

Disclaimer

The ensuing audit oers no assertions or assurances about the code's security. It cannot
be deemed an adequate judgment of the contract's correctness on its own. The authors of
this audit present it solely as an informational exercise, reporting the thorough research
involved in the secure development of the intended contracts, andmake nomaterial
claims or guarantees regarding the contract's post-deployment operation. The authors of
this report disclaim all liability for all kinds of potential consequences of the contract's
deployment or use. Due to the possibility of human error occurring during the code’s
manual review process, we advise the client team to commission several independent
audits in addition to a public bug bounty program.

5

Table of Contents
Disclaimer 3
Summary 7
Scope 9
Methodology 11
Project Dashboard 13
Code Maturity Evaluation 16
Findings 19

3S-M^0-H01 19
3S-M^0-H02 21
3S-M^0-M01 23
3S-M^0-M02 25
3S-M^0-L01 26
3S-M^0-L02 27
3S-M^0-L03 29
3S-M^0-L04 31
3S-M^0-L05 33
3S-M^0-L06 35
3S-M^0-L07 37
3S-M^0-L08 38
3S-M^0-L09 40
3S-M^0-L10 41
3S-M^0-L11 43
3S-M^0-N01 45
3S-M^0-N02 46
3S-M^0-N03 47
3S-M^0-N04 48
3S-M^0-N05 49
3S-M^0-N06 50
3S-M^0-N07 51
3S-M^0-N08 52
3S-M^0-N09 53
3S-M^0-N10 54
3S-M^0-N11 55
3S-M^0-N12 56
3S-M^0-N13 57
3S-M^0-N14 58
3S-M^0-N15 59
3S-M^0-N16 60
3S-M^0-N17 61

6

7

Summary

Three Sigma Labs auditedM^0 Labs in a 8 personweek engagement. The audit was
conducted from 08/01/2024 to 02/02/2024.

Protocol Description

A neutral value transmission framework able to permissionlessly mint currencies under
decentralized governance. The purpose of $M is to become a superior building block for
value representation, by combining the convenience of digital money with the risk profile of
physical cash.

8

9

Scope
Filepath nSLOC

common/src/ContractHelper.sol 25

common/src/ERC20Permit.sol 87

common/src/ERC712.sol 55

common/src/SignatureChecker.sol 96

common/src/StatefulERC712.sol 10

protocol/src/ContinuousIndexing.sol 57

protocol/src/EarnerRateModel.sol 30

protocol/src/libs/ContinuousIndexingMath.sol 36

protocol/src/libs/SPOGRegistrarReader.sol 76

protocol/src/libs/UIntMath.sol 23

protocol/src/MinterRateModel.sol 15

protocol/src/MToken.sol 170

protocol/src/Protocol.sol 434

spog/src/abstract/BatchGovernor.sol 237

spog/src/abstract/EpochBasedInflationaryVoteToken.sol 137

spog/src/abstract/EpochBasedVoteToken.sol 215

spog/src/abstract/ERC5805.sol 38

spog/src/abstract/ThresholdGovernor.sol 100

spog/src/DistributionVault.sol 114

spog/src/EmergencyGovernor.sol 63

spog/src/EmergencyGovernorDeployer.sol 32

spog/src/libs/PureEpochs.sol 60

spog/src/PowerBootstrapToken.sol 22

spog/src/PowerToken.sol 170

spog/src/PowerTokenDeployer.sol 29

spog/src/Registrar.sol 78

spog/src/StandardGovernor.sol 233

spog/src/StandardGovernorDeployer.sol 48

spog/src/ZeroGovernor.sol 132

spog/src/ZeroToken.sol 105

SUM 2927

10

11

Methodology

To begin, we reasoned meticulously about the contract's business logic, checking
security-critical features to ensure that there were no gaps in the business logic and/or
inconsistencies between the aforementioned logic and the implementation. Second, we
thoroughly examined the code for known security flaws and aack vectors. Finally, we
discussed the most catastrophic situations with the team and reasoned backwards to
ensure they are not reachable in any unintentional form.

Taxonomy

In this audit we report our findings using as a guideline Immunefi’s vulnerability taxonomy,
which can be found at immunefi.com/severity-updated/. The final classification takes into
account the severity, according to the previous link, and likelihood of the exploit. The
following table summarizes the general expected classification according to severity and
likelihood; however, each issue will be evaluated on a case-by-case basis and may not
strictly follow it.

Severity / Likelihood LOW MEDIUM HIGH

NONE None

LOW Low

MEDIUM Low Medium Medium

HIGH Medium High High

CRITICAL High Critical Critical

http://immunefi.com/severity-updated/

12

13

Project Dashboard

Application Summary

Name M^0 Labs

ReviewCommit common
4a37119f2da946c6d8ad7b9a70dfdd219225115b
TTG
a8127901fa1f24a2e821cf4d9854a1aa6ac8088c
Protocol -
3499f503382729f3e59565b19386ba61ef8e36

Fix Commit common
44784c6a7b40b65dd51fe9da917ad67cb8439077
TTG
930f2db7e62f90377a902cc4b2541d3637d37730
Protocol -
e809402c4cc21f1fa8291f17ee0aee859f3b0d29

Language Solidity

Platform Ethereum

Engagement Summary

Timeline 08�01�2024 to 02�02�2024

Nº of Auditors 2

Review Time 8 personweeks

14

Vulnerability Summary

Issue Classification Found Addressed Acknowledged

Critical 0 0 0

High 2 2 0

Medium 2 1 1

Low 11 9 2

None 17 13 4

Category Breakdown

Suggestion 10

Documentation 0

Bug 16

Optimization 7

Good Code Practices 0

15

16

CodeMaturity Evaluation

CodeMaturity Evaluation Guidelines

Category Evaluation

Access Controls The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system.

Arithmetic The proper use of mathematical operations and semantics.

Centralization The presence of a decentralized governance structure for
mitigating insider threats andmanaging risks posed by contract
upgrades

Code Stability The extent to which the codewas altered during the audit.

Upgradeability The presence of parameterizations of the system
that allowmodifications after deployment.

Function
Composition

The functions are generally small and have clear
purposes.

Front-Running The system’s resistance to front-running aacks.

Monitoring All operations that change the state of the system emit events,
making it simple tomonitor the state of the system. These events
need to be correctly emied.

Specification The presence of comprehensive and readable codebase
documentation.

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests,
integration tests, and verificationmethods) and suicient test
coverage.

17

CodeMaturity Evaluation Results

Category Evaluation

Access Controls Satisfactory. All access control is correctly implemented.

Arithmetic Moderate. Some rounding errors were found.

Centralization Satisfactory. No significant points of centralization are
found.

Code Stability Satisfactory. The codewas stable throughout the audit.

Upgradeability Weak. The contracts are not upgradeable.

Function Composition Satisfactory. The codewas correctly split into helper
functions.

Front-Running Moderate. Some front-running issues were found.

Monitoring Satisfactory. Most events are emied.

Specification Satisfactory. The code follows the specifications.

Testing and Verification Satisfactory. The codebase implements unit and fuzz
tests.

18

19

Findings

3S�M^0-H01
Lack of deadline in PowerToken.buy can lead to user's cashToken being
distributed through ZeroToken holders

Id 3S�M^0-H01
Classification High
Severity High
Likelihood Medium
Category Bug
Status Addressed in#3fb74e7.

Description

The function PowerToken.buy is used to purchase tokens in auction. The price of those
tokens decreases with time, following a dutch auctionmodel. Because there's no deadline
parameter in the function call, it's possible to retain this transaction and execute it in a
subsequent auction at a steeper price, potentially resulting in a significant loss to the user,
considering the price in an auction starts at 2^99 wei per supply basis point.

Here's a likely scenario:

1. Auction A starts. Let's assume that cashToken is WETH.

2. Nobody buys the tokens until the price becomesmore reasonable. For example, 1 ether
per bps.

3. Alicemax-approves the spending of herWETH for the PowerToken contract to transfer
them. Alice holds 100WETH in her wallet.

4. Alice tries to buy the tokens, but ends up paying a very low fee and the transaction ends
up not being picked up for execution. In themeantime, market fees rise and the transaction
gets stuck in themempool. This is not uncommon, and there are thousands of mempool
transactions with over amonth.

5. A new auction B eventually starts. Starting price is the same.

https://github.com/MZero-Labs/ttg/commit/3fb74e72f03d45e7ec56f5c420143bcb627ac206
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/PowerToken.sol#L102-L122

20

6. A ZeroToken holder Bob submits Alice's transaction inside a flashbots bundle. Bob does
this when the price is 100 ether per bps.

7. Alice ends up buying the desired amount of PowerToken. However, the price wasmuch
larger than shewanted, and she ended up spending 100 timesmore.

8. TheWETH falls into the vault, where both Bob and the other ZeroToken holders will be
able to claim their fair share.

It should be noted that, in theory, all ZeroToken holders have an economic incentive to be
on the look for these buying aempts that get stuck on themempool.

Recommendation

Add a deadline input to the function call, and check that block.timestamp is smaller than
that deadline.

function buy(
uint256 minAmount_,
uint256 maxAmount_,
address destination_,
uint256 deadline_

) external returns (uint240 amount_, uint256 cost_) {

21

3S�M^0-H02
Validator signature with zero timestamp can always be replayed

Id 3S�M^0-H02
Classification High
Severity High
Likelihood Medium
Category Bug
Status Addressed in#b2c421c.

Description

When callingMinterGateway.updateCollateral, an array of timestamps gets passed. That is
because the digest signed by a validator includes an updating timestamp.

Theminimum timestamp between the signatures will be used as the new collateral update
timestamp. This is used to check for staleness, which also has the side eect of preventing
replaying a set of signatures:

function _updateCollateral(address minter_, uint240 amount_, uint40
newTimestamp_) internal {

uint40 lastUpdateTimestamp_ =
minterStates[minter].updateTimestamp;

// MinterGateway already has more recent collateral update
if (newTimestamp_ < lastUpdateTimestamp_) revert

StaleCollateralUpdate(newTimestamp_, lastUpdateTimestamp_);
minterStates[minter].collateral = amount_;
minterStates[minter].updateTimestamp = newTimestamp_;

}

The issue arises when a timestamp signed by a validator is zero. This is explicitly allowed by
the validator signature verification, which ignores zero values:

// Find minimum between all valid timestamps for valid
signatures.

minTimestamp_ = UIntMath.min40IgnoreZero(minTimestamp_,

https://github.com/MZero-Labs/protocol/commit/b2c421c132cf6af6a18860ad17285b900be83163
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L136-L143l

22

UIntMath.safe40(timestamps_[index_]));

In the extreme scenario where every validator signature of the array has a zero timestamp,
minTimestamp_will be block.timestamp, which will always pass the staleness check. This
means that an array of signatures with zero timestamps can be replayed asmany times as a
minter wants, thus achieving a way for updating its collateral to that same value in the
future, regardless of whether or not that's still true in the o-chain world. Aminter could do
the following:

1. Add a very large amount of real world collateral. Let's say $10M.

2. Call updateCollateralwith the right amount. Let's assume validators will have signed
with a zero timestamp, which is explicitly allowed by the protocol.

3. Redeem the entire real world collateral.

4. Call updateCollateral by replaying the original validator signatures. The protocol will still
think theminter has all the collateral.

5. Mint themaximum allowed amount of MToken. Sell them somewhere at market price.

In a less extreme scenario where only 1 validator signs with a zero timestamp, we can still
say that this specific signature can be reused anytime in the future, as long as the same
collateral value is being used and that validator continues being approved by the TTG. The
previous scenario can still be achieved if a minter rightfully calls updateCollateralmultiple
times with the same amount and rotates the validators until they finally get enough zero
timestamp signatures from dierent validators.

Recommendation

Revert the signature verification if a timestamp is zero, by adding the following line to
_verifyValidatorSignatures's loop:

if (timestamps_[index_] == 0) revert ZeroTimestamp();

23

3S�M^0-M01
MToken's total principal invariant can be broken

Id 3S�M^0-M01
Classification Medium
Severity High
Likelihood Low
Category Bug
Status Addressed in#74523a8.

Description

Because there's an unchecked total earning principal addition in
MToken._addEarningAmount, the MToken contract would be subject to a potential silent
overflow of principalOfTotalEarningSupply. However, there's a check in the
MinterGateway.mintM function that's supposed to prevent this from ever happening.

But because minterRate and earnerRate can be dierent, it is possible that a silent
overflow happening in MToken doesn’t get caught by the check in MinterGateway. The
transaction will not be reverted, and principalOfTotalEarningSupplywill silently
overflow, reaching a broken state. Because a silent overflow in MTokenwill lead to an
additional mint of MinterGateway.excessOwedM, the function can still revert in a safe
uint112 cast within MToken.mint. But there's still possible mint amount values which will
lead to a successful transaction.

Close to the point of overflow, amaliciousminter couldmint the appropriate amount to
make MToken reach the broken state. The overflowed principalOfTotalEarningSupply
might still be used to drive further impact to the protocol.

Recommendation

Use checked addition in _addEarningAmount.

function _addEarningAmount(address account_, uint112 principalAmount_)
internal {

unchecked {
balances[account].rawBalance += principalAmount_;

https://github.com/MZero-Labs/protocol/commit/74523a8e77be8654b902baaca41201d135c72190
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L176-L181
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L261-L275

24

}
principalOfTotalEarningSupply += principalAmount_;

}

25

3S�M^0-M02
Validator signatures with greater timestamps can be reused in a
subsequent updateCollateral

Id 3S�M^0-M02
Classification Medium
Severity Medium
Likelihood Medium
Category Bug
Status Acknowledged

Description

When callingMinterGateway.updateCollateral, an array of timestamps gets passed. That is
because the digest signed by a validator includes an updating timestamp. Theminimum
timestamp between the signatures will be used as the new collateral update timestamp.
This is used to check for staleness, which also has the side eect of preventing replaying a
set of signatures.

Provided the collateral amount stays the same, all signatures with a timestamp larger than
theminimum timestamp between them can be reused for a subsequent update. This means
that theminter may just need to get a signature from one validator and use all others. The
new updateTimestampmay not be as large as if theminter had requested new signatures
from all validators, but it still can allow theminter to delay the penalization time. Potentially,
they can evenmisrepresent their on-chain collateral value during a small period, provided
there's onemalicious validator willing to forge a signature.

Recommendation

A gas-intensive solution would be to flag each new digest as used in storage. A less
intensivemitigation would be to explicitly prevent a large deviation of the timestamps being
used in an updateCollateral call.

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L136-L143

26

3S�M^0-L01
Multiplication after division in StableEarnerRateModel leads to loss of
precision

Id 3S�M^0-L01
Classification Low
Severity Low
Likelihood High
Category Bug
Status Addressed in#cac3c24.

Description

In the StableEarnerRateModel.getSafeEarnerRate function, there's a log calculation
detailed in a comment:

// 6. ln(1 + (totalActive * (delta_minterIndex - 1) / totalEarning))
* SECONDS_PER_YEAR / dt = earnerRate

The code implementation of the log argument calculation follows the comment, but using
fixed point arithmetic with 12 decimals. The problem is that a division by 1e12 is immediately
followed by a 1e12multiplication:

1e12 + ((((uint256(totalActiveOwedM_) * (deltaMinterIndex_ -
1e12)) / 1e12) * 1e12) / totalEarningSupply_)

That division combinedwith themultiplication should cancel out in real world math. But
because of integer division, this sets the first 12 decimals to zero.

Recommendation

Remove the division andmultiplication by 1e12.

https://github.com/MZero-Labs/protocol/commit/cac3c24b038d9d6c71bad1132b9f4617e91ef2f1
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/rateModels/StableEarnerRateModel.sol#L69-L117

27

3S�M^0-L02
A decrease in updateCollateralIntervalwill lead to unfair penalties

Id 3S�M^0-L02
Classification Low
Severity Low
Likelihood Medium
Category Bug
Status Acknowledged

Description

The MinterGateway.updateCollateral function should be called once every
updateCollateralInverval. If theminter fails to do this a penalty will be imposed on him
next time he tries to update his collateral. This process is done through
MinterGateway._imposePenaltyIfMissedCollateralUpdates function.

This function will in turn call MinterGateway._getMissedCollateralUpdateParameters to
calculate the amount of intervals missed:

function _getMissedCollateralUpdateParameters(
uint40 lastUpdateTimestamp_,
uint40 lastPenalizedUntil_,
uint32 updateInterval_

) internal view returns (uint40 missedIntervals_, uint40 missedUntil_) {

uint40 penalizeFrom_ = UIntMath.max40(lastUpdateTimestamp_,
lastPenalizedUntil_);

// If brand new minter or `updateInterval_` is 0, then there is no
missed interval charge at all.

if (lastUpdateTimestamp_ == 0 || updateInterval_ == 0) return (0,
penalizeFrom_);

uint40 timeElapsed_ = uint40(block.timestamp) - penalizeFrom_;
if (timeElapsed_ < updateInterval_) return (0, penalizeFrom_);
missedIntervals_ = timeElapsed_ / updateInterval_;
missedUntil_ = penalizeFrom_ + (missedIntervals_ * updateInterval_);

}

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L675
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L824

28

The issue with this function arises when there's a decrease in updateCollateralInterval.
It incorrectly assumes that theminter missed one or more intervals in the past based on the
new updateCollateralInterval, even though this new value only became eective later
on.

This will impose a penalty to theminter as if hemissed updates to his collateral, when in
reality he did not.

Here's an example:

- On January 1st, TTG executes a proposal that sets updateCollateralInterval to 1
month;

- On January 28th, Bob calls updateCollateral;

- On February 28th, Bob calls updateCollateral again;

- OnMarch 27th, TTG executes a proposal that reduces updateCollateralInterval to 1
day;

- OnMarch 28th, Bob calls updateCollateral so that he does notmiss the new interval.

This last call, however, will impose an unfair penalty on Bob of 28 missedIntervals_when
he did not missed any.

Recommendation

Change the logic in _getMissedCollateralUpdateParameters so that it checks if there
was any decrease in updateCollateralInterval and, if so, calculate if there was any
missed intervals before the proposal execution, using the old updateCollateralInterval.
After that it should procede to calculate the amount of misssedIntervals_ after the
proposal execution using the new updateCollateralInterval.

29

3S�M^0-L03
Unhandled rounding error in DistributionVault.getClaimable leads to
locked dust

Id 3S�M^0-L03
Classification Low
Severity Low
Likelihood Medium
Category Bug
Status Addressed in#078ed2a.

Description

The DistributionVault.getClaimable function rounds down during the division operation
used to calculate claimable, resulting in dust amounts being locked in
DistributionVault.

function getClaimable(
address token_,
address account_,
uint256 startEpoch_,
uint256 endEpoch_

) public view returns (uint256 claimable_) {
// ...
claimable_ += (distributionOfAt[token_][startEpoch_ + index_] *

balance_) / totalSupply_;
}

}

Every single token in the contract is meant to be retrieved by a specific user at a specific
past epoch. This means that any rounding errors that might occur will lead to dust amounts
being locked in the contract as DistributionVault does not have anymechanism that
enables these funds to be retrieved.

The impact of this issue depends on a couple of points:

1. As token precision decreases, 1 unit of that token is more valuable than 1 unit of a token
with higher precision. This will make rounding errors in the claimable calculationmore

https://github.com/MZero-Labs/ttg/pull/234
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/DistributionVault.sol#L129

30

expensive for lower decimal tokens. So, the impact of this issue increases as the precision
of the token claimed decreases.

2. The fact that the protocol makes a rounding down division for every past epochwill also
increase the impact of this issue comparing to other vaults, as the dust amount will grow for
every epoch iteration.

3. As the total supply of ZERO is more thinly distributed among holders, the amount of dust
locked in the Vault will also increase:

- If no ZERO holder hasmore than 10% of the total supply, 10 weimay be locked in the
contract per epoch;

- If no ZERO holder hasmore than 5% of the total supply, 20 weimay be locked in the
contract per epoch;

- etc

31

3S�M^0-L04
Creating a new proposal in StandardGovernormay reach a state of
permanent DoS

Id 3S�M^0-L04
Classification Low
Severity Medium
Likelihood Low
Category Bug
Status Addressed in#c2131a5.

Description

The function StandardGovernor.propose is used to create a new proposal to be executed in
the StandardGovernor. If it's the first proposal for that epoch, it will call
PowerToken.markNextVotingEpochAsActive to set the next target supply. Inside this
function, there's a check to cap the next target supply at type(uint240).max:

uint240 nextTargetSupply_ = _nextTargetSupply = UIntMath.bound240(
uint256(_targetSupply) + (_targetSupply *

participationInflation) / ONE
);

The issue is that themost likely scenario will be that themultiplication _targetSupply *

participationInflationwill overflow first, before any bound checks. Because
_targetSupply is a uint240 and participationInflation is a uint16, themultiplication
will raise a panic overflowwhen it passes themaximum value of a uint240. This means that,
in most cases, the transaction will revert with a panic overflow instead of just capping the
next target supply.

Because the problematic function is called by StandardGovernor.propose for the first
proposal of an epoch, this results in a permanent denial-of-service situation where it will no
longer be possible to create new proposals in the StandardGovernor.

Recommendation

https://github.com/MZero-Labs/ttg/commit/c2131a5fb1dc1d8f4eb12874165016b90885db2d
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/StandardGovernor.sol#L138-L162
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/PowerToken.sol#L125-L143

32

Cast _targetSupply to not allow a uint240 overflow:

uint240 nextTargetSupply_ = _nextTargetSupply = UIntMath.bound240(
uint256(_targetSupply) + (uint256(_targetSupply) *

participationInflation) / ONE
);

33

3S�M^0-L05
MToken's total principal invariant doesn’t hold without MinterGateway,
leading to potential principal loss

Id 3S�M^0-L05
Classification Low
Severity Low
Likelihood Low
Category Bug
Status Addressed in#74523a8.

Description

In functionMToken._mint, when the account is an earner, the principal gets added to both
its raw balance and to the global variable principalOfTotalEarningSupply. However, this
addition is unchecked, allowing the total principle to silently overflow themaximum uint112

amount. The final check assessing whether or not the total principal (earning and non
earning supply) is greater than type(uint112).maxwill pass if the earning principal amount
already overflowed before in _addEarningAmount.

This can further cause damage to earners if e.g. Alice is able to overflow Bob's balance:

1. Bob is going to call stopEarning.

2. Alice frontruns Bob's transaction and transfers him the exact principal amount tomake
Bob's balance equal type(uint112).max + 2.

3. When Bob calls stopEarning, there's an unsafe cast which will truncate his entire
balance: uint112 principalAmount_ = uint112(_balances[account_].rawBalance);.
Bob's new balance will be 1.

It should be noted that the MinterGateway prevents the invariant from easily breaking. But
such an important MToken invariant should not be solely preserved by an external contract,
as it can lead to potential problems in the future (e.g. changing the MinterGateway
contract).

Recommendation

https://github.com/MZero-Labs/protocol/commit/74523a8e77be8654b902baaca41201d135c72190
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L217-L233
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L266-L271

34

Consider removing the unchecked addition of principalOfTotalEarningSupply in
_addEarningAmount:

function _addEarningAmount(address account_, uint112 principalAmount_)
internal {

unchecked {
balances[account].rawBalance += principalAmount_;

}
principalOfTotalEarningSupply += principalAmount_;

}

35

3S�M^0-L06
Unrealized inflation calculation returns wrong value when balance
reaches cap

Id 3S�M^0-L06
Classification Low
Severity Low
Likelihood Medium
Category Bug
Status Addressed in#767e304.

Description

The function EpochBasedInflationaryVoteToken._getUnrealizedInflation calculates a given
account's inflation which has not been added to their balance yet. The inflation value gets
incremented for each epoch the account/delegatee participated on.

The issue is that if the inflatedBalance_ variable passes the type(uint240).max value,
the function will return type(uint240).max, due to the following line:

if (inflatedBalance_ >= type(uint240).max) return
type(uint240).max;

Let's imagine an unrealistic scenario where the current balance of an account is
type(uint240).max - 1, that inflation from 2 participations is still unrealized, and that
participationInflation is 10%.

1. In the first participation loop, inflation_ is zero so inflatedBalance_will not reach the
cap. The newInflation_ value will be 10% of the initial balance, which also doesn’t reach
the cap.

2. In the second and last participation loop, inflatedBalance_will now be 110% of the initial
balance, which will reach the cap. Thus, type(uint240).maxwill be returned as the
unrealized inflation value.

It would havemademore sense to force a cap on inflatedBalance_ by seing it to
type(uint240).max and continuing the loop execution. This way, the final inflation value

https://github.com/MZero-Labs/ttg/pull/233/files#diff-767e30400d380a58c1330b6a340ea2b13ffb8544ace23c95f0335e6fde3fbfbdR266-R286
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/abstract/EpochBasedInflationaryVoteToken.sol#L258-L289

36

being returnedwould end up being about 20% of the initial balance, which does seem to
makemore sense. That being said, and considering the usage of
_getUnrealizedInflation throughout the contract, it does seem like there's no
meaningful impact associated to this.

Recommendation

Consider changing the linementioned above:

if (inflatedBalance_ >= type(uint240).max) {
inflatedBalance_ = type(uint240).max; }

37

3S�M^0-L07
Custom error for overflowing the total principal is not raised

Id 3S�M^0-L07
Classification Low
Severity Low
Likelihood Medium
Category Bug
Status Addressed in#bdd94b9.

Description

In theMToken._mint function, there's a check tomake sure the total principal doesn’t
become larger than a uint112:

if (
principalOfTotalEarningSupply +

_getPrincipalAmountRoundedDown(totalNonEarningSupply) >= type(uint112).max
) {

revert OverflowsPrincipalOfTotalSupply();
}

Inside the condition, we’re adding two uint112 numbers, which will panic overflow if the
result is greater than type(uint112).max (solidity 0.8 is being used). For this reason, the
error inside the if statement will never actually be reached.

Recommendation

Cast one of the numbers to uint256 to prevent the addition from panic overflowing:

if (
uint256(principalOfTotalEarningSupply) +

_getPrincipalAmountRoundedDown(totalNonEarningSupply) >= type(uint112).max
) {

revert OverflowsPrincipalOfTotalSupply();
}

https://github.com/MZero-Labs/protocol/commit/bdd94b9952952c525f9e91ccbd762af792da7d4b
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L217-L233

38

3S�M^0-L08
Proposals in the same voting period can have dierent ids but do the
same

Id 3S�M^0-L08
Classification Low
Severity Low
Likelihood High
Category Bug
Status Addressed in#d253ae1.

Description

In the BatchGovernor contract, a new proposal will generate a proposal id by using the
calldata and the vote start. The _revertIfInvalidCalldata functionmakes sure the
function selector is allowed (implemented in StandardGovernor, EmergencyGovernor and
ZeroGovernor).

The issue is that the proposal calldata can have appended "dust" bytes in the end and it will
still be considered valid. Anyone can create a proposal generating a dierent id but doing
functionally the same thing as another existing proposal, because the "dust" bytes will be
ignored on the executionmoment but not on the id generation.

For example, to propose the call EmergencyGovernor.setStandardProposalFee(10), the 2
following calldata values will generate 2 dierent proposal ids accomplishing the same
thing:

- 0xb5775125000a

-
0xb5775125000aff
ffff

Allowing dierent proposal ids to accomplish the same thing in the same voting period can
potentially force the voters to randomly decide between the 2 valid proposals, whichmight
break the voting quorum. Because the EmergencyGovernor doesn’t have a proposal fee
(StandardGovernor has one), it is easier to spamwith a number of dierent proposals
doing the same thing as a legitimate one, which can cause confusion among voters and
split the quorum.

https://github.com/MZero-Labs/ttg/commit/d253ae1d01466aad691f2618513c6de642c1d9d9
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/abstract/BatchGovernor.sol

39

Recommendation

Consider checking the calldata size in the function _revertIfInvalidCalldata. For
example, the implementation in the StandardGovernorwould be the following:

function _revertIfInvalidCalldata(bytes memory callData_) internal pure
override {

bytes4 func_ = bytes4(callData_);
uint256 length = callData_.length;
if (

!(func_ == this.addToList.selector && length == 68) &&
!(func_ == this.removeFromList.selector && length == 68) &&
!(func_ == this.removeFromAndAddToList.selector && length ==

100) &&
!(func_ == this.setKey.selector && length == 68) &&
!(func_ == this.setProposalFee.selector && length == 36)

) revert InvalidCallData();
}

40

3S�M^0-L09
Function cancelMint can be frontrunned to grief a validator

Id 3S�M^0-L09
Classification Low
Severity Low
Likelihood Medium
Category Bug
Status Acknowledged

Description

In theMinterGateway.cancelMint function, an approved validator cancels amint proposal by
passing theminter address and mintId. The function will revert if the theminter's proposal
doesn’t correspond to the input id. Each mintId is generated from a nonce, and this is
independent from the proposal details.

A minter can frontrun any cancelMint call by calling proposeMintwith the exact same
parameters as their mint proposal that was about to be cancelled. This will revert the
validator's transaction, because the specified id will no longer be correct. Aminter can keep
doing this until they potentially get frozen by the validator.

https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L327-L335

41

3S�M^0-L10
StandardGovernor's implementation of quorum is incompatible with Tally

Id 3S�M^0-L10
Classification Low
Severity Low
Likelihood Low
Category Bug
Status Addressed in#235.

Description

The StandardGovernor contract inherits from IGovernor, which states the following:

/// @title Minimal OpenZeppelin-style, Tally-compatible governor.
interface IGovernor is IERC6372, IERC712 {

But the StandardGovernor contract implements quorum functions in the following way:

/// @inheritdoc IGovernor
function quorum() external pure returns (uint256) {

return 0;
}
/// @inheritdoc IGovernor
function quorum(uint256) external pure returns (uint256) {

return 0;
}

The documentation from Tally states that it "needs the quorum to calculate if a proposal
has passed." Returning quorum as zero, even though that's not the quorum threshold's
value, will not only break some compatibility with Tally, but it alsomight bring about
unexpected outputs to other smart contracts within the Ethereum ecosystem expecting
the StandardGovernor to follow full Tally compatibility, as stated in IGovernor, thus
breakingmodularity.

https://github.com/MZero-Labs/ttg/pull/235
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/StandardGovernor.sol
https://docs.tally.xyz/user-guides/tally-contract-compatibility/openzeppelin-governor#quorum

42

Recommendation

Consider properly implementing the quorum functions. Optionally, be explicit about this lack
of compatibility.

43

3S�M^0-L11
A suiciently large collateral may break themaximum owedM calculation

Id 3S�M^0-L11
Classification Low
Severity Medium
Likelihood Low
Category Bug
Status Addressed in#06b6cb1.

Description

In theMinterGateway contract, the updateCollateral function can set a collateral value to
any value, provided the value is no larger than type(uint240).max and the data is signed by
enough validators. The maxAllowedActiveOwedMOf function will use the collateral value to
assess if a minter is undercollateralized:

function maxAllowedActiveOwedMOf(address minter_) public view returns
(uint256) {

// NOTE: Since `mintRatio()` is capped at 10,000% (i.e. 1_000_000)
this cannot overflow.

unchecked {
return _minterStates[minter_].isActive ?

(uint256(collateralOf(minter_)) * mintRatio()) / ONE : 0;
}

}

The comment note in maxAllowedActiveOwedMOf is incorrect, because themultiplication of
a large mintRatiowith a large collateral can overflow a uint256. In the unlikely scenario
that validators allow a very odd and large collateral value, this multiplication will silently
overflow due to the unchecked block, leading to a wrong calculation of themaximum
allowed debt.

Recommendation

https://github.com/MZero-Labs/protocol/commit/06b6cb1593da5baffa60d50fb75a0767dd754a6b
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol

44

Remove the unchecked block in this situation to avoid a silent overflow. For beer
readability, consider raising a custom error instead of leing the compiler raise a panic error
upon overflow.

45

3S�M^0-N01
Missing override keyword for interface inheritedmethods

Id 3S�M^0-N01
Classification None
Category Suggestion
Status Acknowledged

Description

Most contracts are not implementing their interfacemethods with override keywords. For
example, the DistributionVault contract implements all its interface functions, but it doesn’t
add the override keyword to any of the functions. This means the compiler won’t check
that the implementation is properly implementing what is defined on the interface, making
it prone to spelling errors and function signaturemismatching.

Recommendation

Add the override keyword to those contracts functions as a best practice and for compiler
checks.

https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/DistributionVault.sol

46

3S�M^0-N02
Some contracts don’t implement their entire interface

Id 3S�M^0-N02
Classification None
Category Suggestion
Status Acknowledged

Description

There are some contracts that don’t fully implement the interface with the same name. For
example, IERC5805 defines functions such as delegates, getPastVotes and getVotes.
These functions are not implemented in ERC5805, only in EpochBasedVoteToken.

Recommendation

Implement all interface functions in the contract with the same name, even if said
implementation remains empty and virtual.

https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/abstract/interfaces/IERC5805.sol

47

3S�M^0-N03
No need to set isActive to false if that mapping entry was deleted

Id 3S�M^0-N03
Classification None
Category Bug, Optimization
Status Addressed in#8024584.

Description

In MinterGateway.deactivateMinter theminter's entry in _minterStates is deleted using the
delete keyword:

function deactivateMinter(address minter_) external
onlyActiveMinter(minter_) returns (uint240 inactiveOwedM_) {

// ...
delete _minterStates[minter_];
delete _mintProposals[minter_];
minterStates[minter].isDeactivated = true;
minterStates[minter].isActive = false;
// ...

}

This action sets all types of that specific entry to its default value, and so, there is no need
to set isActive to false as this is the default value set by the delete keyword.

Recommendation

Remove the following line from deactivateMinter function:

minterStates[minter].isActive = false;

https://github.com/MZero-Labs/protocol/commit/8024584e9d3ee0292410ffb00df7927f52acc257
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MinterGateway.sol#L357

48

3S�M^0-N04
Unnecessary Recomputation of Storage Pointer in
MToken._startEarning

Id 3S�M^0-N04
Classification None
Category Optimization
Status Addressed in#fc9069a.

Description

In MToken._startEarning function, the _balancesmapping is stored in the mBalance_
variable.

MBalance storage mBalance_ = _balances[account_];

But a few lines below, instead of using mBalance_ to retrieve rawBalance,
_balances[account].rawBalance is used again spending unnecessary gas.

function _startEarning(address account_) internal {
emit StartedEarning(account_);
MBalance storage mBalance_ = _balances[account_];
if (mBalance_.isEarning) return;
mBalance_.isEarning = true;
// Treat the raw balance as present amount for non earner.
uint240 amount_ = _balances[account_].rawBalance;

Recommendation

Change the amount_ variable to:

uint240 amount_ = mBalance_.rawBalance;

https://github.com/MZero-Labs/protocol/commit/fc9069a2c3b4e2f3de43d4c1e51d3406cc7b21e5
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L239

49

3S�M^0-N05
Unnecessary check in StandardGovernor.state

Id 3S�M^0-N05
Classification None
Category Optimization
Status Addressed in#768c250.

Description

Since StandardGovernor._votingPeriod function will always returns 0, voteStartwill always
be equal to voteEnd.

This means that the following check in the StandardGovernor.state is unnecessary:

if (currentEpoch_ <= voteEnd_) return ProposalState.Active;

The use of < spends unnecessary gas by checking that currentEpoch_ is less than
voteEnd_.

If currentEpoch_ is indeed less that voteEnd_ then the transaction will stop a few lines
above:

if (currentEpoch_ < voteStart_) return ProposalState.Pending;

Recommendation

The check for strict equality (==) will suice.

https://github.com/MZero-Labs/ttg/commit/768c250da47c2a29a7dfcec3c3d30b5d56ad1294
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/StandardGovernor.sol#L439

50

3S�M^0-N06
Code should not panic underflow

Id 3S�M^0-N06
Classification None
Category Suggestion
Status Addressed in#20b3b62,#160d105,

#e147ec4.

Description

There's several places in the protocol where proper code validation is missing by, instead,
relying on panic errors.

This is not recommended behaviour as per Solidity Docs:

Properly functioning code should never create a Panic, not even on invalid
external input. If this happens, then there is a bug in your contract which
you should fix.

Here are the instances that rely on panic errors caught during the review:

- MToken._subtractEarningAmount

- MToken._subtractNonEarningAmount

- ERC20Extended.transferFrom

- DistributionVault.getClaimable

- PowerToken._divideUp

Recommendation

Raise proper errors instead of relying on panic.

https://github.com/MZero-Labs/protocol/commit/20b3b62f7d5dd97f5541f79cef51f8146a2dcbd5
https://github.com/MZero-Labs/common/commit/160d1058eab98ddb1e0406ae519c13f8b3d9674d
https://github.com/MZero-Labs/ttg/commit/e147ec4aa99b7b95482ab4d193cd44ab41143d9f
https://docs.soliditylang.org/en/v0.8.23/control-structures.html#panic-via-assert-and-error-via-require
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L303
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L316
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/ERC20Extended.sol#L86
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/DistributionVault.sol#L141
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/PowerToken.sol#L427

51

3S�M^0-N07
StartedEarning event is emied even if account is already earning

Id 3S�M^0-N07
Classification None
Category Optimization
Status Addressed in#5b68e4e.

Description

In MToken._startEarning the StartedEarning event will be emied even if the calling
account is already earning:

function _startEarning(address account_) internal {
emit StartedEarning(account_);
MBalance storage mBalance_ = _balances[account_];
if (mBalance_.isEarning) return;

// ...
}

The same happens in theMToken._stopEarning. The StoppedEarning event will be emied
even if the user isn’t an earner.

Recommendation

Move the line that emits the event to the end of the function so that it will only fire when a
new user starts/stops being an earner.

https://github.com/MZero-Labs/protocol/commit/5b68e4e70a09b13e49b82267442b30555a083ddf
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L239C5-L239C56
https://github.com/MZero-Labs/protocol/blob/3499f50ff3382729f3e59565b19386ba61ef8e36/src/MToken.sol#L271

52

3S�M^0-N08
Wrong comment in Standard Governor's execute function

Id 3S�M^0-N08
Classification None
Category Suggestion
Status Addressed in#22bd53c.

Description

The following comment is present in StandardGovernor's execute function:

// Proposals have voteStart=N and voteEnd=N, and can be executed only
during epochs N+1 and N+2.

This, however, is not the current behaviour of the contract. As confirmed by the client,
approved proposals can only be executed 1 epoch after voteEnd and not 2 epochs as the
comment suggests.

Recommendation

Update the comment so it explains the actual behaviour of epoch execution:

// Proposals have voteStart=N and voteEnd=N, and can be executed only
during N+1 epoch.

https://github.com/MZero-Labs/ttg/commit/22bd53c50b4224217a4548d85c9ac8615f49f31f
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/StandardGovernor.sol

53

3S�M^0-N09
Unnecessary currentEpoch zero check in StandardGovernor and
ThresholdGovernor

Id 3S�M^0-N09
Classification None
Category Optimization
Status Addressed in#1c7576f.

Description

The currentEpoch value is derived from BatchGovernor._clock, which can never be zero.
But the execute functions of both StandardGovernor and ThresholdGovernor check if
currentEpoch is zero.

Recommendation

Since the epoch implementation being used doesn’t allow for a zero value returned by
_clock, consider removing these zero checks.

https://github.com/MZero-Labs/ttg/commit/1c7576ff2a32fe37b095c79d1d5262beb92b6f52
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/abstract/BatchGovernor.sol#L419-L421

54

3S�M^0-N10
Overflow check in PowerToken._divideUp is unnecessary

Id 3S�M^0-N10
Classification None
Category Optimization
Status Acknowledged

Description

The PowerToken._divideUp function checks if a result of amultiplication "wrapped" around
themaximum number, i.e. if it silently overflowed:

z = (x * ONE) + y;
if (z < x) revert DivideUpOverflow();

Because calculation of z is not unchecked, the condition z < xwill never be true, since
solidity 0.8 checks and reverts on overflow.

Recommendation

Remove the line checking the z < x condition.

https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/PowerToken.sol#L427-L437

55

3S�M^0-N11
Unnecessary conditional check in ThresholdGovernance.execute

Id 3S�M^0-N11
Classification None
Category Optimization
Status Acknowledged

Description

The function ThresholdGovernor.execute executes a successful proposal. Among other
things, the function executes the following lines:

if (currentEpoch_ == 0) revert InvalidEpoch();
// Proposals have voteStart=N and voteEnd=N+1, and can be executed

only during epochs N and N+1.
uint16 latestPossibleVoteStart_ = currentEpoch_;
uint16 earliestPossibleVoteStart_ = latestPossibleVoteStart_ > 0 ?

latestPossibleVoteStart_ - 1 : 0;

The execute function will revert if currentEpoch_ == 0, and then it assigns this value to
latestPossibleVoteStart_. Considering this last variable can never be zero, the
conditional check in the following line is unnecessary.

Recommendation

Replace the last lined shown abovewith the following:

uint16 earliestPossibleVoteStart_ = latestPossibleVoteStart_ - 1;

https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/abstract/ThresholdGovernor.sol#L41-L56

56

3S�M^0-N12
Inconsistent naming of function in PureEpochs

Id 3S�M^0-N12
Classification None
Category Suggestion
Status Addressed in#63b247c.

Description

The PureEpochs library implements a variety of functions centered on the definition of
epochs. For example, it includes the following functions:

- getTimeSinceEpochStart

- getTimeSinceEpochEnd

- getTimeUntilEpochStart

It also includes the function getTimeUntilEpochEnds. The naming of this function in
particular is inconsistent with the remaining ones.

Recommendation

Change the name of the getTimeUntilEpochEnds function to getTimeUntilEpochEnd.

https://github.com/MZero-Labs/ttg/commit/63b247c71c2d53ad3d648d58b5dd02deed7ac1a4
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/libs/PureEpochs.sol

57

3S�M^0-N13
_checkAndIncrementNonce in ERC5805 raises a ReusedNonce error for non
used nonces

Id 3S�M^0-N13
Classification None
Category Suggestion
Status Addressed in#d75ef4a, #4e20a80.

Description

The ERC5805._checkAndIncrementNonce functionmakes sure the nonce being used in a
signature is the right one. If it is, it increments it:

function _checkAndIncrementNonce(address account_, uint256 nonce_)
internal {

uint256 currentNonce_ = nonces[account_];
if (nonce_ != currentNonce_) revert ReusedNonce(nonce_,

currentNonce_);
unchecked {

nonces[account_] = currentNonce_ + 1; // Nonce realistically
cannot overflow.

}
}

The error being raised when nonce_ != currentNonce_ is misleading. The if statement
doesn’t necessarily mean that the nonce_ value being used has been used in past
signatures, rather it means that it is not the expected current nonce of the account. For
example, if the current nonce is 1 and the user signs the data with nonce 3, this should
revert, but nonce 3 hasn’t been used yet.

Recommendation

Consider renaming the error tomore accurately describe the issue. For example,
NotCurrentNonce.

https://github.com/MZero-Labs/common/commit/d75ef4aff5b7d9a06ed13ca8dc89c9ecc470baad
https://github.com/MZero-Labs/ttg/commit/4e20a80138557eb27fc0650d11f7a4b1a0916bfe
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/abstract/ERC5805.sol#L49-L57

58

3S�M^0-N14
castVoteWithReason always fires a VoteCast event with an empty
reason

Id 3S�M^0-N14
Classification None
Category Suggestion
Status Addressed in#b97b196.

Description

The BatchGovernor contract supports castVoteWithReason to be compatible with certain
governors. Because the VoteCast event has a reason parameter, whoever uses this
external function is expecting an event being emiedwith the provided reason. Instead, the
reason parameter is always empty in the event being emied by _castVote:

function _castVote(address voter_, uint256 weight_, uint256 proposalId_,
uint8 support_) internal virtual {

// ...
emit VoteCast(voter_, proposalId_, support_, weight_, "");

}

Recommendation

Make sure that the reason input of castVoteWithReason is passed through to the
VoteCast event.

https://github.com/MZero-Labs/ttg/pull/231
https://github.com/MZero-Labs/ttg/blob/a8127901fa1f24a2e821cf4d9854a1aa6ac8088c/src/abstract/BatchGovernor.sol

59

3S�M^0-N15
transferFrom in ERC20Extendedwill always emit an Approval event if the
allowance changes

Id 3S�M^0-N15
Classification None
Category Suggestion
Status Addressed in#3076d87.

Description

The ERC20Extended.transferFrom function is using _approvefor changing allowance, and
this internal function always fires up an Approval event.

Recommendation

The token should not be firing this event unless by calling the external ERC20.approve
function. Other common implementations (OpenZeppelin, solmate) also don’t fire this
event when allowance changes due to a transferFrom call.

https://github.com/MZero-Labs/common/commit/3076d87e1df18eacd5a0c41ccc90367db50ea6f2
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/ERC20Extended.sol#L82-L92

60

3S�M^0-N16
EIP712's _revertIfError should use all SignatureChecker.Error errors

Id 3S�M^0-N16
Classification None
Category Suggestion
Status Addressed in#7eef72d.

Description

Function ERC712._revertIfError goes through the dierent error possibilities in
SignatureChecker.Error and raises the right error accordingly. But some aremissing:
InvalidSignatureS and InvalidSignatureV.

Recommendation

Consider either using themissing ones for beer error messaging instead of raising the
more general InvalidSignature error, or removing the unused ones from the enum.

https://github.com/MZero-Labs/common/commit/7eef72d526cd44995f93fe09f3068ae9a155250f
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/ERC712.sol#L150-L157

61

3S�M^0-N17
The IERC3009 interface is not fully conforming to the standard

Id 3S�M^0-N17
Classification None
Category Suggestion
Status Addressed in#ab7366e.

Description

The IERC3009 defines a token interface following the EIP3009 standard. The interface is not
fully conforming to the standard and it's missing the followingmandatory view functions:

- TRANSFER_WITH_AUTHORIZATION_TYPEHASH

- RECEIVE_WITH_AUTHORIZATION_TYPEHASH

Because the interface is also adding the optional canceling functions from EIP3009, it
should also be defining the CANCEL_AUTHORIZATION_TYPEHASH view function.

Recommendation

Though the ERC3009 contract does implement these functions, it is still recommended
that the interface implements them aswell.

https://github.com/MZero-Labs/common/commit/ab7366e1616f397d4ac2f6abda7537e42894d8be
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/interfaces/IERC3009.sol
https://github.com/MZero-Labs/common/blob/4a37119f2da946c6d8ad7b9a70dfdd219225115b/src/ERC3009.sol

