CAMNTINM

ETHO Protocol

Security Review

Cantina Managed review by:

Phaze, Lead Security Researcher
Xmxanuel, Lead Security Research

June 9, 2025

Contents

1 Introduction
1.1 About Cantina e e e
1.2 Disclaimer e e
1.3 Riskassessment e e e e

1.3.1

Severity Classification e

2 Security Review Summary

3 Findings
3.1 MediumRisk . . o o e e
3.1.1 DaoCollateral.redeem doesn't return the corresponding fee collateral to the
redeemUser if CBRISACLIVE i i e
3.1.2 Lido oracle creates cross-collateral arbitrage risk in multi-collateral system
3.2 LowRisk . . .
3.2.1 DaoCollateral.redeem is not blocked in a depeg event with a zero redeemFee
3.2.2 Decrease of the eth0.mintCap by setting to a lower amountthan eth0.totalSupply ()
will block DaoCollateral.redeem v v v v vii vt i it e e e e e e
3.2.3 redeemDao () function lacks pause protection allowing operations during system shut-
down . .o e
3.2.4 Fee calculation rounding favors users over protocol
3.2.5 ethO.mintCap can block the minting of the protocol surplus
3.3 Informational e e

3.3.1
3.3.2
3.3.3
334
3.3.5

Missing mechanism to remove collateral tokens from token mapping
Adding collateral tokens without oracle validation can halt minting operations

Inconsistent amount validation between mint and burn functions
Registry contract changes not immediately reflected in dependent contracts
Outdated constants in constants.Sol . . . o« ve v v v it e e e

1 Introduction

1.1 About Cantina

Cantinais a security services marketplace that connects top security researchers and solutions with clients.
Learn more at cantina.xyz

1.2 Disclaimer

Cantina Managed provides a detailed evaluation of the security posture of the code at a particular moment
based on the information available at the time of the review. While Cantina Managed endeavors to identify
and disclose all potential security issues, it cannot guarantee that every vulnerability will be detected or
that the code will be entirely secure against all possible attacks. The assessment is conducted based on
the specific commit and version of the code provided. Any subsequent modifications to the code may
introduce new vulnerabilities that were absent during the initial review. Therefore, any changes made
to the code require a new security review to ensure that the code remains secure. Please be advised
that the Cantina Managed security review is not a replacement for continuous security measures such as
penetration testing, vulnerability scanning, and regular code reviews.

1.3 Risk assessment

Severity Description
Critical Must fix as soon as possible (if already deployed).
High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-

nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks that
can be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.

1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.
Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-
ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixed
as soon as possible.

Medium findings are conditionally possible or incentivized but are still relatively likely to occur and should
be addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentive
to exploit but are recommended to be addressed.

Lastly, some findings might represent objective improvements that should be addressed but do not im-
pact the project’s overall security (Gas and Informational findings).

https://cantina.xyz

2 Security Review Summary

Usual is a Stablecoin DeFi protocol that redistributes control and redefines value sharing. It empowers
users by aligning their interests with the platform's success.

From May 21st to May 27th the Cantina team conducted a review of ethO-protocol on commit hash
d638edee. The team identified a total of 12 issues:

Issues Found

Severity Count Fixed Acknowledged
Critical Risk 0 0 0
High Risk 0 0 0
Medium Risk 2 0 2
Low Risk 5 3 2
Gas Optimizations 0 0 0
Informational 5 1 4
Total 12 4 8

https://github.com/cantina-forks/usual-eth0-protocol
https://github.com/cantina-forks/usual-eth0-protocol/tree/d638edee0b2c5c1b328885fc211b1861d48cddb5/

3 Findings

3.1 Medium Risk

3.1.1 DaoCollateral.redeemdoesn't return the corresponding fee collateral to the redeemUser if CBR
is active

Severity: Medium Risk
Context: DaoCollateral.sol#1481

The _burnEthOTokenAndTransferCollateral function called by DaoCollateral.redeem calculates the re-
quired amount of USDO to be burned in exchange for the underlying collateral. As a first step, the entire
ethOAmount is burned, and afterwards, the stableFee amount is minted to the $.treasuryYield. There-
fore, the burnedEth0 describes the effectively burned ETHO.

// we burn the remaining ETHO token

uint256 burnedEthO = ethOAmount - stableFee;
// we burn all the ETHO token
$.eth0.burnFrom(msg.sender, ethOAmount) ;

If the CBR mechanism is activated, users don't need to pay a fee for calling redeem. Therefore, only if the
CBR mechanism is not, the fee gets minted.

// transfer the fee to the treasury if the redemption-fee is above 0 and CBR isn't turned on.
// if CBR is on fees are forfeited
if (stableFee > 0 && !$.isCBROn) {
$.eth0.mint ($.treasuryYield, stableFee);
}

However, in the following _getTokenAmountForAmountInETH call, which calculates the amount of collat-
eral that should be returned to the user, always uses burnedEth0 variable. This is correct if the stableFee
has been moved to the treasury because the corresponding collateral for the stableFee should stay in
the protocol.

// get the amount of collateral token for the amount_of ETHO burned by calling the oracle
returnedCollateral = _getTokenAmountForAmountInETH(burnedEthO, collateralToken) ;

This is incorrect, in the stableFee> 0 && isCBROn==true case. Since no stableFee needs to be paid, the
entire collateral can be returned to the user in that case.

- returnedCollateral
+ returnedCollateral

_getTokenAmountForAmount InETH (burnedEthO, collateralToken) ;
_getTokenAmountForAmountInETH(ethOAmount, collateralToken);

Recommendation: The function should use the ethOAmount if the cbr mechanism is activated for the
_getTokenAmountForAmountInETH calculation. This would also return the corresponding fee collateral to
the user with the outcome that the user doesn't pay a fee.

Usual: As a part of the ETHO design, If the CBR is on, the fees that are usually supposed to be minted
for the Usual Treasury are forfeited to increase recollateralization through redemptions instead. Added
a commentin PR 3.

Cantina Managed: Acknowledged. A code comment is now included to clarify this behavior.

3.1.2 Lido oracle creates cross-collateral arbitrage risk in multi-collateral system

Severity: Medium Risk
Context: LidoWstEthOracle.sol#L66

Summary: The LidoWstEthOracle assumes a 1:1 peg between stETH and ETH, which creates arbitrage
vulnerabilities when the protocol introduces additional collateral types that use market-based pricing.
This design inconsistency could allow attackers to systematically drain higher-valued collateral during
stETH depeg events.

Description: The current Lido oracle implementation uses the internal stETH per token rate rather than
secondary market pricing:

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L481
https://github.com/usual-dao/eth0-protocol/pull/3
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/oracles/LidoWstEthOracle.sol#L66

answer = int256 (IWstETH(WST_ETH_CONTRACT) .stEthPerToken());

While this provides accurate wstETH:stETH conversion rates, it assumes stETH maintains parity with ETH
regardless of secondary market conditions. This assumption becomes problematic when combined with
other collateral types. Consider ETHO backed by multiple collateral types:

* 50% wstETH (valued using Lido's 1:1 assumption).
* 50% WETH (valued using market rates).
When stETH depegs to 0.8 ETH on secondary markets:
1. Protocol maintains 1:1 rate: Users can still swap stETH for ETHO at par through the protocol.
2. Market reflects true value: ETHO's actual backing is worth 0.5 x 0.8 + 0.5 x 1.0 = 0.9 ETH.
3. Arbitrage opportunity emerges:
* Buy stETH at 0.8 ETH on secondary markets.
« Swap for ETHO at 1:1 through the protocol.
* Redeem ETHO for WETH at 1:1 through the protocol.
* Net profit: 0.2 ETH per cycle.

This attack systematically drains the higher-valued collateral (WETH) while flooding the protocol with
lower-valued collateral (stETH), potentially continuing until WETH reserves are exhausted.

For temporary price fluctuations, this might not pose a fundamental risk to the protocol, as backing value
would be restored when the peg recovers. However, ETHO faces greater liquidity risk than stETH itself
due to instant redemption capabilities - while stETH holders must wait 1-5 days to unstake, ETHO holders
can immediately exit to any supported collateral type, amplifying the speed and impact of potential bank
runs during depeg events.

The problem is worsened by stETH's withdrawal mechanics:
* Normal stETH unstaking: 1-5 day queue, subject to delays.
* Protocol conversion: Instant stETH — ETHO — other assets.

This makes the protocol an attractive "fast lane" for stETH liquidity during market stress, potentially at
significant cost to the protocol.

Impact Explanation: The impact is high as this design flaw could lead to systematic drainage of protocol
reserves during stETH depeg events. Even if the peg is restored and backing value recovers, ETHO will
always be exposed to increased systemic risk - any depeg of a collateral token creates potential for cross-
collateral arbitrage that could destabilize the entire protocol. The attack becomes more profitable and
damaging as the price deviation increases and as more collateral types are added to the system.

Likelihood Explanation: The likelihood is low. While historical data shows stETH has experienced periods
of depeg, for the protocol to suffer significant damage the depeg would need to persist long enough for
attackers to systematically drain reserves. Most stETH depegs have been temporary, and the protocol's
CBR mechanisms could potentially be activated to mitigate extended arbitrage attacks.

Recommendation:

* Primary Solution: Implement Depeg Protection for stETH: Treat stETH with the same depeg protec-
tion mechanisms used for other collateral.

1. Add oracle validation: Use a Chainlink stETH/ETH oracle to monitor secondary market pricing.

2. Apply depeg thresholds: Configure the existing _checkDepegPrice () mechanism to pause oper-
ations when stETH deviates beyond acceptable limits.

3. Maintain internal rate precision: Continue using Lido's stEthPerToken() for accurate wstETH
conversions, but only when stETH is within acceptable peg range.

Implementation approach:

// In oracle price checks
function getPrice(address token) public view override returns (uint256) {
if (token == WSTETH_ADDRESS) {
// Check stETH peg using Chainlink oracle
uint256 marketPrice = getChainlinkStETHPrice();
_checkDepegPrice (STETH_ADDRESS, marketPrice); // Revert if depegged

// Use precise Lido rate only when peg is maintained
return getLidoStETHPerToken() ;
}
// ... other token logic
}

+ Additional Safeguard: Collateral Composition Limits. Consider implementing caps on collateral back-
ing percentages or maximum daily changes in collateral composition. This would prevent complete
drainage of one collateral type in favor of another:

- Percentage caps: Limit any single collateral type to a maximum percentage of total backing.
- Rate limiting: Restrict how quickly the collateral composition can shift between types.
- Minimum reserves: Maintain minimum amounts of each.collateral type.

This approach preserves the accuracy of Lido's internal rates while protecting against cross-collateral
arbitrage by pausing operations during significant depeg events, similar to how other stablecoins are
protected in the existing AbstractOracle implementation.

Usual: We use the on-chain wstETH — stETH — ETH rate (Lido oracle) because it is the source of truth for
backing, immune to market noise, cheaper in gas, and follows Aave's precedent.

If ETHO ever trades off that rate, arbitrage closes the gap and the redemption fee keeps it uneconomical
to drain funds.

Additionally, a Chainlink stETH/ETH feed Watcher Bot watches for extreme deviations and auto-pauses
DaoCollateral if Lido is ever hacked, so we get black-swan protection without daily oracle freezes.

If any of these conditions change, we can additionally also swap to a different oracle at any time on the
Usual Protocol itself.

Cantina Managed: Acknowledged.

3.2 Low Risk

3.2.1 DaoCollateral.redeem is not blocked in a depeg event with a zero redeenFee

Severity: Low Risk
Context: DaoCollateral.sol#L481

Description: The eth0.mint function includes a collateralBackingInETH check. If not sucessful the mint
call will revert. Since the redeem function requires minting the eth0 stableFee into the treasury, a revert
in eth0.mint due to the collateralBackingInETH check would revert the entire redeem transaction.

// transfer the fee to the treasury if the redemption-fee s above 0 and CBR isn't turned on.
// if CBR is on fees are forfeited
if (stableFee > 0 && !$.isCBROn) {
$.eth0.mint ($.treasuryYield, stableFee);
}

While this behavior is intended by the protocol to block the redeem calls until the CBR mechanism gets
activated. There is still the edge case, that the redeemFee could be set to zero basis points. This would
result in a stableFee=0 and no follow-up eth0.mint call, which would allow to sucessful redeem if the
protocol has depegged.

Recommendation: To ensure the redeem function is consistently blocked during a depeg befor the CBR
get's activated, consider requiring the redeemFee > 0. Alternatively, introduce a public function in eth0
for the collateralBackingInETH and ensure it is called in all scenarios.

Usual: Fixed in commit 1f715f87.

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L481
https://github.com/usual-dao/eth0-protocol/commit/1f715f871e79784994e92b626ea99b4153acd076

Cantina Managed: Fixed as recommended.

3.2.2 Decrease of the eth0.mintCap by setting to a lower amount than eth0.totalSupply () will
block DaoCollateral.redeem

Severity: Low Risk
Context: Eth0.sol#L175

Description: In case the mint cap for ETHO is decreased by calling eth0.setMintCap and a big swap trans-
action happens before, it can result in a state where the totalSupply() > mintCap. The DaoCollat-
eral.redeen first burns all ethO tokens and afterwards eth0.mint to mint the fees into the treasury.

However, if redeem amount is smaller than the difference between totalSupply() - mintCap the
eth0.mint call would revert because of the mintCap constraint. Even after burning the etho tokens the
totalSupply () would be above the mintCap and eth0.mint would revert. This would result in a state
where it is not possible to call DaoCallateral.swap since the mintCap has been reached, but it would
block the reward of smaller amounts.

Recommendation: Don't allow setting the mintCap below the current totalSupply by adding the follow-
ing check to the eth0.setMintCap function:

if (newMintCap < totalSupply()) {

revert MintCapTooSmall();
}

Usual: Fixed in commit 1f715f87.

Cantina Managed: Fixed as recommended.

3.2.3 redeemDao() function lacks pause protection allowing operations during system shutdown
Severity: Low Risk
Context: DaoCollateral.sol#L560

Description: The redeemDao () function in the DaoCollateral contract is not protected by the whenNot-
Paused modifier, unlike the regular redeem() and swap() functions. This creates an inconsistency in the
contract's pause mechanism and potentially allows DAO redemptions to continue even during system-
wide emergency shutdowns.

The current pause structure includes:
* redeem(): Protected by both whenRedeemNotPaused and whenNotPaused.
+ swap(): Protected by both whenSwapNotPaused and whenNotPaused.
* redeemDao(): Only protected by nonReentrant, no pause modifiers.

This design means that when the contract is globally paused via pause (), regular user operations are
halted but DAO redemptions.can continue unimpeded. While this might be intentional to allow DAO
operations during emergencies, it creates a potential gap in emergency response capabilities.

If there's a critical issue requiring a complete system shutdown (such as a security vulnerability or oracle
failure), administrators currently have no way to prevent DAO redemptions from occurring, which could
potentially worsen the situation or interfere with emergency response procedures.

Recommendation: Consider adding the whenNotPaused modifier to redeemDao () to enable complete sys-
tem shutdown when necessary:

function redeemDao(address collateralToken, uint256 amount)

external
nonReentrant
+ whenNotPaused
{
// ... function implementation
¥

This change would establish a clear hierarchy:

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/token/Eth0.sol#L175
https://github.com/usual-dao/eth0-protocol/commit/1f715f871e79784994e92b626ea99b4153acd076
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L560

* Individual function pauses (vhenSwapNotPaused, whenRedeemNotPaused) for targeted operational con-
trol.

+ Global pause (whenNotPaused) for system-wide emergency shutdown that affects all operations in-
cluding DAO redemptions.

If DAO operations need to remain available during specific emergencies, this can be achieved by using
only the individual pause functions rather than the global pause.

Usual: Fixed in commit 1f715f87.

Cantina Managed: Fixed as recommended.

3.2.4 Fee calculation rounding favors users over protocol

Severity: Low Risk
Context: DaoCollateral.sol#L450-L459

Description: In the _calculateFee() function of the DaoCollateral contract, the fee calculation and nor-
malization steps consistently round in favor of users rather than the protocol. This occurs in two places:

1. Initial fee calculation: Uses Math.Rounding.Floor which rounds down.

2. Normalization process: The wadAmountToDecimals () and tokenAmountToWad() functions in the Nor-
malize library use floor rounding by default.

stableFee = Math.mulDiv(ethOAmount, $.redeemFee, BASIS_POINT_BASE, Math.Rounding.Floor);
/7.
if (tokenDecimals < 18) {
stableFee = Normalize.tokenAmountToWad (
Normalize.wadAmountToDecimals(stableFee, tokenDecimals), tokenDecimals
)
}

Both operations consistently round down, meaning users pay slightly less in fees than the intended per-
centage, and the protocol collects less revenue than designed.

While the team has indicated this behavior is intentional (carried over from the USDO protocol), it repre-
sents a design choice where precision loss consistently favors users over the protocol's fee collection.

Recommendation: This appears to be an intentional design decision. However, if the protocol wishes to
ensure it collects the full intended fee amount, consider using ceiling rounding for fee calculations:

- stableFee = Math.mulDiv(ethOAmount, $.redeemFee, BASIS_POINT_BASE, Math.Rounding.Floor);
+ stableFee = Math.mulDiv(ethOAmount, $.redeemFee, BASIS_POINT_BASE, Math.Rounding.Ceil);

The current implementation prioritizes user-friendly rounding at the expense of protocol fee collection
accuracy.

Usual: We acknowledge this and will keep this in favor for user, impact should be marginal.

Cantina Managed: Acknowledged.

3.2.5 eth0.mintCap can block the minting of the protocol surplus

Severity: Low Risk
Context: Eth0.sol#L139

Description: The underlying collateral of eth0 will increase in value. In the case of wstETH, this will happen
because of Lido staking rewards. Eth0 holders can only redeem the equivalent of 1 ether for 1 eth0 but
not the rewards. The surplus is captured by the protocol in the form of newly issued etho. Inside the
eth0.mint function, there is a check to ensure that the overall totalSupply can never be higher than the
mintCap.

The permissioned eth0.mint call is intended to be used by governance to issue the protocol surplus. How-
ever, if the mintCap is reached, it won't be possible to issue the surplus for the protocol. It would be re-
quired to increase the mintCap again only to mint the protocol surplus. The eth0.setMintCap and minting

https://github.com/usual-dao/eth0-protocol/commit/1f715f871e79784994e92b626ea99b4153acd076
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L450-L459
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/token/Eth0.sol#L139

of the protocol surplus are required to be in the same transaction. Otherwise, other users could use the
increased mintCap to swap again.

Recommendation: Consider adding another permissioned function for minting the surplus, which can
increase the mintCap if needed. A higher totalSupply () than the mintCap can block the redeem functional-
ity as described in another issue. Therefore, we would recommend increasing it instead of not performing
the check for surplus minting.

Usual: We can raise mintcap when price of wstETH raised significantly over time. No need to do anything.

Cantina Managed: Acknowledged.

3.3 Informational
3.3.1 Missing mechanism to remove collateral tokens from token mapping

Severity: Informational
Context: TokenMapping.sol#L77-L78

Description: The TokenMapping contract only provides functionality to add collateral tokens via ad-
dEthOCollateralToken() but lacks a corresponding mechanism to remove tokens once they have been
added. This design limitation can lead to operational issues in several scenarios.

When a collateral token becomes problematic (faulty, insolvent, or deprecated), it cannot be removed
from the system. This creates potential operational risks:

+ Afaulty token could cause the entire Eth0.mint () function to halt when it attempts to iterate through
all collateral tokens to calculate backing.

+ If a token becomes insolvent, the protocol may need to pause operations, but resuming would re-
quire removing the problematic token first.

* The currentimplementation permanently locks tokens into the mapping with no administrative over-
ride.

While such issues could potentially be resolved through contract upgrades in worst-case scenarios, this
approach introduces unnecessary complexity and delay in emergency situations.

Recommendation: Consider adding an administrative function to remove collateral tokens from the
mapping. This would provide administrators with the flexibility to respond to problematic tokens without
requiring contract upgrades.

Usual: It was decided not to add this functionality to be consistent with pegasus repo.

Cantina Managed: Acknowledged.

3.3.2 Adding collateral tokens without oracle validation can halt minting operations

Severity: Informational
Context: TokenMapping.sol#L77-L78

Description: The addEthOCollateralToken() function in the TokenMapping contract does not verify that
an oracle has been initialized for the collateral token being added. This oversight can cause all ETHO
minting operations to fail when the system attempts to calculate collateral backing.

When Eth0.mint() is called, it iterates through all registered collateral tokens and calls ora-
cle.getPrice(collateralToken) to calculate the total backing. If any token lacks an initialized oracle,
this call will revert with "OracleNotlInitialized", effectively halting all minting operations until the issue is
resolved.

The current flow allows for a problematic sequence:
1. Admin adds a collateral token via addEthOCollateralToken().
2. Token is successfully added to the mapping.
3. Oracle initialization is delayed or forgotten.

4. Any attempt to mint ETHO fails when calculating collateral backing.

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/TokenMapping.sol#L77-L78
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/TokenMapping.sol#L77-L78

This creates an operational vulnerability where adding tokens and initializing their oracles are not atomic
operations, potentially disrupting core protocol functionality.

Recommendation: Consider adding oracle validation to the addEthOCollateralToken() function to en-
sure the token has a properly initialized oracle before being added to the mapping:

function addEthOCollateralToken(address collateral) external returns (bool) {
if (collateral == address(0)) {
revert NullAddress();

// check if there is a decimals function at the address

// and if there is at least 1 decimal

// if not, revert

if (IERC20Metadata(collateral).decimals() == 0) {
revert Invalid();

}

TokenMappingStorageV0 storage $ = _tokenMappingStorageVO();
$._registryAccess.onlyMatchingRole (DEFAULT_ADMIN_ROLE) ;

// Verify that oracle is initialized for this token
I0racle oracle = IOracle($.registryContract.getContract (CONTRACT_ORACLE));
try oracle.getPrice(collateral) returns (uint256) {
// Oracle exists and is working
} catch {
revert OracleNotInitialized();

+ o+ + + + o+

}

// is the collateral token already registered as a ETHO collateral
if ($.isEthOCollateral[collateral]) revert SameValue();
// ... rest of function

Alternatively, consider making the token addition and oracle initialization atomic by combining both op-
erations into a single administrative function.

Usual: Acknowledged, shall be no risk involved as we validate everything before launch and test on Ten-
derly.

Cantina Managed: Acknowledged.

3.3.3 Inconsistent amount validation between mint and burn functions

Severity: Informational
Context: EthO.sol#L167-L169

Description: The ETHO contract has inconsistent input validation between its mint () and burn functions.
Themint () functionincludes a check to revert when amount == 0, butthe burnFrom() and burn() functions
lack this validation, creating inconsistency in the contract's input handling.

Current validation patterns:
* mint(): Includes if (amount == 0) revert AmountIsZero() ;.
* burnFrom(): No zero amount validation.
* burn(): No zero amount validation.

While burning zero tokens is technically a no-op that doesn't cause harm, the inconsistency could lead
to confusion and unexpected behavior differences between similar operations. More importantly, in the
context of the broader protocol, burn operations are often associated with releasing collateral or other
state changes, so it's important to prevent scenarios where collateral could be released while burning
zero tokens.

Recommendation: Consider adding zero amount validation to the burn functions for consistency:

10

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/token/Eth0.sol#L167-L169

function burnFrom(address account, uint256 amount) public {

+ if (amount == 0) {
+ revert AmountIsZero();
+ ¥

EthOStorageV0O storage $§ = _ethOStorageV0();
$.registryAccess.onlyMatchingRole (ETHO_BURN) ;
_burn(account, amount);

¥

function burn(uint256 amount) public {
+ if (amount == 0) {
+ revert AmountIsZero();
+ }

EthOStorageV0O storage $ = _ethOStorageV0();
$.registryAccess.onlyMatchingRole (ETHO_BURN) ;
_burn(msg.sender, amount);

This change would ensure consistent input validation across all token operations and provide clearer error
messages for invalid inputs.

Usual: Fixed in commit 1f715f87.

Cantina Managed: Fixed as recommended.

3.3.4 Registry contract changes not immediately reflected in dependent contracts

Severity: Informational
Context: DaoCollateral.sol#L218-L225

Description: The DaoCollateral contract (and other contracts in the protocol) cache contract addresses
from the registry during initialization but do not update these cached addresses when the registry is mod-
ified. This creates a potential lag between registry updates and their reflection in dependent contracts.
During initialization, the contract fetches and stores contract addresses:

IRegistryContract registryContract = IRegistryContract(_registryContract);

.registryAccess = IRegistryAccess(registryContract.getContract (CONTRACT_REGISTRY_ACCESS));
.treasury = address(registryContract.getContract (CONTRACT_TREASURY)) ;

.tokenMapping = ITokenMapping(registryContract.getContract (CONTRACT_TOKEN_MAPPING));

.eth0 = IEthO(registryContract.getContract(CONTRACT_ETHO)) ;

.oracle = IOracle(registryContract.getContract (CONTRACT_ORACLE));

.treasuryYield = registryContract.getContract (CONTRACT_YIELD_TREASURY) ;

D B P P PP

If any of these contract addresses are updated in the registry after initialization, the DaoCollateral contract
will continue using the old cached addresses until it is upgraded or redeployed. While this design pattern
is common across the Usual protocol contracts, it creates a potential operational issue where registry
updates don't take immediate effect.

Recommendation: This appears to be a deliberate architectural choice that prioritizes gas efficiency over
immediate registry synchronization and this limitation should be documented.

Usual: Acknowledged, not going to fix.

Cantina Managed: Acknowledged.

3.3.5 Outdated constants in constants.sol
Severity: Informational
Context: constants.sol#L72

Description: The constants.sol defines constants that are for the USDO deployment. Like the USUAL_-
MULTISIG_MAINNET, REGISTRY_CONTRACT_MAINNET or the USUAL_PROXY_ADMIN_MAINNET. A deployed LIDO_-
STETH_ORACLE_MAINNET is not used in the codebase.

Recommendation: Remove the outdated constants from the constants.sol file.

Usual: Acknowledged. This will be changed/replaced during deployment phase when we will have all new
multisigs ready.

11

https://github.com/usual-dao/eth0-protocol/commit/1f715f871e79784994e92b626ea99b4153acd076
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L218-L225
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/constants.sol#L72

Cantina Managed: Acknowledged.

A

12

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	DaoCollateral.redeem doesn't return the corresponding fee collateral to the redeemUser if CBR is active
	Lido oracle creates cross-collateral arbitrage risk in multi-collateral system

	Low Risk
	DaoCollateral.redeem is not blocked in a depeg event with a zero redeemFee
	Decrease of the eth0.mintCap by setting to a lower amount than eth0.totalSupply() will block DaoCollateral.redeem
	redeemDao() function lacks pause protection allowing operations during system shutdown
	Fee calculation rounding favors users over protocol
	eth0.mintCap can block the minting of the protocol surplus

	Informational
	Missing mechanism to remove collateral tokens from token mapping
	Adding collateral tokens without oracle validation can halt minting operations
	Inconsistent amount validation between mint and burn functions
	Registry contract changes not immediately reflected in dependent contracts
	Outdated constants in constants.sol

