
Customer: MetisDAO Foundation
Date: December 05th, 2022

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
MetisDAO Foundation

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type Layer 1 for the Layer 2 Protocol

Platform EVM

Network Ethereum

Language Solidity

Methods Manual Review, Automated Review, Architecture Review

Website https://bridge.metis.io/home

Timeline 20.09.2022 – 05.12.2022

Changelog
17.10.2022 – Initial Review
01.11.2022 – Second Review
05.12.2022 – Third Review

www.hacken.io
2

https://bridge.metis.io/home

Table of contents
Introduction 4

Scope 4

Severity Definitions 11

Executive Summary 12

Checked Items 13

System Overview 16

Findings 21

Disclaimers 34

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by MetisDAO Foundation (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository:

https://github.com/MetisProtocol/mvm
Commit:

ec2d5e093a6a976ffcf61fbd7e46551241c7155c
Documentation:

Functional requirements and technical description
Integration and Unit Tests: Yes
Contracts:

File:
./packages/contracts/contracts/L1/messaging/IL1CrossDomainMessenger.sol

SHA3: cb53c54698819917f089a50461360d7b6ba1f9d522035331232000e9bb3d28bd

File: ./packages/contracts/contracts/L1/messaging/IL1ERC20Bridge.sol
SHA3: f29c2f3ec5e9739aa813d43211d17e9a37198a2021d82a0f62f14660ddf79050

File: ./packages/contracts/contracts/L1/messaging/IL1StandardBridge.sol
SHA3: 2bca4967ec142a31041cfa19ec5cd71f607d37c1dd5d6c8cb118d7e0207ebd88

File:
./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.sol

SHA3: bd74e7cf911596221f5e07cc564df820857083262969149be9b26d1edb808680

File: ./packages/contracts/contracts/L1/messaging/L1StandardBridge.sol
SHA3: 635bb28b1a840fbf381b74e955e6c5b1cb47e05d0473b1365a94b118bd610896

File:
./packages/contracts/contracts/L1/rollup/ICanonicalTransactionChain.sol

SHA3: 55cb6d47be7b2a19f7fc911f3ffb797f3a1e357fc88f0bcb3ce78757d555abce

File: ./packages/contracts/contracts/L1/rollup/IStateCommitmentChain.sol
SHA3: bc2f80a817c2efb4329c70e8add2c13a2515aef758be0af3703b21591cd7d2fd

File: ./packages/contracts/contracts/L2/messaging/IL2ERC20Bridge.sol
SHA3: 254df419cc2085b551842def494977abf722c143ab15519282ba9155cb836a67

File:
./packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol

SHA3: 489191e6f45c755b8527c628d30ac562f0083a26ff658a854e841f2d8ac0a1cb

File:
./packages/contracts/contracts/libraries/bridge/ICrossDomainMessenger.sol

SHA3: ffa00added5539937a4faa2e1036fdfa42d788725a153e58e015b4afff9f0588

File:
./packages/contracts/contracts/libraries/bridge/Lib_CrossDomainUtils.sol

www.hacken.io
4

https://docs.metis.io/dev/metis-bridge

SHA3: 2391eba0f71d257e545250da87609a44cd77e605a5a7c433c3806946d59fe7bd

File: ./packages/contracts/contracts/libraries/codec/Lib_OVMCodec.sol
SHA3: 2851087aaca512f6204f0eee51082d938707895f37eb2163a50f23addef32339

File:
./packages/contracts/contracts/libraries/constants/Lib_DefaultValues.sol

SHA3: 2f11cec61a5104f6d20bebbfa8cf1bb908592672759bb2466e2c023bac9ab799

File:
./packages/contracts/contracts/libraries/constants/Lib_PredeployAddresses.sol

SHA3: cb5bc281908d61ae32a59d36780b6e4d40a9cff30e1efd7abc19ff3226d8e83d

File:
./packages/contracts/contracts/libraries/resolver/Lib_AddressManager.sol

SHA3: 52b04a59cbbc88322d12a589f1675172c9199cd0f47f8270ee265fc1400c74fd

File:
./packages/contracts/contracts/libraries/resolver/Lib_AddressResolver.sol

SHA3: 59193272d1db167804849a71f84b57b823b07837e957a26f468839d2cd4e97ec

File: ./packages/contracts/contracts/libraries/rlp/Lib_RLPReader.sol
SHA3: c919e79452c8db73af0ba57054ce6aa86c2d32bb9c266c5b94bddcc4f3f5567d

File: ./packages/contracts/contracts/libraries/rlp/Lib_RLPWriter.sol
SHA3: bf0c9457b5b418eabf60d6e63d675b3fa9ba1dfc9c0bea84770ae6132b96411d

File: ./packages/contracts/contracts/libraries/trie/Lib_MerkleTrie.sol
SHA3: 7287bd50865ef7750bf3a9aa9a9b9ed6d0284a0235826df39bf15670e18ba7d9

File:
./packages/contracts/contracts/libraries/trie/Lib_SecureMerkleTrie.sol

SHA3: 46294f98bb1fe1c8a5d1cb574ff82dde6235b2668c5b769be76fadabe52416cf

File: ./packages/contracts/contracts/libraries/utils/Lib_Bytes32Utils.sol
SHA3: e9f51ba966816c77c57f4ec00ba8788012183560385bf13dcf34a6d15581df1d

File: ./packages/contracts/contracts/libraries/utils/Lib_BytesUtils.sol
SHA3: 8a9e0c6bd58aaf7570509428f099801d2795e2368559ffb6e5f6b835c04770db

File: ./packages/contracts/contracts/standards/AddressAliasHelper.sol
SHA3: 19d7598fd3946d2c974fcd8080587b1b7a80cf4d1284782bd97bcdd81758ac13

File: ./packages/contracts/contracts/MVM/iMVM_DiscountOracle.sol
SHA3: 7852d3fd8cecf1c4b6c368a083f04317c79c9453fbed514528a6f9e9064b7df4

File: ./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol
SHA3: ee12a267bd62249696836a9f57c2601bc95ca9bec3021b792a12f62ffeb4e243

File:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.sol

SHA3: 296e9bee1d0da1061f86984a4ef246de220a6ad6e935d7d0b963a0e6498095b0

File: ./packages/contracts/contracts/MVM/MVM_DiscountOracle.sol
SHA3: d0ea3825dc87692219affe8290d576c1311f013397cef982aa039dcf85cdbc25

File: ./packages/contracts/contracts/libraries/utils/Lib_MerkleTree.sol
SHA3: 9b9ae7df353c05a78f4d5c5e89c9dde7b5171cbe050435c882010022e3aae189

File: ./packages/contracts/contracts/L1/verification/IBondManager.sol

www.hacken.io
5

SHA3: d362a8a02ade76d474c7626b901be78755666cad331f22566815195100f63f76

File: ./packages/contracts/contracts/L1/verification/BondManager.sol
SHA3: 2108f581e70604ff185297dadf966138b3b40e454202b072bae40fb8a391d16b

File: ./packages/contracts/contracts/L1/rollup/IChainStorageContainer.sol
SHA3: 84b56bd49d509b2a8013afce6676c788f6b2d3ed8b9dec0e5ad8722cf95cfd8a

File: ./packages/contracts/contracts/L1/rollup/ChainStorageContainer.sol
SHA3: b086fb41176692e3d0de3147771127874ee22ff631ba1458387d535cf2dec0b1

File: ./packages/contracts/contracts/libraries/utils/Lib_Buffer.sol
SHA3: b518cff5b386c374098e4ae178e7d3a7eaaaf648c6ad874a69d7ba50c107be46

Second review scope
Repository:

https://github.com/MetisProtocol/mvm
Commit:

defb4e1dbfa85cf9f8a248ea838b8dacf19860fa
Documentation:

Functional requirements and technical description
Integration and Unit Tests: Yes
Contracts:

File:
./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.sol

SHA3: 1b150a331aac619fc9b2f3151d35339b224c4c09896769d1e161d67049cff17c

File: ./packages/contracts/contracts/L1/messaging/L1StandardBridge.sol
SHA3: a3fbeae3fe7d01cfb83852d4c0ee62b8ccc21285bca414132b656bcaf5568d97

File:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.sol

SHA3: 08534d3ec53eddea5051b846b9a17bbe7b98a4ff9050a1af70f8face5faac269

File: ./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol
SHA3: 5a28cdd1cd6fca3beafe3e6cb8fd0dbf78d41cdcdc54955c16d8c465d3c1e6b9

File: ./packages/contracts/contracts/L1/verification/BondManager.sol
SHA3: 4cdb7707e2dd060d3fee5a70aaa5fa8937867d89ed93db92f103d8df480ac8c7

File: ./packages/contracts/contracts/libraries/utils/Lib_Buffer.sol
SHA3: 7fa2362e56f2d81f787476627053572309ffbe427680b5de8f8427b05319aa71

File: ./packages/contracts/contracts/L1/rollup/ChainStorageContainer.sol
SHA3: b086fb41176692e3d0de3147771127874ee22ff631ba1458387d535cf2dec0b1

File: ./packages/contracts/contracts/libraries/utils/Lib_MerkleTree.sol
SHA3: 9b9ae7df353c05a78f4d5c5e89c9dde7b5171cbe050435c882010022e3aae189

File:
./packages/contracts/contracts/L1/messaging/IL1CrossDomainMessenger.sol

SHA3: cb53c54698819917f089a50461360d7b6ba1f9d522035331232000e9bb3d28bd

File: ./packages/contracts/contracts/L1/messaging/IL1ERC20Bridge.sol
SHA3: f29c2f3ec5e9739aa813d43211d17e9a37198a2021d82a0f62f14660ddf79050

File: ./packages/contracts/contracts/L1/messaging/IL1StandardBridge.sol
SHA3: 2bca4967ec142a31041cfa19ec5cd71f607d37c1dd5d6c8cb118d7e0207ebd88

www.hacken.io
6

https://docs.metis.io/dev/metis-bridge

File:
./packages/contracts/contracts/L1/rollup/ICanonicalTransactionChain.sol

SHA3: 55cb6d47be7b2a19f7fc911f3ffb797f3a1e357fc88f0bcb3ce78757d555abce

File: ./packages/contracts/contracts/L1/rollup/IStateCommitmentChain.sol
SHA3: bc2f80a817c2efb4329c70e8add2c13a2515aef758be0af3703b21591cd7d2fd

File: ./packages/contracts/contracts/L2/messaging/IL2ERC20Bridge.sol
SHA3: 254df419cc2085b551842def494977abf722c143ab15519282ba9155cb836a67

File:
./packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol

SHA3: 489191e6f45c755b8527c628d30ac562f0083a26ff658a854e841f2d8ac0a1cb

File: ./packages/contracts/contracts/MVM/MVM_DiscountOracle.sol
SHA3: 1b54a1717bfc718fb3673009599c4ff93398134359ebdb0846c3c1623a7cc919

File:
./packages/contracts/contracts/libraries/bridge/ICrossDomainMessenger.sol

SHA3: ffa00added5539937a4faa2e1036fdfa42d788725a153e58e015b4afff9f0588

File:
./packages/contracts/contracts/libraries/bridge/Lib_CrossDomainUtils.sol

SHA3: 2391eba0f71d257e545250da87609a44cd77e605a5a7c433c3806946d59fe7bd

File: ./packages/contracts/contracts/libraries/codec/Lib_OVMCodec.sol
SHA3: 2851087aaca512f6204f0eee51082d938707895f37eb2163a50f23addef32339

File:
./packages/contracts/contracts/libraries/constants/Lib_DefaultValues.sol

SHA3: 2f11cec61a5104f6d20bebbfa8cf1bb908592672759bb2466e2c023bac9ab799

File:
./packages/contracts/contracts/libraries/constants/Lib_PredeployAddresses.sol

SHA3: cb5bc281908d61ae32a59d36780b6e4d40a9cff30e1efd7abc19ff3226d8e83d

File:
./packages/contracts/contracts/libraries/resolver/Lib_AddressManager.sol

SHA3: 52b04a59cbbc88322d12a589f1675172c9199cd0f47f8270ee265fc1400c74fd

File:
./packages/contracts/contracts/libraries/resolver/Lib_AddressResolver.sol

SHA3: 59193272d1db167804849a71f84b57b823b07837e957a26f468839d2cd4e97ec

File: ./packages/contracts/contracts/libraries/rlp/Lib_RLPReader.sol
SHA3: c919e79452c8db73af0ba57054ce6aa86c2d32bb9c266c5b94bddcc4f3f5567d

File: ./packages/contracts/contracts/libraries/rlp/Lib_RLPWriter.sol
SHA3: bf0c9457b5b418eabf60d6e63d675b3fa9ba1dfc9c0bea84770ae6132b96411d

File: ./packages/contracts/contracts/libraries/trie/Lib_MerkleTrie.sol
SHA3: 7287bd50865ef7750bf3a9aa9a9b9ed6d0284a0235826df39bf15670e18ba7d9

File:
./packages/contracts/contracts/libraries/trie/Lib_SecureMerkleTrie.sol

SHA3: 46294f98bb1fe1c8a5d1cb574ff82dde6235b2668c5b769be76fadabe52416cf

File: ./packages/contracts/contracts/libraries/utils/Lib_Bytes32Utils.sol

www.hacken.io
7

SHA3: e9f51ba966816c77c57f4ec00ba8788012183560385bf13dcf34a6d15581df1d

File: ./packages/contracts/contracts/libraries/utils/Lib_BytesUtils.sol
SHA3: 8a9e0c6bd58aaf7570509428f099801d2795e2368559ffb6e5f6b835c04770db

File: ./packages/contracts/contracts/standards/AddressAliasHelper.sol
SHA3: 19d7598fd3946d2c974fcd8080587b1b7a80cf4d1284782bd97bcdd81758ac13

File: ./packages/contracts/contracts/MVM/iMVM_DiscountOracle.sol
SHA3: 61a73a61f52fc298e0d84e8a4cc3b5e4b8a3278cf4cc3fb5f831264024e38264

File: ./packages/contracts/contracts/L1/verification/IBondManager.sol
SHA3: d362a8a02ade76d474c7626b901be78755666cad331f22566815195100f63f76

File: ./packages/contracts/contracts/L1/rollup/IChainStorageContainer.sol
SHA3: 84b56bd49d509b2a8013afce6676c788f6b2d3ed8b9dec0e5ad8722cf95cfd8a

Third review scope
Repository:

https://github.com/MetisProtocol/mvm
Commit:

3e388ada0011bf6aefbf0085a8df02ad674cc548
Documentation:

Functional requirements and technical description
Integration and Unit Tests: Yes
Contracts:

File:
./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.sol

SHA3: 0cc99dbbabf101a6bcdf9dbbd6100656fc3e1478589d580c2dafd1c28c3d5a99

File: ./packages/contracts/contracts/L1/messaging/L1StandardBridge.sol
SHA3: 1dc8096e01572c86288af5766a6efca99f7ffa828d722ad6f16c0694eced43c2

File:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.sol

SHA3: 40575a61f9fb28c6ac51d63e01e125df80deff726d07b0e9995b3a194d955430

File: ./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol
SHA3: 7b24fa81d454a3999f6e35fc0542957104c421d66c7cd90cfa2fb1db97cc8482

File: ./packages/contracts/contracts/L1/verification/BondManager.sol
SHA3: 41f2ee9ffd15877541d48808893810d04ff382e350e9a6823ffc49dffcb03f18

File: ./packages/contracts/contracts/libraries/utils/Lib_Buffer.sol
SHA3: 7fa2362e56f2d81f787476627053572309ffbe427680b5de8f8427b05319aa71

File: ./packages/contracts/contracts/L1/rollup/ChainStorageContainer.sol
SHA3: fb588de1d4a0f4c618095996dc465669fe21682ceb218fb262a11cfce20626cc

File: ./packages/contracts/contracts/libraries/utils/Lib_MerkleTree.sol
SHA3: 9b9ae7df353c05a78f4d5c5e89c9dde7b5171cbe050435c882010022e3aae189

File:
./packages/contracts/contracts/L1/messaging/IL1CrossDomainMessenger.sol

SHA3: d229208e0304020c7315823d4993a14a2f90031a8aa2bdef8063edd053c116c2

File: ./packages/contracts/contracts/L1/messaging/IL1ERC20Bridge.sol
SHA3: f29c2f3ec5e9739aa813d43211d17e9a37198a2021d82a0f62f14660ddf79050

www.hacken.io
8

https://docs.metis.io/dev/metis-bridge

File: ./packages/contracts/contracts/L1/messaging/IL1StandardBridge.sol
SHA3: 2bca4967ec142a31041cfa19ec5cd71f607d37c1dd5d6c8cb118d7e0207ebd88

File:
./packages/contracts/contracts/L1/rollup/ICanonicalTransactionChain.sol

SHA3: c35f5be5bb8890d5d36ebe7e50530a0e225de528c66a077feacf545f05928755

File: ./packages/contracts/contracts/L1/rollup/IStateCommitmentChain.sol
SHA3: 80401c86aac48773746aafd545d60d3f71803e08ef0659fe4215f6b1fa43336c

File: ./packages/contracts/contracts/L2/messaging/IL2ERC20Bridge.sol
SHA3: 254df419cc2085b551842def494977abf722c143ab15519282ba9155cb836a67

File:
./packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol

SHA3: 489191e6f45c755b8527c628d30ac562f0083a26ff658a854e841f2d8ac0a1cb

File: ./packages/contracts/contracts/MVM/MVM_DiscountOracle.sol
SHA3: 2febce107c27daccb0eaff2c77fa3ed4a132e1639f73d4d25e1ca45f90b30c56

File:
./packages/contracts/contracts/libraries/bridge/ICrossDomainMessenger.sol

SHA3: ffa00added5539937a4faa2e1036fdfa42d788725a153e58e015b4afff9f0588

File:
./packages/contracts/contracts/libraries/bridge/Lib_CrossDomainUtils.sol

SHA3: 2391eba0f71d257e545250da87609a44cd77e605a5a7c433c3806946d59fe7bd

File: ./packages/contracts/contracts/libraries/codec/Lib_OVMCodec.sol
SHA3: 0f8ccf51663d7c325ec17d8cc5aa2f2219ec5b2ae2f4fec79a1980c5c1dae962

File:
./packages/contracts/contracts/libraries/constants/Lib_DefaultValues.sol

SHA3: 2f11cec61a5104f6d20bebbfa8cf1bb908592672759bb2466e2c023bac9ab799

File:
./packages/contracts/contracts/libraries/constants/Lib_PredeployAddresses.sol

SHA3: cb5bc281908d61ae32a59d36780b6e4d40a9cff30e1efd7abc19ff3226d8e83d

File:
./packages/contracts/contracts/libraries/resolver/Lib_AddressManager.sol

SHA3: 52b04a59cbbc88322d12a589f1675172c9199cd0f47f8270ee265fc1400c74fd

File:
./packages/contracts/contracts/libraries/resolver/Lib_AddressResolver.sol

SHA3: 59193272d1db167804849a71f84b57b823b07837e957a26f468839d2cd4e97ec

File: ./packages/contracts/contracts/libraries/rlp/Lib_RLPReader.sol
SHA3: c919e79452c8db73af0ba57054ce6aa86c2d32bb9c266c5b94bddcc4f3f5567d

File: ./packages/contracts/contracts/libraries/rlp/Lib_RLPWriter.sol
SHA3: bf0c9457b5b418eabf60d6e63d675b3fa9ba1dfc9c0bea84770ae6132b96411d

File: ./packages/contracts/contracts/libraries/trie/Lib_MerkleTrie.sol
SHA3: 7287bd50865ef7750bf3a9aa9a9b9ed6d0284a0235826df39bf15670e18ba7d9

File:
./packages/contracts/contracts/libraries/trie/Lib_SecureMerkleTrie.sol

SHA3: 46294f98bb1fe1c8a5d1cb574ff82dde6235b2668c5b769be76fadabe52416cf

www.hacken.io
9

File: ./packages/contracts/contracts/libraries/utils/Lib_Bytes32Utils.sol
SHA3: e9f51ba966816c77c57f4ec00ba8788012183560385bf13dcf34a6d15581df1d

File: ./packages/contracts/contracts/libraries/utils/Lib_BytesUtils.sol
SHA3: 8a9e0c6bd58aaf7570509428f099801d2795e2368559ffb6e5f6b835c04770db

File: ./packages/contracts/contracts/standards/AddressAliasHelper.sol
SHA3: 19d7598fd3946d2c974fcd8080587b1b7a80cf4d1284782bd97bcdd81758ac13

File: ./packages/contracts/contracts/MVM/iMVM_DiscountOracle.sol
SHA3: 61a73a61f52fc298e0d84e8a4cc3b5e4b8a3278cf4cc3fb5f831264024e38264

File: ./packages/contracts/contracts/L1/verification/IBondManager.sol
SHA3: d362a8a02ade76d474c7626b901be78755666cad331f22566815195100f63f76

File: ./packages/contracts/contracts/L1/rollup/IChainStorageContainer.sol
SHA3: 84b56bd49d509b2a8013afce6676c788f6b2d3ed8b9dec0e5ad8722cf95cfd8a

File: ./packages/contracts/contracts/libraries/utils/Lib_Uint.sol
SHA3: e2f9edf1de8325ae0701cce2a358c05adccd24089f4c03b5db64f3d65aa16244

www.hacken.io
10

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
11

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 8 out of 10.

● Functional requirements are provided.
● Technical description is partially missed.

Code quality
The total Code Quality score is 9 out of 10.

● Most of the code follows best practices.
● There is redundant and commented code in the contracts.
● The development environment is configured.

Test coverage
Test coverage of the project is 35%.

● The libraries are covered with tests.
● The test coverage for main contracts is low, and some of the main

tests do not run.

Security score
As a result of the audit, the code contains 2 medium and 5 low severity
issues. The security score is 8 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 5.9.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

17 October 2022 18 5 9 2

01 November 2022 19 3 6 0

05 December 2022 5 2 0 0

www.hacken.io
12

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Failed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Failed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Passed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
13

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Not Relevant

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not Relevant

www.hacken.io
14

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Failed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
15

System Overview

Metis is an Ethereum layer 2 protocol, the audited part of the protocol is
layer 1 (rollup and messaging with L2) with the following contracts:

● ChainStorageContainer — is a contract for storing transaction data:
○ transaction batches for the Canonical Transaction Chain,
○ chain state batches for the State Commitment Chain
using Lib_Buffer arrays. There are data arrays in the contract for
different chains and the defined default chain (1088). The contract
functionality allows to push, set, get and delete transaction data
from the defined index; set and update the global metadata (extra
data in the Lib_Buffer) for each chain information array.

● CanonicalTransactionChain — is a contract that stores transactions
that must be applied by the rollup state. The contract functionality
allows MVM Sequencer to append the batches of the transactions
(calldata is used to send and store the compressed transactions data)
and to enqueue the transactions (which MVM Sequencer must eventually
append to the rollup state.) through the L1CrossDomainMessenger
contract.

Transactions information is stored split for the different chains and
the defined default chain (1088), there is a Sequencer for each
chain.

● StateCommitmentChain — is a contract that stores the proposed state
roots, as the results of each transaction in the Canonical
Transaction Chain in the 1:1 correspondence.
The contract functionality allows MVM Fraud Verifiers (for each
chain) to delete state batches within the defined fraud proof window.

The contract functionality allows to verify validity of the state
within the provided inclusion proof.

Transactions information is stored split for the different chains and
the defined default chain (1088).

● L1CrossDomainMessenger — is a contract that allows communication
between L1 and L2: whitelisted addresses to send messages from L1 to
L2. The contract functionality allows relaying messages from L2 to L1
(The message is verified, checked for absence in the previously
received and blocked by the owner messages) and to replay the message
if it was rejected because of exceeding the L2 Gas limit.

The contract logic allows the interaction with the different chains,
the defined default chain is 1088.

The contract has pausing functionality.
● L1StandardBridge — is a contract that provides the ability to deposit

ETH and compliant ERC-20 tokens to L2 and withdraw them from L2. The
bridged tokens and coins are stored in the contract. The contract
functionality allows users to deposit tokens and coins for their own
or other defined address. In case of transferring L1 Metis token, the

www.hacken.io
16

MVM_COINBASE coin will be bridged to L2 and vice versa for the
withdrawal from L2.

For bridging tokens and coins, users pay the fee in ETH in the amount
of Gas that will be used for L2 multiplied by the discount value
defined in the MVM_DiscountOracle contract. Users define the Gas that
will be used for L2, it is increased to the minimal Gas value defined
in the MVM_DiscountOracle contract (200 000 initially) in case the
user defines the less value.

● MVM_DiscountOracle — is a contract that manages the discount values
for tokens and coins bridging, minimal Gas for L2 value, and the
whitelist for sending messages to L2 (the contract provides the
functionality to allow all addresses to send messages).

● Lib_AddressManager — is a contract that stores addresses by their
names (converting names to hashes).

● Lib_Buffer — is a library that implements a bytes32 storage array:
stores array items, length and extra data. The array functionality
allows to push, set and obtain elements, delete elements after the
defined index, set and get array extra data. The library is used in
the ChainStorageContainer contract.

● Lib_MerkleTrie — is a library that provides the base Merkle Trie
functions, used in the Lib_SecureMerkleTrie library.

● Lib_SecureMerkleTrie — is a library with the Merkle Trie functions,
used in the L1CrossDomainMessenger contract for the relayed messages
verifications.

● Lib_RLPReader — is a library with the functions for the RLP reading,
used in the Lib_MerkleTrie, Lib_CrossDomainUtils and Lib_OVMCodec
contracts.

● Lib_RLPReader — is a library with the functions for the RLP writing,
used in the Lib_MerkleTrie, Lib_CrossDomainUtils and Lib_OVMCodec
contracts.

● Lib_MerkleTree — is a library with the Merkle Tree implementation,
used in the StateCommitmentChain for the state verification and the
batch root obtaining.

● Lib_BytesUtils — is a library with the utility functions for the
bytes, used in the Lib_MerkleTrie contract.

● Lib_OVMCodec — is a library with the utility hashing functions and
transactions structs used in the IL1CrossDomainMessenger,
L1CrossDomainMessenger, CanonicalTransactionChain,
ICanonicalTransactionChain, IStateCommitmentChain and
StateCommitmentChain contracts.

● CrossDomainEnabled — is a contract with the helper functions for
cross-domain communications used in the L1StandardBridge contract.

www.hacken.io
17

● Lib_CrossDomainUtils — is a library with functions that generate the
cross domain calldata for the messages, used in the
L1CrossDomainMessenger contract.

● Lib_PredeployAddresses — is a library that stores some constant
addresses, used in the L1CrossDomainMessenger and L1StandardBridge
contracts.

● Lib_DefaultValues — is a library that stores DEFAULT_XDOMAIN_SENDER
value, used in the L1CrossDomainMessenger contract.

● Lib_AddressResolver — is an abstract contract that allows to resolve
addressed through the Lib_AddressManager contract, used in the
L1CrossDomainMessenger, CanonicalTransactionChain,
ChainStorageContainer, StateCommitmentChain, BondManager and
MVM_DiscountOracle contracts.

● Lib_Bytes32Utils — is a library with the utility functions for the
bytes32, imported in the Lib_OVMCodec contract.

● AddressAliasHelper — is a library with functions that allow to
compute the L1 address from an L2 alias and vice versa, used in the
L1CrossDomainMessenger and CanonicalTransactionChain contracts.

● BondManager — is a contract that verifies the proposers, used in the
StateCommitmentChain contract.

● IL1CrossDomainMessenger — is an interface for the
L1CrossDomainMessenger, inherited by the L1CrossDomainMessenger
contract.

● ICanonicalTransactionChain — is an interface for the
CanonicalTransactionChain, inherited by the CanonicalTransactionChain
contract, used in the StateCommitmentChain contract.

● IStateCommitmentChain — is an interface for the StateCommitmentChain,
inherited by the StateCommitmentChain contract, used in the
L1CrossDomainMessenger contract.

● iMVM_DiscountOracle — is an interface for the MVM_DiscountOracle,
inherited by the MVM_DiscountOracle contract, used in the
L1CrossDomainMessenger and L1StandardBridge contracts.

● IChainStorageContainer — is an interface for the
ChainStorageContainer, inherited by the ChainStorageContainer
contract, used in the CanonicalTransactionChain,
IStateCommitmentChain, StateCommitmentChain and
ICanonicalTransactionChain contracts.

● IBondManager — is an interface for the BondManager, inherited by the
BondManager contract, used in the StateCommitmentChain contract.

● IL1StandardBridge — is an interface for the L1StandardBridge,
inherited by the L1StandardBridge contract.

www.hacken.io
18

● IL1ERC20Bridge — is an interface for the L1StandardBridge ERC-20
functions, inherited by the IL1StandardBridge contract, used in the
L1StandardBridge contract.

● ICrossDomainMessenger — is an interface for the cross domain
messengers, inherited by the IL1CrossDomainMessenger contract, used
in the CrossDomainEnabled contract.

● IL2ERC20Bridge — is an interface for the L2 ERC-20 bridge functions,
used in the L1StandardBridge contract.

● Lib_Uint — is a library that contains the function for converting
uint to string, used in the project contracts.

Privileged roles
● The owner of the ChainStorageContainer contract can set global

metadata for each chain information array, set and push values to the
arrays, and delete values from the array after the defined index.

● The CanonicalTransactionChain contract has the privileged roles of
burn admin, Proxy__OVM_L1CrossDomainMessenger, OVM_Sequencer,
MVM_Sequencer :

○ The burn admin can set the enqueue Gas parameters.
○ The Proxy__OVM_L1CrossDomainMessenger can enqueue transactions.
○ The OVM_Sequencer and MVM_Sequencer (of each chain) can append

transaction batches.
○ The manager can push and set transactions to queue; push, set

and delete transactions data and batch global metadata. (For
each chain).

● The StateCommitmentChain contract has the privileged roles of
METIS_MANAGER, MVM_FraudVerifier and proposers:

○ The METIS_MANAGER can set fraud proof window value.
○ The MVM_FraudVerifier (for each chain) can delete state

batches.
○ The proposers can append state batches.

● The owner of the L1CrossDomainMessenger contract can pause the
contract, block and allow the messages to be relayed from L2.

● The CrossDomainAccount of the L1StandardBridge contract can finalize
the tokens and coins withdrawal from L2 to L1.

● The manager of the MVM_DiscountOracle contract can set the discount,
minimal L2 Gas values, manage them for sending messages to L2
whitelist, or allow all users to send messages, withdraw native coins
to the

● The owner of the Lib_AddressManager contract can add and modify the
addresses stored.

www.hacken.io
19

Risks
● There are contracts in the repository, and the off-chain project

logic, not included in the audit scope, their secureness and the
secureness of all the protocol cannot be verified.

www.hacken.io
20

Findings

Critical

1. Funds Lock

The fees are transferred to the MVM_DiscountOracle contract through
the processL2SeqGas function, but there is no mechanism for their
withdrawal.

Therefore, the fees will be locked in the contract.

Path: ./packages/contracts/contracts/MVM/MVM_DiscountOracle.sol :
processL2SeqGas()

Recommendation: add the possibility of coins withdrawal from the
MVM_DiscountOracle contract.

Status: Fixed (Revised commit:
defb4e1dbfa85cf9f8a248ea838b8dacf19860fa)

2. Denial of Service Vulnerability

Both relayMessage and relayMessageViaChainId use a nonReentrant
modifier.

Because relayMessageViaChainId is called in the relayMessage, the
relayMessage is inoperable.

Path:
./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.so
l : relayMessage(), relayMessageViaChainId()

Recommendation: remove the nonReentrant modifier from the
relayMessage function.

Status: Fixed (Revised commit:
defb4e1dbfa85cf9f8a248ea838b8dacf19860fa)

High

1. Denial of Service Vulnerability

The _chainId and _totalElements parameters are used vice versa when
emitting the SequencerBatchAppended events in the
appendSequencerBatch function.

According to the documentation, the SequencerBatchAppended event is
detected by the client and processed. Due to this, incorrect data in
the event will lead to the incorrect data analysis, may block the
system, or make it work in an incorrect way.

Path:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : appendSequencerBatch()

www.hacken.io
21

Recommendation: use the correct data when emitting the event.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

2. Requirements Violation

According to the documentation, any account may send message from L1
to L2, but there is a whitelist check for the
L1CrossDomainMessenger.sendMessage and
L1CrossDomainMessenger.sendMessageViaChainId functions
(MVM_DiscountOracle.processL2SeqGas).

Therefore, the contract functionality provides the ability to
restrict access to the messages sending and the requirements can be
violated.

Path:
./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.so
l : sendMessage(), sendMessageViaChainId()

Recommendation: implement the code according to the requirements or
change the requirements to match the code.

Status: Fixed (updated documentation) (Revised commit:
3e388ada0011bf6aefbf0085a8df02ad674cc548)

3. Access Control Violation; Replay Attack Vulnerability

The proposer value that is used for obtaining the proposer address is
defined by the user through the
StateCommitmentChain.appendStateBatchByChainId function parameter.

Therefore, any address that was added to the Lib_AddressResolver will
be able to append the state batches.

Collateralizing validation in the
BondManager.isCollateralizedByChainId function is performed without
the chain splitting.

Due to this, addresses that are collateralized for one chain may have
an access to appending the state batches for all the chains.

Paths:
./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
appendStateBatchByChainId(), _appendBatchByChainId()

./packages/contracts/contracts/L1/verification/BondManager.sol :
isCollateralizedByChainId()

Recommendation: ensure that only correct proposers can have access to
the state appending, clarify the collateralizing validation
requirements and implement the code according to them.

Status: Fixed (the chain id check is performed in
StateCommitmentChain.appendStateBatchByChainId function,
BondManager.isCollateralizedByChainId function does not have the

www.hacken.io
22

chain splitting) (Revised commit:
defb4e1dbfa85cf9f8a248ea838b8dacf19860fa)

4. Denial of Service Vulnerability

The contract has a pausing functionality, but it is impossible to
unpause it.

Therefore, the contract may become inoperable.

Path:
./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.so
l : pause()

Recommendation: add the ability to unpause the contract.

Status: Fixed (Revised commit:
defb4e1dbfa85cf9f8a248ea838b8dacf19860fa)

5. Requirements Violation; Data Consistency

According to the contract description, the CanonicalTransactionChain
contract is “an append-only log of transactions” and the batches may
be added by the Sequencer. The user with the manager role may update,
delete and add the transactions data, update queue data.

Therefore, the requirements are violated. Deleting and updating the
transactions data may lead to storing inconsistent transaction
information. Updating the queue data may block or change the
transactions that users enqueued.

Path:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : setBatchByChainId(),
deleteBatchElementsAfterInclusiveByChainId(), pushBatchByChainId(),
setBatchGlobalMetadataByChainId(), setQueueByChainId()

Recommendation: implement the code according to the requirements,
ensure that transactions data is consistent.

Status: Fixed (added comment with the behavior description and
updated documentation) (Revised commit:
3e388ada0011bf6aefbf0085a8df02ad674cc548)

6. Data Consistency; Requirements Violation

According to the documentation and contract description in the code,
the ChainStorageContainer stores queued transactions. The
CanonicalTransactionChain.queue() functions return the
ChainStorageContainer contract. However, the queued transactions are
added to the CanonicalTransactionChain.queueElements mapping.

Therefore, the CanonicalTransactionChain contract does not store the
queue, and the requirements are violated.

Paths:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : queue(), queueElements

www.hacken.io
23

./packages/contracts/contracts/L1/rollup/ChainStorageContainer.sol

Recommendation: ensure that queue storage is consistent and
implemented according to the requirements.

Status: Fixed (removed redundant code and updated documentation)
(Revised commit: 3e388ada0011bf6aefbf0085a8df02ad674cc548)

7. Requirements Violation

According to the contract description, any account should be able to
enqueue the transaction. (Comment: “The CTC also allows any account
to 'enqueue' an L2 transaction”). However, the enqueueByChainId
function requires that the msg.sender is equal to the
Proxy__OVM_L1CrossDomainMessenger address.

Therefore, it is only possible to enqueue transactions through the
cross-domain messenger, and the requirements are violated.

The contract contains the Gas cost for the calling enqueue function
and the ability set up in the constructor and can be changed through
the setGasParams function. However, the enqueue functions (enqueue,
enqueueByChainId) do not perform these Gas checks.

Due to this, the contract is vulnerable to spam attacks.

Path:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : enqueueByChainId(), setGasParams(), constructor() enqueueGasCost,
l2GasDiscountDivisor, enqueueL2GasPrepaid

Recommendation: clarify the requirements and implement the code
according to them.

Status: Fixed (updated documentation, added spam checks) (Revised
commit: 3e388ada0011bf6aefbf0085a8df02ad674cc548)

8. Requirement Violation

The comment in the appendSequencerBatchByChainId describes the Merkle
root functionality that is not implemented. (For efficiency reasons
getMerkleRoot modifies the `leaves` argument in place while
calculating the root hash therefore any arguments passed to it must
not be used again afterwards).

The comment in the enqueueByChainId function describes the queue data
structure functionality that is not implemented. (The underlying
queue data structure stores 2 elements per insertion, so to get the
real queue length we need to divide by 2 and subtract 1.). The queue
data structure stores 1 element per insertion and the queue data
length is not divided by 2.

This may indicate that the code is not finalized and the requirements
are violated.

www.hacken.io
24

Path:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : appendSequencerBatchByChainId(), enqueueByChainId()

Recommendation: clarify the requirements and implement the code
according to them.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

9. Undocumented Functionality

Bridging tokens and coins require paying fees, and there is the
defined minimal L2 Gas limit, which may make the defined by user Gas
value increase.

Such functionality should be described in the documentation.

Path:
./packages/contracts/contracts/L1/messaging/L1StandardBridge.sol :
_initiateETHDepositByChainId(), _initiateERC20DepositByChainId()

Recommendation: describe the fees and minimal Gas value in the
documentation.

Status: Fixed (updated documentation) (Revised commit:
3e388ada0011bf6aefbf0085a8df02ad674cc548)

Medium

1. Unfinalized Code

The registerSequencerByChainId function does not perform any logic.

The code is not finalized.

Path: ./packages/contracts/contracts/L1/verification/BondManager.sol
: registerSequencerByChainId()

Recommendation: finalize the code.

Status: Fixed (Revised commit:
defb4e1dbfa85cf9f8a248ea838b8dacf19860fa)

2. Denial of Service Vulnerability; Unfinalized Code

The appendStateBatch function is inoperable.

This may indicate that the code is not finalized.

Path:
./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
appendStateBatch()

Recommendation: finalize the code, remove the redundant code.

Status: Fixed (Revised commit:
defb4e1dbfa85cf9f8a248ea838b8dacf19860fa)

www.hacken.io
25

3. Requirement Violation; Redundant Code

The functions are split by the chains by titles and contain the
_chainId parameters, but the functionality they perform is not split.

This may indicate that the requirements are violated, or the
contracts contain redundant code.

Paths:

./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.so
l : _verifyStorageProofByChainId()

./packages/contracts/contracts/L1/verification/BondManager.sol :
isCollateralizedByChainId()

./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
insideFraudProofWindowByChainId(), _makeBatchExtraDataByChainId()

./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : _makeBatchExtraDataByChainId(), _getBatchContextByChainId()

Recommendation: clarify the requirements and implement the code
according to them, remove the redundant code.

Status: Reported

4. Missing Index Validation

Function set does not check if there was a value set on the defined
index (_index) and does not increment the buffer length.

Therefore, the function will not revert on the setting value to the
unexisting index.

Path: ./packages/contracts/contracts/libraries/utils/Lib_Buffer.sol :
set()

Recommendation: check if the index exists when setting a value to it.

Status: Fixed (Revised commit:
defb4e1dbfa85cf9f8a248ea838b8dacf19860fa)

5. Tests Failing

107 tests are failing, and the OVM tests do not run.

Recommendation: ensure that all the tests run and pass.

Status: Reported. 79 tests failed.

6. Funds Lock

The fees are withdrawn to the different MVM_Sequencer_Wrapper for
each chain, but the amounts of received fees for each chain are not
stored in the contracts.

Therefore, incorrect amounts can be transferred to the
MVM_Sequencer_Wrappers.

www.hacken.io
26

Path: ./packages/contracts/contracts/MVM/MVM_DiscountOracle.sol :
withdrawToSeq()

Recommendation: store the received fees for each chain and do not
allow MVM_Sequencer_Wrapper to withdraw more than was received for
the corresponding chain.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

Low

1. Redundant Functions

There are functions in the project that are never used.

Paths:

./packages/contracts/contracts/MVM/MVM_DiscountOracle.sol :
uint2str()

./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
_getBatchExtraData(), _makeBatchExtraData()

./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.so
l : _verifyXDomainMessage(), _verifyStateRootProof()

./contracts/libraries/trie/Lib_SecureMerkleTrie.sol : update(),
getSingleNodeRootHash()

./contracts/libraries/trie/Lib_MerkleTrie.sol : update(),
getSingleNodeRootHash()

Recommendation: remove the redundant code.

Status: Reported

2. Boolean Equality

Boolean constants can be used directly and do not need to be compared
to true or false.

Paths:
./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.so
l : relayMessageViaChainId(), _verifyStorageProof(),
_verifyStorageProofByChainId(), _verifyStateRootProofByChainId()

./packages/contracts/contracts/MVM/MVM_DiscountOracle.sol :
isXDomainSenderAllowed()

Recommendation: use the boolean values directly.

Status: Reported. L1CrossDomainMessenger.relayMessageViaChainId is
not fixed.

3. Unused Variables

There are never used variables in the contract.

www.hacken.io
27

Path:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : BATCH_CONTEXT_LENGTH_POS, TX_DATA_HEADER_SIZE, BYTES_TILL_TX_DATA

Recommendation: remove the redundant variables.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

4. Floating and Outdated Pragma

The project contracts use floating pragma, and some of them use
outdated pragma.

Locking the pragma helps ensure that contracts do not accidentally
get deployed using, for example, an outdated compiler version that
might introduce bugs that affect the contract system negatively.

Paths: All contracts

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating and outdated pragma in the final
deployment.

Status: Reported

5. Code Duplication

There are functions in the project that execute the same logic or
contain the same code.

Paths:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : _makeBatchExtraDataByChainId(), _makeBatchExtraData()

./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
_getBatchExtraDataByChainId(), _getBatchExtraData()

Recommendation: reuse duplicated code.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

6. Duplicate Code

Duplication of code may lead to unnecessary Gas consumption and cause
maintenance issues due to modifications in multiple places.

sendMessage and sendMessageViaChainId mostly identical. It is
recommended to introduce the internal _sendMessage function with
chainId parameter. getQueueLengthByChainId and
_sendXDomainMessageViaChainId functions are able to work with
DEFAULT_CHAINID

Path: ./contracts/L1/messaging/L1CrossDomainMessenger.sol:
sendMessage(), sendMessageViaChainId()

Recommendation: reuse duplicated code.

www.hacken.io
28

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

7. Incorrect Title

The role is obtained using the OVM_Sequencer title, but the project
Sequencer is titled MVM_Sequencer.

Path:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : appendSequencerBatch()

Recommendation: replace the role title with the correct one.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

8. Redundant Functionality

Obtaining the next element to be enqueued id is performed by calling
the _getBatchExtraDataByChainId function, but it can be directly
taken from the _nextQueueIndex mapping.

Path:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : getNextQueueIndexByChainId()

Recommendation: remove the redundant functionality.

Status: Reported

9. Redundant Parameter

The _chainId parameter is not used in the functions.

Paths:
./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : _getBatchContextByChainId(), _makeBatchExtraDataByChainId()

./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
_makeBatchExtraDataByChainId()

Recommendation: remove the redundant functionality.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

10. Duplicate Code

Duplication of code may lead to unnecessary Gas consumption and cause
maintenance issues due to modifications in multiple places.

uint2str function is duplicated across multiple contracts.

Paths: ./contracts/L1/messaging/L1StandardBridge.sol: uint2str()

./contracts/L1/rollup/StateCommitmentChain.sol: uint2str()

./contracts/L1/rollup/CanonicalTransactionChain.sol: uint2str()
www.hacken.io

29

./contracts/MVM/MVM_DiscountOracle.sol : uint2str()

Recommendation: move the function to library contract and reuse.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

11. Redundant Code

Both deleteStateBatchByChainId and _deleteBatchByChainId perform the
batch header validity check.

The redundant code increases the Gas consumption and decreases the
code readability.

Path:
./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
deleteStateBatchByChainId(), _deleteBatchByChainId()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

12. Redundant Code

The _appendBatchByChainId function contains the functionality for the
case when the msg.sender != proposer, but is redundant as the
msg.sender is always equal to the proposer due to the collateralizing
check in the appendStateBatchByChainId function.

The redundant code increases the Gas consumption and decreases the
code readability.

Paths:
./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
_appendBatchByChainId()

Recommendation: remove the redundant code.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

13. Redundant “payable” Keyword

The functions are marked with the payable keyword, but they do not
execute logic for the native coin.

The redundant code increases the Gas consumption and decreases the
code readability.

Paths:
./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.so
l : replayMessage(), replayMessageViaChainId()

Recommendation: remove the redundant code.

www.hacken.io
30

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

14. Default Visibility Usage

Variables` visibilities are not specified. Specifying state
variables` visibility helps to catch incorrect assumptions about who
can access the variable.

Paths: ./packages/contracts/contracts/MVM/MVM_DiscountOracle.sol :
allowAllXDomainSenders

./contracts/contracts/L1/rollup/CanonicalTransactionChain.sol :
queueElements

./contracts/contracts/L1/messaging/L1CrossDomainMessenger.sol :
DEFAULT_CHAINID

Recommendation: define the visibilities explicitly.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

15. Redundant Operation

_initiateETHDepositByChainId function allows depositing nothing in
cases when fee == msg.value, which make no sense.

Path: ./contracts/L1/messaging/L1StandardBridge.sol:
_initiateETHDepositByChainId()

Recommendation: use require(fee < msg.value) instead (not <=).

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

16. Incorrect Event Emit

_initiateETHDepositByChainId function emits ETHDepositInitiated with
msg.value, but msg.value - fee should be emitted instead.

Path: ./contracts/L1/messaging/L1StandardBridge.sol:
_initiateETHDepositByChainId()

Recommendation: emit the correct deposit value.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

17. Unused Imports

There are imports in the contract that are not used.

Paths:
./packages/contracts/contracts/libraries/codec/Lib_OVMCodec.sol :
import { Lib_RLPWriter } from "../rlp/Lib_RLPWriter.sol";

import { Lib_BytesUtils } from "../utils/Lib_BytesUtils.sol";

www.hacken.io
31

import { Lib_Bytes32Utils } from "../utils/Lib_Bytes32Utils.sol";

Recommendation: remove the redundant imports

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

18. Functions that Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Paths:
./packages/contracts/contracts/L1/messaging/L1CrossDomainMessenger.so
l : xDomainMessageSender(), sendMessage(), sendMessageViaChainId(),
relayMessage(), replayMessage()

./packages/contracts/contracts/L1/rollup/CanonicalTransactionChain.so
l : queue(), getTotalBatches(), getNextQueueIndex(),
getLastTimestamp(), getLastBlockNumber(), getQueueElement(),
getNumPendingQueueElements(), getQueueLength(),
getTotalBatchesByChainId(), getNextQueueIndexByChainId(),
getLastTimestampByChainId(), getLastBlockNumberByChainId(),
getQueueElementByChainId(), getNumPendingQueueElementsByChainId(),
getQueueLengthByChainId(), appendSequencerBatchByChainId(),
pushQueueByChainId(), setQueueByChainId(),
setBatchGlobalMetadataByChainId(), getBatchGlobalMetadataByChainId(),
lengthBatchByChainId(), pushBatchByChainId(), setBatchByChainId(),
getBatchByChainId(), deleteBatchElementsAfterInclusiveByChainId()

./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
setFraudProofWindow(), getTotalElements(), getTotalBatches(),
getLastSequencerTimestamp(), appendStateBatch(), deleteStateBatch(),
verifyStateCommitment(), insideFraudProofWindow(),
appendStateBatchByChainId()

Recommendation: use the external visibility for functions never
called from the contract.

Status: Fixed (Revised commit:
756a26d8651a5da3c438391d7854bbf4a2ff181a)

19. Redundant Code

The appendStateBatchByChainId function contains the proposer
parameter, which is validated for the equality with msg.sender and
string(abi.encodePacked(uint2str(_chainId),"_MVM_Proposer"))).

Therefore, this functionality can be simplified to equality checking
of msg.sender and
string(abi.encodePacked(uint2str(_chainId),"_MVM_Proposer"))).

Path:
./packages/contracts/contracts/L1/rollup/StateCommitmentChain.sol :
appendStateBatchByChainId()

Recommendation: remove the redundant code.

www.hacken.io
32

Status: Reported

www.hacken.io
33

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
34

