SHERLOCK SECURITY REVIEW FOR

Prepared for:
Prepared by:

Lead Security Expert:
Dates Audited:
Prepared on:

M*O

M~0
Sherlock
Xiaoming90

March 11 - March 27, 2024
April 23,2024

1

'/ SHERLOCK

https://github.com/xiaoming9090

A neutral value transmission framework able to permissionlessly mint currencies
under decentralized governance.

Repository: MZero-Labs/ttg
Branch: main
Commit: 0d2761f8db14b390e923f59bdae9799fbf9adf2c

Repository: MZero-Labs/protocol
Branch: main
Commit: 3382fb7336bbc7276e0c3f51dad51c9fa6e0016f

Repository: MZero-Labs/common
Branch: main
Commit: 9da96e78d24aadd41ee6f776b7b028203782b632

For the detailed scope, see the contest details.

Each issue has an assigned severity:

» Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

» High issues are directly exploitable security vulnerabilities that need to be
fixed.

Medium

3 0

. @/ SHERLOCK

https://github.com/sherlock-audit/2023-10-mzero/blob/main/README.md#audit-scope

Medium

0

'/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-10-mzero-judging/issues/33

Found by
00001111x0, Oxpiken, araj, pkgs90

Summary

An earner can still continue earning even after being removed from the approved
list.

Vulnerability Detail

A M holder is eligible to earn the Earner Rate when they are approved by TTG. The
approved M holder can call startEarning() then begin to earn the Earner Rate. They
also can stopEarning() to quit earning.

However, when an approved M holder is disapproved, only the disapproved holder
themselves can choose to stop earning; no one else has the authority to force them
to quit earning.

Earner Rate is calculated in StableEarnerRateModel#rate() as below:

function rate() external view returns (uint256) {
uint256 safeEarnerRate_ = getSafeEarnerRate(
IMinterGateway (minterGateway) . totalActiveOwedM() ,
IMToken (mToken) .totalEarningSupply (),
IMinterGateway (minterGateway) .minterRate ()

)

return UIntMath.min256 (maxRate(), (RATE_MULTIPLIER * safeEarnerRate_) / ONE);

function getSafeEarnerRate(

uint240 totalActiveOwedM_,

uint240 totalEarningSupply_,

uint32 minterRate_
) public pure returns (uint32) {

// solhint-disable max-line-length

// When ~totalActiveOwedM_ >= totalEarningSupply_~, it is possible for the
— earner rate to be higher than the

// minter rate and still ensure cashflow safety over some period of time
— (CRATE_CONFIDENCE_INTERVAL™). To ensure

3 @/ SHERLOCK

https://github.com/sherlock-audit/2023-10-mzero-judging/issues/33
https://github.com/sherlock-audit/2023-10-mzero/blob/main/protocol/src/MToken.sol#L100-L103
https://github.com/sherlock-audit/2023-10-mzero/blob/main/protocol/src/MToken.sol#L106-L108
https://github.com/sherlock-audit/2023-10-mzero/blob/main/protocol/src/rateModels/StableEarnerRateModel.sol

// cashflow safety, we start with ~cashFlowOfActiveQOwedM >=
cashFlowOfEarningSupply ™ over some time ~“dt’.

// Effectively: pl * (exp(ratel * dt) - 1) >= p2 * (exp(rate2 * dt) - 1)
// So: rate2 <= 1n(1 + (pl * (exp(ratel * dt) - 1)) / p2) / dt
// 1. totalActive * (delta_minterIndex - 1) >= totalEarning *
(delta_earnerIndex - 1)

// 2. totalActive * (delta_minterIndex - 1) / totalEarning >=
delta_earnerIndex - 1

// 3. 1 + (totalActive * (delta_minterIndex - 1) / totalEarning) >=
delta_earnerIndex

// Substitute “delta_earnerIndex” with “exponent((earnerRate * dt) /
SECONDS_PER_YEAR) ™ :

// 4. 1 + (totalActive * (delta_minterIndex - 1) / totalEarning) >=
exponent ((earnerRate * dt) / SECONDS_PER_YEAR)

// 5. 1n(1 + (totalActive * (delta_minterIndex - 1) / totalEarning)) >=
(earnerRate * dt) / SECONDS_PER_YEAR

// 6. 1n(1 + (totalActive * (delta_minterIndex - 1) / totalEarning)) *
SECONDS_PER_YEAR / dt >= earnerRate

// When ~totalActiveOwedM_ < totalEarningSupply_~, the instantaneous earner
cash flow must be less than the

// instantaneous minter cash flow. To ensure instantaneous cashflow safety,
we we use the derivatives of the

// previous starting inequality, and substitute “dt = 0.

// Effectively: pl * ratel >= p2 * rate2

// So: rate2 <= pl * ratel / p2

// 1. totalActive * minterRate >= totalEarning * earnerRate

// 2. totalActive * minterRate / totalEarning >= earnerRate

// solhint-enable max-line-length

if (totalActiveOwedM_ == 0) return O;
if (totalEarningSupply_ == 0) return type(uint32).max;

if (totalActiveOwedM_ <= totalEarningSupply_) {//@audit-info rate is slashed
// NOTE: “totalActiveOwedM_ * minterRate_~ can revert due to overflow,

so in some distant future, a new
// rate model contract may be needed that handles this differently.
return uint32((uint256(totalActiveOwedM_) * minterRate_) /

totalEarningSupply_) ;

}

uint48 deltaMinterIndex_ = ContinuousIndexingMath.getContinuousIndex (
ContinuousIndexingMath.convertFromBasisPoints (minterRate_),
RATE_CONFIDENCE_INTERVAL

);//@audit-info deltaMinterIndex for 30 days

4 . SHERLOCK

// NOTE: “totalActiveOwedM_ * deltaMinterIndex_~ can revert due to overflow,
— S0 in some distant future, a new
// rate model contract may be needed that handles this differently.
int256 1lnArg_ = int256(
_EXP_SCALED_ONE +
((uint256 (totalActiveOwedM_) * (deltaMinterIndex_ -
o XP_SCALED_ONE)) / totalEarningSupply_)

),

int266 InResult_ = wadLn(lnArg_ * _WAD_TO_EXP_SCALER) / _WAD_TO_EXP_SCALER;

uint256 expRate_ = (uint256(1nResult_) *
— ContinuousIndexingMath.SECONDS_PER_YEAR) / RATE_CONFIDENCE_INTERVAL;

if (expRate_ > type(uint64) .max) return type(uint32) .max;

// NOTE: Do not need to do “UlIntMath.safe256 because it is known that
— 1nResult_"~ will not be negative.

uint40 safeRate_ =

— ContinuousIndexingMath.convertToBasisPoints(uint64 (expRate_)) ;

return (safeRate_ > type(uint32).max) 7 type(uint32).max : uint32(safeRate_);

As we can see, the rate may vary due to the changes in
MToken#totalEarningSupply (), therefore the earning of fixed principal amount could
be decreased if totalEarningSupply () increases. In some other cases the total
earning rewards increases significantly if totalEarningSupply () increases, resulting
in less excessOwedM sending to ttgVault when MinterGateway#updatelndex() is
called.

Copy below codes to Integration.t.sol and run forge test --match-test
test_aliceStillEarnAfterDisapproved

function test_AliceStillEarnAfterDisapproved() external {

_registrar.updateConfig(MAX_EARNER_RATE, 40000) ;
_minterGateway.activateMinter (_minters[0]) ;

uint256 collateral = 1_000_000e6;
_updateCollateral (_minters[0], collateral);

_mintM(_minters[0], 400e6, _bob);

_mintM(_minters[0], 400e6, _alice);

uint aliceInitialBalance = _mToken.balanceOf(_alice);
uint bobInitialBalance = _mToken.balanceOf (_bob);

c @/ SHERLOCK

https://github.com/sherlock-audit/2023-10-mzero/blob/main/protocol/src/MinterGateway.sol#L432-L449
https://github.com/sherlock-audit/2023-10-mzero/blob/main/protocol/test/integration/Integration.t.sol

//@audit-info alice and bob had the same M balance
assertEq(aliceInitialBalance, bobInitialBalance);
//@audit-info alice and bob started earning
vm.prank(_alice);

_mToken.startEarning () ;

vm. prank (_bob) ;

_mToken.startEarning () ;

vm.warp(block.timestamp + 1 days);

uint aliceEarningDayl = _mToken.balanceOf(_alice) - alicelInitialBalance;
uint bobEarningDayl = _mToken.balanceOf(_bob) - bobInitialBalance;
//@audit-info Alice and Bob have earned the same M in day 1
assertNotEq(aliceEarningDayl, 0);

assertEq(aliceEarningDayl, bobEarningDayl) ;

//@audit-info Alice was removed from earner list
_registrar.removeFromList (TTGRegistrarReader . EARNERS_LIST, _alice);
vm.warp(block.timestamp + 1 days);

uint aliceEarningDay2 = _mToken.balanceOf(_alice) - aliceInitialBalance -
aliceEarningDayl;

uint bobEarningDay2 = _mToken.balanceOf (_bob) - bobInitialBalance -
bobEarningDayl;

//@audit-info Alice still earned M in day 2 even she was removed from earner
list, the amount of which is same as Bob's earning
assertNotEq(aliceEarningDay2, 0);

assertEq(aliceEarningDay2, bobEarningDay2) ;

uint earnerRateBefore = _mToken.earnerRate();

//@audit-info Only Alice can stop herself from earning

vm.prank(_alice);

_mToken.stopEarning() ;

uint earnerRateAfter = _mToken.earnerRate();

//Q@audit-info The earning rate was almost doubled after Alice called
“stopEarning”

assertApproxEqRel (earnerRateBefore*2, earnerRateAfter, 0.01e18);
vm.warp(block.timestamp + 1 days);

uint aliceEarningDay3 = _mToken.balanceOf(_alice) - aliceInitialBalance -
aliceEarningDayl - aliceEarningDay2;

uint bobEarningDay3 = _mToken.balanceOf (_bob) - bobInitialBalance -
bobEarningDayl - bobEarningDay2;

//@audit-info Alice earned nothing

assertEq(aliceEarningDay3, 0);

//@audit-info Bob's earnings on day 3 were almost twice as much as what he
earned on day 2.

assertApproxEqRel (bobEarningDay2*2, bobEarningDay3, 0.01e18);

5 @/ SHERLOCK

Impact

o The earnings of eligible users could potentially be diluted.

e The excessOwedM to ZERO vault holders could be diluted

Code Snippet
https://github.com/sherlock-audit/2023-10-mzero/blob/main/protocol/src/MToken

.SOI#L106-L108

Tool used

\YERTEIRRGEVIEY

Recommendation

Introduce a method that allows anyone to stop the disapproved earner from
earning:

function stopEarning(address account_) external {
if (_isApprovedEarner(account_)) revert IsApprovedEarner();
stopEarning(account) ;

Discussion

sherlock-admin2
1 comment(s) were left on this issue during the judging contest.
takarez commented:
valid; medium(2)
toninorair
Valid issue, medium severity. Great catch
sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/MZero-Labs/protocol/pull/162

sherlock-admin4

The Lead Senior Watson signed off on the fix.

. @/ SHERLOCK

https://github.com/sherlock-audit/2023-10-mzero/blob/main/protocol/src/MToken.sol#L106-L108
https://github.com/sherlock-audit/2023-10-mzero/blob/main/protocol/src/MToken.sol#L106-L108
https://github.com/MZero-Labs/protocol/pull/162

Source: https://github.com/sherlock-audit/2023-10-mzero-judging/issues/45

Found by
pkqs90

Summary

Malicious minters can exploit the updateCollateral () function to repeatedly
penalize their undercollateralized accounts in a short peroid of time. This can make
the principalOfTotalActiveOwedM to reach uint112.max limit, disfunctioning some
critical functions, such as mintM.

Vulnerability Detail

The updateCollateral () function allows minters to update their collateral status to
the protocol, with penalties imposed in two scenarios:

1. A penalty is imposed for each missing collateral update interval.
2. A penalty is imposed if a minter is undercollateralized.

The critical issue arises with the penalty for being undercollateralized, which is
imposed on each call to updateCollateral (). This penalty is compounded,
calculated as penaltyRate * (principalOfActiveOwedM_ -
principalOfMaxAllowedActiveOwedM_), and the principalOfActiveOwedlM_ increases
with each imposed penalty.

Given that validator provides timely information about the off-chain collateral
(according to https://docs.m0.org/portal/overview/glossary#validator), a minter
could potentially gather validator signatures with high frequency (for example,
every minute). With a sufficient collection of signatures, a malicious minter could
launch an attack in a very short timeframe, not giving validators time to deactivate
the minter.

Proof Of Concept

We can do a simple calculation, using the numbers from unit tests, mintRatio=90%,
penaltyRate=1%, updateCollateralinterval=2000 (seconds). A malicious minter

8 @/ SHERLOCK

https://github.com/sherlock-audit/2023-10-mzero-judging/issues/45
https://docs.m0.org/portal/overview/glossary#validator

deposits $100,000 t-bills as collateral, and mints $90,000 M tokens. Since M tokens
have 6 decimals, the collateral would be 100000e6. Following the steps below, the
malicious minter would be able to increase principalOfActiveOwedM_ close to
uint112.max limit:

1. Deposit collateral and mint M tokens.

2. Wait for 4 collateral update intervals. This is for accumulating some initial

penalty to get undercollateralized.

3. Call updateCollateral (). The penalty for missing updates would be 4 *
90000e6 * 1% = 36e8.

4. Starting from 36e8, we can keep calling updateCollateral () to compound
penalty for undercollateralization. Each time would increase the penalty by 1%.
We only need log(27112 / 36e8, 1.01) ~ 5590 times to hit uint112.max limit.

Add the following testing code to MinterGateway.t.sol. We can see in logs that

principalOfTotalActiveOwedM has hit uint112.max limit.

penalty: 1 94536959275 94536000000
penalty: 2 95482328867 95481360000
penalty: 3 96437152156 96436173600
penalty: 4 97401523678 97400535336
penalty: 5 98375538914 98374540689
penalty: 6 99359294302 99358286095
penalty: 7 100352887244 100351868955
penalty: 8 101356416116 101355387644
penalty: 9 102369980277 102368941520

penalty: 10 103393680080 103392630935

penalty: 5990 5192349545726433803396851311815959
— 5192296858534827628530496329220095
penalty: 5991 5192349545726433803396851311815959
— 5192296858534827628530496329220095
penalty: 5992 5192349545726433803396851311815959
— 5192296858534827628530496329220095
penalty: 5993 5192349545726433803396851311815959
— 5192296858534827628530496329220095
penalty: 5994 5192349545726433803396851311815959
— 5192296858534827628530496329220095
penalty: 5995 5192349545726433803396851311815959
— 5192296858534827628530496329220095
penalty: 5996 5192349545726433803396851311815959
— 5192296858534827628530496329220095
penalty: 5997 5192349545726433803396851311815959
— 5192296858534827628530496329220095

S @/ SHERLOCK

penalty: 5998 5192349545726433803396851311815959
— 5192296858534827628530496329220095
penalty: 5999 5192349545726433803396851311815959
— 5192296858534827628530496329220095
penalty: 6000 5192349545726433803396851311815959
— 5192296858534827628530496329220095

// Using default test settings: mintRatio = 90%, penaltyRate = 1%,

— updateCollateralInterval = 2000.

function test_penaltyForUndercollateralization() external {
// 1. Minterl deposits $100,000 t-bills, and mints 90,000 $M Tokens.
uint initialTimestamp = block.timestamp;
_minterGateway.setCollateralOf (_minterl, 100000e6) ;
_minterGateway.setUpdateTimestampOf (_minterl, initialTimestamp) ;
_minterGateway.setRawOwedMOf (_minterl, 90000e6) ;
_minterGateway.setPrincipal0fTotalActiveOwedM(90000e6) ;

// 2. Minter does not update for 4 updateCollaterallntervals, causing
— penalty for missing updates.
vm.warp(initialTimestamp + 4 * _updateCollaterallnterval);

// 3. Minter fetches a lot of signatures from validator, each with different
— timestamp and calls “updateCollateral() many times.

// Since the penalty for uncollateralization is counted every time, and
— would hit “uintll2.max” at last.

uint256[] memory retrievallds = new uint256[](0);

address[] memory validators = new address[](1);

validators[0] = _validatorl;

for (uint i = 1; i <= 6000; ++i) {

uint256[] memory timestamps = new uint256[](1);
uint256 signatureTimestamp = initialTimestamp + i;
timestamps [0] = signatureTimestamp;
bytes[] memory signatures = new bytes[](1);
signatures[0] = _getCollateralUpdateSignature(

address (_minterGateway) ,

_minteril,

100000e6,

retrievallds,

bytes32(0),

signatureTimestamp,

_validatorlPk
)3

vm.prank (_minter1l) ;

@ @/ SHERLOCK

_minterGateway.updateCollateral (100000e6, retrievallds, bytes32(0),
— validators, timestamps, signatures);

console.log("penalty:", i, _minterGateway.totalActiveOwedM(),
— _minterGateway.principalOfTotalActiveOwedM());

}

Note that in real use case, the penalty rate may lower (e.g. 0.1%), however,
log(27112 / 36e8, 1.001) ~ 55656 is still a reasonable amount since there are
1440 minutes in 1 day (not to mention if the frequency for signature may be higher
than once per minute). A malicious minter can still gather enough signatures for the
attack.

Impact

The direct impact is that principalOfTotalActiveOwedM Will hit uint112.max limit. All
related protocol features would be disfunctioned, the most important one being
mintM, since the function would revert if principalOfTotalActiveOwedM hits
uint112.max limit.

unchecked {
uint256 newPrincipalOfTotalActiveOwedM_ =
— uint256 (principalOfTotalActiveOwedM_) + principalAmount_;

// As an edge case precaution, prevent a mint that, if all owed M
— (active and inactive) was converted to

// a principal active amount, would overflow the “uint112
— principalOfTotalActiveOwedM" .

> if (

> // NOTE: Round the principal up for worst case.

> newPrincipalOfTotalActiveOwedM_ +

— _getPrincipalAmountRoundedUp (totalInactiveOwedM) >= type(uint112) .max
>) A

> revert OverflowsPrincipalOfTotalOwedM() ;

> b

principalOfTotalActiveOwedM =
— uint112(newPrincipalOfTotalActiveOwedM_) ;

rawOwedM[msg.sender] += principalAmount; // Treat rawOwedM as
— principal since minter is active.

}

T @/ SHERLOCK

Code Snippet
e https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L

206
 https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L

303-L308

Tool used

Foundary

Recommendation

Consider only imposing penalty for undercollateralization for each update interval.

Discussion

sherlock-admin4

1 comment(s) were left on this issue during the judging contest.
takarez commented:

6000 signatures will definately ring a bell for the validator to check for
malicious activity; remember the validator atest to the eligible collatreal.

deluca-mike

While a valid finding, it would require validators and governance to really be
sleeping at the wheel and/or behaving on reckless autopilot.

We should probably fix it by preventing the update collateral from penalizing the
minter more than once per missed update.

However, consider than by attempting to do this, the Minter is losing all their
off-chain collateral and being deactivated, and the reckless validators will likely
lose their validator gig.

toninorair
Valid issue, medium severity, great catch
pasha9990

| think this not valid because we need signature and new timestamp for every
update and that is impossible

sherlock-admin4

7 @/ SHERLOCK

https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L206
https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L206
https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L303-L308
https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L303-L308

The protocol team fixed this issue in the following PRs/commits:
https://github.com/MZero-Labs/protocol/pull/173

sherlock-admin4

The Lead Senior Watson signed off on the fix.

13 @/ SHERLOCK

https://github.com/MZero-Labs/protocol/pull/173

Source: https://github.com/sherlock-audit/2023-10-mzero-judging/issues/46

Found by
00001111x0, pkgs90, xiaoming90

Summary

The updateCollateralValidatorThreshold specifies the minimum number of
validators needed to confirm the validity of updateCollateral data. However, just
one compromised validator is enough to alter a minter's collateral status. In
particular, this vulnerability allows the compromised validator to set the minter's
state back to a historical state, allowing malicious minters to increase their
collateral.

Vulnerability Detail

The updateCollateral () function calls the _verifyValidatorSignatures() function,
which calculates the minimum timestamp signed by all validators. This timestamp is
then used to update the minter state's _minterStates[minter_] .updateTimestamp.
The constraint during this process is that the

minterStates[minter] .updateTimestamp must always be increasing.

Function updateCollateral ():

minTimestamp_ = _verifyValidatorSignatures(
msg.sender,
collateral_,
retrievallds_,
metadataHash_,
validators._,
timestamps_,
signatures_

)

updateCollateral (msg.sender, safeCollateral, minTimestamp_) ;

Function _updateCollateral():

0 @/ SHERLOCK

https://github.com/sherlock-audit/2023-10-mzero-judging/issues/46

function _updateCollateral(address minter_, uint240 amount_, uint40
— newTimestamp_) internal {
uint40 lastUpdateTimestamp_ = _minterStates[minter_].updateTimestamp;

// MinterGateway already has more recent collateral update
if (newTimestamp_ <= lastUpdateTimestamp_) revert
— StaleCollateralUpdate(newTimestamp_, lastUpdateTimestamp_) ;

minterStates[minter] .collateral = amount_;
minterStates[minter] .updateTimestamp = newTimestamp_;

If we have 1 compromised validator, its signature can be manipulated to any chosen
timestamp. Consequently, this allows for control over the timestamp in
minterStates[minter] .updateTimestamp making it possible to update the minter's
state to a historical state. An example is given in the following proof of concept.
The key here is that even though updateCollateralValidatorThreshold may be set
to 2 or even 3, as long as 1 validator is compromised, the attack vector would work,
thus defeating the purpose of having a validator threshold.

Proof Of Concept

In this unit test, updateCollaterallnterval is set to 2000 (default value). The
updateCollateralValidatorThreshold is set to 2, and the _validatorl is
compromised. Following the steps below, we show how we update minter to a
historical state:

0. Initial timestamp is TO.

1. 100 seconds passed, the current timestamp is T0+100. Deposit 100e6
collateral at T0+100. _validator0 signs signature at T0+100, and _validatori
signs signature at TO+1. After updateCollateral (), minter state collateral =
100e6, and updateTimestamp = TO+1.

2. Another 100 seconds passed, the current timestamp is T0+200. Propose
retrieval for all collateral, and perform the retrieval offchain. _validator0 signs
signature at T0+200, and _validator1 signs signature at To+2. After
updateCollateral (), minter state collateral = O, and updateTimestamp = T0+2.

3. Another 100 seconds passed, the current timestamp is T0+300. Reuse
_validator0 signature from step 1, it is signed on timestamp T0+100.
_validator1 signs collateral=100e6 at T0+3. After updateCollateral (), minter
state collateral = 100e6, and updateTimestamp = T0+3.

Now, the minter is free to perform minting actions since his state claims collateral is
100e6, even though he has already retrieved it back in step 2. The mint proposal

15 @/ SHERLOCK

may even be proposed between step 1 and step 2 to reduce the mintDelay the
minter has to wait.

Add the following testing code to MinterGateway.t.sol. See more description in
code comments.

function test_collateralStatusTimeTravelBySingleHackedValidator() external {
_ttgRegistrar.updateConfig(TTGRegistrarReader .UPDATE_COLLATERAL_VALIDATOR_TH
— RESHOLD, bytes32(uint256(2)));

// Arrange validator addresses in increasing order.
address[] memory validators = new address[](2);
validators[0] = _validator2;

validators[1] = _validatori;

uint initialTimestamp = block.timestamp;

bytes[] memory cacheSignatures = new bytes[](2);

// 1. Deposit 100e6 collateral, and set malicious validator timestamp to
< “initialTimestamp+1” during “updateCollateral()’.

{
vm.warp(block.timestamp + 100);
uint256[] memory retrievallds = new uint256[] (0);
uint256[] memory timestamps = new uint256[] (2);
timestamps[0] = block.timestamp;
timestamps[1] = initialTimestamp + 1;
bytes[] memory signatures = new bytes[](2);
signatures[0] = _getCollateralUpdateSignature(address(_minterGateway),
— _minterl, 100e6, retrievallds, bytes32(0), block.timestamp, _validator2Pk);
signatures[1] = _getCollateralUpdateSignature(address(_minterGateway),

— _minterl, 100e6, retrievallds, bytes32(0), initialTimestamp + 1,
<« _validator1Pk) ;
cacheSignatures = signatures;

vm.prank (_minterl) ;
_minterGateway.updateCollateral(100e6, retrievallds, bytes32(0),
— validators, timestamps, signatures);

assertEq(_minterGateway.collateralOf (_minter1l), 100e6);
assertEq(_minterGateway.collateralUpdateTimestampOf (_minterl),
— initialTimestamp + 1);

}

// 2. Retrieve all collateral, and set malicious validator timestamp to
— initialTimestamp+2 during “updateCollateral()".

{

16 @/ SHERLOCK

vm.prank(_minterl) ;
uint256 retrievalld = _minterGateway.proposeRetrieval(100e6) ;

vm.warp(block.timestamp + 100);

uint256[] memory newRetrievallds = new uint256[] (1);
newRetrievallds[0] = retrievalld;

uint256[] memory timestamps = new uint256[](2);
timestamps[0] = block.timestamp;

timestamps[1] = initialTimestamp + 2;

bytes[] memory signatures = new bytes[](2);

signatures[0] = _getCollateralUpdateSignature(address(_minterGateway),
— _minterl, O, newRetrievallds, bytes32(0), block.timestamp, _validator2Pk);
signatures[1] = _getCollateralUpdateSignature(address(_minterGateway),

— _minterl, 0, newRetrievallds, bytes32(0), initialTimestamp + 2,
— _validatori1Pk) ;

vm.prank(_minter1) ;
_minterGateway.updateCollateral (0, newRetrievallds, bytes32(0),
— validators, timestamps, signatures);

assertEq(_minterGateway.collateralOf (_minterl), 0);
assertEq(_minterGateway.collateralUpdateTimestampOf (_minterl),
— initialTimestamp + 2);

3

// 3. Reuse signature from step 1, and set malicious validator timestamp to
— “initialTimestamp+3" during “updateCollateral().

// We have successfully "travelled back in time", and minterl's
— collateral is back to 100e6.
{

vm.warp(block.timestamp + 100);

uint256[] memory retrievallds = new uint256[] (0);
uint256[] memory timestamps = new uint256[] (2);
timestamps[0] = block.timestamp - 200;
timestamps[1] = initialTimestamp + 3;

bytes[] memory signatures = new bytes[](2);

signatures[0] = cacheSignatures[0];

signatures[1] = _getCollateralUpdateSignature(address(_minterGateway),
— _minterl, 100e6, retrievallds, bytes32(0), initialTimestamp + 3,
« _validator1Pk) ;

vm.prank(_minterl) ;

- @/ SHERLOCK

_minterGateway.updateCollateral(100e6, retrievallds, bytes32(0),
— validators, timestamps, signatures);

assertEq(_minterGateway.collateralOf (_minterl), 100e6);
assertEq(_minterGateway.collateralUpdateTimestampOf (_minterl),
— initialTimestamp + 3);

}

Impact

As shown in the proof of concept, the minter can use the extra collateral to mint M
tokens for free.

One may claim that during minting, the collateral0f () function checks for
block.timestamp < collateralExpiryTimestampOf (minter_), however, since during
deployment updateCollateralInterval is set to 86400, that gives us enough time
to perform the attack vector before "fake" collateral expires.

Code Snippet

 https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L
1045-L1106

Tool used

Foundary

Recommendation

Use the maximum timestamp of all validators instead of minimum, or take the
threshold-last minimum instead of the most minimum.

Discussion

sherlock-admin2

1 comment(s) were left on this issue during the judging contest.
takarez commented:

compromises happens due to user mistake which is invalid according to
sherlock rules and also; the validator has the power to update the minter
state including mint request.

18 @/ SHERLOCK

https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L1045-L1106
https://github.com/MZero-Labs/protocol/blob/main/src/MinterGateway.sol#L1045-L1106

deluca-mike

This is a great catch! Please reopen this as it is the most clear issue that
demonstrates the issue in the simplest/purest form. The others may be duplicates
if this (albeit less valid, clear, or event incorrect).

sherlock-admin4

The protocol team fixed this issue in the following PRs/commits:
https://github.com/MZero-Labs/protocol/pull/163

sherlock-admin4

The Lead Senior Watson signed off on the fix.

19 @/ SHERLOCK

https://github.com/MZero-Labs/protocol/pull/163

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the
users’ responsibility.

20 @/ SHERLOCK

