
Audit Report

contact@movebit.xyz https://twitter.com/movebit_

MSafe

Thu Oct 19 2023

https://www.movebit.xyz/
https://www.movebit.xyz/
https://twitter.com/movebit_

MSafe Audit Report

1 Executive Summary

1.1 Project Information

Description The first multi-signature, non-custodial digital assets

management solutions built on Move

Type Asset Management

Auditors MoveBit

Timeline Fri Sep 22 2023 - Thu Oct 19 2023

Languages Move

Platform Sui

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Momentum-Safe/mpay-core-sui

Commits dab3565fcc75b5f352279d405e8e628219f4fb2c

74cb692ebbd1c4d9e67d825f0c0fcb368eb6310d

abddd2264463fce6442b81306f4853ddc00926f4

https://github.com/Momentum-Safe/mpay-core-sui
https://github.com/Momentum-Safe/mpay-core-sui/tree/dab3565fcc75b5f352279d405e8e628219f4fb2c
https://github.com/Momentum-Safe/mpay-core-sui/tree/74cb692ebbd1c4d9e67d825f0c0fcb368eb6310d
https://github.com/Momentum-Safe/mpay-core-sui/tree/abddd2264463fce6442b81306f4853ddc00926f4

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

MOV move/Move.toml e2d4d669483729ec879fc39f3f1fe

6d645a23558

ROL move/sources/role.move 2d8c8d364d98eca0d80f783fef811

f9b4c425310

TUT move/sources/test_utils.move 903b840932703c34ceb1f361021b

2c8459afa03a

STE move/sources/stream_test.move c7f80cf577e02747d8ac19c740cd0

cca4cea8461

VAU move/sources/vault.move 3217b6e2e09be3af305546501bf7

d1fd0c9f752e

STR move/sources/stream.move bf55c49854136a48ed8bc6527ed4

d0e4a273afa3

FMO move/sources/fee_module.move 663cbf88ac3271d566f0e14a020fb

e726158890e

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 1 1 0

Informational 0 0 0

Minor 1 1 0

Medium 0 0 0

Major 0 0 0

Critical 0 0 0

1.4 MoveBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance

with specifications and best practices. Possible issues our team looked for included (but are

not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and

"Formal Verification" strategy to perform a complete security test on the code in a way that

is closest to the real attack. The main entrance and scope of security testing are stated in

the conventions in the "Audit Objective", which can expand to contexts beyond the scope

according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows /

parameter verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

2 Summary

This report has been commissioned by MSafe to identify any potential issues and

vulnerabilities in the source code of the MSafe smart contract, as well as any contract

dependencies that were not part of an officially recognized library. In this audit, we have

utilized various techniques, including manual code review and static analysis, to identify

potential vulnerabilities and security issues.

During the audit, we identified 1 issues of varying severity, listed below.

ID Title Severity Status

STR-1 Unused Constant Minor Fixed

3 Participant Process

Here are the relevant actors with their respective abilities within the MSafe Smart Contract:

Admin

Admin can set the create_fee_numerator through set_streaming_fee() .

Admin can set the create_flat_fee through set_streaming_flat_fee() .

Admin can set the claim_fee_numerator through set_claim_fee() .

Admin can set the fee receiver through set_collector() .

Admin can transfer administrative privileges to another account through

transfer_admin() .

Collector

Collector has the ability to withdraw fees through withdraw_fee() .

Creator

Creator can create a Stream through create_stream() .

Creator can cancel the Stream through cancel_stream() .

Receiver

Receiver can set whether they allow other accounts to execute claims on their behalf

through set_auto_claim() .

Receiver can claim the funds through claim_stream() .

User

Other accounts can help the recipient perform the collection operation through

claim_stream_by_proxy() .

4 Findings

STR-1 Unused Constant

Severity: Minor

Status: Fixed

Code Location:

move/sources/stream.move#51

Descriptions:

The main consequence of the Unused Constants defect is the increase in gas costs during

module deployment, leading to gas wastage.

constconst SECONDSECOND:: u64u64 == 10001000;;

Suggestion:

It is recommended to delete unused constants.

Resolution:

This issue has been fixed. The client deleted unused constants.

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or to

optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited review

at the time provided. Results may not be complete and do not include all vulnerabilities. The

review and this report are provided on an as-is, where-is, and as-available basis. You agree

that your access and/or use, including but not limited to any associated services, products,

protocols, platforms, content, and materials, will be at your own risk. A report does not imply

an endorsement of any particular project or team, nor does it guarantee its security. These

reports should not be relied upon in any way by any third party, including for the purpose of

making any decision to buy or sell products, services, or any other assets. TO THE FULLEST

EXTENT PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN

CONNECTION WITH THIS REPORT, ITS CONTENT, RELATED SERVICES AND PRODUCTS,

AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT INFRINGEMENT.

