
// Private Smart Contract Security Assessment 06.24.2024 - 07.03.2024

Staking-Module
Bonzo

St a k i n g - M o d u l e - B o n z o

Prepared by: HALBORN

Last Updated 07/17/2024

Date of Engagement by: June 24th, 2024 - July 3rd, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
1 0

CRITICAL
2

HIGH
0

MEDIUM
1

LOW
2

INFORMATIONAL
5

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Miscalculated period disrupt emission schedule execution
7.2 Wrong reward distribution leads to double spend
7.3 Invalid emissionschedule length check
7.4 Missing duplicate caller addresses check
7.5 Hardcoded testnet evm address instead of mainnet
7.6 Increase period_duration to 30 days
7.7 Inconsistent struct parameter update
7.8 Usage of outdated safecast
7.9 Use of memory instead of calldata in function variable
7.10 Redundant parameters in function _getassetindex

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

Bonzo engaged Halborn to conduct a security assessment on their smart contracts beginning on June
24th and ending on July 3rd. The security assessment was scoped to the smart contracts provided in
the GitHub repository Bonzo Staking Module, commit hashes and further details can be found in the
Scope section of this report.

The protocol utilizes Aave's Safety Module for staking and rewards distribution in WHBAR on the Hedera
network. Stakers of any permitted asset by the emission manager can stake their assets in the Safety
Module. The protocol ensures that stakers earn rewards in WHBAR, Hedera's wrapped HBAR token. The
Safety Module acts as a backstop in case of a shortfall event, enhancing the protocol's security. This
system is designed to incentivize users to contribute to the protocol's safety while earning rewards for
their participation.

2 . A s s e s s m e n t S u m m a r y

The team at Halborn was provided one week for the engagement and assigned one full-time security
engineer to check the security of the smart contract. The security engineer is a blockchain and smart-
contract security expert with advanced penetration testing, smart-contract hacking, and deep
knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended.
Identify potential security issues with the smart contracts.

In summary, Halborn identified some security risks that were mostly addressed by the Bonzo team.

https://github.com/Bonzo-Labs/bonzo-staking-module/

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual review of the code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the smart contract
assessment. While manual testing is recommended to uncover flaws in logic, process, and
implementation; automated testing techniques help enhance coverage of smart contracts and can
quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Smart contract manual code review and walkthrough to identify any logic issues.
A thorough assessment of safety and usage of critical Solidity variables and functions in scope that

could lead to arithmetic related vulnerabilities.
Manual testing by custom scripts.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Static Analysis of security for scoped contract, and imported functions. (Slither).
Local or public testnet deployment (Brownie, Remix IDE).

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means
by which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk
to address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and regulatory
challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

M ​E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to
a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​E

E

E = m ​∏ e

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

C

r

s

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

C = rs

S

S = min(10,EIC ∗ 10)

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: bonzo-staking-module

(b) Assessed Commit ID: 0c3d22e

(c) Items in scope:

contracts/interfaces/IAaveIncentivesController.sol
contracts/interfaces/IExchangeRate.sol
contracts/interfaces/IHederaTokenService.sol
contracts/interfaces/IWHBAR.sol
contracts/lib/DistributionTypes.sol
contracts/misc/WHBAR/Bits.sol
contracts/misc/WHBAR/HederaResponseCodes.sol
contracts/misc/WHBAR/HederaTokenService.sol
contracts/misc/WHBAR/SafeCast.sol
contracts/misc/WHBAR/SafeHederaTokenService.sol
contracts/misc/WHBAR/WHBARContract.sol
contracts/stake/AaveDistributionManager.sol
contracts/stake/AaveIncentivesController.sol
contracts/stake/StakedAave.sol
contracts/stake/StakedToken.sol

Out-of-Scope: External libraries and financial-related attacks., New features/implementations
after/with the remediation commit IDs.

REMEDIAT ION COMMIT ID :

1ecf5991ecf599
b1b2698b1b2698
155419e155419e
f3e259bf3e259b
5d970165d97016

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

https://github.com/Bonzo-Labs/bonzo-staking-module/

CRITICAL
2

HIGH
0

MEDIUM
1

LOW
2

INFORMATIONAL
5

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

MISCALCULATED PERIOD DISRUPT EMISSION
SCHEDULE EXECUTION

CRITICAL SOLVED - 07/11/2024

WRONG REWARD DISTRIBUTION LEADS TO DOUBLE
SPEND

CRITICAL SOLVED - 07/11/2024

INVALID EMISSIONSCHEDULE LENGTH CHECK MEDIUM SOLVED - 07/14/2024

MISSING DUPLICATE CALLER ADDRESSES CHECK LOW SOLVED - 07/11/2024

HARDCODED TESTNET EVM ADDRESS INSTEAD OF
MAINNET

LOW SOLVED - 07/11/2024

INCREASE PERIOD_DURATION TO 30 DAYS INFORMATIONAL SOLVED - 07/11/2024

INCONSISTENT STRUCT PARAMETER UPDATE INFORMATIONAL SOLVED - 07/11/2024

USAGE OF OUTDATED SAFECAST INFORMATIONAL ACKNOWLEDGED

USE OF MEMORY INSTEAD OF CALLDATA IN FUNCTION
VARIABLE

INFORMATIONAL ACKNOWLEDGED

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

REDUNDANT PARAMETERS IN FUNCTION
_GETASSETINDEX

INFORMATIONAL SOLVED - 07/11/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 M I S CA LC U L AT E D P E R I O D D I S RU P T E M I S S I O N S C H E D U L E
E X EC U T I O N
// CRITICAL

Description
The current implementation of the _getAssetIndex function in the AaveDistributionManager contract
incorrectly calculates the currentPeriod using periodStartTimestamp.sub(lastUpdateTimestamp).
Initially, during the first iteration, both periodStartTimestamp and lastUpdateTimestamp are the same,
making the difference zero, which works correctly. However, this approach fails when
lastUpdateTimestamp is higher or equal to the timestamp of period 1 (index 0). This leads to incorrect
period calculations and potential out-of-bounds errors when accessing the emission schedule.
The issue arises because the code does not correctly handle cases where the lastUpdateTimestamp is
already in a later period, as shown in the provided diagrams. This flaw was not evident during initial
setup testing when lastUpdateTimestamp was set to the current timestamp, corresponding to index 0.

BVSS

AO:A/AC:L/AX:L/C:N/I:C/A:H/D:H/Y:M/R:N/S:C (10.0)

Recommendation
To resolve this critical issue, the currentPeriod should be calculated using the formula
DISTRIBUTION_DURATION - (DISTRIBUTION_END - periodStartTimestamp) / PERIOD_DURATION or

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AH%2FD%3AH%2FY%3AM%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AH%2FD%3AH%2FY%3AM%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AH%2FD%3AH%2FY%3AM%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AH%2FD%3AH%2FY%3AM%2FR%3AN%2FS%3AC

by maintaining a mechanism to keep track of the last distributed period and calculating the elapsed time
difference with the current timestamp.
The new formula needs to be thoroughly tested to ensure it handles all edge cases correctly. This testing
should include scenarios where updates are made in periods beyond the initial setup and various edge
cases such as period transitions and partial periods.

R e m e d i a t i o n P l a n

SOLVED: The Bonzo team solved this issue as recommended.

Remediation Hash
1ecf5995b8ed3b7fa84441a7be114b4dbdf551bc

7. 2 WRO N G R E WA R D D I ST R I B U T I O N L E A D S TO D O U B L E
S P E N D
// CRITICAL

Description
The AaveIncentivesController contract has a vulnerability that results in double spending of rewards.
The issue occurs in the claimRewards function, where the contract transfers rewards both as
REWARD_TOKEN and as IWHBAR. Specifically, the contract transfers the reward amount to the recipient
twice, once via REWARD_TOKEN.transferFrom(REWARDS_VAULT, to, amountToClaim) and again via
IWHBAR(_whbarContract).withdraw(REWARDS_VAULT, to, amountToClaim).
This leads to the recipient receiving the reward amount twice, causing financial loss to the rewards vault
and effectively doubling the rewards for the claimant.

BVSS

AO:A/AC:L/AX:L/C:N/I:N/A:C/D:C/Y:C/R:P/S:C (9.4)

Recommendation
To fix this issue, the rewards should first be transferred to the contract's address and then transferred to
the recipient. Additionally, proper approvals should be set up for the IWHBAR contract to transfer the
reward amounts.
By implementing this change, the rewards will be correctly transferred to the recipient only once, and the
risk of double spending will be mitigated. Additionally, ensure that the REWARD_TOKEN has been approved
for spending by the IWHBAR contract to facilitate the withdrawal. This approach prevents financial loss
and maintains the integrity of the rewards' distribution.

R e m e d i a t i o n P l a n

SOLVED: The Bonzo team solved this issue as recommended. The REWARDS_VAULT will require to approve
AaveIncentivesController to spend the _whbarContract tokens.

Remediation Hash
b1b269852a55fd7a2456b5d802054ba61ddffd8f

References
AaveIncentivesController.sol#169-170

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AC%2FD%3AC%2FY%3AC%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AC%2FD%3AC%2FY%3AC%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AC%2FD%3AC%2FY%3AC%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AC%2FD%3AC%2FY%3AC%2FR%3AP%2FS%3AC

7. 3 I N VA L I D E M I S S I O N S C H E D U L E L E N GT H C H EC K
// MEDIUM

Description
The AaveDistributionManager contract allows the direct call to the configureAssets function without
validating the length of the emissionSchedule. This can lead to an out-of-bounds error when fetching
the asset index if an invalid emissionSchedule length is provided. The initialization functions in
StakedToken and AaveIncentivesController correctly perform this check, but it should also be
enforced in the configureAssets function of AaveDistributionManager to prevent potential
vulnerabilities from improper usage.

BVSS

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:P/S:C (4.7)

Recommendation
Add the following check in the configureAssets function of the AaveDistributionManager contract to
ensure the validity of the emissionSchedule length:

requirerequire((
 emissionSchedule emissionSchedule..length length ** PERIOD_DURATION PERIOD_DURATION ==== DISTRIBUTION_DURATION DISTRIBUTION_DURATION,,
 'Invalid emission schedule length''Invalid emission schedule length'
));;

This will ensure that the emission schedule length is always valid, thereby preventing out-of-bounds
errors when accessing the asset index.

R e m e d i a t i o n P l a n

SOLVED: The Bonzo team solved this issue as recommended.

Remediation Hash
155419ee299f2162c61e064bb422327516d568c6

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AC

7. 4 M I S S I N G D U P L I CAT E CA L L E R A D D R ES S ES C H EC K
// LOW

Description
The AaveIncentivesController contract lacks a check in the addCallerAssets function to prevent the
addition of duplicate caller addresses. The current implementation uses a list to store whitelisted callers
for the onlyCallerAsset modifier, which is not optimized for checking or preventing duplicates. This can
lead to inefficiencies and potential issues with duplicate entries. The use of EnumerableSet from
OpenZeppelin or a two-struct approach (a mapping for O(1) access and a list for enumeration) would
optimize the code and prevent duplicates effectively.

BVSS

AO:S/AC:L/AX:L/C:N/I:C/A:L/D:N/Y:N/R:N/S:C (2.7)

Recommendation
Optimize the addCallerAssets function by using EnumerableSet from OpenZeppelin or a two-struct
approach to handle the whitelist of caller addresses. This will prevent duplicate entries and improve the
efficiency of the whitelist check.

R e m e d i a t i o n P l a n

SOLVED: The Bonzo team solved this issue as recommended. Moreover, a new struct was added to track
the assets, this struct makes the addition, removal and most important, the check easier and more
efficient for large amount of registered assets.

Remediation Hash
f3e259b8109e1f13de69ba8079f43b119b6ad643

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AL%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7. 5 H A R D C O D E D T EST N E T EV M A D D R ES S I N ST E A D O F
M A I N N E T
// LOW

Description
The contract contains a hardcoded Ethereum address pointing to a testnet environment instead of the
mainnet. This can lead to malfunction or security risks when deployed on the mainnet, as the address will
not point to the intended contract or service. As shown in the SaucerSwap contract deployment page, the
EVM addresses for WHBAR are:

MAINNET: 0x0000000000000000000000000000000000163b59
TESTNET: 0x0000000000000000000000000000000000003ad1

BVSS

AO:S/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:N/R:N/S:C (2.5)

Recommendation
It is crucial to update the address to the mainnet equivalent before deployment, or use configurable
parameters to set the correct environment-specific address dynamically, ensuring proper functionality
and security across different environments.

R e m e d i a t i o n P l a n

SOLVED: The Bonzo team solved this issue as recommended.

Remediation Hash
5d9701676aa921a2a895a36097f5b710162ccdc5

References
AaveIncentivesController.sol#L82

https://docs.saucerswap.finance/developer/contract-deployments
https://hashscan.io/mainnet/contract/0.0.1456985
https://hashscan.io/testnet/contract/0.0.15057
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AC%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7. 6 I N C R E AS E P E R I O D_D U R AT I O N TO 3 0 DAYS
// INFORMATIONAL

Description
The contract contains a TODO comment indicating the intention to increase the immutable
PERIOD_DURATION variable to 30 days at a later time. Leaving such TODOs unresolved can lead to
inconsistencies and potential issues in the contract's functionality.

BVSS

AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:C (1.9)

Recommendation
It is crucial to address this change promptly by updating PERIOD_DURATION to 30 days or removing the
TODO if the change is no longer necessary. Ensuring that all TODOs are resolved enhances the contract's
reliability and clarity.

R e m e d i a t i o n P l a n

SOLVED: The Bonzo team solved this issue as recommended.

Remediation Hash
5d9701676aa921a2a895a36097f5b710162ccdc5

References
AaveDistributionManager.sol#27-28

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7.7 I N C O N S I ST E N T ST RU C T PA R A M E T E R U P DAT E
// INFORMATIONAL

Description
The parameter emissionPerSecond of the AssetData struct in AaveDistributionManager has been
modified to include an array of different emissions depending on the period, but this update was not
reflected in the out-of-scope IStakedToken.sol interface, which is utilized in StakeUIHelper.sol. This
inconsistency can lead to integration issues and potential bugs, as the outdated interface does not
match the current contract implementation.

BVSS

AO:S/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:F/S:C (0.5)

Recommendation
It is recommended to update the IStakedToken.sol interface to reflect the changes in the
emissionPerSecond parameter, and, if willing to be used, refactor StakeUIHelper.sol accordingly in
order to ensure seamless interaction between the contracts and preventing any discrepancies.

R e m e d i a t i o n P l a n

SOLVED: The Bonzo team solved this issue as recommended. The IStakedToken was removed.

Remediation Hash
1ecf5995b8ed3b7fa84441a7be114b4dbdf551bc

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AC

7. 8 U SAG E O F O U T DAT E D SA F ECAST
// INFORMATIONAL

Description
The contract uses an outdated version of SafeCast that allows implicit casting from uint to int. This
implicit casting can introduce vulnerabilities and unintended behavior due to the differences in value
ranges between unsigned and signed integers. Updating to a newer version of SafeCast that requires
explicit casting will ensure safer and more predictable type conversions, mitigating potential risks, and
will allow the use of newer and safer compiler versions.

BVSS

AO:S/AC:L/AX:L/C:N/I:N/A:H/D:N/Y:N/R:F/S:C (0.5)

Recommendation
By using explicit type conversions, the contract ensures clarity and prevents unintended behavior,
aligning with the safety improvements introduced in recent Solidity versions.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: Ignoring as it causes compatibility issues with the older versions of the
SafeHederaTokenService contract

References
SafeHederaTokenService.sol#6

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AH%2FD%3AN%2FY%3AN%2FR%3AF%2FS%3AC

7. 9 U S E O F M E M O RY I N ST E A D O F CA L L DATA I N F U N C T I O N
VA R I A B L E
// INFORMATIONAL

Description
The configureAssets function in the AaveDistributionManager contract declares the parameter
assetsConfigInput as memory. However, since this parameter is read-only during the function execution,
using calldata instead of memory is more efficient. Calldata directly references the input data without
copying it to memory, resulting in reduced gas consumption and improved performance.

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
Keeping the variable as calldata can optimize the function's performance and decrease transaction
costs.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: Changing assetsConfigInput to memory starts giving downstream compilation issues in
StakedToken.sol and AaveIncentivesController.sol. So we are ignoring it.

References
AaveDistributionManager.sol#51

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7.1 0 R E D U N DA N T PA R A M E T E RS I N F U N C T I O N
_G E TAS S E T I N D E X
// INFORMATIONAL

Description
The _getAssetIndex function in the AaveDistributionManager contract currently takes four
parameters: currentIndex, assetConfig, lastUpdateTimestamp, and totalBalance. However,
assetConfig already contains the lastUpdateTimestamp and totalBalance data, making the other two
parameters redundant. This redundancy leads to unnecessary gas consumption and inefficiency.
Simplifying the function to accept only the composite parameter assetConfig can optimize gas usage
and improve overall performance.

Score

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
By eliminating the redundant parameters, the function becomes more efficient, reducing gas costs and
enhancing performance. This approach ensures a more streamlined and cost-effective implementation.

R e m e d i a t i o n P l a n

SOLVED: The issue was solved by removing lastUpdateTimestamp.

Remediation Hash
1ecf5995b8ed3b7fa84441a7be114b4dbdf551bc

References
AaveDistributionManager.sol#225-230

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

8 . AU TO M AT E D T EST I N G

S t a t i c A n a l y s i s R e p o r t

D e s c r i p t i o n

Halborn used automated testing techniques to enhance the coverage of certain areas of the scoped
contracts. Among the tools used was Slither, a Solidity static analysis framework. After Halborn verified
all the contracts in the repository and was able to compile them correctly into their abi and binary
formats, Slither was run on the all-scoped contracts. This tool can statically verify mathematical
relationships between Solidity variables to detect invalid or inconsistent usage of the contracts' APIs
across the entire code-base.

S l i t h e r R e s u l t s

W H B A R C o n t r a c t

S t a ke d A a v e

The reentrancy instances flagged by Slither were checked individually, and have been categorised as
false positives.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

