can, with the same threshold of yes votes, nuke current Power holders and replace
them with themselves, so there is no real reason for them to “play with their food” by abusing
setCashToken(newCashToken_, newProposalFee_) to make Power holders’ lives difficult. Nevertheless,
errors can occur, and new emergency proposals or Zero proposals can be proposed passed,
and executed quickly to set the proposal fee to something sensible.

6.4 Sync of Address 0 During Delegation
Design Low Version 2 Acknowledged

CS-MZEROCORE-033

Delegating to address(0), which is used as an alias for delegating to self, triggers a sync on
address(0), hence pushing snapshots in storage for the bootstrap and sync:

function _delegate(address delegator_, address newDelegatee_) internal override {
 if (delegator_ != newDelegatee_) _sync(newDelegatee_, _clock());
 ...
}

Acknowledged:

M^ZERO Labs is aware of this behavior and consider it to be inline with their design decisions.

6.5 Vote Weight Has Ambiguous Interpretation
Correctness Low Version 2 Acknowledged

CS-MZEROCORE-034

BatchGovernor._castVotes returns the value weight_, which is defined as the number of votes cast for
each proposal. However, if multiple proposals are voted on, the function returns the number of votes cast
for the last proposal.

Note that a voter has the same number of votes on all proposals started in the same epoch. However,
Emergency and Zero Governors proposals can be voted on in two epochs. If a user votes on proposals
created in two different epochs, the function returns the number of votes the user had in one of the

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

epochs, depending on the order of the proposals, and not the votes cast. This is a problem for external
integrations that could misrepresent the voting weight.

Acknowledged:

Client is aware of this behavior, but has decided to keep the code unchanged.

6.6 Contract ERC3009 Inherits StatefulERC712
Design Low Version 1 Acknowledged

CS-MZEROCORE-006

The contract ERC3009 extends the abstract contract StatefulERC712 which keeps track of used
nonces in the public mapping nonces. However, ERC3009 does not use any functionality of this
contract.

Furthermore, ERC3009 uses random nonces of type bytes32 and the standard explicitly avoids
sequential nonces. On contrary, StatefulERC712 is designed to use sequential nonces. Hence,
extending ERC712 is enough.

Acknowledged:

M^ZERO Labs has acknowledged the issue but has decided to keep the code unchanged.

6.7 Earner Interest Can Exceed Minter's Interest
Design Low Version 1 Acknowledged

CS-MZEROCORE-003

In the SplitEarnerRateModel the interest rate of earners is computed based on the minter's interest
and the ratio of total supply of active minters and the total supply of earners:

UIntMath.min256(
 baseRate(),
 (_EARNER_SPLIT_MULTIPLIER * (IMinterGateway(minterGateway).minterRate() * totalActiveOwedM_)) /
 totalEarningSupply_ /
 _ONE
);

The multiplier is set to a constant(90%). The formula computes a higher interest rate for earners than
minters if totalActiveM > totalEarningSupply_. Due to the continuous compounding effect, the
cashflow becomes negative over time, i.e., earners receive more MTokens than paid by minters.
Therefore, baseRate() has to be chosen carefully to prevent this scenario from happening in practice.

A similar behavior manifests in the StableEarnerRateModel if minter's supply of M tokens is larger
than earners' supply and updateIndex() does not get called for longer than 30 days (confidence
interval). The interest of earners exceeds the interest paid by minters due to compounding, hence netting
a negative cashflow for the system.

Acknowledged:

Version 2Contract SplitEarnerRateModel has been removed from codebase . However, the issue is
still present in the revised StableEarnerRateModel if the following conditions hold:

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

• The supply of owed M in minterGateway is larger than the total supply of earners.

• MToken.updateIndex() is not triggered for more than 30 days.

Note that MToken.updateIndex() is always triggered when a minter updates their collateral. Minters
are incentivized to update their collateral with a frequency enforced by the governance. However, the
governance can change the frequency in the future to any duration and raise the issue if the two
conditions above are met.

Version 3In , the earners' interest rate is is set to 90% of the value computed in function
getSafeEarnerRate(), hence reducing the likelihood of M overprinting. However, if
MToken.updateIndex() is not triggered for a long time (+30 days), overprinting can happen.

6.8 Excess Owed M Can Be Larger Due to
Rounding
Design Low Version 1 Acknowledged

CS-MZEROCORE-008

Function MinterGateway.updateIndex() mints the difference between total owed M and M token
total supply to the TTG vault. The difference is computed in function excessOwedM() which queries the
total supply from MToken:

uint240 totalMSupply_ = uint240(IMToken(mToken).totalSupply());

uint240 totalOwedM_ = _getPresentAmountRoundedDown(principalOfTotalActiveOwedM, currentIndex()) +
 totalInactiveOwedM;

unchecked {
 if (totalOwedM_ > totalMSupply_) return totalOwedM_ - totalMSupply_;
}

Function MToken.totalSupply() rounds down the total supply of earners, therefore the excess M
amount is computed slightly larger than the real value. In this case, the gateway will mint more tokens to
the vault.

Acknowledged:

The M^ZERO Labs team is aware of this behavior and has provided the following description:

This is fine so long as the invariant that MToken.totalSupply() <= MinterGateway.totalOwedM() is
maintained. Further, this excess is limited to the max rounding error (so it’s always just a
rounding error) and in any case, the TTG vault results in larger dust as it tries to divide the
minted M tokens across all Zero holders.

6.9 Incomplete Interfaces
Design Low Version 1 Code Partially Corrected

CS-MZEROCORE-010

1. The contract MinterGateway is ContinuousIndexing and ERC712, but IMinterGateway
only extends IContinuousIndexing. For completeness, IMinterGateway should also inherit
IERC712.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

2. The interface IERC3009 should declare the functions
TRANSFER_WITH_AUTHORIZATION_TYPEHASH() and
RECEIVE_WITH_AUTHORIZATION_TYPEHASH() to match the ERC-3009 interface standard.

Code partially corrected:

1. Version 2IMinterGateway has been updated to inherit IERC712, but in the function
eip712Domain is added in IERC712Extended.

2. IERC3009 now declares the functions listed above.

6.10 Remaining Dust in Distribution Vault
Correctness Low Version 1 Acknowledged

CS-MZEROCORE-029

Function DistributionVault.getClaimable() rounds down when computing the amount of cash
token that can be claimed by an account, hence dust remains in the vault:

claimable_ += (distributionOfAt[token_][startEpoch_ + index_] * balance_) / totalSupply_;

The dust of cash tokens (including MToken) accumulates in the vault and cannot be withdrawn. In case
of MToken, the locked dust has implications for last minters, who might be unable to fully repay their debt
and close their positions.

Acknowledged:

M^ZERO Labs answered:

There is no real way to prevent this from happening, just as there is no real way to prevent M
from being sent to addresses to which no one has the private key (or control of), which would
also result in last minters not being able to fully repay. This means that M tokens are worth
more than the nominal debt (since M tokens will be lost). Ideally this encourages minting. A
full wind down would likely involve social layers, in which remaining Minters can be allowed or
aided in exiting. After all, their collateral is off-chain.

However, a mechanism to reduce the dust amount has been implemented, by adding 9 decimals of
precision in the computation.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 22

https://eips.ethereum.org/EIPS/eip-3009
https://chainsecurity.com

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Code CorrectedHashing of String Arrays Is Not Compliant With EIP-712

• Code CorrectedCode Restricts Execution of Proposal to 1 Epoch

• Code CorrectedEIP-712 Dynamic Types

Low -Severity Findings 15

• Code CorrectedOutdated Dependencies

• Code CorrectedUI Interpretation of COUNTING_MODE

• Code CorrectedEIP5805 DelegateChanged Not Always Emitted

• Code CorrectedInconsistent Collateral and Penalty at Expiry Boundary

• Code CorrectedIncorrect Specifications

• Code CorrectedMissing Input Sanitization

• Code CorrectedNo Expiry in Buy Function

• Code CorrectedPossible Overflow When Syncing Accounts

• Code CorrectedPossible Overflow in convertToBasisPoints

• Specification ChangedPossible Rounding to 0 in getSafeEarnerRate

• Code CorrectedReentrancy in PowerToken Re-Buy

• Code CorrectedRemaining ToDos in Codebase

• Code CorrectedResubmission of Signatures and Staleness

• Code CorrectedTimestamp 0 in Signatures

• Code CorrectedWrong Condition in StableEarnerRateModel

Informational Findings 4

• Code CorrectedDead Code

• Code CorrectedMisleading Error Name

• Code CorrectedReason Ignored in BatchGovernor

• Code CorrectedERC712 Does Not Implement Extension EIP-5267

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

7.1 Hashing of String Arrays Is Not Compliant
With EIP-712
Correctness Medium Version 2 Code Corrected

CS-MZEROCORE-040

The standard EIP712 specifies that dynamic types (i.e. arrays) must be encoded as the keccak256
hash of their contents. The function _getReasonListHash() does not follow the standard when
hashing reasonList which is an array of string (dynamic type):

function _getReasonListHash(string[] calldata reasonList_) ... {
 bytes memory reasonBytes_;

 for (...) {
 reasonBytes_ = abi.encodePacked(reasonBytes_, bytes(reasonList_[index_]));
 }

 return keccak256(reasonBytes_);
}

Furthermore, using encodePacked for an array of strings enables hash collisions as it is possible to craft
different strings that produce the same hash.

Code corrected:

The function has been updated to comply to EIP712.

7.2 Code Restricts Execution of Proposal to 1
Epoch
Correctness Medium Version 1 Code Corrected

CS-MZEROCORE-001

The function StandardGovernor.execute() tries to execute all proposals voted in the last two
epochs. However, the function StandardGovernor.state() returns the status Succeeded only for
proposals voted in the previous epoch. The state Expired is returned for older proposals, hence
stopping them from being executed. This behavior conflicts the whitepaper and the code comments in
function execute() which state that a successful proposal can be executed during the next 2 epochs:

// Proposals have voteStart=N and voteEnd=N, and can be executed only during epochs N+1 and N+2.

Code corrected:

The function StandardGovernor.execute has been updated to execute only the proposals voted in
the last epoch, and the comment was update:

// Proposals have voteStart=N and voteEnd=N, and can be executed only during epoch N+1.

The condition for ProposalState.Active in StandardGovernor.state has been made stricter
(from <= to ==), as voteStart == voteEnd.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 24

https://eips.ethereum.org/EIPS/eip-712
https://chainsecurity.com

7.3 EIP-712 Dynamic Types
Correctness Medium Version 1 Code Corrected

CS-MZEROCORE-002

The standard EIP712 specifies that dynamic types like arrays must be encoded as the keccak256 hash
of the concatenated encodeData of their contents. The following functions do not hash the arrays
according to the standard:

• BatchGovernor.getBallotsDigest()

• MinterGateway._getUpdateCollateralDigest()

Code corrected:

The functions listed above now hash the arrays according to the standard.

7.4 Outdated Dependencies
Design Low Version 3 Code Corrected

CS-MZEROCORE-039

The common library referenced in the TTG is an old version of the codebase and should be updated.

Code corrected:

Version 4The commit reference to common library has been updated in .

7.5 UI Interpretation of COUNTING_MODE
Correctness Low Version 2 Code Corrected

CS-MZEROCORE-038

In the IBatchGovernor, the enum VoteType binds a "no" to 0 and a "yes" to 1. Abstain votes are not
supported in governance contracts. This behavior should be reflected in the view function
COUNTING_MODE() which returns support=for,against. However, the enum VoteType and the
value returned by COUNTING_MODE are not aligned.

Code corrected:

The function COUNTING_MODE() was updated to return support=against,for.

7.6 EIP5805 DelegateChanged Not Always
Emitted
Correctness Low Version 1 Code Corrected

CS-MZEROCORE-007

The EIP-5805 specs requests the DelegateChanged event to be emitted when delegator changes
the delegation of its assets from fromDelegate to toDelegate. The function

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 25

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-5805
https://chainsecurity.com

EpochBasedVoteToken._setDelegatee does not fully adhere to the standard as only emits the
event when it is not the first change of delegation. I.e., if _delegatees[delegator_].length==0 the
function starts a snapshot for the account with the new delegatee and returns without emitting the event.

Code corrected:

The function EpochBasedVoteToken._setDelegatee has been updated to emit the
DelegateChanged event in the special case where _delegatees[delegator_].length==0.

7.7 Inconsistent Collateral and Penalty at Expiry
Boundary
Correctness Low Version 1 Code Corrected

CS-MZEROCORE-011

The penalty and collateral calculation are not consistent with each other when
block.timestamp == updateTimestamp + updateCollateralInterval. The collateral will
still be the non-zeroed collateral value, but a penalty for missed collateral update will still be charged for 1
period.

Consider the following example:

• interval = 3

• minter updated its collateral at updateTimestamp = 1 with collateral = 42

• we are now at block.timestamp == 4:

• collateralOf will return 42 since
block.timestamp == updateTimestamp + interval

• a penalty will be charged for 1 period because
missedIntervals_ = (block.timestamp - lastUpdate) / = 1

Code corrected:

The collateral value is now zero when
block.timestamp == updateTimestamp + updateCollateralInterval.

7.8 Incorrect Specifications
Correctness Low Version 1 Code Corrected

CS-MZEROCORE-028

1. The natspec description of IRateModel.rate states that the return value is APY in BPS.
However, rate() returns the yearly interest rate does not consider the compounding.

2. The natspec description for principalAmount in event PenaltyImposed is incorrect.

3. The natspec @return weight_ of BatchGovernor._castVote() indicates
The type of support to cast for each proposal, but it should be the voting power of
the voter.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

Code corrected:

Version 2The incorrect natspec descriptions listed above have been fixed in .

7.9 Missing Input Sanitization
Design Low Version 1 Code Corrected

CS-MZEROCORE-012

• Some of the functions accept an epoch=0 as input, which is an invalid input as .
Non-exhaustive list of such functions:

• ZeroToken: getPastVotes, pastBalancesOf, pastDelegates,
_getDelegateesBetween, _getValuesBetween

• EpochBasedVoteToken: pastBalanceOf, pastDelegates, getPastVotes,
pastTotalSupply

• Function MinterGateway.proposeMint() does not perform any sanity check on destination
address.

• Function BatchGovernor.castVotes() does not check that the length of input arrays matches.

Code corrected:

Various inputs sanitization have been added across the codebase, fixing the issue.

7.10 No Expiry in Buy Function
Security Low Version 1 Code Corrected

CS-MZEROCORE-013

The function PowerToken.buy() does not allow users to specify an expiry timestamp, which would
prevent a transaction to execute at a later time. Currently, it is possible that user's transaction gets
executed at a future transfer epoch and potentially buys tokens with a price higher than originally
intended.

Code corrected:

The buy() function has been modified to accept an additional argument expiryEpoch_ and the
transaction reverts when the current epoch is greater than the expiry epoch.

7.11 Possible Overflow When Syncing Accounts
Correctness Low Version 1 Code Corrected

CS-MZEROCORE-014

The function _sync() in EpochBasedInflationaryVoteToken computes the unrealized inflation of
an account by iterating through all epochs since last sync. The for-loop is implemented in
_getUnrealizedInflation() and in each iteration, except the last one, it checks that the new
balance does not exceed the limits:

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

// Cap inflation to `type(uint240).max`.
if (inflatedBalance_ >= type(uint240).max) return type(uint240).max;

However, if the inflation from the last iteration causes the final balance of an account to exceed the limit
(type(uint240).max), function _sync() updates the balance with the full inflation amount via
_addBalance(). The later uses unchecked block, hence an overflow happens.

Code corrected:

The function _getUnrealizedInflation has been revised to ensure that the resulting balance of an
account does not overflow. If the inflated balance exceeds the maximum value of uint240 to return
type(uint240).max - balance_:

for (...) {
 ...

 unchecked {
 inflatedBalance_ += _getInflation(uint240(inflatedBalance_));

 // Cap inflation to `type(uint240).max`.
 if (inflatedBalance_ >= type(uint240).max) return type(uint240).max - balance_;
 }
}

7.12 Possible Overflow in convertToBasisPoints
Design Low Version 1 Code Corrected

CS-MZEROCORE-015

The function ContinuousIndexingMath.convertToBasisPoints() uses unchecked block to
convert a uint64 input into a uint32 type. The computation can overflow for large values of input,
i.e., input > type(uint32).max * 10**8.

This issue is unlikely to happen in the current codebase as the function is called only with inputs
representing interest rates which are capped.

Code corrected:

The output has been changed to uint40, which can hold the result of the conversion up to the maximum
value of the input.

7.13 Possible Rounding to 0 in getSafeEarnerRate
Design Low Version 1 Specification Changed

CS-MZEROCORE-016

The function getSafeEarnerRate in StableEarnerRateModel computes the value lnArg_ as
follows:

int256 lnArg_ = int256(
 1e12 + ((((uint256(totalActiveOwedM_) * (deltaMinterIndex_ - 1e12)) / 1e12) * 1e12) / totalEarningSupply_)
);

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

Note that deltaMinterIndex_ is usually close to 1 (10**12) for short time intervals, hence
deltaMinterIndex_ - 1e12 is a value close to 0. Therefore the intermediary result
(uint256(totalActiveOwedM_) * (deltaMinterIndex_ - 1e12)) / 1e12 rounds down to 0
for values of totalActiveOwedM below a certain threshold.

Specification changed:

Version 2The specifications of function getSafeEarnerRate() have changed in , hence a confidence
interval of 1 second is not used anymore. Furthermore, deltaMinterIndex_ is no longer rounded
down by performing a division with 1e12:

RATE_CONFIDENCE_INTERVAL = 30 days

...

uint48 deltaMinterIndex_ = ContinuousIndexingMath.getContinuousIndex(
 ContinuousIndexingMath.convertFromBasisPoints(minterRate_),
 RATE_CONFIDENCE_INTERVAL
);

int256 lnArg_ = int256(
 1e12 + (((uint256(totalActiveOwedM_) * (deltaMinterIndex_ - 1e12))) / totalEarningSupply_)
);

7.14 Reentrancy in PowerToken Re-Buy
Security Low Version 1 Code Corrected

CS-MZEROCORE-017

In the function PowerToken.buy() the cashToken in transferred from the buyer before the
totalSupply of the token is increased by mint(). If the cashToken implements callbacks
(ERC777-like), this enables a reentrancy issue that allows an attacker to mint arbitrary amounts of
PowerToken, as the amountToAuction would only be decreased after mint() is called.

Code corrected:

Function buy() has been revised to perform the transfer of the cash token at the end of the function,
following check-effect-interaction (CEI) pattern.

7.15 Remaining ToDos in Codebase
Design Low Version 1 Code Corrected

CS-MZEROCORE-018

The following ToDo comments are present in the following contracts:

• BatchGovernor

• ThresholdGovernor

Addressing remaining notes help improve the quality and readability of the code.

Code corrected:

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

ToDo comments listed above have been removed from the codebase.

7.16 Resubmission of Signatures and Staleness
Design Low Version 1 Code Corrected

CS-MZEROCORE-041

The function _updateCollateral() reverts only if the new timestamp is strictly smaller than the
current one. But if the exact same batch of signatures is used, the two timestamps will be equal and the
check will pass, even though the result is stale.

Code corrected:

The function _updateCollateral() has been updated to revert also if the new timestamp equals the
one already stored:

 uint40 lastUpdateTimestamp_ = _minterStates[minter_].updateTimestamp;

// MinterGateway already has more recent collateral update
if (newTimestamp_ <= lastUpdateTimestamp_) revert StaleCollateralUpdate(newTimestamp_, lastUpdateTimestamp_);

7.17 Timestamp 0 in Signatures
Correctness Low Version 1 Code Corrected

CS-MZEROCORE-030

Function MinterGateway.verifyValidatorSignatures() currently allows signatures with a
timestamp set to 0. Although it is anticipated that validators will not typically generate signatures with a
timestamp of 0, in the event that such signatures occur, there is a risk of replaying them, given that
minTimestamp will always be block.timestamp.

Code corrected:

Function _verifyValidatorSignatures() has been updated to revert with the error
ZeroTimestamp if a signature has a timestamp of zero:

// Check that the timestamp is not 0.
if (timestamps_[index_] == 0) revert ZeroTimestamp();

// Check that the timestamp is not in the future.
if (timestamps_[index_] > uint40(block.timestamp)) revert FutureTimestamp();

Note, whitelisted validators are considered fully trusted by the system and they should only provide
signatures with timestamps that match the off-chain verification of the collateral.

7.18 Wrong Condition in
StableEarnerRateModel
Correctness Low Version 1 Code Corrected

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

CS-MZEROCORE-020

The function StableEarnerRateModel.getSafeEarnerRate() implements the check
expRate_ > type(uint64).max to return early if the rate is too big, otherwise the value returned by
ContinuousIndexingMath.convertToBasisPoints(uint64(expRate_)) will be returned.

As mentioned in the issue Possible Overflow in ConvertToBasisPoints, the function
ContinuousIndexingMath.convertToBasisPoints will overflow if its input is greater than
type(uint32).max. The currently implemented check leaves a hole for the values of the rate between
type(uint32).max and type(uint64).max where the function will overflow. The function
StableEarnerRateModel.getSafeEarnerRate() should return early if
expRate_ > type(uint32).max instead.

Code corrected:

The issue Possible Overflow in ConvertToBasisPoints has been fixed and the function
StableEarnerRateModel.getSafeEarnerRate() returns the maximum value of uint32 when the
expRate is greater than type(uint32).max:

function getSafeEarnerRate(...) public pure returns (uint32) {
 ...

 uint40 safeRate_ = ContinuousIndexingMath.convertToBasisPoints(uint64(expRate_));
 return (safeRate_ > type(uint32).max) ? type(uint32).max : uint32(safeRate_);
}

7.19 Dead Code
Informational Version 1 Code Corrected

CS-MZEROCORE-021

The libraries PureEpochs and ContinuousIndexingMath implement some unused functions. The
unused functions will be ignored by the compiler, but unused code can increase the difficulty of
understanding the codebase. The functions are:

• ContinuousIndexingMath.exponentAssembly

• PureEpochs.getTimeUntilEpochStart

• PureEpochs.getTimeUntilEpochEnds

• PureEpochs.getTimeSinceEpochStart

• PureEpochs.getTimeSinceEpochEnd

• SignatureChecker.isValidECDSASignature(address,bytes32,uint8,bytes32,b
ytes32)

The function EpochBasedVoteToken._subUnchecked is never used.

Code corrected:

All the functions listed above have been removed from the codebase.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

7.20 ERC712 Does Not Implement Extension
EIP-5267
Informational Version 1 Code Corrected

CS-MZEROCORE-022

The abstract contract ERC712 does not implement the extension EIP-5267 which aims to improve the
integration of EIP-712 signatures with third-party tools.

Code corrected:

M^ZERO Labs team has implemented the EIP-5267 extension in the abstract contract ERC712Extended.

7.21 Misleading Error Name
Informational Version 1 Code Corrected

CS-MZEROCORE-025

The error ReusedNonce emitted in ERC5805._checkAndIncrementNonce() is misleading, as this
error will be emitted for nonce that are , which haven't been used yet by definition.

Code corrected:

The error has been renamed as InvalidAccountNonce.

7.22 Reason Ignored in BatchGovernor
Informational Version 1 Code Corrected

CS-MZEROCORE-027

The function BatchGovernor.castVoteWithReason() takes as input a string parameter that
represents the reason. This parameter is ignored by the function and the event VoteCast is always
emitted with an empty string as reason.

Code corrected:

The function castVoteWithReason() has been revised to include the reason variable in the event
VoteCast. Furthermore, new functionalities that allow users to provide reasons when submitting votes
for a list of proposals, or when voting with a signature, are implemented.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 32

https://eips.ethereum.org/EIPS/eip-5267
https://chainsecurity.com

8 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Gas Optimizations
Informational Version 1 Code Partially Corrected

CS-MZEROCORE-023

1. In the function MinterGateway._verifyValidatorSignatures(), the check for approved
validators can be moved higher up in the loop to save gas in the case the validator is not approved.

2. In the functions PowerToken._getBalance() and PowerToken._getVotes(),
_getUnrealizedInflation() is called if the length of _balances[account_] or
votingPowers[account] is 0. This is not needed as _getUnrealizedInflation() will
always return 0 in that case. I.e., as delegation are reset with the bootstrap, the only way for
_getUnrealizedInflation() to be non-zero is for the account to have its voting power used
after bootstrapEpoch. This can be done only if the account either delegated or voted after the
redeployment, both of those actions trigger bootstrap(), which updates
balances[account] and _votingPowers[account_].

3. The decrement of latestVoteStart_ can be unchecked in
BatchGovernor._tryExecute().

4. In the ThresholdGovernor, since _votingDelay = 0 the state Pending cannot be reached
and the check currentEpoch_ < voteStart_ in ThresholdGovernor.state() can be
dropped.

5. The function SignatureChecker.isValidSignature() will try to ECDSA-verify the signature
even if the signature is following the EIP-1271. Checking the codesize of the target to decide
whether to ECDSA-verify or to call isValidSignature() will save gas.

6. The check error_ == SignatureChecker.Error.InvalidSignature in
ERC712._revertIfError() can be avoided as the function throws the same error as default.

7. Local variables error in functions SignatureChecker.validateECDSASignature(*) are
not used.

8. The first condition expiry_ != type(uint256).max in ERC712._revertIfExpired() is
redundant as such timestamp cannot be expired due to block.timestamp being smaller than
type(uin256).max.

9. Function ERC3009.transferWithAuthorization() could be more gas efficient to revert early
if validBefore_ and validAfter_ are checked first.

10. Function ERC3009.receiveWithAuthorization() could be more gas efficient to revert early if
validBefore_, validAfter_ and to_ == msg.sender are checked first.

11. The internal function
ContinuousIndexing._getPrincipalAmountRoundedUp(uint240, uint128) could be
avoided if divideUp() is called by caller.

12. The field quorumRatio in the struct Proposal is unused.

13. The check latestPossibleVoteStart_ > 0 in ThresholdGovernor.execute() is
redundant as currentEpoch is already checked to be non-zero.

14. The check participationInflation_ > ONE in EpochBasedInflationaryVoteToken is
redundant as the variable is set to 1000 (10%) when PowerToken is deployed.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

15. The sanity checks in EmergencyGovernor.constructor() are redundant as they are checked
by the deployer.

16. Similarly, several checks in StandardGovernor.constructor() are redundant.

17. The sanity check in PowerToken.setNextCashToken() is redundant as nextCashToken_ is
validated already in ZeroGovernor.

Version 2 :

18. Functions _subtractEarningAmount() and _subtractNonEarningAmount() in MToken
perform redundant SLOADs when updating rawBalance.

19. Function StableEarnerRateModel.rate() performs a multiplication and a division with the
same value.

20. The local variable digest_ in ERC20Extended._permitAndGetDigest() is unused.

21. The local variables weight_ in variations of function castVote*BySig() in BatchGovernor are
unused.

22. The checks delegator_ != newDelegatee_ in PowerToken._delegate() and
recipient_ != sender_ in EpochBasedInflationaryVoteToken._transfer() can be
avoided.

23. Function _revertIfInvalidCalldata in EmergencyGovernor, StandardGovernor and
ZeroGovernor could be more gas efficient to return early if calldata is matched and revert if no
match is found.

Code partially corrected:

The optimization points 1, 3, 4, 7, 8, 13, and 19 have been implemented in the updated codebase. The
optimization in point 5 is partially addressed as the function has been revised to use less gas for ECDSA
signatures, while making ERC1271 signatures more expensive.

8.2 Inconsistent Error on Transfer Reverts
Informational Version 2

CS-MZEROCORE-035

Transferring M tokens between accounts of different states (earner to non-earner, or vice-versa) throws
the error InsufficientBalance when sender has not enough balance. However, when transferring M
tokens between two accounts with same state reverts due to underflow in the internal function
_transferAmountInKind():

function _transferAmountInKind(address sender_, address recipient_, uint240 amount_) internal {
 balances[sender].rawBalance -= amount_;
 ...
}

Similarly, POWER and ZERO token revert due to an underflow when the sender does not have enough
balance.

8.3 Inconsistent Events
Informational Version 1 Code Partially Corrected

CS-MZEROCORE-024

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

1. In the function MinterGateway.updateCollateral(), the order of events does not match the
order of changes on-chain. For example, the events would be trigger in the following order:
update-penalty-penalty, but the order of execution on-chain is penalty-update-penalty. It is in
general good practice to emit the events to match the changes on-chain.

2. Anyone can call the function MinterGateway.activateMinter() for an existing active minter
and emit the respective event, although no state changes.

3. The event MintCanceled is emitted if calling the function MinterGateway.cancelMint() with
mintId_ = 0 although no such proposal can exist.

4. Functions startEarning() and stopEarning() can be called multiple times for an address to
emit the respective events.

5. Functions allowEarningOnBehalf() and disallowEarningOnBehalf() can be called
multiple times with no state changes.

6. Function PowerToken.buy() can be called at any time with minAmount_ set to 0, so events Buy
and Transfer would be emitted even during voting epochs.

Version 2 :

7. The event Sync is emitted only by function EpochBasedInflationaryVoteToken.sync(),
although a sync happens in other call paths. Futhermore, sync() can be called with arbitrary
epoch_ (e.g., older than the last sync's epoch) and the event is always emitted.

Code partially corrected:

1. No change.

2. No change.

3. The function now reverts if mintId_ == 0.

4. Both functions startEarning() and stopEarning() have been updated to return early and do
not emit an event when they do not trigger a state change.

5. The functions have been removed from the codebase.

6. The function now reverts if minAmount_ == 0 or maxAmount_ == 0.

7. M^ZERO Labs informed us they only want the Sync event to be emitted from the public sync()
function. The function has been updated and now only takes an address as parameter.

8.4 Metadata of PowerToken
Informational Version 1 Acknowledged

CS-MZEROCORE-031

The name and symbol of PowerToken is hardcoded in its constructor:

constructor(
 ...
) EpochBasedInflationaryVoteToken("Power Token", "POWER", 0, ONE / 10) {
 ...
}

Therefore, name and symbol will be the same for new tokens if redeployed by governance.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

Acknowledged:

M^ZERO Labs answered:

There can only be one Power Token at a time.

8.5 Misleading Natspec Description for _divideUp
Informational Version 1

CS-MZEROCORE-032

The natspec description of PowerToken._divideUp() is misleading as the function actually rounds up
the ratio x/y in BPS. Therefore, the function should not be used with arbitrary inputs as the description
might suggest:

/**
 * @dev Helper function to calculate `x` / `y`, rounded up.
 ...
 */
function _divideUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
 ...
}

8.6 Past Balances From Bootstrap Token Are
Scaled Down
Informational Version 2

CS-MZEROCORE-036

The internal function _getInternalOrBootstrap relies on _getBootstrapBalance() to compute
past balances or votes for an account according to an epoch which is older than the bootstrap epoch:

if (epoch_ <= bootstrapEpoch) return _getBootstrapBalance(account_, epoch_);

Function _getBootstrapBalance() implements the following formula:

(IEpochBasedVoteToken(bootstrapToken).pastBalanceOf(account_, epoch_)
 * INITIAL_SUPPLY) / _bootstrapSupply

Note that the original balance of account_ in the bootstrapToken gets scaled down by the factor
INITIAL_SUPPLY/_bootstrapSupply.

Version 3In , the INITIAL_SUPPLY has been increased from 10_000 to 1_000_000, improving the loss
by a factor 100.

8.7 Possible Griefing With Governance Proposals
Informational Version 1 Acknowledged

CS-MZEROCORE-026

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

ZeroGovernor and EmergencyGovernor do not implement any measure to prevent attackers from
proposing a large number of malicious proposals. Although such proposals do not get executed,
assuming they do not receive the threshold of yes votes, they might be used to spam the system and
make harder for users to find legit proposals.

Acknowledged:

M^ZERO Labs answered:

Intended behavior, zero and emergency governors proposals are optional to vote,
requiring thresholds of votes. Possible filtering can be done on a social level.
Gas fees on mainnet eventually should be spam prevention against such attacks.

8.8 Snapshots Remain in Storage
Informational Version 1

CS-MZEROCORE-037

Multiple contracts within the governance module maintain a record of changes for each account in
storage. Typically, this information is only extended when new activity happens, and the old data remains
uncleared. For example, mapping _lastSyncs stores the full history, although smart contracts only use
the last entry.

Version 3In , the mapping _lastSyncs has been removed from the codebase.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

9 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 Arbitrary Tokens Can Be Transferred to the
Distribution Vault
Note Version 2

DistributionVault primarily receives cash tokens from the auction in the POWER token and fees of
defeated proposals in the standard governor. It also receives the excess M tokens from the minter
gateway. Zero holder can claim all tokens owned by the DistributionVault according to their balance in a
given epoch.

Note that anyone can transfer (donate) arbitrary tokens to the vault. If such tokens are malicious, the
accounting of the distribution vault might not work as expected. Zero holders should only claim tokens
that are trustworthy.

9.2 Effects of Roundings in MToken
Note Version 1

The protocol extensively uses rounding up or down when it comes to working with principal values in the
MToken. This has the following effects:

• for earners, the minting of X tokens will effectively mint Y tokens, with .

• for earners with initial token balances A and B, in-kind transfers of X tokens will result in updated
balances A' and B', with and , and .

• for out-of-kind transfers of X tokens and initial balances A and B, the updated balances A' and B'
yield .

• as soon as earners are active in the system, the invariant:

∑
i ∈ nonEarningBalances

balanceOf(i) = totalSupply

is relaxed to

∑
i ∈ nonEarners

balanceOf(i) + ∑
j ∈ earners

balanceOf(j) ≤ totalSupply

• when non earners become earners, their balances go from A to A', with .

• when earners stop earning, their balances go from A to A', with .

Functions transfer(), transferFrom(), mint() and burn() update balances with amounts that
might be different from those specified by callers due to rounding errors. The lost balances due to
rounding will be counted by excessOwedM and get minted to the distribution vault. These specifics of
MToken should be taken in consideration when integrating with 3rd-party protocols.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

9.3 Inactive Minters Can Be Frozen
Note Version 1

The function MinterGateway.freezeMinter allows approved validators to freeze arbitrary
addresses. But nothing prevents a non-active minter to be frozen.

M^ZERO Labs provides the following argument for allowing this behavior:

This is intentional. Validators can freeze a minter before they become activated,
in order to have time to properly access/setup/etc before that minter can start
minting. Abuse of this functionality can result in governance removing the validator.

9.4 Incentives for Accumulating Governance
Tokens
Note Version 1

There is a circular incentive in the system to collect more governance tokens over time. Having Zero
token allows users to claim rewards from the distribution vault. Zero tokens are emitted to Power
holders that vote regularly on standard proposals. Collecting more Zero tokens from standard governor,
allows users to buy more Power token with a discount from the Dutch auction, which increases Zero
token emission when voting.

The system inherently encourages the ongoing collection of more governance tokens. Having Zero
tokens enables users to claim rewards from the distribution vault. Zero tokens are issued to Power
holders who regularly participate in voting on standard governor. Accumulating more Zero tokens
through the standard governor enables users to purchase additional Power tokens at a discounted rate
during the Dutch auction. This, in turn, amplifies the emission of Zero tokens when participating in
voting.

9.5 Minter's Wallet Is Continuously Used
Note Version 1

The function updateCollateral() requires minters to submit transactions to the smart contract on a
daily basis. Considering that minter's account is valuable in the system and it should be carefully
protected (e.g., as a cold wallet), this might cause inconvenience to minters.

M^ZERO Labs provides the following argument for the design:

Ideally, a Minter's wallet should only be used to interact with the MinterGateway.
M minted by the Minter, should be sent to another wallet by passing a different
destination address in proposeMint. When the Minter wants to retrieve their collateral,
they will either have to ask the owner of the mint M tokens to call the burnM function
or acquire M on the secondary market to burn them themselves. Of course, Minters should
first and foremost ensure that they have established good security practices to avoid
any issues.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

9.6 Minters Can Overwrite Mint Proposals
Note Version 1

Minters can have only one mint proposal at a time which is subject to a delay before it can be executed.
Each proposal gets a unique id. To cancel a proposal, validators should pass the minter address and
mintId_ to cancelMint().

This creates a front-running possibility as the minter can make a new proposal which gets a new id,
therefore the validator's transaction canceling the old proposal reverts. However, the new proposal is still
subject to the delay and validators can cancel it during this time. It is important that validators correctly
parse events and always act as expected. Validators should cancel the respective mint proposals after
minters submit collateral retrieve proposals.

9.7 Proposals Can Be Reordered
Note Version 1

The execution order of the Succeeded proposals can be arbitrary, they are not enforced to be executed
in the same order they were proposed. This could lead to unexpected behaviors if multiple proposals are
targeting the same parameters.

9.8 Recovery When System Incurs Losses
Note Version 1

It is possible that the system could mint uncollateralized MTokens when more interest is paid to earners
than collected from minters. Although unlikely, this could happen if updateIndex() is not called for a
long time (e.g., longer than the confidence interval of 30 days). The system does not implement an
explicit recovery mechanism for such situations.

9.9 Solmate Libraries
Note Version 1

The external libraries are outside the scope of this code assessment. However, we would like to highlight
that the contract StableEarnerRateModel uses the function wadln() from solmate which has the
following disclaimer in their repository:

This is experimental software and is provided on an "as is" and "as available" basis.

While each major release has been audited, these contracts are not designed with user safety in mind:

 * There are implicit invariants these contracts expect to hold.
 * You can easily shoot yourself in the foot if you're not careful.
 * You should thoroughly read each contract you plan to use top to bottom.

We do not give any warranties and will not be liable for any loss incurred through
any use of this codebase.

9.10 Threshold Governors Can Ignore Majority
Note Version 1

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 40

https://github.com/transmissions11/solmate
https://chainsecurity.com

The governors implementing ThresholdGovernor, i.e. ZeroGovernor and EmergencyGovernor,
consider a proposal Succeeded if the ratio . This means that if , the
majority is ignored, and a proposal can pass even if it gets more no votes than yes votes.

M^ZERO Labs provides the following argument for allowing this behavior:

Thresholds will be significantly higher than 50%. If some reason governance lower
thresholds below 50%, the described situation is intended.

9.11 Update Interval Should Consider Delays on
Collecting Signatures
Note Version 1

The updated interval parameter in the registrar decides the frequency that minters should update their
collateral without paying a penalty. An update interval of 24 hours, in reality, does not translate into a
requirement to call updateCollateral() daily. As there is some delay from the moment a minter
receives the first signature from a validator until the transaction executes on-chain, minters should update
their collateral more frequently than the update interval. For example, at day 1 minter initiates the process
of collecting signatures at 10:00am and the transaction is finalized after 1 hour, next day the minter
should initiate the process at 09:00am such that updateCollateral() is executed before 10:00am
(assuming the whole process always takes 1 hour).

9.12 Use of Power and Zero Tokens in 3Rd-Party
Protocol
Note Version 1

Governance tokens Zero and Power play two important roles in the system:

• Maintain the protocol by voting on proposals.

• Claim M token rewards from the vault that help minters close their positions.

However, both tokens are implemented as ERC20 tokens and can be deposited in 3rd-party protocols
(such as DEXes or lending protocols). If this happens, there are severe consequences for the system, as
attacks that overtake governance majority become feasible (e.g., borrowing large amount of tokens in the
last block of an epoch). Also, parts of rewards in the distribution vault might get locked.

9.13 Varias in Penalty Aggregation
Note Version 1

When computing the penalty amount for a "block" of penalties for missed collateral updates, i.e. update
interval missed back-to-back, the penalty is not compounding, but it is between two distinct penalty
blocks.

Within a penalty block, for 2 missed intervals, the amount is computed as principalAmount * 2 * p
enaltyRate = (principalAmount * penaltyRate) + (principalAmount * penaltyRate

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

), and for two not back-to-back missed intervals the amount is (principalAmount * penaltyRate)
 + (principalAmount * (1 + penaltyRate)) * penaltyRate.

9.14 ZERO Holders Buy PowerToken With a
Discount
Note Version 1

Since ZERO holders can claim the cash tokens in the DistributionVault, they partially get back the
amount they pay when buying PowerToken from the Dutch auction. This gives an advantage to ZERO
holders proportionally to their balance.

M^ZERO Labs - Protocol and Governance - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Protocol
	3.1.1 MToken
	3.1.2 MinterGateway
	3.1.3 RateModels

	3.2 Governance
	3.2.1 Registrar
	3.2.2 StandardGovernor
	3.2.3 PowerToken
	3.2.4 ZeroGovernor
	3.2.5 ZeroToken
	3.2.6 EmergencyGovernor
	3.2.7 DistributionVault

	3.3 Trust Model
	3.4 Changes in Version 2
	3.5 Changes in Version 3

	4 Limitations and use of report
	5 Terminology
	6 Findings
	6.1 Side-effects of Resets
	6.2 Effects of Roundings in PowerToken
	6.3 Standard Proposal Fee Has Ambiguous Denomination
	6.4 Sync of Address 0 During Delegation
	6.5 Vote Weight Has Ambiguous Interpretation
	6.6 Contract ERC3009 Inherits StatefulERC712
	6.7 Earner Interest Can Exceed Minter's Interest
	6.8 Excess Owed M Can Be Larger Due to Rounding
	6.9 Incomplete Interfaces
	6.10 Remaining Dust in Distribution Vault

	7 Resolved Findings
	7.1 Hashing of String Arrays Is Not Compliant With EIP-712
	7.2 Code Restricts Execution of Proposal to 1 Epoch
	7.3 EIP-712 Dynamic Types
	7.4 Outdated Dependencies
	7.5 UI Interpretation of COUNTING_MODE
	7.6 EIP5805 DelegateChanged Not Always Emitted
	7.7 Inconsistent Collateral and Penalty at Expiry Boundary
	7.8 Incorrect Specifications
	7.9 Missing Input Sanitization
	7.10 No Expiry in Buy Function
	7.11 Possible Overflow When Syncing Accounts
	7.12 Possible Overflow in convertToBasisPoints
	7.13 Possible Rounding to 0 in getSafeEarnerRate
	7.14 Reentrancy in PowerToken Re-Buy
	7.15 Remaining ToDos in Codebase
	7.16 Resubmission of Signatures and Staleness
	7.17 Timestamp 0 in Signatures
	7.18 Wrong Condition in StableEarnerRateModel
	7.19 Dead Code
	7.20 ERC712 Does Not Implement Extension EIP-5267
	7.21 Misleading Error Name
	7.22 Reason Ignored in BatchGovernor

	8 Informational
	8.1 Gas Optimizations
	8.2 Inconsistent Error on Transfer Reverts
	8.3 Inconsistent Events
	8.4 Metadata of PowerToken
	8.5 Misleading Natspec Description for _divideUp
	8.6 Past Balances From Bootstrap Token Are Scaled Down
	8.7 Possible Griefing With Governance Proposals
	8.8 Snapshots Remain in Storage

	9 Notes
	9.1 Arbitrary Tokens Can Be Transferred to the Distribution Vault
	9.2 Effects of Roundings in MToken
	9.3 Inactive Minters Can Be Frozen
	9.4 Incentives for Accumulating Governance Tokens
	9.5 Minter's Wallet Is Continuously Used
	9.6 Minters Can Overwrite Mint Proposals
	9.7 Proposals Can Be Reordered
	9.8 Recovery When System Incurs Losses
	9.9 Solmate Libraries
	9.10 Threshold Governors Can Ignore Majority
	9.11 Update Interval Should Consider Delays on Collecting Signatures
	9.12 Use of Power and Zero Tokens in 3Rd-Party Protocol
	9.13 Varias in Penalty Aggregation
	9.14 ZERO Holders Buy PowerToken With a Discount

