AN

AN

S v/ \ 4
ooooo /Q\%
FINI:II_ SIAR

R’EF’DR’T

uuuuuuuuu

A\ security

Disclaimer:

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in
the target system or codebase.

The content of this assessment is not an investment. The information provided in this report is
for general informational purposes only and is not intended as investment, legal, financial,
regulatory, or tax advice. The report is based on a limited review of the materials and
documentation provided at the time of the audit, and the audit results may not be complete or

identify all possible vulnerabilities or issues. The audit is provided on an "as-is," "where-is," and
"as-available" basis, and the use of blockchain technology is subject to unknown risks and

flaws.

The audit does not constitute an endorsement of any particular project or team, and we make
no warranties, expressed or implied, regarding the accuracy, reliability, completeness, or
availability of the report, its content, or any associated services or products. We disclaim all
warranties, including the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement.

We assume no responsibility for any product or service advertised or offered by a third party
through the report, any open-source or third-party software, code, libraries, materials, or
information linked to, called by, referenced by, or accessible through the report, its content,
and the related services and products. We will not be liable for any loss or damages incurred
as a result of the use or reliance on the audit report or the smart contract.

The contract owner is responsible for making their own decisions based on the audit report
and should seek additional professional advice if needed. The audit firm or individual assumes
no liability for any loss or damages incurred as a result of the use or reliance on the audit
report or the smart contract. The contract owner agrees to indemnify and hold harmless the
audit firm or individual from any and all claims, damages, expenses, or liabilities arising from
the use or reliance on the audit report or the smart contract.

By engaging in a smart contract audit, the contract owner acknowledges and agrees to the
terms of this disclaimer.

Bailsec.io

Zi\ security

1. Project Details

Important:

Please ensure that the deployed contract matches the source-code of the last commit hash.

Website

Language

Methods

Github repository

Resolution 1

Resolution 2

Resolution 3

Resolution 4

Bailsec.io

app.camelot.exchange
Solidity
Manual Analysis

https://github.com/CamelotLabs/exchange-
contracts/commit/05737644e0167e288fcef00c/5659cccfe’e
41bb

https://github.com/CamelotLabs/exchange-
contracts/tree/db47ce7fab24b72ab193b2820aaf8edd1d2c728
S

https://github.com/CamelotLabs/exchange-
contracts/tree/69bea558b2b628f2dd43c10e03334edaebel09
032

https://github.com/CamelotLabs/exchange-
contracts/tree/1afdd402ef64c754acfbeb65a509a08ed037bd
ac

https://github.com/CamelotLabs/exchange-
contracts/tree/12da3f10ac30a45cebdf9caf316728ebffcd19f7

https://github.com/CamelotLabs/exchange-contracts/commit/05737644e0167e288fcef00c75659cccfe2e41b6
https://github.com/CamelotLabs/exchange-contracts/commit/05737644e0167e288fcef00c75659cccfe2e41b6
https://github.com/CamelotLabs/exchange-contracts/commit/05737644e0167e288fcef00c75659cccfe2e41b6

Zi\ security

2. Detection Overview

High

Medium

Low
Informational
Governance

Total

6
10
9

32

Acknowledged
Severity Found Resolved Partially (ho change Failed
Resolved made) resolution
7/ 7

1)
s 4
9

23 9

2.1 Detection Definitions

Description

Severity
High
Medium
Low

Informational

Governance

Bailsec.io

The problem poses a significant threat to the confidentiality of a
considerable number of users' sensitive data. It also has the
potential to cause severe damage to the client's reputation or
result in substantial financial losses for both the client and the
affected users.

While medium level vulnerabilities may not be easy to exploit,
they can still have a major impact on the execution of a smart
contract. For instance, they may allow public access to critical
functions, which could lead to serious consequences.

Poses a very low-level risk to the project or users. Nevertheless
the issue should be fixed immediately

Effects are small and do not post an immediate danger to the
project or users

Governance privileges which can directly result in a loss of funds
or other potential undesired behavior

A\ security

Security Advice

At BailSec, our objective extends beyond the identification of vulnerabilities, we aim to deliver
high-confidence audits that withstand post-audit change cycles.

Historically, one of the most significant residual risk vectors arises during resolution rounds,
when architectural or behavioral changes are introduced to implement fixes.

To mitigate this, we provide targeted security advice intended to minimize the risk of
regressions or new vulnerabilities emerging during final remediation.

These recommendations outline what we consider hecessary to finalize the audit with
sustained confidence, ensuring that post-resolution modifications do not invalidate the high-
confidence assessment established by this report.

Change introduction

An additional resolution round (3] has been requested for minor changes, during the course of
this review, our team identified two new low-severity issues. We highly recommend to be
mindful with any further changes as this would essentially result in resolution round 4 which
means there have been changes on changes on changes on changes. With every new
iteration, the audit confidence is exponentially decreased and the risk of unidentified
vulnerabilities increases exponentially.

We recommend to carefully review these new issues and in the scenario where these can be
accepted, no further changes should be made to the code.

Bailsec.io

Zi\ security

3. Detection

YakAdapter

The YakAdapter contract is a base contract used to implement certain functionality for all the
adapters. It inherits the Maintainable contract, which implements role-based access control
specifically for the Maintainer role. The contract allows the Maintainer role to recover ETH and
tokens stuck in the various adapter contracts. The top-level query and swap functions are
also implemented here, which call the internal functions that are implemented in the individual
adapter contracts.

Core Invariants:

INV 1: swap destination always gets at least amountOut amount of tokens

Privileged Functions

- revokeAllowance

- recoverERC20
- recoverETH
‘ Issue_01 setName function is unused
Severity Informational
Description The setName function is defined but never used. This can be

invoked in the constructor to set the name, or removed from the
contract.

Recommendations | Either use the setName function in the constructor or remove it
from the contract.

Comments / Resolved, the setName function has been removed.
Resolution

Bailsec.io -5-

Zi\ security

VanillaV2Adapter

The VanillaVZAdapter contract is used to interact with Uniswap-v2-like pools. Like all adapters,
it implements the swap and quote functions. The swap function swaps the input and output
tokens by interacting directly with a pair contract, and the quote function estimates swap
results used when building the swap path.

Core Invariants:

INV 1: Quotes are given out only when the pair exists in the factory
INV 2: swap must result in at least _amountOut tokens of output

‘ Issue_02 Incompatible with the current deployed contracts

Severity Medium

Description The contract calls the getAmountin function to estimate the
amount of funds needed in an exactOut swap. The issue is that
Camelot pair contracts do not implement this function. This would
lead to reverted quotes.

Vanilla Uniswap contracts do not implement either of the 2 quote
functions getAmountin and getAmountOut.

Thus, the current codebase is incompatible with both Camelot as
well as Uniswap pair contracts.

The developers expressed that the Camelot pair contracts will be
migrated, adding the missing getAmountin functionality. However,
any liquidity present in the current Camelot pair contracts will still
remain out of reach of the router unless the pair contracts
themselves are upgraded.

The same issue is also valid for the CamelotAdapter contract.

Recommendations | Consider implementing a separate quoter contract to estimate the
getAmountin value. This way, liquidity from both the current
versions as well as the soon-to-be-migrated version can be used by
the router.

Bailsec.io -6-

Zi\ security

Comments / Acknowledged. The CamelotAdapter contract implements a backup
Resolution calculation method for calculating the amount input estimates in
case the getAmountin function is not present. However, this is not
implemented for the VanillaV2Adapter contract.
Bailsec.io -7-

Z\ security

CamelotAdapter

The CamelotAdapter contract is the adapter contract designed to specifically interact with
Camelot pools, which implement directional fees and stableswap pools. The contract is almost
identical to the VanillaVZ2Adapter contract, since both target pair contracts implement a
similar interface.

Core Invariants:

INV 1: Quotes are given out only when the pair exists in the factory
INV 2: swap must result in at least _amountOut tokens of output

Bailsec.io -8-

Zi\ security

UniswapV3likeAdapter

The UniswapV3likeAdapter contract is the base contract for interacting with Algebra CLAMM
poals. This contract is inherited by the AlgebraAdapter contract, which then interacts with the
Uniswap v3-like pools. The contract here implements the quote and swap functions, as well as
static calls to the quoter contract to calculate the swap results.

Core Invariants:

INV 1: swap must result in at least _amountOut tokens of output
INV 2: priceLimit for swaps always ensures that the entire liquidity is available for the swap

Privileged Functions

- setQuoter
m Missing event emission in setQuoter
Severity Informational
Description The setQuoter function performs a storage edit but does not emit

an event.

Recommendations | Consider emitting a QuoterSet event similar to what is done in the
AlgebraV2Adapter.

Comments / Resolved, QuoterUpdated event is now emitted on a quoter update.
Resolution

Bailsec.io

A security

m Fee field is not populated

Severity

Informational

Description

The QParams struct contains a fee field, meant to contain the fee of
the target pool. However, this field is never populated and thus
remains 0. While all other fields are populated in the
getQuoteForPool function, the fee remains O. This issue is also
present in the AlgebraVZ2Adapter contract.

Recommendations

Consider either removing the fee field or populating it with the
current fee rate of the pool.

Comments /
Resolution

Resolved, the fee field has been removed.

Bailsec.io

-10-

Zi\ security

AlgebraAdapter

The AlgebraAdapter contract inherits the UniswapV2likeAdapter contract to interact with

Algebra pools. This contract implements the algebraSwapCallback function to do the token

payments and the _underlyingSwap function to interact with the actual pool.

Severity

Algebra adapter returns incorrect amount when fee-on-transfer
tokens are involved

High

Description

The AlgebraAdapter contract uses the function
swapSupportingFeeOninputTokens from Algebra V1. The function
returns the amountO and amount1 variables. However, since the
algebra pool holds fee on transfer tokens, when it transfers the
output tokens to the AlgebraAdapter contract, the adapter receives
slightly fewer tokens than intended. As per the implementation of
the Algebra Pool contract in V1, the amountO and amount1 variables
returned do not reflect or take these fees into account.

Thus, the returned value from the swap function can be erroneous.

The main issue occurs in the _swap function of the
UniswapV3likeAdapter contract. It then tries to transfer these
tokens to the end user.

uint256 amountOut = _underlyingSwap(params, new bytes(0)):
if [amountOut < _amountOut] revert

InsufficientOutputAmount(amountOut, _amountOut);
_returnTol_tokenOut, amountOut, _to)-

This returnTo call will always fail, since it will be trying to transfer
amountOut tokens, which will be higher than the actual amount of
tokens available in the contract.

Recommendations

For Algebra V1 (and preferably for other adapters as well), consider
checking the pre-balance/post-balance of the contract and
returning the difference instead.

Bailsec.io

-11 -

Zi\ security

Comments /
Resolution

Fixed by checking pre and post balances.

Severity

Missing protection on the callback function allows stealing of
tokens from the adapter

Low

Description

The algebraSwapCallback function does not implement any checks
on the caller. It is meant to be called only by the Algebra poal, but
this isn't enforced anywhere. This allows any contract to call this
contract and transfer out tokens from the Adapter.

Since the Adapter isn't designed to hold tokens, this is classified as
a low-severity issue.

The same issue also applies to the AlgebraVV2Adapter contract.

Recommendations

In the _underlyingSwap function, record the pool address in a global
variable. Then, in the algebraSwapCallback function, ensure that
msg.sender is the same pool address. Unset the pool address after
the swap concludes.

Comments /
Resolution

Fixed by checking if the caller is the target pool stored in the
tempPoolAddress variable. Consider setting the tempPoolAddress
to O after completion of the swap.

Bailsec.io

-12 -

Zi\ security

AlgebraV2Adapter

The AlgebraVZ2Adapter contract is the adapter to interact with Algebra V2 pools, which
are based on Uniswap V4 poaols, allowing custom logic and hook implementations. This
implements functions similar to the UniswapV3likeAdapter contract, and also handles
custom pools from whitelisted deployers.

Core Invariants:

INV 1: Only maintainer added custom pools are checked for quotes
INV 2: swap must result in at least _amountOut tokens of output

Privileged Functions

- addCustomDeployer
- removeCustomDeployer
- setQuoter

Bailsec.io -13-

A security

‘ Issue_07 Custom pools aren't used in swaps, resulting in failed transactions

Severity

High

Description

The router has 2 main functions: findBestPath and swapNoSplit. The
findBestPath function calculates a path, and the result of that can
be used in the swapNoSplit function to carry out that swap. The
findBestPath calls the query function on the adapter, while the
swapNoSplit calls the swap function. For the system to work
correctly, both the query and swap functions must operate on the
same poaol.

However, in this contract, the query function checks queries from
both normal pools as well as custom pools from whitelisted
deployers.

for (uint256 i; i < deployerslength; ++i] {
address customPool = getCustomPoolldeployers[key/[i],
params.tokenin, params.tokenOut):
if [customPool = address[0]] {
uint256 tempQuote = getQuoteForPoollcustomPool,
paramsy:
guote = templQuote > quote 7 templuote : quote;

So the query function can return a path based on such a custom
pool. However, the swap function ONLY operates on normal pools
and not custom pools.

address pool = getBestPool(params.tokenin, params.tokenOut):
(bool zeroForOne, uint160 pricel imit] =
getZeroOneAndSqgrtPricel imitX96(params.tokenin,
params.tokenOut):
(int256 amount0, int256 amount]] = IAlgebraV2Poollpool].swap(
address(this), zeroForOne, int256(params.amount), pricel.imit,
callbackData

]’.

So the query function generates a path based on the presence of

Bailsec.io

-14 -

Zi\ security

custom poals, but this path cannot be used since the swap function
actually doesn't support it. This will cause swaps to fail, since the
normal pools might be giving a lower exchange rate than the
custom poals, which is what the paths were based on.

Recommendations

Consider implementing a way to store the pool identifiers in the
best path. This way, in the adapter, the correct pool can be chosen.

This isn't an issue in the other adapters since each adapter only
handles 1 pool for a given token pair. However, with Algebra V2, this
assumption is broken, so the adapters must be able to distinguish
between multiple available pools for each token pair.

Comments /
Resolution

Fixed by returning deployer for algebraV2 custom pools.
Additionally the findBestPath function returns the deployer
addresses if applicable in the offer struct. _swapNoSplit has also
been updated in order to support swaps with custom pools by using
try-catch which attempts to call the algebra v2 adapter; if the call
fails the default case is a regular swap attempt.

Bailsec.io

-15-

Zi\ security

‘ Issue_08 Bad comparison leads to inferior swaps

Severity

High

Description

In the getQuoteForBestPool function, the best quote is chosen
among the available pool swaps. In algebra V2, since there can be
multiple pools for a token pair, each allowed custom pair is also
checked, and the best quote is chosen from amongst them.

for (uint256 i; i < deployerslength; ++i] {
address customPool = getCustomPoolldeployers[key/[i],
params.tokenin, params.tokenOut):
if [customPool I= address[0]] {
uint256 tempQuote = getQuoteForPoollcustomPool,
paramsy:
guote = templQuote > quote 7 templuote : quote;

However, the issue is that the tempquote comparison is only valid
for exactln swaps. In the case of exactOut swaps, the lowest quote
amount leads to the best swap, not the highest. This is correctly
handled in the router, which compares quotes from different
adapters, but not in the adapter itself, which compares quotes from
multiple pools. Thus, for exactOut swaps, the Algebra V2 adapter is
actually designed to quote the worst possible swap instead of the
best.

Recommendations

Modify the tempQuote comparison to get the maximum or the
minimum based on the exactln value.

Comments /
Resolution

Fixed by checking for the minimum quote for exact out swaps.

Bailsec.io

-16 -

Zi\ security

m Custom pools cannot overwrite a failed quote from the main pool

Severity

Low

Description

The getQuoteForBestPool function checks quotes for the main poal
as well as custom pools from other deployers. The issue is that if
the main pool returns a quote of O due to exceeding the gas limit
set in the staticcall, the custom pool queries will not be able to
overwrite this for an exactOut swap.

if [bestPool I= address(0]] quote = getQuoteForPoollbestPool,
paramsy:

In case the main pool returns a 0, the quote will be set to O.

bool isBetter =
params.exactin ? tempQuote > quote : [tempQuote /= 0
86 tempQuote < guote):

Now, even if custom pools return a valid (hon 0) tempQuote, the
tempQuote<quote clause will fail, so this custom pool quote will
never replace the failed main quote.

So instead, a 0 quote will be returned, even though the custom pool
was available.

Recommendations

A solution would be to allow tempQuote to overwrite quote if the
quote is 0. Use the comparison already present in the
_queryNoSplitWithDeployer function, comparing the quoteAmount
with bestQuery for exactOut swaps.

However, since that would result in a 4th resolution round with
further code changes, we recommend refraining from making any
more changes to the code, as every resolution round will decrease
the overall audit confidence and increases the risk of vulnerabilities.

Comments /
Resolution

Fixed following recommendations.

Bailsec.io

-17 -

Z\ security

CamelotYakRouter

The CamelotYakRouter contract is the main router contract, which calculates paths and
carries out swaps. It implements 2 main functions, findBestPath and swapNoSplit. The user is
supposed to call findBestPath with their desired input and output tokens. The output of this
function can be fed into the swapNoSplit function to carry out the calculated swap.

The contract also implements a fee on the swap, generating revenue for the protocol. A list of
adapters is stored in the contract, which is iterated over when calculating the best swap path.

Appendix: findBestPath

The findBestPath function is used to calculate the best possible swap path starting from a
specified tokenln to a specified tokenOut. For any chosen token pair, the contract invokes the
queryNoSplit function, which iterates over all the present adapters and calls their individual
quate functions, and chooses the best swap out of them.

The contract supports both input and output-constrained swaps. It stores a list of trusted
tokens and implements a recursive function, which recursively chooses trusted intermediate
tokens until it hits the maximum allowed number of swaps.

The output of each possible swap route is compared, and the best is chosen from amongst
them.

Appendix: swapNoSplit

The swapNoSplit carries out the calculated swaps. It takes in a Trade struct, which contains
the amounts of input and output tokens, the token hop path, a list of adapters, and a list of
recipients. The list of adapters is then iterated over, and each adapter is called to carry out a
swap. The output of the swap is routed to the specified recipient, who will be handling the next
swap. After the final swap, the output tokens are routed to the specified final recipient.

The contract also implements a few special functions like swapNoSplitFromETH and
swapNoSplitToETH, to handle native eth-based inputs and outputs. The actual pools only
support WETH, so the router contract handles the intermediate wrapping/unwrapping
required to facilitate the swaps. It also supports permit-based tokens, allowing users to pass
in permit signatures, skipping the approval transaction process.

Bailsec.io -18-

Zi\ security

Core Invariants:

INV 1: queryNoSplit chooses the best possible quoteAmount, the maximum for exactln swaps,

and the minimum for exactOut swaps
INV 2: findBestPath allows a max depth of 4 swaps

INV 3: Only user-specified and router-owner-specified trusted tokens can be intermediate

tokens
INV 4: _findBestPath selects the maximum available quotes for exactln swaps and the
minimum available quotes for exactOut swaps

INV 5: swapNoSplit always ensures the final recipient receives at least amountOut amount of

tokens.

Privileged Functions

- setAllowanceForWrapping
- setTrustedTokens

- setAdapters

- setMinFee

- setFeeClaimer

Bailsec.io

-19-

Zi\ security

‘ Issue_10 Baseline is never set when exactln is false

Severity

High

Description

In the case where we call queryNoSplit with _exactln == false, the
baseline price will never be set if the first query fails. The result is
that the baseline will remain O.

ifl
i == 0 [[_exactin
? gquoteAmount > bestQuery.amount
;quoteAmount < bestQuery.amount
] bestQuery = Query[_adapter, _recipient, _tokenin,
_tokenOut, guoteAmount];:

In the case where _exactln == true, this is not an issue since a
baseline of value O will get overwritten in the next iteration because
any value > 0 will set the bestQuery. However, in the false case,
there is no amount that can set the bestQuery because the baseline
will be O.

The result will cause the query to incorrectly return O for
bestAmount, and in the case where this would have been the
bestPath, this will cause findBestPath to not return the best path in
some cases.

Recommendations

Consider covering the case where the first iteration fails in the loop,
and set the baseline even if we are not in the first iteration.

Comments /
Resolution

Fixed by setting the bestQuery amount if it is O while the returned
quote is non 0.

Bailsec.io

-20-

Zi\ security

‘ Issue_11 The same pool may be used twice, leading to incorrect prices

Severity

High

Description

The path-finding algorithm iterates over all possible paths with a
certain maximum depth, and chooses the best one. This can
sometimes lead to the same pool being operated on multiple times
within the same transaction.

Let's say the task is to find the best path for an A->C swap, and it
happens to be A->B->C. Now, assume there are two A-B pools, with
different prices leading to an arbitrage opportunity. Thus, the path
A->B->A can actually be profitable when using the 2 different poals.
So the most optimal route will be A->B->A->B->C.

A-pool1->B-pool2->A-pool1->B-pool3->C

In such a scenario, the pooll gets utilized twice. The issue is that the
quater function is read-only, so it will simulate both the pooll swaps,
assuming the same constituent tokens. However, if we try to
actually execute the swap, it will fail because the first pooll swap
will change the outcome of the second pooll swap.

Thus, the quoter will create paths with arbitrage loops that might
not actually exist, since it treats each swap as an isolated event.
However, if the same poaol is used twice, the swaps are not isolated
anymore and affect each other.

Recommendations

The same pool must not be used more than once in a path.
Otherwise, the quote for the second usage will be incorrect.

Comments /
Resolution

Fixed by storing the poolHash, which is a hash of adapter, tokens,
and deployer. Before adding to the path, the logic now checks that
the poolHash of the pool to be added does not already exist in the
path, If so the logic continues and does not consider this as a
potential hop.

Bailsec.io

-21-

Zi\ security

‘ Issue_12 Missing poals in an adapter can lead to rejection of valid paths

Severity High

Description The queryNoSplit function iterates over each adapter and checks
the query value for a given token pair. If this value is better than the
current best, it is saved as the best query.

try IAdapter(_adapter] queryl_amount, _tokenin, _tokenOut,
_exactin] returns [
uint256 guoteAmount, address _recipient

J{
ifl
i == 0 [[_exactin
? gquoteAmount > bestQuery.amount
;quoteAmount < bestQuery.amount
] bestQuery = Query[_adapter, _recipient, _tokenin,
_tokenOut, guoteAmount];:

The issue is that if any of the adapters do not have that tokenPair, it
will return O instead of reverting. For exactOut swaps, a O quote is
the best possible quote, so the bestQuery will save that O quote,
which will cause issues in the path-finding algorithm.

Say the Camelot adapter does not have an A-B pool, when query is
called on it, it will enquire the factory, which returns address(0).

if [pair I= address(0]] guoteAmount =
IPairlpair].getAmountin/_amount, _tokenOut]-

The line above in the adapter contract will then refuse to populate
the quoteAmount value, returning the default value of O. This will be
saved as the bestQuote for exactOut swaps, since O is the best
possible quote for exactOut swaps.

Then, in the path-finding loop, O quotes are rejected.

if [swapAmount == 0] continue;

Bailsec.io -22-

Zi\ security

So even though the A-B pair existed in Algebra V2, since it didn't
exist in Camelot and the O quote slipped in, it will skip that whole
path altogether. So even if A-B swap through Algebra V2 was the
best possible path, since one of the adapters reported O, the whole
pair is ditched.

This will lead to a lot of paths getting skipped if any adapter does
not contain that token pair for exactOut swaps.

Recommendations

In the queryNoSplit function, consider rejecting quotes if the
returned quote is 0. Also, consider reverting inside the adapters
instead of returning default values in case of failure. Since the
adapter calls are in try-catch blocks, there will be no impact on the
router. Default returns can be misinterpreted in the system as
legitimate values.

Comments /
Resolution

Fixed by only updating the bestQuery if the quote amount is non
zero, thus a failure which returns O will no longer cause issues for
exactOut swaps.

Bailsec.io

-23-

Zi\ security

‘ Issue_13 Quoter failures can lead to rejection of valid paths

Severity High

Description The getQuoteSafe function in the AlgebraAdapter and
AlgebraV2Adapter contracts is used to simulate swaps and
generate quotes for the swap path. This is done via a static call to
the uni-quoter contract. The results are then sent back to the
quoter function.

(bool success, bytes memory data] =
staticCallQuoterRaw(calldata_]:

nt256 amount0O;

nt256 amountT:

if [success] [amountO, amount]] = abi.decodeldata, [int256,
int256])

return [amountO, amount]):

The issue is that if the quoter ever fails, it will instead return the
default value of 0. So the adapter will actually read a value of O,
even though the swap is not possible.

In the queryNoSplit function, if an adapter returns a quote of 0, it is
automatically treated as the best swap for an exactOut swap. Since
no other quotes can beat this value, it will pass this value to the
parent findBestPath function to build the final path.

The findBestPath function in return checks the quotes from the
queryNoSplit function, and rejects it if the quote is O by continuing
the loop. So assume the function is trying to quote an A-B swap,
through adapters Camelot, Algebra, and AlgebraV2. Say Camelot
and Algebra give legitimate results, but AlgebraV2 returned a failed
swap, and thus a value of 0. The queryNoSplit will then reject the
correct quotes and only pass in the O quote since it is the best for
an exactOut swap. The pathfinder will then drop the whole A-B swap
route, since it's a O quote, completely rejecting the legitimate swap
paths offered by Camelot and Algebra adapters.

Bailsec.io -24-

Zi\ security

This is especially impaortant in Algebra V2, since it can contain
custom pools whose swaps can be frozen. Thus, if such a pool is
frozen by its hooks and the quoter reverts, this will lead to rejected
paths.

Returning O as the default value is not a good choice when exactOut
swaps are also involved.

Recommendations

In the queryNoSplit function, consider rejecting the quote if the
returned quote is 0. Also, consider reverting inside the adapters
instead of returning default values in case of failure. Since the
adapter calls are in try-catch blocks, there will be no impact on the
router. Default returns can be misinterpreted in the system as
legitimate values.

Comments /
Resolution

Fixed by only updating the bestQuery if the quote amount is non
zero, thus a failure which returns O will no longer cause issues for
exactOut swaps.

Bailsec.io

-25-

Zi\ security

Incomplete swaps can lead to erroneous paths, leading to token

Issue_14
losses
Severity Medium
Description In uniswap V3-like poals, there can be partial swaps if the pool runs

out of liquidity. The pool continues iterating over the various ticks
until it hits the max/min limit and then simply stops, swapping only
that amount. The rest of the input tokens are not charged from the
caller.

If such a low liquidity v3 style pool is the only possible option, then
the swap function can actually lose tokens. This is because the
contract assumes that in any swap, the entire amount of input
tokens is used. However, in such a partial-swap scenario, the
unutilized input tokens will sit in the adapter contract, and will result
in a loss for the caller.

Recommendations

Either refund unused input tokens after a swap, or revert in case
there are any unused tokens, since it is not efficient and causes a
loss to the caller.

Comments /
Resolution

Fixed, unutilized input tokens are sent back to the router in order to
allow for refunds to users.

Bailsec.io

-26-

Zi\ security

‘ Issue_15 A malicious user can bypass fees by using untrusted input tokens

Severity

Medium

Description

Currently, in function _swapNoSplit, there is no verification on the
path of tokens provided by the user. Since the fees are taken on the
input token in _swapNoSplit, the malicious user can:

e Use an untrusted low-value token as the input token. An
attacker can create a pool where 1 meme token can be
swapped for 1000 USDC, for example. This will basically be
funded by the attacker themselves.

e MIN_FEE percent of 1 meme token is sent to the fee claimer

e Code uses one of the adapters ([example, Camelot or Uniswap
pair] to swap it to USDC.

e Path continues swapping as intended.

e Attacker-controlled meme token can then burn the tokens
held by the FEE_CLAIMER and mint them to themselves.

Through this, the attacker is able to avail free swaps and cause loss
to the team. While this is not a big issue, it is recommended to
implement verification.

Recommendations

Either only allow input tokens to be one of the trusted tokens, or
consider acknowledging the issue, accepting an occasional fee loss.

Comments /
Resolution

Acknowledged. No aggregator fee will be used for now.

Bailsec.io

-27 -

Zi\ security

‘ Issue_16 findBestPath function does not calculate router fee

Severity

Medium

Description

The findBestPath function of the router is used to calculate the
best route for a swap. The output is then formatted in a way that it
can be fed directly into the swapNoSplit function to carry out the
actual swap.

The issue is that the swapNoSplit function actually charges a fee,
which is not taken into account in the findBestPath function. So the
output cannot be directly plugged into the swap function, the fee
amount also needs to be added on top. The output quote isn't
exactly compatible with the swap input.

Recommendations

Consider implementing another quote function that calculates the
best path, including the fee. This will allow contracts to call the swap
with the exact output from the quote function.

Comments /
Resolution

Acknowledged. The aggregator fee will not be turned on for now.

Bailsec.io

-28-

Zi\ security

‘ Issue_17 Path calculation not valid for fee-on-transfer tokens

Severity

Medium

Description

The protocol makes an effort to support fee-on-transfer tokens by
always calculating amounts as the pre and post balance
differences, and also using the swapSupportingFeeOnlnputTokens
function, which supports FOT tokens. However, the quote function
actually does not support FOT tokens, since it does not take into
account the fees incurred during the various token transfers.

Thus, the quote generated by the findBestPath function will
actually be incorrect if FOT tokens are involved, and will result in an
amountOut estimate that will be higher than any possible actual
swap, which will then result in a revert if the same amountOut value
is passed in the swapNoSplit function. Thus, even though the swap
function supports FOT tokens, the quote will always be wrong for
such tokens.

Recommendations

If FOT token support is desired, the quote function must also
calculate the fees paid for all the token transfers involved.
Otherwise, it should be made clear that the protocol queries do not
support FOT tokens.

Comments /
Resolution

Acknowledged. Slippage setting is expected to take this into
account. Certain whitelisted FOT tokens will have custom slippage
settings.

Bailsec.io

-29-

Zi\ security

‘ Issue_18 Longer paths may be chosen over shorter paths of equal value

Severity

Medium

Description

The logic does not handle the case where a long path is found first,
but a shorter path of equal value is found after. This is because the
logic will only update the bestOption if the path in questionis a
better value, the length of the path is ignored.

bool isBetter = [bestAmount == 0]
/| Lexactin ? pathAmount > bestAmount : pathAmount
< bestAmount]:
if lisBetter] {
bestAmount = pathAmount;
bestOption = newOffer;

This is a problem because longer paths will incur more gas costs,
and thus the shorter path of equal value is actually the best path
once we factor in the gas costs.

Recommendations

Consider checking the number of steps when a path is of equal
value, and updating the bestOffer if a path of equal value has fewer
steps.

Comments /
Resolution

Acknowledged. Gas considerations have been removed from the
aggregator.

Bailsec.io

-30-

Zi\ security

‘ Issue_19 Baseline can be incorrect if query from non-first adapter fails

Severity

Low

Description

In the queryNoSplit function, for the exactOut swap case, the quote
amount is first checked before being set as the best quote.

[quoteAmount < bestQuery.amount] J| [bestQuery.amount == 0 55
guoteAmount I= 0]

The _queryNoSplitWithDeployer function implements a similar thing,
but with a slightly different setup.

guoteAmount I= 0 68 [bestQuery.amount == 0 || quoteAmount <
bestQuery.amount]

The issue is that the first instance doesn't always work if any
adapter in the middle returns 0. The adapters are configured with a
gas limit, and if this gas limit is exceeded, or if a pool doesn't exist, it
will return a 0. In the _queryNoSplitWithDeployer function, a O
return is always rejected. But in the first code instance, this is not
the case. If the query returns 100, 0, 200 in 3 adapters, the code will
return 200 instead of 100.

This is because in the first iteration, the bestQuery will be set to
100. Then, when a query fails and we get 0, 0<100 is true, so the
bestQuery will be replaced by 0 instead of rejecting this value. Then,
in the third iteration, it will be overwritten by 200, which is worse
than the 100 quote.

Recommendations

A solution would be to use the second code instance linked above to
replace the first code instance.

However, since that would result in a 4th resolution round with
further code changes, we recommend refraining from making any
more changes to the code, as every resolution round will decrease
the overall audit confidence and increases the risk of vulnerabilities.

Comments /
Resolution

Fixed following recommendations.

Bailsec.io

-31-

Zi\ security

Multiple user errors possible, may break implicit invariants and
cause loss of funds

Severity

Low

Description

The _swapNoSplit function requires that the trade path contains
one more element than the adapter array, which must be of the
same size as the recipient's array.

However, this check is hever enforced, and thus, if users miss some
of the elements of the array, it can lead to fund loss.

Recommendations

Validate that _trade.path.length - 1 == _trade.adapters.length. Also
validate the length of the recipients array.

Comments /

Fixed following recommendations.

Resolution

‘ Issue_21 _swapNoSplit does not validate adapter whitelist prior to execution
Severity Low
Description Adapter whitelist is critical for system integrity, since each adapter

has the ability to control and steal user funds as well as manipulate
future hop ‘recipientBalanceBefore’ values, all of which could cause
loss of funds or swap denial of service. However, the _swapNoSplit
trusts user input directly when constructing which adapter is being
used.

Recommendations

Consider making sure the adapter provided by the user is actually
supported/whitelisted by the router.

Comments /
Resolution

Acknowledged. Aggregator is to be used by the dapp directly.
External users are expected to pass in the correct paths.

Bailsec.io

-32-

A security

‘ Issue_22 Stranded eth can be stolen via swapNoSplitFromETH

Severity

Low

Description

The router inherits the recoverable contract, which allows the
contract to recover any stranded native token or erc20 tokens. The
problem occurs when swapNoSplitFromETH does not enforce that
msg.value == trade.amountlin

function swapNoSplitFromETH(Trade calldata _trade, uint256
fee, uint256 _deadline, address _tao]
external

payable
override
withDeadlinel_deadline]
{
if [_trade.path[O] I= WNATIVE] revert
PathDoesNotBeginWithWETH([_trade.path[O]):
_wrap[_trade.amountin)-
_swapNoSplit[_trade, address(this), _fee, _tao);
/

A user can specify any amountin without sending a msg.value in
order to use the stranded eth in the contract. Lost eth should not
be able to be touched or used by anyone other than the maintainer,
as indicated by the various onlyMaintainer recovery functions
present in the contract.

Recommendations

Considering enforcing msg.value matches amountin in
swapNoSplitFromETH.

Comments /
Resolution

Fixed by ensuring msg.value matches amountin.

Bailsec.io

-33-

Zi\ security

m Permit functionality can revert

Severity

Low

Description

Functions swapNoSplitWithPermit and
swapNoSplitToETHWithPermit allow users to provide parameters to
use permits to create token approvals. In this case, the token would
be the input tokenln being swapped.

However, once the permit signature is available in the mempooal,
anyone can frontrun the transaction and use up the permit
signature to grant the approval. This will then cause the permit call
to revert, reverting the transaction.

The user will then need to call the swap function without permit,
since the approval has now already been granted. While this will not
block any operations, it can lead to bad UX for the user since their
initial swap transaction failed.

Recommendations

Consider putting the permit call in a try-catch block. If the permit
signature is already used up, it will proceed to do the swap anyway
instead of reverting.

Comments /
Resolution

Fixed by putting the permit calls in try-catch blocks.

Bailsec.io

-34-

Zi\ security

m Permit functionality is incompatible with DAI

Severity

Low

Description

Functions swapNoSplitWithPermit(] and
swapNoSplitToETHWithPermit() use the following permit signature:

function permit(

address,
address,
uintz25s6,
uintz25s6,
uint8,

bytes3z,
bytes32

] external:

However, the DAI token (available in the Camelot DEX Ul]) uses the
following permit signature:

function permit(address holder, address spender, uint256 nonce,
uint256 expiry,
bool allowed, uint8 v, bytes32 r, bytes32 s] external

Due to the incompatible signatures, it is currently not possible to
use the permit functionality with the DAI token.

Please note that this issue is only valid in case the blockchain is not
Arbitrum.

Recommendations

Consider implementing a separate function to support permit for
DAl in case the blockchain is not Arbitrium. Otherwise this issue only
serves as an informational reminder.

Comments /
Resolution

Acknowledged.

Bailsec.io

-35-

Zi\ security

m swapNoSplit is fundamentally an exactln swap

Severity Low

Description While the findBestPath function supports finding paths for both
exactln and exactOut swaps, the actual swap function
swapNoSplit is fundamentally an exactln swap.

While the swapNoSplit requires a path to be specified, it charges
the user the exact amountin amount. In every step of the swap, it
utilizes all the available funds to swap to the next token. If the
prices become more favorable than the passed in Trade route, the
user is granted more tokens than tokenOut.

This is fundamentally different from an exactOut swap, where if the
prices become more favorable, the user gets charged less amountin
and receives the same amountOut. While in this contract, they get
charged the same amountln and get back more amountQOut.

Recommendations | Consider implementing a similar swap function with exactOut
swaps. This would, however, require getting quotes from each
adapter again, in order to do the swaps.

Comments / Acknowledged.
Resolution

Bailsec.io

-36 -

Zi\ security

m Path-finding algorithm can find profitable but gas-intensive loops

Severity

Low

Description

The recursion-based path-finding loop finds the most optimal route
for swaps. This can lead to some unintuitive paths, since the
amountOut is being maximised, not the gas or the path length.

Say we want to swap A-C, allowing an intermediate trusted token B
within a maximum step of 4. A normal router will quote the shortest,
most efficient path, which is, say, an A-C direct swap.

However, the recursive algorithm here will keep recursing to
maximize amountOut. If there exists an A-B-A arbitrage loop
utilizing two different A-B pooals, it will also work that into this swap.
So the most optimal swap can look like

A->B->A->C

Simply because the A-B-A loop gives more A tokens than the
starting amount, which will lead to a larger C token amount.

This can, however, lead to large gas costs, since that is not factored
in anywhere in the calculations. So while the algorithm here
optimizes for returns, it might actually be worse in terms of total
cost (gas + return] than direct/simpler swaps.

Recommendations

Consider acknowledging this if such paths are acceptable and gas
costs are not important. Otherwise, put a restriction in the recursion
function such that any token can only appear once in the path. This
will lead to shorter paths and no loops.

Comments /
Resolution

Acknowledged. Output amount is prioritized over gas.

Bailsec.io

-37-

A security

‘ Issue_27 No sanity check in setMinFee

Severity

Informational

Description

The setMinFee function does not bound the input _fee value. Thus,
any fee can be set by the maintainer, even higher than the
FEE_DENOMINATOR value, leading to 100% fees.

Recommendations

Enforce a strict upper bound on setMinFee, which ensures that _fee
<= FEE_DENOMINATOR at all times.

Comments /
Resolution

Fixed by adding a maximum fee of 10%.

m Unnecessary maintainable inheritance

Severity

Informational

Description

The CamelotYakRouter inherits Maintainable and Recoverable.
However, Recoverable already inherits Maintainable. This creates a
superfluous inheritance which C3 linearisation will opt to remove.

Recommendations

Only inherit a contract once.

Comments /
Resolution

Fixed by removing the inheritance.

Bailsec.io

-38 -

A security

m Bad event emission in setFeeClaimer

Severity

Informational

Description

The setFeeClaimer emits an event.

FEE CLAIMER =_claimer;
emit UpdatedFeeClaimer(FEE_CLAIMER, _claimer]:

The issue is that when the event is being emitted, FEE_CLAIMER has
already been overwritten. So both the fields of the event have the
same value. This is in contrast to the other events, where it emits
first the old value and then the new value.

Recommendations

Store the current FEE_CLAIMER in a variable and emit it instead.

Comments /
Resolution

Fixed by following the recommendation.

m Deadline is checked twice

Severity

Informational

Description

The modifier withDeadline ensures that the deadline has not
passed. However, the modifier exists in the permit variants
swapNoSplitWithPermit and swapNoSplitToETHWithPermit, these
functions both have a subcall to a function that also includes the
withDeadline modifier, essentially making the same check twice.

Recommendations

Consider removing the deadline check from the permit variants.
Otherwise, consider acknowledging this issue to minimise code
changes.

Comments /
Resolution

Fixed. Removed deadline check in permit functions.

Bailsec.io

-39-

A security

‘ Issue_31 returnTokensTo uses transfer, which restricts gas forwarded

Severity

Informational

Description

The use of transfer when sending native tokens may cause
problems with interacting contracts that have receive or fallback
functions with extended logic. This is because transfer only sends
2300 gas for executing the logic, which can be insufficient.

function _returnTokensToladdress _token, uint256 _amount,
address _tal internal {
if [address(this] I=_to] {
if [_token == NATIVE] payable[_to).transfer(_amount):
else IERC20[token]safeTransfer(_to, _amount]:

Recommendations

Consider using call instead to send native.

Comments /
Resolution

Fixed by using low-level calls to transfer eth.

Bailsec.io

-40 -

A security

m Giving allowance for wrapping is not needed

Severity

Informational

Description

if [_feeClaimer == address(0] || _wrapped_native == address(0]]
revert AddressZerol):
setAllowanceForWrappingl_wrapped_native):
setTrustedTokens/ trustedTokens):
setFeeClaimer(_feeClaimer]
setAdapters(_adapters):
WNATIVE =_wrapped_native,

The constructor will call setAllowanceForWrapping, which will give
the weth contract allowance for wrapping. However the contract
does not need allowance since the _wrap function will call deposit,
which does not need approval.

Recommendations

Consider remaoving setAllowanceForWrapping.

Comments /
Resolution

Fixed by removing allowance for wrapping.

Bailsec.io

-41 -

	Camelot_done
	Bailsec - Camelot - Router - Final Report

