
MZero Final Audit

| security

February 15, 2024

Table of Contents
Table of Contents __    2

Summary ___    4

Scope __    5

System Overview __    6

Security Model and Trust Assumptions ___    8
Privileged roles 9

Protocol Invariants ___    10

High Severity __    12
H-01 Signature Replay Attack Possible in MinterGateway 12

Medium Severity ___    12
M-01 Claiming of Distribution From DistributionVault Can Be Gamed 12

M-02 M-Token and POWER Token Will Have Integration Issues on DEXs 13

M-03 DistributionVault Cannot Handle Rebasing Tokens 14

M-04 Rewards of an Epoch Are Claimable by Zero holders of a Future Epoch 14

M-05 Denial of Service Due to Transaction Running Out of Gas 15

M-06 Reward Tokens Can Get Stuck in the DistributionVault 16

Low Severity __    16
L-01 Lack of Validation 16

L-02 Minter Disapproved by TTG Can Continue to Interact With the Protocol 17

L-03 Incorrect Comments 17

L-04 nextDeploy() Returns Incorrect Contract Address 18

L-05 EIP-1271 Signature Replay Attack Possible 18

L-06 Zero Amount of Power Tokens Can Be Minted 19

L-07 Zero Amount of M-tokens Can Be Minted or Burned 19

Notes & Additional Information __    19
N-01 Todo Comments in the Code 19

N-02 Typographical Errors 20

N-03 Lack of Security Contact 20

N-04 TTG Is Not Fully Compatible With Community Tools 21

N-05 Naming Suggestions 21

N-06 Unused State Variables 21

N-07 Unused Import 21

N-08 Unused Function With internal Visibility 21

MZero Final Audit − Table of Contents − 2

Conclusion __    22

MZero Final Audit − Table of Contents − 3

Type DeFi

Timeline From 2024-01-08
To 2024-02-09

Languages Solidity

Total Issues 22 (0 resolved)

Critical Severity
Issues

0 (0 resolved)

High Severity
Issues

1 (0 resolved)

Medium Severity
Issues

6 (0 resolved)

Low Severity Issues 7 (0 resolved)

Notes & Additional
Information

8 (0 resolved)

Summary

MZero Final Audit − Summary − 4

Scope
We audited the following repositories:

MZero-Labs/protocol repository at commit

3499f50ff3382729f3e59565b19386ba61ef8e36

MZero-Labs/ttg at commit a8127901fa1f24a2e821cf4d9854a1aa6ac8088c

MZero-Labs/common at commit 4a37119f2da946c6d8ad7b9a70dfdd219225115b

All the contracts and interfaces present in the src folder of these repositories were in the

scope of the audit.

•

•

•

MZero Final Audit − Scope − 5

System Overview
MZero is an EVM-compatible, immutable protocol that allows permissioned actors to mint and

burn M, a rebasing ERC-20 token.

There are three permissioned actors in this system:

Minters who mint M-tokens against their collateral

Validators who ensure that the collateral deposited in the Eligible Custody Solution (ECS)

matches the minter's the on-chain collateral value

Yield earners who earn interest on their M-token balance

A minter can mint M-tokens backed by US treasury bills if they deposit sufficient Eligible

collateral in an off-chain ECS. The validators verify the value of the off-chain collateral and

provide signatures to the minter. The minter then uses the validator signatures to update their

on-chain collateral value by calling the updateCollateral function. The number of unique

signatures required to update collateral on-chain dependends on the threshold parameter.

Minters are required to update their collateral on-chain within the Update Collateral

Interval of their last update and are penalized if they fail to do so. The minters are also

penalized if they become undercollateralised.

Once the collateral is updated, the minter can call the proposeMint function with the mint

amount and the mint address as the user inputs. This function first ensures that the mint

amount will not make the minter undercollateralized and then generates a mintId . A minter

can have only one mintId at a time. A delay, named mintDelay , is added between the

creation of a mint proposal and the actual minting of the M-tokens. This is the time provided to

the validators to act on malicious minting requests by canceling them. If the mintDelay has

passed, the minter can call the mintM function to execute the mint. This function can only be

called until mintTTL , after which the mintId expires. The system checks for sufficient

collateral again, mints the M-tokens, and updates the index. Any protocol user can repay the

debt of a minter and burn their M-tokens by calling the burnM function. To retrieve the

collateral from the ECS, a minter needs to call the proposeRetrieval function to generate a

retrieval Id. This function ensures that the collateral retrieval will not make the minter

undercollateralized. Once the retrieval Id is generated, the minter can use it to withdraw their

off-chain collateral from the ECS.

•

•

•

MZero Final Audit − System Overview − 6

If governance whitelists a minter, a call to the activateMinter function can be made to

activate the minter in the protocol. Similarly, if governance removes a minter from the whitelist,

it is reflected in the protocol by calling the deactivateMinter function. Any account with an

M-token balance, that is whitelisted by the governance, can opt-in or opt-out of earning

interest on their balance. The earner's rate is calculated by an earner rate model contract. The

minter rate is calculated by a minter rate model contract. These rate model contracts are

upgradeable by the governance. All important parameters of the protocol such as the list of

approved minters, collateral-to-mint ratio, mint delay, the interest of the yield earners, etc. are

set by governance and read using the TTGRegistrarReader library which calls the

Registrar contract.

MZero's novel two-token governance (TTG) is oblivious to the existence of the protocol. The

protocol gets information from the TTG using a pull mechanism. TTG, as its name indicates,

has two governance tokens: Zero token and Power token. The Power token holders are the

managerial class and deal with the day to day activities of the system. The Zero token holders

have more of an oversight role. TTG operates on the concept of epochs. Each epoch has two

sub-epochs: a voting epoch of 15 days and a transfer epoch of 15 days. There are three types

of proposals in the system: Standard proposals, Power threshold proposals, and Zero

threshold proposals.

Only Power token holders can vote on a standard proposal. Voting on a standard proposal

happens in a voting epoch and the proposals are executed in the next transfer epoch. A

proposal created during a voting or a transfer epoch gets voted on in the next voting epoch.

Creating a proposal requires depositing proposal fees. If the proposal succeeds and is

executed then the proposal fee is refunded to the proposer otherwise it is forfeited. A standard

proposal can be passed by a simple majority of Power token holders. There is no quorum

requirement. The StandardGovernor deals with the standard proposals.

Power threshold proposals can only be voted on by the Power token holders. When proposed

this type of proposal becomes eligible to be voted on instantly and its voting period lasts till the

end of the next epoch. For a Power threshold proposal to pass, a threshold amount of the total

supply of Power token holders need to vote yes on it. The EmergencyGovernor deals with

the Power threshold proposals. Zero threshold proposals are similar to Power threshold

proposals as they can be voted on instantly, their voting period lasts till the end of the next

epoch, and the threshold amount of Zero token holders need to vote yes on it. The

ZeroGovernor deals with the Zero threshold proposals.

The Power token is a rebasing token. Every voting epoch, its supply increases by 10%. To be

eligible for the rebase, one has to vote on all the standard proposals of that voting epoch. The

share of the token holders who did not vote on all proposals is auctioned in the transfer epoch

MZero Final Audit − System Overview − 7

using a Dutch auction. The Power token holders also receive a pro-rata share of a fixed

inflation of Zero tokens. TTG only has yes and no votes, there is no option to abstain. Once a

token holder votes on a proposal they cannot change their vote. The proposals of the three

governors of TTG only allow certain types of calldata and can only call themselves to execute

the calldata upon the passing of a proposal. The Registrar stores all data related to the

protocol like the minter list, earner list, earner rate, mint ratio, etc., and can only be called by

the StandardGovernor or the EmergencyGovernor . The proceeds of the protocol and

the governance are sent to the DistributionVault from where Zero token holders can

pro-rata claim a share of the proceeds.

Security Model and Trust
Assumptions
During the course of this audit, it was assumed that the validators and the ECS operators were

honest entities and would always work in the interests of the protocol. It was also assumed

that the protocol parameters set by the TTG will always be in the best interest of the protocol

and its users. However, the off-chain components of the system pose certain game-theoretical

attack risks to the protocol. For instance, a malicious minter can get approved by the TTG,

store $1M worth of collateral in the ECS, ask a validator to verify and sign their collateral, and

call the updateCollateral function to reflect the same on-chain.

The malicious minter can then create a retrieval ID for $600k of collateral, while convincing the

validator that they do not wish to withdraw the $600k worth of collateral from the ECS. This is a

valid action according to the whitepaper. The validator then checks the available collateral and

signs the retrieval ID along with the $1M collateral value. However, the malicious minter goes

against their word and informs the ECS operator that they want to withdraw $600k by

providing the retrieval ID. The operator calls the pendingCollateralRetrievalOf

function of the MinterGateaway contract to confirm the same.

Since the minter has not called updateCollateral() yet, the retrieval ID is not deleted and

the minter is able to withdraw the $600k from the ECS. The minter then calls

updateCollateral() which deletes the retrieval ID and makes his

totalPendingRetrievals zero. The minter then mints $900K worth of M-tokens and sells

it on the market. Consequently, the minter is able to make a profit of $500k since they

deposited $1M and are able to get a value of $1.5M out of the protocol ($900k through M-

tokens and $600k through withdrawal of collateral).

MZero Final Audit − Security Model and Trust Assumptions − 8

Privileged roles
In essence, almost everything that happens on the protocol is controlled by the TTG. TTG

approves the list of minters and validators who can interact with the MinterGateaway

contract.

There are two permissioned roles in the MinterGateaway contract:

minters : Minters are responsible for the circulation of M-tokens. Only active minters

can update their collateral and propose retrieval. Active minters that are not frozen can

propose mints and mint M-tokens.

validators : Approved validators can cancel mint requests and freeze minters. In

addition, there are off-chain ECS operators that have the privilege of physically storing

and removing users' collateral from the ECS.

The mint and burn functions in the MToken contract can only be called by the

MinterGateaway contract.

Within the TTG system, each governor has a set of powers.

The ZeroGovernor can:

Deploy the PowerToken , StandardGovernor , and EmergencyGovernor contracts

when resetting the Power token to Power token holders or Zero token holders

Set the Power threshold proposal ratio

Set the Zero proposal threshold ratio

Set the cash token of the system and proposal fee of standard proposals

The EmergencyGovernor contract can:

Set the Standard proposal fee

Add and delete account from lists, and modify key-value pairs of the Registrar

contract

The StandardGovernor can:

Set its proposal fee in the StandardGovernor contract

Call the markNextVotingEpochAsActive , and markParticipation functions of

PowerToken contract

Mint Zero tokens

Add and delete account from lists, and modify key-value pairs of the Registrar

contract

•

•

•

•

•

•

•

•

•

•

•

•

MZero Final Audit − Security Model and Trust Assumptions − 9

Protocol Invariants
The main invariant of the protocol is that totalOwedM >= totalSupply . Due to the

exponential nature of totalActiveOwedM and totalEarningSupply (constituents of

totalOwedM and totalSupply respectively) , there are two scenarios where this invariant

can break:

Earner rate > minter rate

totalEarningSupply > totalActiveOwedM

Taking the above into consideration, consider adding a protocol invariant check to protect the

protocol against overprinting of M if the current or future earner rate model produces errant

values or if the protocol is not interacted with for a long time.

Possible Protocol Invariant Check

The currentIndex() function needs to be overridden in the MToken contract and the

following invariant needs to be checked at the end of the function before the execution ends:

totalOwedM >= totalNonEarningSupply + principalOfTotalEarningSupply *

current calculated index . This is because currentIndex() is the only function that

can cause an increase in totalSupply without causing an increase in totalOwedM since it

is used in the calculation of totalEarningSupply() . Other functions, such as mint and

burn increase or decrease totalOwedM and totalSupply equally. Since

currentIndex() is a view function and multiple functions like balanceOf() and

totalEarningSupply() depend on it, this function must not revert if the invariant is found

to be broken. Instead, it should scale down the index returned by the function. There are two

ways to achieve this:

The currentIndex() function returns the _latestIndex .

This is not in favor of the earners as the cashflow generated since the

_latestUpdateTimestamp by the owed M will just be minted to

DistributionVault when updateIndex() of MinterGateway is called.

The currentIndex() returns the maximum possible index that will not cause the

overprinting of M. This can be achieved by subtracting the totalNonEarningSupply

•

•

1.

◦

2.

MZero Final Audit − Protocol Invariants − 10

from totalOwedM , multiplying it by EXP_SCALED_ONE , and then dividing the entire

thing by principalOfTotalEarningSupply .

The advantage of this approach is that it is fairer to the earners. They will not lose

their earner interest and the invariant will also remain protected.

This method will allow earners to earn interest even when totalActiveOwedM_

< totalEarningSupply_ .

◦

◦

MZero Final Audit − Protocol Invariants − 11

High Severity

H-01 Signature Replay Attack Possible in
MinterGateway
The _verifyValidatorSignatures function of the MinterGateway contract is called

within the updateCollateral function to verify if the validator signatures provided by the

minter for their collateral are valid. However, if a signature has its timestamp as zero, this

function replaces it with block.timestamp .

If the validator threshold is one, the _minterStates[minter_].updateTimestamp is

stored as block.timestamp . If the validator threshold is greater than one, this zero

timestamp signature can be used along with other signatures and the lowest non-zero

timestamp will be stored as _minterStates[minter_].updateTimestamp . If all the

signatures have a zero timestamp then _minterStates[minter_].updateTimestamp

will be stored as block.timestamp . This quirk in _verifyValidatorSignatures allows

a minter to essentially reuse zero-timestamp signatures.

Consider ignoring any signature which has a timestamp less than

minterStates[minter].updateTimestamp in the _verifyValidatorSignatures

function.

Medium Severity

M-01 Claiming of Distribution From
DistributionVault Can Be Gamed
For reward distribution, the latest balance of a user is stored for each epoch and rewards are

distributed according to the epoch balance. Each user can claim the reward for the last epoch

as soon as the next epoch begins, pro-rata based on their Zero token balance in the last

epoch.

MZero Final Audit − High Severity − 12

This can lead to the following scenario:

A user can borrow or buy a large amount of Zero tokens one block before the new epoch

begins.

This new balance will be stored as their balance for that epoch.

In the next block (after the epoch has begun), they can claim a disproportionate amount

of rewards of the last epoch and repay their debt or sell back the Zero tokens.

This attack can be carried out in two blocks and since blocks on Ethereum are ~12

seconds, the malicious user would only need to borrow or buy tokens for less than a

minute.

Possible Mitigation

Use shares for reward distribution instead of balances. The claimable amount can be

calculated as the shares of a user divided by the total shares of that epoch. Shares of

a user can be calculated by multiplying the user's balance at the epoch beginning by the

duration of the epoch. Then, whenever tokens are transferred, the delta multiplied by the time

left in the epoch is added or subtracted from the user's shares depending on whether they

sent or received the tokens. Total shares of an epoch will be equal to the total supply at

the epoch beginning multiplied by epoch duration. Total shares will increase only when

new tokens are minted.

Share-based accounting can also be used for voting to prevent governance attack

vectors like borrowing or buying a large amount of tokens before the start of an epoch.

The maximum balance would need to be capped at uint232 otherwise multiplication

with 15 days will overflow the uint256 container.

Consider using the described mitigation strategy to prevent the gaming of reward distribution.

M-02 M-Token and POWER Token Will Have
Integration Issues on DEXs
Anyone can steal the rebases of M-token or POWER token if they are part of a pool in a

Uniswap v2 fork by calling the skim() function. Similarly, a lot of DeFi protocols are not

equipped to handle rebasing tokens and this can lead to a loss for the protocol, or the M-token

or Power token holder.

Consider having a wrapped version of these tokens ready at the time of launch to mitigate any

issues faced when integrating rebasing tokens with the wider DeFi ecosystem.

•

•

•

•

•

•

MZero Final Audit − Medium Severity − 13

M-03 DistributionVault Cannot Handle
Rebasing Tokens
M-tokens are sent to the DistributionVault by the MinterGateway and the

PowerToken contract. If the DistributionVault becomes an active earner, its M-token

balance will start increasing. The reward for an epoch is calculated by subtracting the last

recorded balance of the vault from the current balance of the vault. Since the current balance

of the vault will increase due to rebasing without any new M-tokens being transferred to it, the

accounting of this method is incorrect.

Furthermore, if a user does not claim their M-token rewards of a particular epoch, the rebasing

that their portion of the reward will receive would be entitled to everyone. This will essentially

eat into their rewards.

Listed below are the possible mitigations, in order of preference:

Wrap the M-tokens and then send them to the DistributionVault contract. An

example of this approach is the stETH token which is integrated in DeFi protocols by

wrapping it as wstETH .

Add logic to the DistributionVault to handle rebasing tokens. In the case of M-

tokens, this can be done by storing the principal of M-token by calling the

currentIndex() on the MToken contract and dividing the present amounts by it.

Epoch distribution amount should only be updated if current balance divided by

currentIndex() is greater than the last stored principal .

Ensure that the DistributionVault can never become an earner. However, this is

not in the best interest of the users.

Consider implementing one of the possible mitigations to ensure correct reward accounting in

the DistributionVault .

M-04 Rewards of an Epoch Are Claimable by
Zero holders of a Future Epoch
Zero token holders claim their rewards, which are calculated per epoch, from the

DistributionVault . The Zero token balance of a user in a past epoch is used to calculate

their pro-rata share of the rewards of that epoch. Rewards in the form of tokens are sent to the

DistributionVault when:

totalOwedM_ becomes higher than totalMSupply_

•

•

•

•

MZero Final Audit − Medium Severity − 14

When a standard proposal fails or expires

When Power tokens are bought in an auction

Sending tokens to the DistributionVault does not guarantee that Zero token holders of

that epoch will be able to claim their share of rewards. The distribute function needs to be

called by someone to make unaccounted rewards claimable for that epoch.

Any tokens sent to the DistributionVault after the last call to distribute in an epoch

are eligible to be accounted for in the rewards of future epochs. Since the distribution of Zero

holders can change every epoch, the unaccounted rewards of an epoch can be claimed by the

Zero holders of future epochs.

Consider calling the distribute function after making transfers to the vault to ensure that

the rewards of the current epoch are claimable by Zero holders of the current epoch and not

the Zero holders of future epochs.

M-05 Denial of Service Due to Transaction
Running Out of Gas
Multiple functions in TTG are susceptible to running out of gas during execution if a user has

not interacted with the protocol in a long time. As the protocol has been built to function for

decades, this could lead to DoS for multiple users when they are trying to transfer, delegate,

vote, check balance, claim rewards, etc.

The PowerToken contract needs an externally-callable sync function which allows

users to sync x epochs since the last synced epoch. Consider adding this function to

enable users to sync and potentially unbrick their bricked accounts.

The _getValueAt and _getDelegateeAt internal functions in the

EpochBasedVoteToken contract iterate over an unbounded loop. A linear search is

performed from the last recorded epoch in an AccountSnap or AmountSnap array.

These functions are used to fetch data at:

the current epoch

the epoch before voting (within the last three epochs)

an arbitrary epoch

Consider making a binary search version of the two functions for the third case.

Similarly, the _hasParticipatedAt function uses linear search to find whether a user

voted in an epoch. Consider using binary search to reduce gas costs.

•

•

•

•

•

•

•

•

MZero Final Audit − Medium Severity − 15

The _getUnrealizedInflation function is very gas-heavy and susceptible to

running out of gas. Consider traversing the _participations array from the relevant

point, counting the epochs and using the compound interest formula at the end to

calculate the unrealized inflation.

Consider duplicating the functionality of the getClaimable function in the _claim

function to make it easier for users to claim rewards for more epochs without running out

of gas.

M-06 Reward Tokens Can Get Stuck in the
DistributionVault
The getClaimable function calculates the pro-rata share of the Zero token holders for the

distribution of rewards. If Zero tokens are sent to the vault, the vault becomes eligible for a

portion of rewards along with the other token holders. Since no functionality allows the

DistributionVault to claim its share of tokens, these tokens will be locked in forever. In

addition, every epoch, a portion of any token (e.g., M-token or wETH) that is sent to the

DistributionVault will also get stuck since the vault would always have a claim to the

rewards. This will result in the loss of funds.

Consider subtracting an epoch's Zero token balance of the DistributionVault from that

epoch's totalSupply when calculating the claimable amount of a user.

Low Severity

L-01 Lack of Validation
Throughout the codebase, there are instances of missing checks:

The transferFrom function in the ERC20Extended library should check if amount_

> spenderAllowance_ and revert with a meaningful error message instead of

reverting at the arithmetic underflow.

The _verifyValidatorSignatures function in the MinterGateway contract

should check if the threshold_ is greater than 0.

•

•

•

•

MZero Final Audit − Low Severity − 16

The proposeMint function in MinterGateway contract does not validate that the

destination_ address is not address(0) .

The castVotes , castVotesBySig , and castVotesBySig functions in the

BatchGovernor contract allow the user to cast votes on multiple proposals in single

function call. These functions accept proposalIds_ and support_ arrays as user

inputs but fail to check if the length of these arrays is the same.

According to the MZero Protocol Whitepaper, consider adding a check to the constructor

of the Zero token which ascertains that the initial supply minted is equal to 1 billion.

For input sanitization and reducing the attack surface of the codebase, consider implementing

these checks.

L-02 Minter Disapproved by TTG Can Continue to
Interact With the Protocol
The MinterGateway contract verifies whether a minter_ is approved by governance within

the isMinterApproved function which reads the value from the TTGRegistrarReader .

This isMinterApproved function is called from the activateMinter and

deactivateMinter functions that are used to activate or deactivate minters respectively.

These functions set the isActive flag for the minter_ in the _minterStates mapping

as true if the minter is active and false if inactive. This _minterStates mapping is then used

in the rest of the contract to verify if the minter is active.

There can be a scenario where the governance decides to disapprove a minter. Until the

deactivateMinter function is called in the MinterGateway contract, the disapproved

minter can continue to interact with the protocol, as long as their isActive flag in the

_minterStates mapping is true.

Consider calling the isMinterApproved function within the _revertIfInactiveMinter

function to ensure that the protocol is always aware of a disapproved minter.

L-03 Incorrect Comments
Consider fixing the following comments that were found to be incorrect or misleading:

At line 103 of the IBatchGovernor interface, the docstring above the

castVotesBySig function states that a signer can cast votes via an arbitrary

•

•

•

•

MZero Final Audit − Low Severity − 17

signature. However, this function allows anyone to cast a vote on behalf of the signer if

they have a valid signature.

At line 118 of the StandardGovernor contract, the comment wrongly asserts that

standard proposals can be executed in epoch N+2, where N is the epoch in which the

vote took place.

L-04 nextDeploy() Returns Incorrect Contract
Address
The nextDeploy() function in EmergencyGovernorDeployer.sol ,

PowerTokenDeployer , and StandardGovernorDeployer wrongly computes the next

deployment address. It incorrectly increments the nonce when calculating the deployment

address.

Consider using the nonce as it is to compute the deployment address.

L-05 EIP-1271 Signature Replay Attack Possible
Most smart contract wallets' isValidSignature function is just a wrapper over

ECDSA.recover . If the output of the ECDSA.recover matches the owner, then the magic

value 0x1626ba7e is returned. If a user is the owner of multiple smart contract accounts and

wants to interact with claimBySig :

They can sign a message entitling the destination address to the rewards of their

EOA address.

There is nothing stopping the destination address from replaying that signature

substituting account_ with a smart contract where the user is the owner as

account_ is not used in calculating the digest.

Likewise, if the EOA signs a message for one of their smart contract accounts, it can be

replayed for their EOA and other smart contract accounts.

Consider making the protocol secure against this type of attack by:

Using account_ to compute the digest in claimBySig

Using voter_ to compute the digest in castVoteBySig

Using voter_ to compute the digest in castVotesBySig

Using account_ to compute the digest in delegateBySig

•

•

•

•

•

•

•

•

MZero Final Audit − Low Severity − 18

Using validator[index] to calculate the digest in

_verifyValidatorSignatures

L-06 Zero Amount of Power Tokens Can Be
Minted
If the buy function is called with minAmount_ and maxAmount_ set to zero, it leads to the

minting of zero Power tokens.

Consider adding a check to the buy function to validate that minAmount_ is greater than

zero.

L-07 Zero Amount of M-tokens Can Be Minted or
Burned
The burnM function in the MinterGateway contract is used for the burning of M-tokens. It

can burn zero amount of M-tokens if:

The maxPrincipalAmount_ or maxAmount_ is zero

The minter_ does not owe any M-tokens

The minter_ does not exist

Similarly, the mintM function does not check that the amount_ value is zero and mints zero

amount of M-tokens.

Consider adding checks to the mintM and burnM functions to prevent minting or burning of

zero amount of M-tokens.

Notes & Additional
Information

N-01 Todo Comments in the Code
During development, having well-described TODO/Fixme comments will make the process of

tracking and solving them easier. Without this information, these comments might age and

•

•

•

•

MZero Final Audit − Notes & Additional Information − 19

important information for the security of the system might be forgotten by the time it is

released to production. These comments should be tracked in the project's issue backlog and

resolved before the system deployment.

Multiplies instances of TODO/Fixme comments were found in the codebase:

The TODO comment at line 303 of BatchGovernor.sol

The TODO comment at line 12 of ThresholdGovernor.sol

Consider removing all instances of TODO/Fixme comments and instead tracking them in the

issues backlog. Alternatively, consider linking each inline TODO/Fixme to the corresponding

issues backlog entry.

N-02 Typographical Errors
To improve the readability of the codebase, consider fixing the following typographical errors:

At line 26 of the IERC5805 interface, "who's" should be "whose" .

At line 46 of the ERC5805 contract, "verifier" should be "verified" .

At line 40 of the IBatchGovernor interface, "no this" should be "not this" .

At line 12 of the EpochBasedInflationaryVoteToken contract, "Specifically,a nd

only" should be "Specifically, and only".

N-03 Lack of Security Contact
Providing a specific security contact (such as an email or ENS name) within a smart contract

significantly simplifies the process for individuals to communicate if they identify a vulnerability

in the code. This practice is quite beneficial as it permits the code owners to dictate the

communication channel for vulnerability disclosure, eliminating the risk of miscommunication

or failure to report due to a lack of knowledge on how to do so. In addition, if the contract

incorporates third-party libraries and a bug surfaces in those, it becomes easier for the

maintainers of those libraries to make contact with the appropriate person about the problem

and provide mitigation instructions.

Consider adding a NatSpec comment containing a security contact above the contract

definitions. Using the @custom:security-contact convention is recommended as it has

been adopted by the OpenZeppelin Wizard and the ethereum-lists.

•

•

•

•

•

•

MZero Final Audit − Notes & Additional Information − 20

N-04 TTG Is Not Fully Compatible With
Community Tools
The omission of string calldata reason as an input parameter from the

castVoteWithReason function changes the function signature, making it incompatible with

Tally and possibly other tools.

Consider adding and using the missing parameter in the castVoteWithReason function.

N-05 Naming Suggestions
To favor explicitness and readability, consider renaming the _getTotalSupply function in

the EpochBasedVoteToken contract to _getTotalSupplyAtEpoch .

N-06 Unused State Variables
In the BatchGovernor contract, the quorumRatio variable in the Proposal struct is

unused.

To improve the overall clarity, intentionality, and readability of the codebase, consider removing

any unused state variables.

N-07 Unused Import
The SignatureChecker import in ERC3009.sol is unused. Consider removing this and

any other instances of unused imports to improve the overall clarity and readability of the

codebase.

N-08 Unused Function With internal Visibility
In EpochBasedVoteToken.sol , the subUnchecked function is unused.

To improve the overall clarity, intentionality, and readability of the codebase, consider either

using or removing any currently unused function.

MZero Final Audit − Notes & Additional Information − 21

Conclusion
The MZero team has devised a coordination protocol to allow privileged actors to mint and

burn overcollateralized quasi-stablecoins (M-tokens) backed by US treasury bills. M-token

holders are paid interest using a rebasing mechanism. To govern the protocol, the team has

also built a novel two-token governance mechanism where Power token holders manage the

daily activities of the protocol while Zero token holders oversee the functioning of the

governance.

One high-severity and several medium-severity issues were found. Other than this, several

lower-severity issues were reported that mainly identified improvement opportunities in the

overall quality of the codebase. Throughout the audit, the MZero team was very responsive

and provided us with extensive information about the project.

MZero Final Audit − Conclusion − 22

