
// Security Assessment 05.12.2025 - 05.15.2025

LZ Connector

Bonzo Finance

Submit Feedback

LZ Connector - Bonzo Finance

Prepared by: HALBORN Last Updated 05/28/2025 Date of Engagement: May 12th, 2025 - May 15th, 2025

Summary
 OF ALL REPORTED FINDINGS HAVE BEEN

ADDRESSED

ALL FINDINGS

6
CRITICAL

1
HIGH

0
MEDIUM

0
LOW

1
INFORMATIONAL

4

1 . I n t r o d u c t i o n

Bonzo Finance engaged Halborn to conduct a security assessment on their smart contracts
beginning on May 12th, 2025 and ending on May 17th, 2025. The security assessment was scoped to
the smart contracts provided in the Bonzo-Labs/lz-connector-contracts Github repository provided to
Halborn . Further details can be found in the Scope section of this report.

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings
overview
7. Findings & Tech Details

7.1 Missing access control in
m̀int ̀and b̀urn ̀functions
7.2 Usage of sstore inside loops
increases gas costs

1 0 0%

https://github.com/Bonzo-Labs/lz-connector-contracts

2. A s s e s s m e n t S u m m a r y

Halborn was provided 5 (five) days for the engagement, and assigned one full-time security engineer
to review the security of the smart contracts in scope. The engineer is a blockchain and smart
contract security expert with advanced penetration testing and smart contract hacking skills, and
deep knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the smart contracts.
Ensure that smart contract functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks,
which were partially addressed by the Bonzo Finance team . The main ones were the following:

Implement appropriate access control mechanisms for the mint and burn functions in MyOFT

contract. This can be achieved by using modifiers like onlyOwner or by implementing role-based

access control to ensure that only authorized entities can perform these operations.

Use a local variable to store the loop computation results instead of low-level SSTORE

opcode.

Update Hedera's dependencies and import the latest version of HTS.

7.3 Incorrect natspec
documentation
7.4 Incorrect hts imports
7.5 Misplaced nonreentrant
modifier
7.6 Use explicit size
declarations

8. Automated Testing

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance efficiency,
timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual
testing is recommended to uncover flaws in logic, process, and implementation; automated testing
techniques help enhance coverage of the code and can quickly identify items that do not follow the
security best practices. The following phases and associated tools were used during the assessment:

Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to

identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions (slither).
Testnet deployment (Foundry).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring
System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as
the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the
highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of
risk to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational
cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

M ​E

E

E = m ​∏ e

Measures the impact to the confidentiality of the information resources managed by the contract due
to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users
only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

M ​I

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: lz-connector-contracts

(b) Assessed Commit ID: af7f1f5

(c) Items in scope:

BaseHTSConnector.sol
HTSConnector.sol
MyOFT.sol
BaseOFTAdapter.sol

Out-of-Scope: Third-party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

64f2f1b
d506352

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL HIGH MEDIUM LOW

https://github.com/Bonzo-Labs/lz-connector-contracts
https://github.com/Bonzo-Labs/lz-connector-contracts/commit/64f2f1bc0d7a9232e441e63279823d40fb793929
https://github.com/Bonzo-Labs/lz-connector-contracts/commit/d5063520c2efb773ab4cff01b69887b6e5199507

1 0 0 1

INFORMATIONAL

4

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

MISSING ACCESS CONTROL IN M̀INT ̀AND B̀URN`
FUNCTIONS

CRITICAL SOLVED - 05/22/2025

USAGE OF SSTORE INSIDE LOOPS INCREASES GAS
COSTS

LOW SOLVED - 05/22/2025

INCORRECT NATSPEC DOCUMENTATION INFORMATIONAL
ACKNOWLEDGED -

05/26/2025

INCORRECT HTS IMPORTS INFORMATIONAL
ACKNOWLEDGED -

05/26/2025

MISPLACED NONREENTRANT MODIFIER INFORMATIONAL
ACKNOWLEDGED -

05/26/2025

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

USE EXPLICIT SIZE DECLARATIONS INFORMATIONAL
ACKNOWLEDGED -

05/26/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 M I S S I N G AC C ES S C O N T RO L I N `M I N T ` A N D `B U R N `
F U N C T I O N S

// CRITICAL

Description
The basic implementation of MyOFT.sol , as recommended by LayerZero in the official documentation,
includes a _mint function that should either be called within the constructor or exposed with proper
access control mechanisms.

In the current implementation of the provided MyOFT.sol contract, both the mint and burn public
functions lack access control measures, such as onlyOwner or other role-based or address-based
mechanisms. This oversight allows any low-privileged user to mint or burn tokens freely, posing a
significant security risk and potentially leading to total drainage of liquidity.

 functionfunction mintmint((addressaddress _to _to,, uint256uint256 _amount _amount)) publicpublic {{
 functionfunction burnburn((addressaddress _from _from,, uint256uint256 _amount _amount)) publicpublic {{

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N (10.0)

Recommendation
To mitigate this issue, it is recommended to implement appropriate access control mechanisms for
the mint and burn functions. This can be achieved by using modifiers like onlyOwner or by
implementing role-based access control to ensure that only authorized entities can perform these
operations.

https://docs.layerzero.network/v2/developers/evm/oft/quickstart#constructing-an-oft-contract
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:C/D:C/Y:N

Remediation Comment

SOLVED: The Bonzo team has solved this issue as recommended.

Remediation Hash
https://github.com/Bonzo-Labs/lz-connector-contracts/commit/64f2f1bc0d7a9232e441e63279823
d40fb793929

https://github.com/Bonzo-Labs/lz-connector-contracts/commit/64f2f1bc0d7a9232e441e63279823d40fb793929
https://github.com/Bonzo-Labs/lz-connector-contracts/commit/64f2f1bc0d7a9232e441e63279823d40fb793929

7. 2 U SAG E O F S STO R E I N S I D E LO O P S I N C R E AS ES G AS

C O STS

// LOW

Description
The use of the SSTORE opcode within loops can result in significant gas inefficiencies and may lead
to out-of-gas errors.

This practice is particularly problematic because each SSTORE operation consumes a substantial
amount of gas, and when executed repeatedly within a loop, it can quickly deplete the gas limit. This
can cause transactions to fail, leading to unexpected behavior and potential financial losses.

Found in:

BaseOFTAdapter.sol - Line 178

HTSConnector - Line 310

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N (2.5)

Recommendation
It is recommended to use a local variable to store the loop computation results instead of low-level
SSTORE opcode.

Remediation Comment

SOLVED: The Bonzo team has solved this issue as recommended.

Remediation Hash

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:L/I:N/D:N/Y:N

https://github.com/Bonzo-Labs/lz-connector-contracts/commit/d5063520c2efb773ab4cff01b69887
b6e5199507

7. 3 I N C O R R EC T N ATS P EC D O C U M E N TAT I O N

// INFORMATIONAL

Description
The NatSpec documentation on clearOldTransferRecords in the HTSConnector contract affirms "Can
be called by users to clear their own history or by owner for any user" , but in fact the function is
currently access-controled via onlyOwner modifier.

 /**/**
 * @notice Removes oldest transfer records for a user to manage array growth * @notice Removes oldest transfer records for a user to manage array growth
 * @dev Can be called by users to clear their own history or by owner for any user * @dev Can be called by users to clear their own history or by owner for any user
 * @param user Address of the user whose transfer history to clear * @param user Address of the user whose transfer history to clear
 * @param count Number of oldest records to remove * @param count Number of oldest records to remove
 */ */
 functionfunction clearOldTransferRecordsclearOldTransferRecords((

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
It is recommended to adjust the NatSpec documentation to reflect the actual function
implementation.

Remediation Comment

ACKNOWLEDGED: The Bonzo team has acknowledged this finding.

https://github.com/Bonzo-Labs/lz-connector-contracts/commit/d5063520c2efb773ab4cff01b69887b6e5199507
https://github.com/Bonzo-Labs/lz-connector-contracts/commit/d5063520c2efb773ab4cff01b69887b6e5199507
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

7. 4 I N C O R R EC T H TS I M P O RTS

// INFORMATIONAL

Description
In the current state of the provided codebase, the contracts within the hts/ directory are outdated
and lack essential functions such as associateToken() , dissociateToken() and others. These
functions are crucial for proper interactions with HTS tokens, including associating the HTSConnector
to the newly created token and subsequent token operations for end users.

The HTSConnector and BaseHTSConnector contracts inherit from the parent contracts located in the
hts/ directory. Consequently, the code does not implement the correct version of HTS dependencies
but only partial implementations of presumably deprecated code.

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
It is recommended to update Hedera's dependencies and import the latest version of HTS.

Remediation Comment

ACKNOWLEDGED: The Bonzo team has acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

7. 5 M I S P L AC E D N O N R E E N T R A N T M O D I F I E R

// INFORMATIONAL

Description
It is best practice to place the nonReentrant modifier before all other function modifiers, so eventual
reentrancy issues in other modifiers are also protected by Reentrancy Guard.

Found in:

BaseHTSConnector - Lines 60, 102

HTSConnector - Lines 164, 229, 266, 299

BaseOFTAdapter - Lines 100, 147, 167

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Adjust function declarations and put the nonReentrant modifier before all other modifiers.

Remediation Comment

ACKNOWLEDGED: The Bonzo team has acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

7. 6 U S E E X P L I C I T S I Z E D EC L A R AT I O N S

// INFORMATIONAL

Description
Throughout the codebase, there are occurrences where integer types are declared inconsistently or
implicitly (e.g., uint vs. uint256 , int vs. int256). Using explicit, fixed-size integer declarations (like
uint256 or int256) improves code clarity, avoids ambiguity, and helps prevent overflow/underflow
issues when interfacing with external contracts or libraries that expect a specific integer size.

Found in:

BaseOFTAdapter.sol - Line 222

HTSConnector - Lines 113, 354

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N (0.0)

Recommendation
Use explicit types (uint256 , int256 , uint128 , etc.) throughout the code, in order to maintain
consistency and enhance readability.

Remediation Comment

ACKNOWLEDGED: The Bonzo team has acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:N/Y:N

8 . AU TO M AT E D T EST I N G

Halborn used automated testing techniques to enhance the coverage of certain areas of the smart
contracts in scope. Among the tools used was Slither, a Solidity static analysis framework. After
Halborn verified the smart contracts in the repository and was able to compile them correctly into
their ABIs and binary format, Slither was run against the contracts. This tool can statically verify
mathematical relationships between Solidity variables to detect invalid or inconsistent usage of the
contracts' APIs across the entire code-base.

All issues identified by Slither were proved to be false positives or have been added to the issue list
in this report.

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

