
DRA
FT

ETH0 ProtocolSecurity Review

Cantina Managed review by:
Phaze, Lead Security Researcher
Xmxanuel, Lead Security Researcher

June 9, 2025

DRA
FT

Contents
1 Introduction 21.1 About Cantina . 21.2 Disclaimer . 21.3 Risk assessment . 21.3.1 Severity Classification . 2
2 Security Review Summary 3
3 Findings 43.1 Medium Risk . 43.1.1 DaoCollateral.redeem doesn't return the corresponding fee collateral to the

redeemUser if CBR is active . 43.1.2 Lido oracle creates cross-collateral arbitrage risk in multi-collateral system 43.2 Low Risk . 63.2.1 DaoCollateral.redeem is not blocked in a depeg event with a zero redeemFee 63.2.2 Decrease of the eth0.mintCap by setting to a lower amount than eth0.totalSupply()will block DaoCollateral.redeem . 73.2.3 redeemDao() function lacks pause protection allowing operations during system shut-down . 73.2.4 Fee calculation rounding favors users over protocol . 83.2.5 eth0.mintCap can block the minting of the protocol surplus 83.3 Informational . 93.3.1 Missing mechanism to remove collateral tokens from token mapping 93.3.2 Adding collateral tokens without oracle validation can halt minting operations 93.3.3 Inconsistent amount validation between mint and burn functions 103.3.4 Registry contract changes not immediately reflected in dependent contracts 113.3.5 Outdated constants in constants.sol . 11

1

DRA
FT

1 Introduction
1.1 About Cantina
Cantina is a security servicesmarketplace that connects top security researchers and solutionswith clients.Learn more at cantina.xyz
1.2 Disclaimer
CantinaManagedprovides a detailed evaluation of the security posture of the code at a particularmomentbased on the information available at the time of the review. While CantinaManaged endeavors to identifyand disclose all potential security issues, it cannot guarantee that every vulnerability will be detected orthat the code will be entirely secure against all possible attacks. The assessment is conducted based onthe specific commit and version of the code provided. Any subsequent modifications to the code mayintroduce new vulnerabilities that were absent during the initial review. Therefore, any changes madeto the code require a new security review to ensure that the code remains secure. Please be advisedthat the Cantina Managed security review is not a replacement for continuous security measures such aspenetration testing, vulnerability scanning, and regular code reviews.
1.3 Risk assessment
Severity Description
Critical Must fix as soon as possible (if already deployed).

High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks thatcan be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.
1.3.1 Severity Classification
The severity of security issues found during the security review is categorized based on the above table.Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixedas soon as possible.
Medium findings are conditionally possible or incentivized but are still relatively likely to occur and shouldbe addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentiveto exploit but are recommended to be addressed.
Lastly, some findings might represent objective improvements that should be addressed but do not im-pact the project’s overall security (Gas and Informational findings).

2

https://cantina.xyz

DRA
FT

2 Security Review Summary
Usual is a Stablecoin DeFi protocol that redistributes control and redefines value sharing. It empowersusers by aligning their interests with the platform's success.
From May 21st to May 27th the Cantina team conducted a review of eth0-protocol on commit hashd638edee. The team identified a total of 12 issues:

Issues Found
Severity Count Fixed Acknowledged
Critical Risk 0 0 0
High Risk 0 0 0
Medium Risk 2 0 2
Low Risk 5 3 2
Gas Optimizations 0 0 0
Informational 5 1 4
Total 12 4 8

3

https://github.com/cantina-forks/usual-eth0-protocol
https://github.com/cantina-forks/usual-eth0-protocol/tree/d638edee0b2c5c1b328885fc211b1861d48cddb5/

DR
AF
T

3 Findings
3.1 Medium Risk
3.1.1 DaoCollateral.redeem doesn't return the corresponding fee collateral to the redeemUser if CBRis active
Severity: Medium Risk
Context: DaoCollateral.sol#L481
The _burnEth0TokenAndTransferCollateral function called by DaoCollateral.redeem calculates the re-quired amount of USD0 to be burned in exchange for the underlying collateral. As a first step, the entire
eth0Amount is burned, and afterwards, the stableFee amount is minted to the $.treasuryYield. There-fore, the burnedEth0 describes the effectively burned ETH0.
// we burn the remaining ETH0 token
uint256 burnedEth0 = eth0Amount - stableFee;
// we burn all the ETH0 token
$.eth0.burnFrom(msg.sender, eth0Amount);

If the CBR mechanism is activated, users don't need to pay a fee for calling redeem. Therefore, only if the
CBRmechanism is not , the fee gets minted.
// transfer the fee to the treasury if the redemption-fee is above 0 and CBR isn't turned on.
// if CBR is on fees are forfeited
if (stableFee > 0 && !$.isCBROn) {

$.eth0.mint($.treasuryYield, stableFee);
}

However, in the following _getTokenAmountForAmountInETH call, which calculates the amount of collat-
eral that should be returned to the user, always uses burnedEth0 variable. This is correct if the stableFeehas been moved to the treasury because the corresponding collateral for the stableFee should stay inthe protocol.
// get the amount of collateral token for the amount of ETH0 burned by calling the oracle
returnedCollateral = _getTokenAmountForAmountInETH(burnedEth0, collateralToken);

This is incorrect, in the stableFee> 0 && isCBROn==true case. Since no stableFee needs to be paid, theentire collateral can be returned to the user in that case.
- returnedCollateral = _getTokenAmountForAmountInETH(burnedEth0, collateralToken);
+ returnedCollateral = _getTokenAmountForAmountInETH(eth0Amount, collateralToken);

Recommendation: The function should use the eth0Amount if the cbr mechanism is activated for the
_getTokenAmountForAmountInETH calculation. This would also return the corresponding fee collateral tothe user with the outcome that the user doesn't pay a fee.
Usual: As a part of the ETH0 design, If the CBR is on, the fees that are usually supposed to be mintedfor the Usual Treasury are forfeited to increase recollateralization through redemptions instead. Addeda comment in PR 3.
Cantina Managed: Acknowledged. A code comment is now included to clarify this behavior.
3.1.2 Lido oracle creates cross-collateral arbitrage risk in multi-collateral system
Severity: Medium Risk
Context: LidoWstEthOracle.sol#L66
Summary: The LidoWstEthOracle assumes a 1:1 peg between stETH and ETH, which creates arbitragevulnerabilities when the protocol introduces additional collateral types that use market-based pricing.This design inconsistency could allow attackers to systematically drain higher-valued collateral duringstETH depeg events.
Description: The current Lido oracle implementation uses the internal stETH per token rate rather thansecondary market pricing:

4

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L481
https://github.com/usual-dao/eth0-protocol/pull/3
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/oracles/LidoWstEthOracle.sol#L66

DR
AF
T

answer = int256(IWstETH(WST_ETH_CONTRACT).stEthPerToken());

While this provides accurate wstETH:stETH conversion rates, it assumes stETH maintains parity with ETHregardless of secondary market conditions. This assumption becomes problematic when combined withother collateral types. Consider ETH0 backed by multiple collateral types:
• 50% wstETH (valued using Lido's 1:1 assumption).
• 50% WETH (valued using market rates).

When stETH depegs to 0.8 ETH on secondary markets:
1. Protocol maintains 1:1 rate: Users can still swap stETH for ETH0 at par through the protocol.
2. Market reflects true value: ETH0's actual backing is worth 0.5 × 0.8 + 0.5 × 1.0 = 0.9 ETH.
3. Arbitrage opportunity emerges:

• Buy stETH at 0.8 ETH on secondary markets.
• Swap for ETH0 at 1:1 through the protocol.
• Redeem ETH0 for WETH at 1:1 through the protocol.
• Net profit: 0.2 ETH per cycle.

This attack systematically drains the higher-valued collateral (WETH) while flooding the protocol withlower-valued collateral (stETH), potentially continuing until WETH reserves are exhausted.
For temporary price fluctuations, this might not pose a fundamental risk to the protocol, as backing valuewould be restored when the peg recovers. However, ETH0 faces greater liquidity risk than stETH itselfdue to instant redemption capabilities - while stETH holders must wait 1-5 days to unstake, ETH0 holderscan immediately exit to any supported collateral type, amplifying the speed and impact of potential bankruns during depeg events.
The problem is worsened by stETH's withdrawal mechanics:

• Normal stETH unstaking: 1-5 day queue, subject to delays.
• Protocol conversion: Instant stETH→ ETH0→ other assets.

This makes the protocol an attractive "fast lane" for stETH liquidity during market stress, potentially atsignificant cost to the protocol.
Impact Explanation: The impact is high as this design flaw could lead to systematic drainage of protocolreserves during stETH depeg events. Even if the peg is restored and backing value recovers, ETH0 willalways be exposed to increased systemic risk - any depeg of a collateral token creates potential for cross-collateral arbitrage that could destabilize the entire protocol. The attack becomes more profitable anddamaging as the price deviation increases and as more collateral types are added to the system.
Likelihood Explanation: The likelihood is low. While historical data shows stETHhas experienced periodsof depeg, for the protocol to suffer significant damage the depeg would need to persist long enough forattackers to systematically drain reserves. Most stETH depegs have been temporary, and the protocol'sCBR mechanisms could potentially be activated to mitigate extended arbitrage attacks.
Recommendation:

• Primary Solution: Implement Depeg Protection for stETH: Treat stETH with the same depeg protec-tion mechanisms used for other collateral.
1. Add oracle validation: Use a Chainlink stETH/ETH oracle to monitor secondary market pricing.
2. Apply depeg thresholds: Configure the existing _checkDepegPrice()mechanism to pause oper-ations when stETH deviates beyond acceptable limits.
3. Maintain internal rate precision: Continue using Lido's stEthPerToken() for accurate wstETHconversions, but only when stETH is within acceptable peg range.

Implementation approach:

5

DRA
FT

// In oracle price checks
function getPrice(address token) public view override returns (uint256) {

if (token == WSTETH_ADDRESS) {
// Check stETH peg using Chainlink oracle
uint256 marketPrice = getChainlinkStETHPrice();
_checkDepegPrice(STETH_ADDRESS, marketPrice); // Revert if depegged

// Use precise Lido rate only when peg is maintained
return getLidoStETHPerToken();

}
// ... other token logic

}

• Additional Safeguard: Collateral Composition Limits. Consider implementing caps on collateral back-ing percentages or maximum daily changes in collateral composition. This would prevent completedrainage of one collateral type in favor of another:
– Percentage caps: Limit any single collateral type to a maximum percentage of total backing.
– Rate limiting: Restrict how quickly the collateral composition can shift between types.
– Minimum reserves: Maintain minimum amounts of each collateral type.

This approach preserves the accuracy of Lido's internal rateswhile protecting against cross-collateralarbitrage by pausing operations during significant depeg events, similar to howother stablecoins areprotected in the existing AbstractOracle implementation.
Usual: We use the on-chain wstETH→ stETH→ ETH rate (Lido oracle) because it is the source of truth forbacking, immune to market noise, cheaper in gas, and follows Aave’s precedent.
If ETH0 ever trades off that rate, arbitrage closes the gap and the redemption fee keeps it uneconomicalto drain funds.
Additionally, a Chainlink stETH/ETH feed Watcher Bot watches for extreme deviations and auto-pausesDaoCollateral if Lido is ever hacked, so we get black-swan protection without daily oracle freezes.
If any of these conditions change, we can additionally also swap to a different oracle at any time on theUsual Protocol itself.
Cantina Managed: Acknowledged.
3.2 Low Risk
3.2.1 DaoCollateral.redeem is not blocked in a depeg event with a zero redeemFee

Severity: Low Risk
Context: DaoCollateral.sol#L481
Description: The eth0.mint function includes a collateralBackingInETH check. If not sucessful the mintcall will revert. Since the redeem function requires minting the eth0 stableFee into the treasury, a revertin eth0.mint due to the collateralBackingInETH check would revert the entire redeem transaction.
// transfer the fee to the treasury if the redemption-fee is above 0 and CBR isn't turned on.
// if CBR is on fees are forfeited
if (stableFee > 0 && !$.isCBROn) {

$.eth0.mint($.treasuryYield, stableFee);
}

While this behavior is intended by the protocol to block the redeem calls until the CBR mechanism getsactivated. There is still the edge case, that the redeemFee could be set to zero basis points. This wouldresult in a stableFee=0 and no follow-up eth0.mint call, which would allow to sucessful redeem if theprotocol has depegged.
Recommendation: To ensure the redeem function is consistently blocked during a depeg befor the CBRget's activated, consider requiring the redeemFee > 0. Alternatively, introduce a public function in eth0for the collateralBackingInETH and ensure it is called in all scenarios.
Usual: Fixed in commit 1f715f87.

6

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L481
https://github.com/usual-dao/eth0-protocol/commit/1f715f871e79784994e92b626ea99b4153acd076

DRA
FT

Cantina Managed: Fixed as recommended.
3.2.2 Decrease of the eth0.mintCap by setting to a lower amount than eth0.totalSupply() willblock DaoCollateral.redeem

Severity: Low Risk
Context: Eth0.sol#L175
Description: In case the mint cap for ETH0 is decreased by calling eth0.setMintCap and a big swap trans-action happens before, it can result in a state where the totalSupply() > mintCap. The DaoCollat-
eral.redeem first burns all eth0 tokens and afterwards eth0.mint to mint the fees into the treasury.
However, if redeem amount is smaller than the difference between totalSupply() - mintCap the
eth0.mint call would revert because of the mintCap constraint. Even after burning the eth0 tokens the
totalSupply() would be above the mintCap and eth0.mint would revert. This would result in a statewhere it is not possible to call DaoCallateral.swap since the mintCap has been reached, but it wouldblock the reward of smaller amounts.
Recommendation: Don't allow setting the mintCap below the current totalSupply by adding the follow-ing check to the eth0.setMintCap function:
if (newMintCap < totalSupply()) {

revert MintCapTooSmall();
}

Usual: Fixed in commit 1f715f87.
Cantina Managed: Fixed as recommended.
3.2.3 redeemDao() function lacks pause protection allowing operations during system shutdown
Severity: Low Risk
Context: DaoCollateral.sol#L560
Description: The redeemDao() function in the DaoCollateral contract is not protected by the whenNot-
Paused modifier, unlike the regular redeem() and swap() functions. This creates an inconsistency in thecontract's pause mechanism and potentially allows DAO redemptions to continue even during system-wide emergency shutdowns.
The current pause structure includes:

• redeem(): Protected by both whenRedeemNotPaused and whenNotPaused.
• swap(): Protected by both whenSwapNotPaused and whenNotPaused.
• redeemDao(): Only protected by nonReentrant, no pause modifiers.

This design means that when the contract is globally paused via pause(), regular user operations arehalted but DAO redemptions can continue unimpeded. While this might be intentional to allow DAOoperations during emergencies, it creates a potential gap in emergency response capabilities.
If there's a critical issue requiring a complete system shutdown (such as a security vulnerability or oraclefailure), administrators currently have no way to prevent DAO redemptions from occurring, which couldpotentially worsen the situation or interfere with emergency response procedures.
Recommendation: Consider adding the whenNotPausedmodifier to redeemDao() to enable complete sys-tem shutdown when necessary:

function redeemDao(address collateralToken, uint256 amount)
external
nonReentrant

+ whenNotPaused
{

// ... function implementation
}

This change would establish a clear hierarchy:

7

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/token/Eth0.sol#L175
https://github.com/usual-dao/eth0-protocol/commit/1f715f871e79784994e92b626ea99b4153acd076
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L560

DRA
FT

• Individual function pauses (whenSwapNotPaused, whenRedeemNotPaused) for targeted operational con-trol.
• Global pause (whenNotPaused) for system-wide emergency shutdown that affects all operations in-cluding DAO redemptions.

If DAO operations need to remain available during specific emergencies, this can be achieved by usingonly the individual pause functions rather than the global pause.
Usual: Fixed in commit 1f715f87.
Cantina Managed: Fixed as recommended.
3.2.4 Fee calculation rounding favors users over protocol
Severity: Low Risk
Context: DaoCollateral.sol#L450-L459
Description: In the _calculateFee() function of the DaoCollateral contract, the fee calculation and nor-malization steps consistently round in favor of users rather than the protocol. This occurs in two places:
1. Initial fee calculation: Uses Math.Rounding.Floor which rounds down.
2. Normalization process: The wadAmountToDecimals() and tokenAmountToWad() functions in the Nor-malize library use floor rounding by default.

stableFee = Math.mulDiv(eth0Amount, $.redeemFee, BASIS_POINT_BASE, Math.Rounding.Floor);
// ...
if (tokenDecimals < 18) {

stableFee = Normalize.tokenAmountToWad(
Normalize.wadAmountToDecimals(stableFee, tokenDecimals), tokenDecimals

);
}

Both operations consistently round down, meaning users pay slightly less in fees than the intended per-centage, and the protocol collects less revenue than designed.
While the team has indicated this behavior is intentional (carried over from the USD0 protocol), it repre-sents a design choice where precision loss consistently favors users over the protocol's fee collection.
Recommendation: This appears to be an intentional design decision. However, if the protocol wishes toensure it collects the full intended fee amount, consider using ceiling rounding for fee calculations:
- stableFee = Math.mulDiv(eth0Amount, $.redeemFee, BASIS_POINT_BASE, Math.Rounding.Floor);
+ stableFee = Math.mulDiv(eth0Amount, $.redeemFee, BASIS_POINT_BASE, Math.Rounding.Ceil);

The current implementation prioritizes user-friendly rounding at the expense of protocol fee collectionaccuracy.
Usual: We acknowledge this and will keep this in favor for user, impact should be marginal.
Cantina Managed: Acknowledged.
3.2.5 eth0.mintCap can block the minting of the protocol surplus
Severity: Low Risk
Context: Eth0.sol#L139
Description: The underlying collateral of eth0will increase in value. In the case of wstETH, this will happenbecause of Lido staking rewards. Eth0 holders can only redeem the equivalent of 1 ether for 1 eth0 butnot the rewards. The surplus is captured by the protocol in the form of newly issued eth0. Inside the
eth0.mint function, there is a check to ensure that the overall totalSupply can never be higher than the
mintCap.
The permissioned eth0.mint call is intended to be used by governance to issue the protocol surplus. How-ever, if the mintCap is reached, it won't be possible to issue the surplus for the protocol. It would be re-quired to increase the mintCap again only tomint the protocol surplus. The eth0.setMintCap and minting

8

https://github.com/usual-dao/eth0-protocol/commit/1f715f871e79784994e92b626ea99b4153acd076
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L450-L459
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/token/Eth0.sol#L139

DRA
FT

of the protocol surplus are required to be in the same transaction. Otherwise, other users could use theincreased mintCap to swap again.
Recommendation: Consider adding another permissioned function for minting the surplus, which canincrease the mintCap if needed. A higher totalSupply() than the mintCap can block the redeem functional-ity as described in another issue. Therefore, wewould recommend increasing it instead of not performingthe check for surplus minting.
Usual: We can raise mintcap when price of wstETH raised significantly over time. No need to do anything.
Cantina Managed: Acknowledged.
3.3 Informational
3.3.1 Missing mechanism to remove collateral tokens from token mapping
Severity: Informational
Context: TokenMapping.sol#L77-L78
Description: The TokenMapping contract only provides functionality to add collateral tokens via ad-
dEth0CollateralToken() but lacks a corresponding mechanism to remove tokens once they have beenadded. This design limitation can lead to operational issues in several scenarios.
When a collateral token becomes problematic (faulty, insolvent, or deprecated), it cannot be removedfrom the system. This creates potential operational risks:

• A faulty token could cause the entire Eth0.mint() function to halt when it attempts to iterate throughall collateral tokens to calculate backing.
• If a token becomes insolvent, the protocol may need to pause operations, but resuming would re-quire removing the problematic token first.
• The current implementation permanently locks tokens into themappingwith no administrative over-ride.

While such issues could potentially be resolved through contract upgrades in worst-case scenarios, thisapproach introduces unnecessary complexity and delay in emergency situations.
Recommendation: Consider adding an administrative function to remove collateral tokens from themapping. This would provide administrators with the flexibility to respond to problematic tokens withoutrequiring contract upgrades.
Usual: It was decided not to add this functionality to be consistent with pegasus repo.
Cantina Managed: Acknowledged.
3.3.2 Adding collateral tokens without oracle validation can halt minting operations
Severity: Informational
Context: TokenMapping.sol#L77-L78
Description: The addEth0CollateralToken() function in the TokenMapping contract does not verify thatan oracle has been initialized for the collateral token being added. This oversight can cause all ETH0minting operations to fail when the system attempts to calculate collateral backing.
When Eth0.mint() is called, it iterates through all registered collateral tokens and calls ora-
cle.getPrice(collateralToken) to calculate the total backing. If any token lacks an initialized oracle,this call will revert with "OracleNotInitialized", effectively halting all minting operations until the issue isresolved.
The current flow allows for a problematic sequence:
1. Admin adds a collateral token via addEth0CollateralToken().
2. Token is successfully added to the mapping.
3. Oracle initialization is delayed or forgotten.
4. Any attempt to mint ETH0 fails when calculating collateral backing.

9

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/TokenMapping.sol#L77-L78
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/TokenMapping.sol#L77-L78

DR
AF
T

This creates an operational vulnerability where adding tokens and initializing their oracles are not atomicoperations, potentially disrupting core protocol functionality.
Recommendation: Consider adding oracle validation to the addEth0CollateralToken() function to en-sure the token has a properly initialized oracle before being added to the mapping:

function addEth0CollateralToken(address collateral) external returns (bool) {
if (collateral == address(0)) {

revert NullAddress();
}
// check if there is a decimals function at the address
// and if there is at least 1 decimal
// if not, revert
if (IERC20Metadata(collateral).decimals() == 0) {

revert Invalid();
}

TokenMappingStorageV0 storage $ = _tokenMappingStorageV0();
$._registryAccess.onlyMatchingRole(DEFAULT_ADMIN_ROLE);

+ // Verify that oracle is initialized for this token
+ IOracle oracle = IOracle($.registryContract.getContract(CONTRACT_ORACLE));
+ try oracle.getPrice(collateral) returns (uint256) {
+ // Oracle exists and is working
+ } catch {
+ revert OracleNotInitialized();
+ }

// is the collateral token already registered as a ETH0 collateral
if ($.isEth0Collateral[collateral]) revert SameValue();
// ... rest of function

}

Alternatively, consider making the token addition and oracle initialization atomic by combining both op-erations into a single administrative function.
Usual: Acknowledged, shall be no risk involved as we validate everything before launch and test on Ten-derly.
Cantina Managed: Acknowledged.
3.3.3 Inconsistent amount validation between mint and burn functions
Severity: Informational
Context: Eth0.sol#L167-L169
Description: The ETH0 contract has inconsistent input validation between its mint() and burn functions.The mint() function includes a check to revertwhen amount == 0, but the burnFrom() and burn() functionslack this validation, creating inconsistency in the contract's input handling.
Current validation patterns:

• mint(): Includes if (amount == 0) revert AmountIsZero();.
• burnFrom(): No zero amount validation.
• burn(): No zero amount validation.

While burning zero tokens is technically a no-op that doesn't cause harm, the inconsistency could leadto confusion and unexpected behavior differences between similar operations. More importantly, in thecontext of the broader protocol, burn operations are often associated with releasing collateral or otherstate changes, so it's important to prevent scenarios where collateral could be released while burningzero tokens.
Recommendation: Consider adding zero amount validation to the burn functions for consistency:

10

https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/token/Eth0.sol#L167-L169

DRA
FT

function burnFrom(address account, uint256 amount) public {
+ if (amount == 0) {
+ revert AmountIsZero();
+ }

Eth0StorageV0 storage $ = _eth0StorageV0();
$.registryAccess.onlyMatchingRole(ETH0_BURN);
_burn(account, amount);

}

function burn(uint256 amount) public {
+ if (amount == 0) {
+ revert AmountIsZero();
+ }

Eth0StorageV0 storage $ = _eth0StorageV0();
$.registryAccess.onlyMatchingRole(ETH0_BURN);
_burn(msg.sender, amount);

}

This changewould ensure consistent input validation across all token operations and provide clearer errormessages for invalid inputs.
Usual: Fixed in commit 1f715f87.
Cantina Managed: Fixed as recommended.
3.3.4 Registry contract changes not immediately reflected in dependent contracts
Severity: Informational
Context: DaoCollateral.sol#L218-L225
Description: The DaoCollateral contract (and other contracts in the protocol) cache contract addressesfrom the registry during initialization but do not update these cached addresses when the registry is mod-ified. This creates a potential lag between registry updates and their reflection in dependent contracts.During initialization, the contract fetches and stores contract addresses:
IRegistryContract registryContract = IRegistryContract(_registryContract);
$.registryAccess = IRegistryAccess(registryContract.getContract(CONTRACT_REGISTRY_ACCESS));
$.treasury = address(registryContract.getContract(CONTRACT_TREASURY));
$.tokenMapping = ITokenMapping(registryContract.getContract(CONTRACT_TOKEN_MAPPING));
$.eth0 = IEth0(registryContract.getContract(CONTRACT_ETH0));
$.oracle = IOracle(registryContract.getContract(CONTRACT_ORACLE));
$.treasuryYield = registryContract.getContract(CONTRACT_YIELD_TREASURY);

If any of these contract addresses are updated in the registry after initialization, the DaoCollateral contractwill continue using the old cached addresses until it is upgraded or redeployed. While this design patternis common across the Usual protocol contracts, it creates a potential operational issue where registryupdates don't take immediate effect.
Recommendation: This appears to be a deliberate architectural choice that prioritizes gas efficiency overimmediate registry synchronization and this limitation should be documented.
Usual: Acknowledged, not going to fix.
Cantina Managed: Acknowledged.
3.3.5 Outdated constants in constants.sol

Severity: Informational
Context: constants.sol#L72
Description: The constants.sol defines constants that are for the USD0 deployment. Like the USUAL_-
MULTISIG_MAINNET, REGISTRY_CONTRACT_MAINNET or the USUAL_PROXY_ADMIN_MAINNET. A deployed LIDO_-
STETH_ORACLE_MAINNET is not used in the codebase.
Recommendation: Remove the outdated constants from the constants.sol file.
Usual: Acknowledged. This will be changed/replaced during deployment phase when we will have all newmultisigs ready.

11

https://github.com/usual-dao/eth0-protocol/commit/1f715f871e79784994e92b626ea99b4153acd076
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/daoCollateral/DaoCollateral.sol#L218-L225
https://cantina.xyz/code/1e0df91f-8aff-4665-bfef-0fad70e40e31/src/constants.sol#L72

DRA
FT

Cantina Managed: Acknowledged.

12

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Medium Risk
	DaoCollateral.redeem doesn't return the corresponding fee collateral to the redeemUser if CBR is active
	Lido oracle creates cross-collateral arbitrage risk in multi-collateral system

	Low Risk
	DaoCollateral.redeem is not blocked in a depeg event with a zero redeemFee
	Decrease of the eth0.mintCap by setting to a lower amount than eth0.totalSupply() will block DaoCollateral.redeem
	redeemDao() function lacks pause protection allowing operations during system shutdown
	Fee calculation rounding favors users over protocol
	eth0.mintCap can block the minting of the protocol surplus

	Informational
	Missing mechanism to remove collateral tokens from token mapping
	Adding collateral tokens without oracle validation can halt minting operations
	Inconsistent amount validation between mint and burn functions
	Registry contract changes not immediately reflected in dependent contracts
	Outdated constants in constants.sol

