
Silkswap: An asymmetric automated market

maker model for stablecoins

Nicola Cantarutti* , Alex Harker� , Carter Woetzel�

shadeprotocol.io

October 24, 2022

Abstract

Silkswap is an automated market maker model designed for efficient
stablecoin trading with minimal price impact. The original purpose of
Silkswap is to facilitate the trading of fiat pegged stablecoins with the
stablecoin Silk, but it can be applied to any pair of stablecoins. The
Silkswap invariant is a hybrid function that generates an asymmetric price
impact curve. We present the derivation of the Silkswap model and its
mathematical properties. We also compare different numerical methods
used to solve the invariant equation. Finally, we compare our model with
the well known Curve Finance model.

Keywords: AMM, DEX, stablecoin, hybrid function model, low price impact.

1 Introduction

Decentralized EXchanges (DEXs) are currently the most popular application
of Decentralized Finance (DeFi). Unlike centralized exchanges, DEXs are not
based on a single centralized entity acting as custodians or intermediaries. In-
stead, on DEXs traders retain full control of their funds and private keys, and
smart contracts execute trades for users in a neutral and automated fashion.
Most DEXs use Automated Market Maker (AMM) models to define the rules
of trading, rather than relying on the order book model. Liquidity providers
can deposit their tokens into liquidity pools in exchange for rewards com-
ing from swap fees and token farming. The AMM algorithmically computes
the price of the tokens inside a liquidity pool only based on the token bal-
ance. A technical introduction on the mechanics of AMMs can be found in
[Angeris and Chitra, 2020] and [Mohan, 2022].

One of the first AMMs to appear in DeFi is Uniswap [Adams, 2018], that
together with its upgraded version, Uniswap v2 [Adams et al., 2020], is based
on the Constant Product Market Maker (CPMM) model. This model assumes
that the product of the quantities of tokens in a liquidity pool is constant, which
guarantees infinite liquidity inside the pool. CPMM works quite well for volatile
tokens, as it promptly adapts the price in response to new trades. Nevertheless,
it is not very suitable when trading low volatility or stable assets.

Another important AMM model is the Constant Sum Market Maker (CSMM),
that assumes that the sum of the quantities of tokens inside the pool is constant.
The advantage of this model is that any trade has zero price impact, however
it also has the inconvenience that it permits the complete drain of the entire
liquidity inside the pool. For this reason, it is not used in practical applications.

*Contact: https://twitter.com/Canta86
�Contact: https://twitter.com/AlexHarker19
�Contact: https://twitter.com/l_woetzel

1

shadeprotocol.io
https://twitter.com/Canta86
https://twitter.com/AlexHarker19
https://twitter.com/l_woetzel

Low price impact is a good property when swapping between fiat pegged
stablecoins. Curve Finance [Egorov, 2019], formerly Stableswap, and the new
version Curve v2 [Egorov, 2021] implement a Hybrid Function Market Maker
(HFMM) model with the exact purpose of facilitating swaps between stable-
coins. This model combines CPMM and CSMM together in order to take ad-
vantage of both the infinite liquidity property of CPMM and the zero price
impact property of CSMM.

The main goal of the Silkswap model is to facilitate the trades of Silk with
other fiat pegged stablecoins. However this model can be used to trade any pair
of stablecoins. In the current version, it is designed only for two-asset liquid-
ity pools. Silk [Duniya, 2021] is a privacy-preserving overcollateralized stable-
coin developed by Shade Protocol and native to the Secret Network blockchain
[Woetzel, 2020]. The main feature of Silk is that it is a stablecoin pegged to a
basket of global currencies and commodities using decentralized price feeds, cre-
ating a digital currency that serves as a hedge against single currency volatility.
We developed Silkswap as an HFMM model inspired by the Curve Finance v2
model. Additionally we introduced more flexibility in the shape of the invari-
ant function, allowing for an asymmetric price impact curve. In this way, it is
possible to discourage possible imbalances within the liquidity pool.
In the next sections we derive the Silkswap invariant and show its mathemati-
cal properties. We present numerical results for three different zero-finder algo-
rithms and finally we compare our model with the Curve finance model.

2 Silkswap model

Let us consider a liquidity pool containing only two stablecoins. The two tokens
in focus are token X, that represents any fiat pegged stablecoin, and token Y
that represents Silk. We use lower-case letters x and y to indicate the quantities
of X and Y . Without loss of generality, let us quote the price of X and Y in
US dollars, although any other fiat currency would work. Let us introduce
the conversion factors pX and pY , such that the values in dollars of x and
y are simply pX × x and pY × y respectively. The conversion factor pX has
units [USD]/[X] and pY has units [USD]/[Y]. We also introduce p := pY

pX
, the

conversion factor between Y and X, which has units [X]/[Y].
The conversion factors pX and pY represent the market prices of one unit of X
and Y respectively, while p is the price of one unit of Y in terms of X. These
values must be provided by an oracle, which is an external source of information
that is fed into the AMM smart contract with a certain frequency.
Example:
Let us consider a liquidity pool containing USDC (token X) and Silk (token
Y). If the oracle price of Silk is 1.05$ then pY = 1.05 USD/SILK, while for
USDC the oracle price is exactly 1$, resulting in a perfect peg, then we have
pX = 1 USD/USDC. The direct conversion between Silk and USDC is therefore
p = pY

pX
= 1.05 USDC/SILK. Later we will often identify X with USDC and Y

with SILK to make the discussion clearer.

Let us define the equilibrium point in a liquidity pool as the point (x, y)
where the dollar value of x equals the dollar value of y. The equilibrium point
satisfies the equilibrium equation

pY y = pX x. (1)

From now on, we will assume that X is our numeraire, and we will express the
value of Y in terms of X. The equilibrium equation becomes

p y = x. (2)

2

Figure 1: Graph of the CPMM and CSMM models with D = 2000. On the left p = 1. On
the right p = 2.

This choice is due to the fact that it is more natural for the user to evaluate an
asset in terms of a fiat pegged stablecoin. Because Silk is pegged to a basket,
its value expressed in terms of any fiat currency is not stable, but it fluctuates
with a very low volatility.

2.1 Silkswap invariant

Under the CPMM model, the quantities x and y must satisfy the following
equation:

x p y = K (3)

with K > 0 constant. The equilibrium point, satisfying both (2) and (3), is

(x, y) = (
√
K,
√
K
p). Under the CSMM model instead, the following equation

holds:
x + py = D (4)

with D > 0 constant. The equilibrium point, satisfying (2) and (4), is (x, y) =
(D2 ,

D
2p). The equilibrium point is a fundamental point where the ratio of the

quantities of tokens in the pool is equal to p, and any invariant curve should

contain this point. Since this point is unique, it follows that K = D2

4 . In figure
1 we can see the graph of these two models, with different values of p.

Now let us consider the following linear combination of the CSMM and
CPMM models. Let us multiply Eq. (4) by χAD, and sum it with eq. (3):

(χAD) (x+ py) + xpy = (χAD)D +
D2

4
(5)

where χ is a function of x and y, defined as

χ :=

(
4xpy

D2

)γ
(6)

and

γ :=

{
γ1, if x ≤ py
γ2, if x > py

(7)

and the other parameters are constants satisfying A > 0, γ1 ≥ 0, γ2 ≥ 0. Let us
remark that χ is an adimensional quantity and D has the same dimension of x.
We call the equation (5), together with (6) and (7), the Silkswap invariant.
The graph of the Silkswap invariant is shown in figures 2 and 3 under different

3

Figure 2: Graph of the Silkswap invariant. On the A = 10. On the right A = 400. We can
see that the parameter A indicates the closeness of the Silkswap curve to the CSMM line.

Figure 3: Graph of the Silkswap invariant. We inverted the values of γ1 and γ2 to show how
these parameters can control the asymmetry of the curve.

set of parameters. We can see that the CPMM hyperbola is always greater
than the CSMM line, and they touch each other at the equilibrium point. The
Silkswap invariant graph lies in between them. In the Appendix we prove these
facts in the theorems (A.1) and (A.3). The parameter A tells us how close
the Silkswap graph is to the CPMM or to the CSMM. From Eq. (5) we can
easily see that for A→ 0 the invariant converges to the CPMM curve, while for
A→∞ it converges to the CSMM curve.1

The two dimensional function χ in (6) is a discontinuous function. We show the
surface plot in Fig. (4). In the Appendix we prove that, although the Silkswap
invariant contains a discontinuous function, the points of our interest are regular
points where the invariant is continuously differentiable.

2.2 Pricing with the Silkswap invariant

In order to compute the price of a token, it is convenient to express the in-
variant in the explicit form y = f(x), where f : R>0 → R>0 is continuously
differentiable, decreasing and convex 2. For the CPMM the explicit form is the

1The parameter A has the same meaning of the parameter A in the Stableswap model
[Egorov, 2019].

2The set R>0 is the set {x ∈ R|x > 0}.

4

Figure 4: Function χ calculated with D = 2000, p = 1, γ1 = 2, γ2 = 8. The equilibrium point
is at (x, y) = (1000, 1000) and χ(x, y) = 1. The function χ is continuous at this point, but
not differentiable.

hyperbola f(x) = K
px , while for the CSMM the explicit form is the straight line

f(x) = 1
p (−x+D), defined for 0 ≤ x ≤ D.

If we trade an infinitesimal quantity dy, using the first order Taylor approxi-

mation dy ≈ df(x)
dx dx, it results equal to trade the quantity df(x)

dx dx. Let us recall

that by definition df(x)
dx < 0, so we need to use the absolute value to define a

positive price. We define the current price of the token X as function of x

PX(x) :=

∣∣∣∣df(x)

dx

∣∣∣∣ =

∣∣∣∣dydx
∣∣∣∣. (8)

The price of the token Y is defined as:

PY (x) :=

∣∣∣∣dxdy
∣∣∣∣ =

1

PX
. (9)

Under the CPMM model, the current price is PY (x) = px2

K , and at equilibrium

PY (
√
K) = p. Under the CSMM model, the current price is a constant value,

PY (x) = p, for any 0 < x < D.

Unfortunately the Silkswap invariant cannot be written in an explicit form.
We can define the function F : R2

>0 → R>0 as

F (x, y) := AD

(
4xpy

D2

)γ
(x+ py −D) + xpy − D2

4
(10)

with γ as in (7). The Silkswap invariant (5) is the set of points that satisfy

F (x, y) = 0. (11)

The partial derivatives are:

∂F

∂x
= AD

(
4xpy

D2

)γ[
1 + γ

x+ py −D
x

]
+ py (12)

∂F

∂y
= AD

(
4xpy

D2

)γ[
p+ γ

x+ py −D
y

]
+ px. (13)

5

Figure 5: Graph of the price of the token Y as function of x, obtained from the Silkswap
invariant. Same parameters used in Fig (3). The vertical lines at 500 and 1500 only serve to
better understand the asymmetry in the graph.

Thanks to the Theorem (A.6), we know the expression of the slope of the Silk-
swap invariant, which can be used to compute the prices of the tokens by (8)
and (9). The slope has the following expression:

dy

dx
= −

∂F
∂x
∂F
∂y

. (14)

In Figure 5 we present two examples of price curves obtained from this expres-
sion.

2.3 Scaled invariant

If we consider the function (10) depending also on D, for any constant c > 0 we
have

F (x, y,D) = 0 =⇒ F (cx, cy, cD) = 0. (15)

This means that the Silkswap invariant is also invariant by scaling.
This property is very useful in practice because it reduces the convergence time
of some numerical methods and prevents possible overflows when the variables
have very high magnitudes.
Let us introduce the variable z := py. We can consider F (cx, cy, cD) with
c = 1

D , equal to F (xD ,
y
D , 1), and define the corresponding scaled function:

F̃ (x̃, z̃) := A
(
4x̃z̃
)γ

(x̃+ z̃ − 1) + x̃z̃ − 1

4
. (16)

where x̃ = x
D , and z̃ = z

D . We show in Fig. 6 the graph of this function. The
scaled Silkswap invariant is given by

F̃ (x̃, z̃) = 0. (17)

The function (16) is related with (10) by

F̃ (x̃, z̃) =
1

D2
F (x, y). (18)

Using the chain rule

∂F̃ (x̃, z̃)

∂x̃
=

∂F̃ (x̃, z̃)

∂x

dx

dx̃
=

1

D

∂F (x, y)

∂x
(19)

∂F̃ (x̃, z̃)

∂z̃
=

∂F̃ (x̃, z̃)

∂y

dy

dz̃
=

1

pD

∂F (x, y)

∂y
, (20)

6

Figure 6: Scaled function F̃ (x̃, z̃), with, γ1 = 2, γ2 = 8. The equilibrium point is at (x̃, z̃) =
(0.5, 0.5) and the function is continuously differentiable in this point. The solid line represents
the zero level of the invariant.

we can rewrite the price equation (14) as

dy

dx
= −1

p

∂F̃ (x̃,z̃)
∂x̃

∂F̃ (x̃,z̃)
∂z̃

. (21)

In the numerical calculation of the swap amount, we will make use of the scaled
function (16), rather than (10), because it reduces a lot the number of opera-
tions, and consequently the run time and gas fees.

3 Numerical implementation

3.1 Calculation of D

Since this model is defined by an implicit equation, we need numerical methods
to compute the variables of interest. If the amounts of tokens in the pool satisfy
the equilibrium equation 2, then the parameter D can be quickly computed from
Eq. (4). However, it is quite rare that a liquidity pool is in perfect equilibrium
and the equation 2 is almost never satisfied. In this cases we need to compute
D from Eq. (5) using a numerical method. Let us define F (D) as the function
(10) when we consider D variable and x, y fixed. With an abuse of notation we
can call it ”invariant function dependent of D”, but let us recall that the name
invariant can be used only when F (D) = 0. In Fig 7, we can see that F (D) is
a smooth decreasing function. We compare three different numerical methods:
the Newton method, Halley method and the bisection method, see Table 1.

The idea of using two times arithmetic mean (AM) and geometric mean
(GM) as starting points for Newton and Halley methods comes from Theorem
A.4. We can see that 2AM is a better choice. Although Newton method has
more loop iterations than Halley, it performs better in terms of time. The rea-
son is that the calculation of the second derivative is more expensive, in terms
of operations, than the extra iterations. The expression of the derivatives are
in Appendix B. Bisection method, as expected from theoretical results, is the
slowest.

7

Figure 7: LEFT: Invariant as function of D. We used x = 1900, y = 100, p = 2, A = 30,
γ1 = 8, γ2 = 2.
RIGHT: Scaled invariant as function of x̃. We used y = 600, D = 2000, p = 1, A = 5, γ1 = 2,
γ2 = 3. The function has only one zero.

Figure 8: LEFT: Scaled invariant as function of x̃. We used y = 600, D = 2000, p = 1, A = 5,
γ1 = 3, γ2 = 2. The graph shows two zeros. The Halley and Newton methods are highly
dependent on the initial guess x̃0.
RIGHT: Scaled invariant as function of x̃. We used y = 200, D = 2000, p = 1, A = 5, γ1 = 3,
γ2 = 4. The function is increasing for x̃ > 0, therefore the Halley and Newton methods
converge to the right solution.

3.2 Calculation of the swap amount

We will also make use of numerical methods to calculate the amount of tokens
that are returned during a swap. When a quantity ∆y is introduced into the
pool, we need to compute the quantity ∆x that is extracted from the pool, and
such that the point (x − ∆x, y + ∆y) belongs to the Silkswap invariant. The
parameter D is fixed, and it is irrelevant for this calculation, therefore in order
to simplify the problem, we can use the scaled function (16). Let us define
F̃ (x̃|ỹ) and F̃ (ỹ|x̃) the function with ỹ or x̃ fixed respectively. Again, with an
abuse of notation we can call these functions ”invariant functions depending
on x̃ or ỹ”. In the following we consider the case when ∆x is extracted and
therefore we need to find the zero of F̃ (x̃|ỹ), but the same analysis works for
F̃ (ỹ|x̃). In the Figures 7 and 8, we can see that the function is discontinuous
and can have different shapes depending on the choice of the parameters. So
the numerical convergence to the right solution is not always guaranteed.
By definition, the parameter γ can be any non-negative real number. In practice

8

Pool with 2000 USDC and 1000 SILK

Starting point Method Iterations Time

2AM Newton 4 312.8µs
2GM Newton 8 770.4µs
2AM Halley 2 390.5µs
2GM Halley 5 820.4µs

/ Bisection 61 2.37ms

Pool with 200000 USDC and 100000 SILK

Starting point Newton Halley Bisection

2AM Newton 4 290.0µs
2GM Newton 7 790.3µs
2AM Halley 3 399.5µs
2GM Halley 5 914.2µs

/ Bisection 67 2.6ms

Table 1: Performance tables for the calculation of the parameter D. Newton and Halley
methods are computed using two different initial guesses: 2AM and 2GM . The bisection
method is computed inside the interval [2GM, 2AM], see Theorem A.4. The parameters of
the AMM are p = 1, A = 100, γ1 = γ2 = 8. We set a very small tolerance εD = 10−16.

we restrict γ to be a positive integer value in order to simplify the model. The
value of γ1 is particularly important because it controls the behavior of the left
tail:

lim
x̃→−∞

F̃ (x̃|ỹ)→ −∞ for even γ1

lim
x̃→−∞

F̃ (x̃|ỹ)→ +∞ for odd γ1,

as we can see if we compare the plot of F̃ (x̃|ỹ) in Fig. 7 with the plots in Fig.
8. When γ1 is odd, F̃ (x̃|ỹ) has two zeros. Since x̃ > 0 by definition, we know
that the correct solution must be positive. However, numerical methods such
as Newton and Halley can converge to the wrong solution if initialized with an
unlucky starting point, see Fig. 8 (LEFT). Under some set of parameters, it
is possible that the function F̃ (x̃|ỹ) is increasing for x̃ > 0, and the Newton
method works fine, see Fig. 8 (RIGHT). However, to avoid this uncertainty,
in these cases it is better to use numerical methods that always guarantee the
convergence to the right solution, such as the bisection algorithm. If we call
(x̃0, ỹ0) the amounts in the pool before the swap, and (x̃1, ỹ1) the amounts after
the swap such that F̃ (x̃1|ỹ1) = 0, then we know that x̃1 ∈ [0, x̃0]. The swap
amount is therefore ∆x = D(x̃0 − x̃1).
In practical applications we want to take advantage of the speed of the Newton
method, and therefore we choose to use only odd values for γ1. For comparisons
between the three numerical methods under consideration, see Table 2. Let us
comment a few points:

1. The number of iterations of the bisection method does not depend on the
size of the pool. The reason is that we are searching in the interval [0, x̃0],
and x̃0 = x

D . In the example, since we are at equilibrium D = 2x and
therefore x̃0 = 1

2 .

2. The number of iterations of the bisection method does not depend on the
size of the trade either.

3. As for the calculation of D, Newton is slightly faster than Halley. The
computation of second order derivatives (see Appendix B) is expensive.

4. The number of iterations of the Newton method increases when the size
of the trade is big with respect to the size of the pool. In this case the
Newton method is the one that performs worse while the bisection method
is the one that performs best. However, in practice it is very unlikely to
see transactions bigger than the size of the pool.

5. We used x̃0 i.e. the value x
D before the swap, as an initial guess. We tried

also with 2AM
D and 2GM

D as initial guesses, but the performances are worse.

9

Pool with 103 USDC and 103 SILK

Swap size Method Iterations Time

0 Bisect 0 153µs
0.1 Bisect 52 1.32ms
1 Bisect 52 1.31ms
10 Bisect 52 1.30ms
102 Bisect 52 1.37ms
103 Bisect 52 1.31ms
104 Bisect 52 1.34ms
105 Bisect 52 1.47ms
106 Bisect 52 1.46ms
0 Halley 0 190µs
0.1 Halley 2 311µs
1 Halley 2 303µs
10 Halley 3 366µs
102 Halley 4 436µs
103 Halley 9 751µs
104 Halley 17 1.30ms
105 Halley 26 1.95ms
106 Halley 37 2.88ms
0 Newton 0 159µs
0.1 Newton 3 262µs
1 Newton 3 246µs
10 Newton 4 285µs
102 Newton 6 358µs
103 Newton 16 674µs
104 Newton 30 1.20ms
105 Newton 49 2.01ms
106 Newton 68 2.80ms

Pool with 106 USDC and 106 SILK

Swap size Method Iterations Time

0 Bisect 0 141µs
0.1 Bisect 52 1.51ms
1 Bisect 52 1.45ms
10 Bisect 52 1.62ms
102 Bisect 52 1.46ms
103 Bisect 52 1.48ms
104 Bisect 52 1.46ms
105 Bisect 52 1.57ms
106 Bisect 52 1.47ms
0 Halley 0 150µs
0.1 Halley 1 270µs
1 Halley 1 269µs
10 Halley 2 346µs
102 Halley 2 341µs
103 Halley 2 341µs
104 Halley 3 422µs
105 Halley 4 488µs
106 Halley 9 885µs
0 Newton 0 155µs
0.1 Newton 2 236µs
1 Newton 2 239µs
10 Newton 2 247µs
102 Newton 3 297µs
103 Newton 3 284µs
104 Newton 4 316µs
105 Newton 6 394µs
106 Newton 16 1.04ms

Table 2: Performance tables. We compare swap times where a trader swaps SILK for USDC.
We consider different sizes and different numerical methods. The initial guess for the Halley
and Newton methods is x̃0 i.e. the scaled amount of USDC before the swap. The parameters
of the AMM are p = 1, A = 100, γ1 = γ2 = 8. We set a very small tolerance εx = 10−16.

When considering an even γ1, it turns out that the Newton method is supe-
rior for both the calculations of D and the swap size. In production, we decided
to use Newton as main solver, and bisection as fallback in case of failure.

3.3 Model implementation

We tested the model with values of A ranging from 1 to 105 and values of gamma
from 1 to 75, under a variety of conditions including pool sizes from 1 to 1011

USDC total value, with a similar range of trade sizes. Generally, the Rust
implementation can handle trade sizes several orders of magnitude above the
size of the pool without overflowing, unless the values for γ1 or γ2 are excessively
high. Since γ1 and γ2 are exponents, large values quickly create unmanageable
numbers.

We implemented the Silkswap algorithm inside Rust smart contracts on the
Secret Network blockchain. Smart contract do not allow floating point calcula-
tions, and this required the use of a few workarounds. Since smart contracts only
support integer arithmetics, we stored most numbers as 1018 larger than their
actual value. This effectively allowed us to store 18 decimal places. Variables
are stored as uint256 i.e. unsigned 256 bits integers. Additionally, we paired
each variable with a boolean representing its sign, allowing us to calculate both
positive and negative numbers. The square root in 2GM is computed by the
Babilonian method.

10

Figure 9: Graph of the price of the token Y (SILK) as function of the fraction of toke X
(USDC). Two lines corresponding to two different values of γ2 are compared in order to show
how this parameter can control the shape of the curve.

3.4 Parameter selection

In the previous sections we have seen how the parameters A, γ1 and γ2 modify
the shape of the Silkswap invariant. Specifically, parameter A controls the
flatness of the curve in the area around the equilibrium point (see Fig 2), while
the parameters γ1 and γ2 are used to control the curvature and asymmetry of
the invariant (see Fig 3). The shape of the invariant is directly reflected in the
price curve (see Fig. 5). Thus, the parameters of the model must be chosen
in such a way as to make the price curve attractive for DEX users. Therefore,
they must maintain a low price impact and protect against possible imbalances
in the liquidity pool.

In this section we present a practical method for deciding the value of pa-
rameters. Since it is not very practical to consider a curve that depends on the
quantity of tokens in the liquidity pool, we define the fraction of token X inside
the pool as x

x+py and similarly we define the fraction of token Y as py
x+py . As

usual we multiply y by p to have the same units as x. It is very convenient to
express the price curve as a function of the fraction, because the fraction is a
percentage and does not depend on the size of the pool. Now we can choose
a level of price impact that suits us, and choose the parameters in such a way
that the price is impacted by this price impact at a certain level of fraction of
the tokens.
In Fig. 9, we show examples of price curves for different parameter values. We
choose a 5% level of price impact for Y . We are considering the case x > py
such that we are able to calculate γ2. The same procedure should also be done
for x < py and considering a price impact for X in order to find γ1.
In this example, the price of the token Y (SILK) at equilibrium is p = 1. Its
value after the 5% price impact increase is 1.05 and it is represented by the
points on the price curves in the figure. We can see how by changing A and γ2
it is possible to move the point to the right or to the left as desired.
A look at the curvature can also be helpful in choosing these parameters.

4 Comparison with the Curve model

Curve finance is currently the most popular DEX for trading stablecoins. The
Curve v2 model [Egorov, 2021] is an HFMM model, conceptually not very dif-
ferent from Silkswap. They both take a linear combination of the CSMM and
the CPMM models. Since in the development of Silkswap we took inspiration

11

Figure 10: LEFT: Comparison of the Silkswap invariant with the Curve v2 invariant curves.
RIGHT: Comparison of price curves of SILK as function of USDC in the pool. We used
D = 2000, p = 1, and A = 400 for both models. In Silkswap we use γ1 = γ2 = 10. In Curve
v2 we use γ = 0.05

from Curve, we decided to use a similar notation. The parameter A in Curve
has the same meaning as in Silkswap. The main difference between these models
is the definition of the function χ:

Silkswap : χ =

(
4xy

D2

)γ
γ =

{
γ1, if x ≤ y
γ2, if x > y

Curve v2 : χ =
4xy

D2

(
γ

γ + 1− 4xy
D2

)2

.

For simplicity we didn’t include the conversion factor p. In both models 0 ≤
χ ≤ 1. If for a moment we do not consider the fact that our gamma can assume
two values, the gammas in the two models have different meanings. For any
point not at equilibrium, in Silkswap: limγ→0 χ = 1 and limγ→∞ χ = 0, while
for Curve v2 we have the opposite: limγ→0 χ = 0 and limγ→∞ χ = 1.

In Fig. 10 we can see the invariant and price curves produced by these
two models. The values of gammas are chosen to make the two curves as close
as possible when using same value of A. We notice that the Silkswap model
produces a higher curvature, although we did not prove it formally.

Another difference between the models is that currently Silkswap is designed
to work with liquidity pools containing only two tokens, while Curve v2 can have
pools with any number of coins.

Unlike Curve, we have decided to apply transaction fees to the token that
is inserted into the pool, following the same approach used by Uniswap and
Osmosis.

5 Conclusions

The Silkswap invariant is an AMM model that allows users to trade stablecoins
with minimal price impact when the state of the pool is close to equilibrium.
Away from equilibrium, the price impact tends to that of the CPMM model.
The main innovation of this model is the asymmetry of the invariant, which
helps to regulate the liquidity in the pool and discourage strong imbalances in
the quantity of tokens asymmetrically. For new stablecoins like Silk that are
in the process of building up liquidity, the asymmetric curve provides attack
protection, discouraging the sale when the amount of Silk in the pool exceeds a

12

certain threshold (dependent on the parameters of the model). This is done by
making the price impact grow faster in that direction and slower in the opposite.
Figure 5 shows this behavior very well.

Acknowledgements

This research was fully funded by Shade Protocol.

A Properties of the Silkswap invariant

In Figure 1 we can see that the CPMM graph is greater than the CSMM graph,
and they intersect each other at the equilibrium point. Let us formally prove
this fact.

Theorem A.1. For x > 0, the condition

1

p
(−x+D) ≤ D2

4px
(A.1)

is always satisfied.

Proof. The condition (A.1) can be written as

x2 −Dx+
D2

4
=

(
x− D

2

)2

≥ 0,

which is always verified.

Theorem A.2. The value of χ, defined in (6) always satisfy

0 < χ ≤ 1. (A.2)

Proof. Since χ is a function of only positive variables, it follows that χ must be
positive.
Let us consider the Silkswap invariant (5):

(χAD)︸ ︷︷ ︸
>0

(x+ py −D)︸ ︷︷ ︸
≥0

+ xpy − D2

4︸ ︷︷ ︸
≤0

= 0 (A.3)

Since the sum of two terms is zero, it means that or both terms are zero, or the
two terms have opposite sign. The case of both terms equal zero happens only
at the equilibrium point.
Let us consider the case of both terms different than zero. We want to prove by
contradiction that the first term must be positive.
If the first term is negative, then (x+ py −D) < 0, and we have that

y <
1

p
(−x+D) ≤ D2

4px
,

by Theorem A.1. This implies that xpy − D2

4 < 0, but this is a contradiction
because the terms must have opposite sign. The second term is always negative
or zero, and we can conclude the proof.

xpy − D2

4
≤ 0 =⇒ 4xpy

D2
≤ 1 =⇒ χ ≤ 1.

In Figure 2 we can see that the Silkswap invariant always lies between the
graphs of the CSMM and CPMM models.

13

Theorem A.3. The graph of the Silkswap invariant always lies between the
graphs of the CSMM and CPMM models.

Proof. First we prove that the Silkswap invariant graph is not greater than the
CPMM graph. This is a direct consequence of Theorem A.2:

4xpy

D2
≤ 1 =⇒ y ≤ D2

4xp
. (A.4)

Now we prove that the Silkswap invariant graph is not smaller than the CSMM
graph. Let us consider the invariant (5) and divide it by the positive quantity
ADχ. We get

0 = (x+ py −D) +
xpy − D2

4

ADχ

≤ x+ py −D.

where we used xpy − D2

4 ≤ 0. It follows that

y ≥ −x+D

p
. (A.5)

Theorem A.4. The parameter D in the Silkswap invariant satisfies

2GM ≤ D ≤ 2AM, (A.6)

where GM is the geometric mean of x and py, and AM is the arithmetic mean.

Proof. This is an immediate consequence of Theorem A.3. From the two in-
equalities (A.4) and (A.5) we obtain

2
√
xpy ≤ D ≤ x+ py. (A.7)

Theorem A.5. The partial derivatives (12), (13) of the function F (x, y) defined
in (10) are always positive on

{
(x, y) : F (x, y) = 0

}
.

Proof. We present a proof for ∂F
∂y only, since the same arguments can be used

for ∂F
∂x . Let us consider the expression:

∂F

∂y
= ADχ

[
p(γ + 1) + γ

(
x

y
− D

y

)]
+ px.

Since all variables are positive, when
(
x
y −

D
y

)
≥ 0 then ∂F

∂y > 0. This happens
for x ≥ D.
For 0 < x < D, let us rearrange the terms inside the square brackets and use
(A.5): [

γp+ p− γp
(

1

y

−x+D

p

)
︸ ︷︷ ︸

≤1

]
≥ p > 0.

This last inequality proves the theorem.

Unfortunately, the function F (x, y) defined in (10) is not continuous in the
entire R2

>0, and we need to be careful around the points of discontinuity. The
following theorem guarantees the validity of (14).

14

Theorem A.6. The derivative of the Silkswap invariant can be written as

dy

dx
= −

∂F
∂x
∂F
∂y

.

Proof. The function F (x, y) is continuously differentiable everywhere except on
the line x = py, where it is discontinuous. The intersection between this line
and the Silkswap invariant, {

x = py

F (x, y) = 0,

corresponds to the equilibrium point (D2 ,
D
2p). At the equilibrium point we have

lim
(x,y)→

(
D
2 ,

D
2p

)F (x, y) = 0

from any directions, and therefore F (x, y) is continuous in this point. Also

lim
(x,y)→

(
D
2 ,

D
2p

) ∂F∂x =
(
A+

1

2

)
D

lim
(x,y)→

(
D
2 ,

D
2p

) ∂F∂y = p
(
A+

1

2

)
D

with limits from any directions. Therefore the partial derivatives are continuous
and F (x, y) is continuously differentiable at

(
D
2 ,

D
2p

)
.

Let us differentiate F (x, y) along the direction of the Silkswap invariant

0 = dF (x, y) =
∂F

∂x
dx+

∂F

∂y
dy.

In the Theorem (A.5) we prove that ∂F
∂y > 0. We can rearrange the last expres-

sion to conclude the proof.

B Expression of the derivatives

Derivative expressions used for the calculation of D by Newton and Halley
methods:

dF (D |x, y)

dD
= A

(
4xpy

D2

)γ[
(−2γ + 1) (x+ py −D)−D

]
− D

2
, (B.1)

d2F (D|x, y)

dD2
= A

(
4xpy

D2

)γ[
4γ − 2 + 2γ(2γ − 1)

(
x

D
+
py

D
− 1

)]
− 1

2
. (B.2)

First derivative expressions for computing x̃ and z̃ by Newton and Halley
methods:

dF̃ (x̃ | z̃)
dx̃

= A
(
4x̃z̃
)γ[

γ
x̃+ z̃ − 1

x̃
+ 1

]
+ z̃, (B.3)

dF̃ (z̃ | x̃)

dz̃
= A

(
4x̃z̃
)γ[

γ
x̃+ z̃ − 1

z̃
+ 1

]
+ x̃. (B.4)

for

γ :=

{
γ1, if x̃ ≤ z̃
γ2, if x̃ > z̃.

(B.5)

15

Second derivatives:

d2F̃ (x̃ | z̃)
dx̃2

= 4z̃γA
(
4x̃z̃
)γ−1[

2 + (γ − 1)
x̃+ z̃ − 1

x̃

]
, (B.6)

d2F̃ (z̃ | x̃)

dz̃2
= 4x̃γA

(
4x̃z̃
)γ−1[

2 + (γ − 1)
x̃+ z̃ − 1

z̃

]
. (B.7)

References

[Adams, 2018] Adams, H. (2018). Uniswap v1 whitepaper. https: // hackmd.
io/ @HaydenAdams/ HJ9jLsfTz .

[Adams et al., 2020] Adams, H., Zinsmeister, N., and Robinson, D. (2020).
Uniswap v2 core. https: // uniswap. org/ whitepaper. pdf .

[Angeris and Chitra, 2020] Angeris, G. and Chitra, T. (2020). Improved price
oracles: Constant function market makers. Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, pages 80 – 91.

[Duniya, 2021] Duniya, S. (2021). Silk: A privacy-preserving algorithmic burn
stablecoin. https: // shadeprotocol. io/ pdf/ Silk_ Whitepaper. pdf .

[Egorov, 2019] Egorov, M. (2019). Stableswap - efficient mechanism for stable-
coin liquidity. https: // curve. fi/ files/ stableswap-paper. pdf .

[Egorov, 2021] Egorov, M. (2021). Automatic market-making with dynamic
peg. https: // curve. fi/ files/ crypto-pools-paper. pdf .

[Mohan, 2022] Mohan, V. (2022). Automated market makers and decentralized
exchanges: a defi primer. Financial Innovation, 8(20).

[Woetzel, 2020] Woetzel, C. (2020). Secret network: A privacy-preserving
secret contract & decentralized application platform. https: // www.

securesecrets. org/ Secret_ Network_ Graypaper_ 2. 0. 1_ 1. pdf .

16

https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://hackmd.io/@HaydenAdams/HJ9jLsfTz
https://uniswap.org/whitepaper.pdf
https://shadeprotocol.io/pdf/Silk_Whitepaper.pdf
https://curve.fi/files/stableswap-paper.pdf
https://curve.fi/files/crypto-pools-paper.pdf
https://www.securesecrets.org/Secret_Network_Graypaper_2.0.1_1.pdf
https://www.securesecrets.org/Secret_Network_Graypaper_2.0.1_1.pdf

	Introduction
	Silkswap model
	Silkswap invariant
	Pricing with the Silkswap invariant
	Scaled invariant

	Numerical implementation
	Calculation of D
	Calculation of the swap amount
	Model implementation
	Parameter selection

	Comparison with the Curve model
	Conclusions
	Properties of the Silkswap invariant
	Expression of the derivatives

