
Public

SMART CONTRACT AUDIT REPORT

for

Alpha Homora V2 for Avalanche

Prepared By: Yiqun Chen

PeckShield
November 8, 2021

1/24 PeckShield Audit Report #: 2021-350

contact@peckshield.com

Public

Document Properties

Client Alpha Finance Lab
Title Smart Contract Audit Report
Target Alpha Homora V2 for Avalanche
Version 1.0
Author Xuxian Jiang
Auditors Patrick Liu, Jing Wang, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 November 8, 2021 Xuxian Jiang Final Release
1.0-rc Novebmer 6, 2021 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/24 PeckShield Audit Report #: 2021-350

Public

Contents

1 Introduction 4
1.1 About Alpha Homora V2 for Avalanche . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 6

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 Detailed Results 11
3.1 Proper Liquidity Removal in ibETHRouterV2 . 11
3.2 Strengthened Validation in WLiquidityGauge::encodeId() 12
3.3 Improved Logic in SafeAggregatorOracle::getSafeETHPx() 13
3.4 Improved Gas in TraderJoeSpell::removeLiquidityWMasterChef() 15
3.5 Suggested Revert On Impossible Situations in CurveOracle 17
3.6 Meaningful Events For Important States Change . 18
3.7 Improved Validation in BasicSpell And ProxyOracle 19
3.8 Trust Issue of Admin Keys . 20

4 Conclusion 23

References 24

3/24 PeckShield Audit Report #: 2021-350

Public

1 | Introduction

Given the opportunity to review the design document and related source code of the Alpha Homora V2

for Avalanche protocol, we outline in the report our systematic approach to evaluate potential security
issues in the smart contract implementation, expose possible semantic inconsistencies between smart
contract code and design document, and provide additional suggestions or recommendations for
improvement. Our results show that the given version of smart contracts can be further improved
due to the presence of several issues related to either security or performance. This document outlines
our audit results.

1.1 About Alpha Homora V2 for Avalanche

Alpha HomoraV2 is a leading leveraged yield farming and leveraged liquidity providing protocol and the
current version has seamless integration with the Cream Finance lending protocol. With the planned
deployment on Avalanche, it enables lenders to earn high interest and the lending interest rate comes
from leveraged yield farmers borrowing to yield farm (or provide liquidity). From another perspective,
yield farmers can get even higher farming APY and trading fees APY from taking on leveraged yield
farming positions. The audited protocol makes a number of innovations from the earlier version
by supporting multi-assets lending and borrowing, multiple farming pools (e.g., Sushiswap, Uniswap,
Pangolin, Curve, TraderJoe, etc), and BYOT (bring your own LP tokens).

The basic information of the Alpha Homora V2 for Avalanche protocol is as follows:

Table 1.1: Basic Information of Alpha Homora V2 for Avalanche

Item Description
Name Alpha Finance Lab

Website https://alphafinance.io/
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report November 8, 2021

4/24 PeckShield Audit Report #: 2021-350

Public

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

• https://github.com/AlphaFinanceLab/alpha-homora-v2-avax-private-contract.git (fc90fe7)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/AlphaFinanceLab/alpha-homora-v2-avax-private-contract.git (ae53091)

1.2 About PeckShield

PeckShield Inc. [10] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [9]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

5/24 PeckShield Audit Report #: 2021-350

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [8], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

6/24 PeckShield Audit Report #: 2021-350

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/24 PeckShield Audit Report #: 2021-350

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/24 PeckShield Audit Report #: 2021-350

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the Alpha Homora V2 for

Avalanche protocol. During the first phase of our audit, we study the smart contract source code and
run our in-house static code analyzer through the codebase. The purpose here is to statically identify
known coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We
further manually review business logics, examine system operations, and place DeFi-related aspects
under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 4

Informational 2

Total 8

We have so far identified a list of potential issues: some of them involve subtle corner cases
that might not be previously thought of, while others refer to unusual interactions among multiple
contracts. For each uncovered issue, we have therefore developed test cases for reasoning, reproduc-
tion, and/or verification. After further analysis and internal discussion, we determined a few issues
of varying severities that need to be brought up and paid more attention to, which are categorized in
the above table. More information can be found in the next subsection, and the detailed discussions
of each of them are in Section 3.

9/24 PeckShield Audit Report #: 2021-350

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities, 4 low-severity vulnerabilities, and 2 informational recommendations.

Table 2.1: Key Audit Findings of Alpha Homora V2 for Avalanche Protocol

ID Severity Title Category Status
PVE-001 Medium Proper Liquidity Removal in

ibETHRouterV2
Business Logic Resolved

PVE-002 Low Strengthened Validation in WLiquid-
ityGauge::encodeId()

Coding Practices Resolved

PVE-003 Informational Improved Logic in SafeAggregatorO-
racle::getSafeETHPx()

Business Logic Resolved

PVE-004 Informational Improved Gas in TraderJoe-
Spell::removeLiquidityWMasterChef()

Coding Practices Resolved

PVE-005 Low Suggested Revert On Impossible Sit-
uations in CurveOracle

Coding Practices Resolved

PVE-006 Low Meaningful Events For Important
States Change

Coding Practices Confirmed

PVE-007 Low Improved Validation in BasicSpell
And ProxyOracle

Coding Practices Resolved

PVE-008 Medium Trust on Admin Keys Security Features Mitigated

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that
it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to
Section 3 for details.

10/24 PeckShield Audit Report #: 2021-350

Public

3 | Detailed Results

3.1 Proper Liquidity Removal in ibETHRouterV2

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ibETHRouterV2

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

To facilitate the user interaction, the Alpha HomoraV2 (AVAX) protocol provides an ibETHRouterV2 con-
tract to efficiently add and remove the liquidity. While examining the logic, we notice one essential
function removeLiquidityETHAlpha() needs to be revised.

To elaborate, we show below the full implementation of the removeLiquidityToken() function.
This function implements a rather straightforward logic in firstly removing the liquidity from the
ibETHv2-Alpha pool (lines 259-267), then sending the received Alpha to the designated recipient (line
268), and next withdraw the received ibETHv2 back to the native token (lines 269 − 272). However,
it comes to our attention that the Alpha is sent to the msg.sender, not the designated recipient to

(line 268)!
251 function removeLiquidityETHAlpha(
252 uint liquidity ,
253 uint minETH ,
254 uint minAlpha ,
255 address to ,
256 uint deadline
257) external {
258 lpToken.transferFrom(msg.sender , address(this), liquidity);
259 router.removeLiquidity(
260 address(alpha),
261 address(ibETHv2),
262 liquidity ,
263 minAlpha ,

11/24 PeckShield Audit Report #: 2021-350

Public

264 0,
265 address(this),
266 deadline
267);
268 alpha.transfer(msg.sender , alpha.balanceOf(address(this)));
269 ibETHv2.withdraw(ibETHv2.balanceOf(address(this)));
270 uint ethBalance = address(this).balance;
271 require(ethBalance >= minETH , ’!minETH ’);
272 (bool success ,) = to.call{value: ethBalance }(new bytes (0));
273 require(success , ’!eth’);
274 }

Listing 3.1: ibETHRouterV2::removeLiquidityETHAlpha()

Recommendation Use the right recipient in the handling logic of removeLiquidityETHAlpha().

Status This issue has been resolved. The team confirms that the contract is not deployed and
remains unused.

3.2 Strengthened Validation in WLiquidityGauge::encodeId()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: WLiquidityGauge

• Category: Coding Practices [6]

• CWE subcategory: CWE-561 [3]

Description

The Alpha HomoraV2 (AVAX) protocol has developed a number of investment-related strategies (in the
name of spells) as well as a few wrappers to hold the custody of leveraged positions. One specific
wrapper is WLiquidityGauge, which supports LiquidityGauge, the liquidity gauge contract to participate
in the Curve liquidity mining and reward.

The protocol has a novel design in efficiently keeping track of the rewards with the ERC1155-based
tokens. In particular, the reward information is directly encoded in the ERC1155 token ID. We show
below the two related functions to encode and decode the token ID.

41 /// @dev Encode pid , gid , crvPerShare to a ERC1155 token id
42 /// @param pid Curve pool id (10-bit)
43 /// @param gid Curve gauge id (6-bit)
44 /// @param crvPerShare CRV amount per share , multiplied by 1e18 (240-bit)
45 function encodeId(
46 uint pid ,
47 uint gid ,
48 uint crvPerShare

12/24 PeckShield Audit Report #: 2021-350

Public

49) public pure returns (uint) {
50 require(pid < (1 << 10), ’bad pid’);
51 require(gid < (1 << 6), ’bad gid’);
52 require(crvPerShare < (1 << 240), ’bad crv per share ’);
53 return (pid << 246) (gid « 240) crvPerShare;
54 }
55
56 /// @dev Decode ERC1155 token id to pid , gid , crvPerShare
57 /// @param id Token id to decode
58 function decodeId(uint id)
59 public
60 pure
61 returns (
62 uint pid ,
63 uint gid ,
64 uint crvPerShare
65)
66 {
67 pid = id >> 246; // First 10 bits
68 gid = (id >> 240) & (63); // Next 6 bits
69 crvPerShare = id & ((1 << 240) - 1); // Last 240 bits
70 }

Listing 3.2: WLiquidityGauge::encodeId()/decodeId()

Our analysis shows that the gauges ID (gid) is currently encoded with 6 bits in the middle.
However, each pool has at most 10 gauges, which implies 4 bits should serve the purpose.

Recommendation Revise the above encoding/decoding scheme with 4 bits for gauges ID (gid),
instead of current 6.

Status This issue has been confirmed.

3.3 Improved Logic in SafeAggregatorOracle::getSafeETHPx()

• ID: PVE-003

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: SafeAggregatorOracle

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

The Alpha HomoraV2 (AVAX) protocol makes novel contributions in efficiently and reliably computing
the prices of various pool tokens of Uniswap and Curve. Accordingly, the protocol comes with a number
of well-designed oracle subsystem. In the following, we examine a specific one SafeAggregatorOracle.

13/24 PeckShield Audit Report #: 2021-350

Public

In particular, we show below the key getSafeETHPx(0) function. This function return safe token
price relative to WAVAX, multiplied by 2**112 with price deviation success status. It is currently
designed to support at most 3 oracle sources per token. We notice when all possible three sources
are deviated from the threshold, the current implementation returns ((prices[1] + prices[2])/ 2,

false) (line 67). With the purpose of returning the average price from these sources, the average
for return can be improved as (prices[1] + prices[2] + prices[3])/ 3).

21 function getSafeETHPx(address token) public view returns (uint , bool) {
22 uint candidateSourceCount = aggOracle.primarySourceCount(token);
23 require(candidateSourceCount > 0, ’no primary source ’);
24 uint[] memory prices = new uint [](candidateSourceCount);
25
26 // Get valid oracle sources
27 uint validSourceCount = 0;
28 for (uint idx = 0; idx < candidateSourceCount; idx++) {
29 try IBaseOracle(aggOracle.primarySources(token , idx)).getETHPx(token) returns (

uint px) {
30 prices[validSourceCount ++] = px;
31 } catch {}
32 }
33 require(validSourceCount > 0, ’no valid source ’);
34 for (uint i = 0; i < validSourceCount - 1; i++) {
35 for (uint j = 0; j < validSourceCount - i - 1; j++) {
36 if (prices[j] > prices[j + 1]) {
37 (prices[j], prices[j + 1]) = (prices[j + 1], prices[j]);
38 }
39 }
40 }
41 uint maxPriceDeviation = aggOracle.maxPriceDeviations(token);
42
43 // Algo:
44 // - 1 valid source --> return price
45 // - 2 valid sources
46 // --> if the prices within deviation threshold , return average
47 // --> else revert
48 // - 3 valid sources --> check deviation threshold of each pair
49 // --> if all within threshold , return median
50 // --> if one pair within threshold , return average of the pair
51 // --> if none , revert
52 // - revert otherwise
53 if (validSourceCount == 1) {
54 return (prices [0], true); // if 1 valid source , return
55 } else if (validSourceCount == 2) {
56 return ((prices [0] + prices [1]) / 2, (prices [1] * 1e18) / prices [0] <=

maxPriceDeviation); // return average price with price deviation status
57 } else if (validSourceCount == 3) {
58 bool midMinOk = (prices [1] * 1e18) / prices [0] <= maxPriceDeviation;
59 bool maxMidOk = (prices [2] * 1e18) / prices [1] <= maxPriceDeviation;
60 if (midMinOk && maxMidOk) {
61 return (prices [1], true); // if 3 valid sources , and each pair is within thresh ,

return median with price deviation success status

14/24 PeckShield Audit Report #: 2021-350

Public

62 } else if (midMinOk) {
63 return ((prices [0] + prices [1]) / 2, true); // return average of pair within

thresh with price deviation success status
64 } else if (maxMidOk) {
65 return ((prices [1] + prices [2]) / 2, true); // return average of pair within

thresh with price deviation success status
66 } else {
67 return ((prices [1] + prices [2]) / 2, false); // return average of pair out of

thresh with price deviation fail status
68 }
69 } else {
70 revert(’more than 3 valid sources not supported ’);
71 }
72 }
73 }

Listing 3.3: SafeAggregatorOracle::getSafeETHPx()

Recommendation Improve the above getSafeETHPx() return to properly return the average in
the unlikely situation when all oracle sources are deviated from the threshold.

Status This issue has been confirmed. Since the proper false status is returned, we agree that
this issue can be simply kept as is.

3.4 Improved Gas in
TraderJoeSpell::removeLiquidityWMasterChef()

• ID: PVE-004

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: TraderJoeSpell

• Category: Coding Practices [6]

• CWE subcategory: CWE-561 [3]

Description

As mentioned earlier, the Alpha HomoraV2 (AVAX) protocol has a number of spell contracts that are
designed to provide a consistent interface to support a variety of liquidity pools, including Uniswap,
Sushiswap, Pangolin, and Curve. These Spell contracts inherit from the same BasicSpell contract with
the essential functionality to interact with HomoraBank. (Note HomoraBank holds all collateral-related
funds and maintains the necessary solvency of open positions.)

During our analysis with the TraderJoeSpell contract, we notice a key routine removeLiquidityWMasterChef
() can be improved for gas efficiency. Specifically, it is designed to remove liquidity from TraderJoe.
This function is well guarded with necessary validation to ensure the provided arguments are sound

15/24 PeckShield Audit Report #: 2021-350

Public

and consistent. Specifically, the verification of the lp (line 378) makes a cross-contract invocation
to ensure it is expected. However, this cross-contract call can be avoided as the lp information can
be reliably and safely returned from the previous poolInfo() call.

368 f unc t i on r emoveL iqu id i tyWMaste rChe f (
369 address tokenA ,
370 address tokenB ,
371 RepayAmounts c a l l d a t a amt
372) ex te rna l {
373 address l p = getAndApprovePa i r (tokenA , tokenB) ;
374 (, address co l lToken , u in t c o l l I d ,) = bank . g e t C u r r e n t P o s i t i o n I n f o () ;
375 (u in t pid ,) = wmaste rche f . decode Id (c o l l I d) ;
376 (, , , , address r ewa rde r) = wmaste rche f . c h e f () . p o o l I n f o (p i d) ;
377 r equ i r e (wh i t e l i s t e dR ewa r d e r s [r ewa rde r] , ’rewarder not whitelisted ’) ;
378 r equ i r e (IWMasterChefJoeV2 (co l lToken) . ge tUnde r l y i ngToken (c o l l I d) == lp , ’incorrect

underlying ’) ;
379 r equ i r e (co l lToken == address (wmaste rche f) , ’collateral token & wmasterchef

mismatched ’) ;
380
381 // 1. Take out collateral
382 bank . t a k e C o l l a t e r a l (address (wmaste rche f) , c o l l I d , amt . amtLPTake) ;
383 wmaste rche f . burn (c o l l I d , amt . amtLPTake) ;
384
385 // 2-8. remove liquidity
386 r e m o v e L i q u i d i t y I n t e r n a l (tokenA , tokenB , amt , l p) ;
387
388 // 9. Refund joe
389 doRefund (j o e) ;
390 }

Listing 3.4: TraderJoeSpell :: removeLiquidityWMasterChef()

Recommendation Avoid unnecessary gas cost when the lp can be reused and cached from an
earlier cross-contract call.

Status This issue has been confirmed.

16/24 PeckShield Audit Report #: 2021-350

Public

3.5 Suggested Revert On Impossible Situations in CurveOracle

• ID: PVE-005

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: CurveOracle

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

As mentioned in Section 3.3, the protocol makes novel contributions in efficiently and reliably com-
puting the prices of various pool tokens of Uniswap and Curve. The CurveOracle contract provides the
pool token valuation on Curve-related pools.

In the following, we use the getETHPx() function from CurveOracle. As a defined interface to
return the value of the given Curve pool token as ETH per unit (multiplied by 2**112), this function
is permissive in allowing for tokens with a variety of decimals, even for ones larger than 18. Since
all tokens supported in Curve pools are currently less than or equal to 18, we suggest to validate the
decimals and consider reverting the transaction if the encountered decimal is larger than 18. A new
oracle may be added later if such tokens with larger than 18 decimals are added into Curve pools for
trading.

46 /// @dev Return the value of the given input as ETH per unit , multiplied by 2**112.
47 /// @param lp The ERC -20 LP token to check the value.
48 function getETHPx(address lp) external view override returns (uint) {
49 address pool = poolOf[lp];
50 require(pool != address (0), ’lp is not registered ’);
51 UnderlyingToken [] memory tokens = ulTokens[lp];
52 uint minPx = type(uint).max;
53 uint n = tokens.length;
54 for (uint idx = 0; idx < n; idx ++) {
55 UnderlyingToken memory ulToken = tokens[idx];
56 uint tokenPx = base.getETHPx(ulToken.token);
57 if (ulToken.decimals < 18) tokenPx = tokenPx / (10**(18 - uint(ulToken.decimals)))

;
58 if (ulToken.decimals > 18) tokenPx = tokenPx * (10**(uint(ulToken.decimals) - 18))

;
59 if (tokenPx < minPx) minPx = tokenPx;
60 }
61 require(minPx != type(uint).max , ’no min px’);
62 // use min underlying token prices
63 return (minPx * ICurvePool(pool).get_virtual_price ()) / 1e18;
64 }

Listing 3.5: CurveOracle::getETHPx()

Recommendation Validate the decimals and disallow currently non-existent ones.

17/24 PeckShield Audit Report #: 2021-350

Public

Status This issue has been confirmed.

3.6 Meaningful Events For Important States Change

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: HomoraBank

• Category: Coding Practices [6]

• CWE subcategory: CWE-1126 [1]

Description

In Ethereum, the event is an indispensable part of a contract and is mainly used to record a variety
of runtime dynamics. In particular, when an event is emitted, it stores the arguments passed in
transaction logs and these logs are made accessible to external analytics and reporting tools. Events

can be emitted in a number of scenarios. One particular case is when system-wide parameters or
settings are being changed. Another case is when tokens are being minted, transferred, or burned.

In the following, we use the HomoraBank contract as an example. This contract has a public
function accrue() that is used to trigger interest accrual for the given bank. While examining the
events that reflect the protocol dynamic, we notice there is a lack of emitting important events that
reflect important state changes or abnormal protocol situation. Specifically, when the totalDebt !=

debt (line 225) is met, there is no respective event being emitted to reflect the anomaly situation.

216 function accrue(address token) public override {
217 Bank storage bank = banks[token];
218 require(bank.isListed , ’bank not exist ’);
219 uint totalDebt = bank.totalDebt;
220 uint debt = ICErc20(bank.cToken).borrowBalanceCurrent(address(this));
221 if (debt > totalDebt) {
222 uint fee = ((debt - totalDebt) * feeBps) / 10000;
223 bank.totalDebt = debt;
224 bank.reserve = bank.reserve + doBorrow(token , fee);
225 } else if (totalDebt != debt) {
226 // We should never reach here because CREAMv2 does not support *repayBorrowBehalf*
227 // functionality. We set bank.totalDebt = debt nonetheless to ensure consistency.

But do
228 // note that if *repayBorrowBehalf* exists , an attacker can maliciously deflate

debt
229 // share value and potentially make this contract stop working due to math

overflow.
230 bank.totalDebt = debt;
231 }
232 }

Listing 3.6: HomoraBank::accrue()

18/24 PeckShield Audit Report #: 2021-350

Public

Moreover, a number of setter functions are used to configure various protocol parameters. It
is helpful to emit related events to facilitate off-chain monitoring and analytics. Example func-
tions include the following: setWhitelistSpells(), setWhitelistTokens(), setWhitelistUsers(), and
setAllowContractCalls().

146 function setAllowContractCalls(bool ok) external onlyGov {
147 allowContractCalls = ok;
148 }

150 /// @dev Set whitelist spell status
151 /// @param spells list of spells to change status
152 /// @param statuses list of statuses to change to
153 function setWhitelistSpells(address [] calldata spells , bool[] calldata statuses)
154 external
155 onlyGov
156 {
157 require(spells.length == statuses.length , ’spells & statuses length mismatched ’);
158 for (uint idx = 0; idx < spells.length; idx ++) {
159 whitelistedSpells[spells[idx]] = statuses[idx];
160 }
161 }

Listing 3.7: HomoraBank::setAllowContractCalls()

Recommendation Properly emit an alert event to indicate a situation that should not occur,
hence warranting an immediate follow-up investigation.

Status This issue has been confirmed.

3.7 Improved Validation in BasicSpell And ProxyOracle

• ID: PVE-007

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: ProxyOracle, BasicSpell

• Category: Coding Practices [6]

• CWE subcategory: CWE-561 [3]

Description

As mentioned in Section 3.3, Alpha Homora V2 for Avalanche supports a number of Spell con-
tracts with inheritance from the same BasicSpell. To standardize the interaction with HomoraBank,
BasicSpell defines the following interfaces, i.e., doTransmit()/doTransmitETH(), doBorrow()/doRepay(),
doPutCollateral()/doTakeCollateral(), and doRefund()/doRefundETH().

19/24 PeckShield Audit Report #: 2021-350

Public

While examining the defined interfaces, we notice the doTakeCollateral() implementation can
be improved. To elaborate, we show below its code snippet. The logic is rather straightforward in
making a call to take collateral tokens from the bank, i.e., HomoraBank.

112 /// @dev Internal call to take collateral tokens from the bank.
113 /// @param token The token to take back.
114 /// @param amount The amount to take back.
115 f unc t i on doTak eCo l l a t e r a l (address token , u in t amount) i n t e r n a l {
116 i f (amount > 0) {
117 i f (amount == type (u in t) . max) {
118 (, , , amount) = bank . g e t C u r r e n t P o s i t i o n I n f o () ;
119 }
120 bank . t a k e C o l l a t e r a l (address (werc20) , u in t (uint160 (token)) , amount) ;
121 werc20 . burn (token , amount) ;
122 }
123 }

Listing 3.8: BasicSpell :: doTakeCollateral ()

When the given amount equals uint(-1), the doTakeCollateral() routine queries current collateral
size of the current position and then takes all back collateral tokens. Note that we can better validate
the given amount and filter out illegitimate requests. Specifically, any amount larger than the current
position’s collateralSize can be rejected (excluding uint(-1) that denotes collateralSize).

Moreover, the convertForLiquidation() function of the ProxyOracle contract may be improved by
validating both tokenIn and tokenOut. Currently, only the input tokenOut argument is validated in the
function.

Recommendation Validate the given amount and filter out invalid requests.

Status Since the amount is also used in the following werc20.burn(token, amount) (line 121),
any unnecessarily large amount will be blocked. The team decides to keep as is.

3.8 Trust Issue of Admin Keys

• ID: PVE-008

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the Alpha HomoraV2 (AVAX) protocol, there is a privileged governor account that plays a critical
role in governing and regulating the system-wide operations (e.g., parameter setting and marketing

20/24 PeckShield Audit Report #: 2021-350

Public

adjustment). It also has the privilege to control or govern the flow of assets managed by this protocol.
Our analysis shows that the privileged account needs to be scrutinized. In the following, we examine
the privileged account and their related privileged accesses in current contracts.

153 function setWhitelistSpells(address [] calldata spells , bool[] calldata statuses)
154 external
155 onlyGov
156 {
157 require(spells.length == statuses.length , ’spells & statuses length mismatched ’);
158 for (uint idx = 0; idx < spells.length; idx ++) {
159 whitelistedSpells[spells[idx]] = statuses[idx];
160 }
161 }
162
163 /// @dev Set whitelist token status
164 /// @param tokens list of tokens to change status
165 /// @param statuses list of statuses to change to
166 function setWhitelistTokens(address [] calldata tokens , bool[] calldata statuses)
167 external
168 onlyGov
169 {
170 require(tokens.length == statuses.length , ’tokens & statuses length mismatched ’);
171 for (uint idx = 0; idx < tokens.length; idx ++) {
172 if (statuses[idx]) {
173 // check oracle suppport
174 require(support(tokens[idx]), ’oracle not support token’);
175 }
176 whitelistedTokens[tokens[idx]] = statuses[idx];
177 }
178 }

Listing 3.9: Example Setters in the HomoraBank Contract

Apparently, if the privileged governor account is a plain EOA account, this may be worrisome and
pose counter-party risk to the exchange users. Note that a multi-sig account could greatly alleviate
this concern, though it is still far from perfect. Specifically, a better approach is to eliminate the
administration key concern by transferring the role to a community-governed DAO. In the meantime,
a timelock-based mechanism can also be considered as mitigation.

Moreover, it should be noted that current contracts have the support of being deployed behind
a proxy. And there is a need to properly manage the proxy-admin privileges as they fall in this trust
issue as well.

7 contract TransparentUpgradeableProxyImpl is TransparentUpgradeableProxy {
8 constructor(
9 address _logic ,

10 address _admin ,
11 bytes memory _data
12) payable TransparentUpgradeableProxy(_logic , _admin , _data) {}
13 }

Listing 3.10: TransparentUpgradeableProxyImpl::constructor()

21/24 PeckShield Audit Report #: 2021-350

Public

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed with the team. For the time being, the team has
confirmed that these privileged functions should be called by a trusted multi-sig account, not a plain
EOA account.

22/24 PeckShield Audit Report #: 2021-350

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Alpha Homora V2 for Avalanche

protocol. The system presents a clean and consistent design that makes it distinctive and valuable
when compared with current yield farming offerings. The current code base is well organized and
those identified issues are promptly confirmed and fixed.

Meanwhile, we need to emphasize that smart contracts as a whole are still in an early, but exciting
stage of development. To improve this report, we greatly appreciate any constructive feedbacks or
suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

23/24 PeckShield Audit Report #: 2021-350

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-561: Dead Code. https://cwe.mitre.org/data/definitions/561.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[9] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[10] PeckShield. PeckShield Inc. https://www.peckshield.com.

24/24 PeckShield Audit Report #: 2021-350

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About Alpha Homora V2 for Avalanche
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Proper Liquidity Removal in ibETHRouterV2
	Strengthened Validation in WLiquidityGauge::encodeId()
	Improved Logic in SafeAggregatorOracle::getSafeETHPx()
	Improved Gas in TraderJoeSpell::removeLiquidityWMasterChef()
	Suggested Revert On Impossible Situations in CurveOracle
	Meaningful Events For Important States Change
	Improved Validation in BasicSpell And ProxyOracle
	Trust Issue of Admin Keys

	Conclusion
	References

