
Legion
Smart Contract
Security Assessment
VERSION 1.1

AUDIT DATES:

AUDITED BY:

February 15nd to February 19th, 2025
matte
rscodes
spicymeatball

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Contents 1 Introduction 2

1.1 About Zenith 3

1.2 Disclaimer 3

1.3 Risk Classification 3

2 Executive Summary 3

2.1 About Legion 4

2.2 Scope 4

2.3 Audit Timeline 5

2.4 Issues Found 5

3 Findings Summary 5

4 Findings 6

4.1 High Risk 7

4.2 Medium Risk 9

4.3 Low Risk 16

4.4 Informational 19

2

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

1
Introduction

1.1 About Zenith

Zenith is an offering by Code4rena that provides consultative audits from the very best
security researchers in the space. We focus on crafting a tailored security team specifically
for the needs of your codebase.

Learn more about us at https://code4rena.com/zenith.

1.2 Disclaimer

This report reflects an analysis conducted within a defined scope and time frame, based on
provided materials and documentation. It does not encompass all possible vulnerabilities
and should not be considered exhaustive.

The review and accompanying report are presented on an "as-is" and "as-available" basis,
without any express or implied warranties.

Furthermore, this report neither endorses any specific project or team nor assures the
complete security of the project.

1.3 Risk Classification

SEVERITY LEVEL IMPACT: HIGH IMPACT: MEDIUM IMPACT: LOW

Likelihood: High Critical High Medium

Likelihood: Medium High Medium Low

Likelihood: Low Medium Low Low

3

https://code4rena.com/zenith

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

2
Executive Summary

2.1 About Legion

The goal of Legion is to create a network where anyone can freely chat and socialize
without compromising their privacy, using the hashgraph consensus.

2.2 Scope

The engagement involved a review of the following targets:

Target evm-contracts

Repository https://github.com/Legion-Team/evm-contracts/

Commit Hash 8c81309b71c64eb719f39fb25cf658015564223f

Files LegionPreLiquidSaleV1.sol
LegionPreLiquidSaleV2.sol

4

https://github.com/Legion-Team/evm-contracts/

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

2.3 Audit Timeline

DATE EVENT

February 15, 2025 Audit start

February 19, 2025 Audit end

February 28, 2025 Report published

2.4 Issues Found

SEVERITY COUNT

Critical Risk 0

High Risk 2

Medium Risk 6

Low Risk 3

Informational 3

Total Issues 14

5

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

3
Findings Summary

ID DESCRIPTION STATUS

H-1 Project admin can withdraw all invested funds, including excess
capital

Resolved

H-2 Users can claim their ask tokens and steal back their bid tokens
from the contract

Resolved

M-1 Refund and claiming stages can overlap Resolved

M-2 Project owners are not required to return withdrawn capital upon
sale cancellation

Resolved

M-3 ‘publishTgeDetails‘ should set ‘refundEndTime‘ so that capital
can’t be withdrawn

Resolved

M-4 Users unable to claim tokens if the sale was conducted on a dif-
ferent chain

Resolved

M-5 Project owners are not required to provide ask tokens before
withdrawing capital

Acknowledged

M-6 An user who refunds and then buys again may not be able to
refund

Resolved

L-1 Vesting parameters are not validated Resolved

L-2 Impossible to withdraw excess tokens after a user has already
withdrawn excess once

Resolved

L-3 Some functions should have the ‘whenNotPaused‘ modifier Resolved

I-1 Users can provide stale allocation rate data when interacting with
the sale contract

Acknowledged

I-2 Users can supply malformed signatures to bypass _verifySigna-
tureNotUsed

Resolved

I-3 ‘publishTgeDetails‘ should call ‘_verifyRefundPeriodIsOver‘ Resolved

6

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

4
Findings

4.1 High Risk

A total of 2 high risk findings were identified.

[H-1] Project admin can withdraw all invested funds, including
excess capital

SEVERITY: High IMPACT: High

STATUS: Resolved LIKELIHOOD: Medium

Target
• LegionPreLiquidSaleV1.sol#L349

Description:
When the project admin calls the withdrawRaisedCapital function, they receive the entire
amount invested by users, without distinguishing between actual capital and excess capital:

function withdrawRaisedCapital() external onlyProject whenNotPaused {
/// Verify that the sale is not canceled
_verifySaleNotCanceled();

/// Verify that the sale has ended
_verifySaleHasEnded();

// Verify that the refund period is over
_verifyRefundPeriodIsOver();

/// Verify that the project can withdraw capital
_verifyCanWithdrawCapital();

/// Account for the capital withdrawn
>> saleStatus.totalCapitalWithdrawn = saleStatus.totalCapitalInvested;

As a result, users who invested more than the required amount would be unable to
withdraw their excess capital, since no bid tokens would remain in the contract.

7

https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L349

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:
Consider transferring only the actual capital to the project admin, similar to how it is
handled in the V2 sale:

function publishCapitalRaised(uint256 capitalRaised,
bytes32 acceptedMerkleRoot) external onlyLegion {
//-SNIP//-

// Set the total capital raised to be withdrawn by the project
saleStatus.totalCapitalRaised = capitalRaised;

function withdrawRaisedCapital() external override(ILegionSale, LegionSale)
onlyProject whenNotPaused {
//-SNIP//-

// Cache value in memory
uint256 _totalCapitalRaised = saleStatus.totalCapitalRaised;

Legion: Fixed in @182e9e02c8....

Zenith: Verified. The project admin can withdraw only the actual raised capital published
by the Legion protocol.

[H-2] Users can claim their ask tokens and steal back their bid
tokens from the contract

SEVERITY: High IMPACT: High

STATUS: Resolved LIKELIHOOD: Medium

Target
• LegionPreLiquidSaleV1.sol

Description:
The pre-liquid sale ends when saleStatus.hasEnded is set to true.

And there are 2 functions that can set saleStatus.hasEnded to true and end the sale.

• Either call endSale or call publishTgeDetails.

8

https://github.com/Legion-Team/evm-contracts/commit/182e9e02c8536d082af15d4d2ca52c286f437cd8
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L377-L456
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L585-L603
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L209-L238

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Both are coded to end the sale by setting the value of saleStatus.hasEnded. However,
taking a closer look at endSale, we can see that endSale calls _verifySaleHasNotEnded()

• Which means that once publishTgeDetails is called, then endSale cannot be called.
Since hasEnded will be true and endSale will revert.

However, we can see that endSale is the only function that can set
saleStatus.refundEndTime. Which means that if endSale cannot be called then
refundEndTime will forever be 0.

Now, let's look at what happens if refundEndTime is 0. If it is zero, it means that both
_verifyRefundPeriodIsOver and _verifyRefundPeriodIsNotOver will pass.

So after publishTgeDetails and supplyAskTokens, what the attacker can now do is:

• Call claimAskTokenAllocation and get their ask tokens. (However,
claimAskTokenAllocation does not reset positions.investedCapital to 0.

• Call refund which will not revert as _verifyRefundPeriodIsNotOver() will pass due to
what was described above. And attacker steals back their bid token becoz
positions.investedCapital is still the original value.

So now the attacker managed to get both the bid and ask tokens.

Recommendations:
Set positions.investedCapital = 0 in the function claimAskTokenAllocation. (And also
allow endSale to be called even if hasEnded is true, so that refundEndTime can be rightfully
set)

Legion: Fixed with @819765e408.... We decided to take the approach that
publishTgeDetails is only callable after the sale has been ended by Legion or the Project.
So, the only way to end the sale will be through the endSale method.

Zenith: Verified

4.2 Medium Risk

A total of 6 medium risk findings were identified.

[M-1] Refund and claiming stages can overlap

9

https://github.com/Legion-Team/evm-contracts/commit/819765e40832f187413b97635a88e351cba820fb

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Low

Target
• LegionSale.sol#L183

Description:
In the V1 sale, the following conditions must be met for users to claim their tokens:

• The sale is not canceled.
• TGE data has been published.
• Ask tokens have been supplied by the project.

However, nothing prevents the protocol from satisfying all these conditions while the refund
period is still active. This means users could claim their ask tokens and then refund their
initial investment, potentially exploiting the system.

Recommendations:
Ensure that the refund period has ended before allowing TGE data to be published.

Legion: Fixed in @67ae4c3966...

Zenith: Verified. The protocol will ensure the refund period is over before publishing the
TGE.

[M-2] Project owners are not required to return withdrawn
capital upon sale cancellation

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Low

Target
• LegionPreLiquidSaleV2.sol#L187

10

https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionSale.sol#L183
https://github.com/Legion-Team/evm-contracts/commit/67ae4c3966e03f1ed94645cb105881b711c838f7
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV2.sol#L187

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

• LegionSale.sol#L357

Description:
If a project owner withdraws capital from the sale and later decides to cancel it, they are
not obligated to return the withdrawn tokens:

function cancelSale() public virtual onlyProject whenNotPaused {
// Allow the Project to cancel the sale at any time until results are
published
// Results are published after the refund period is over
_verifySaleResultsNotPublished();

// Verify sale has not already been canceled
_verifySaleNotCanceled();

// Mark sale as canceled
saleStatus.isCanceled = true;

// Emit successfully SaleCanceled
emit SaleCanceled();

}

The only restriction is that the sale results must not have been published. However, since
project owners can withdraw bid tokens once Legion has published the raised capital
value, nothing prevents them from taking the funds and then canceling the sale.

Recommendations:
Consider implementing a mechanism to retrieve withdrawn tokens from the project admin
when cancelSale is called to ensure fairness and protect investors.

Legion: Fixed in @15b46079c2....

Zenith: Verified - Canceling the sale requires returning withdrawn raised capital if it was
taken.

[M-3] publishTgeDetails should set refundEndTime so that
capital can't be withdrawn

11

https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionSale.sol#L357
https://github.com/Legion-Team/evm-contracts/commit/15b46079c29f483940ab8fbb5c640a92d641b000

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Low

Target
• LegionPreLiquidSaleV1.sol

Description:
According to the docs, users are entitled to a refund period.

During an on-going refund period, project is strictly not allowed to call
withdrawRaisedCapital as the investors are entitled by the rules to refund the current bid
tokens sitting in the contract.

• This can be seen from withdrawRaisedCapital having a _verifyRefundPeriodIsOver
check.

This makes sense as only the admin legion is fully trusted and the external project will
have to abide by the TGE rules set by the admin legion which is also explained in my
previous submission: here on why only legion is fully trusted and not project.

Right now, there are 2 ways to end the sale, (end the sale means saleStatus.hasEnded =
true). The 2 ways are either publishTgeDetails or endSale. And it is worth noting once
publishTgeDetails is called, endSale cannot be called anymore as endSale requires
saleStatus.hasEnded to be false. But on the surface, there is also no reason for endSale to
be called anymore once publishTgeDetails is called as publishTgeDetails will end the
sale by setting saleStatus.hasEnded = true

Looking at publishTgeDetails:

function publishTgeDetails(
address _askToken,
uint256 _askTokenTotalSupply,
uint256 _vestingStartTime,
uint256 _totalTokensAllocated

)
external
onlyLegion

{
....

12

https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol
https://github.com/zenith-security/2025-02-legion-brainstorming/issues/4

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

/// Set `hasEnded` status to true
/-> if (!saleStatus.hasEnded) saleStatus.hasEnded = true;

....
}

We can see that publishTgeDetails ends the sale, but does not set the refund time. This
means that if the sale is ended through publishTgeDetails instead of endSale then
refundEndTime will just remain as zero forever. (note that once the sale is ended
through publishTgeDetails then endSale can't be called anymore)

refundEndTime being zero is perfectly normal for refund as users can still have their entitled
refund period because _verifyRefundPeriodIsNotOver will pass. However, the edge case
of refundEndTime being zero is that _verifyRefundPeriodIsOver will also pass.
Meaning withdrawRaisedCapital can be called, and some users may not be able to refund.

Recommendations: Set saleStatus.refundEndTime = block.timestamp +
saleConfig.refundPeriodSeconds; in publishTgeDetails if !saleStatus.hasEnded as that
means endSale hasn't been called.

Legion: Resolved with @819765e408...

Zenith: Verified

[M-4] Users unable to claim tokens if the sale was conducted
on a different chain

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Medium

Target
• LegionSale.sol#L603

Description:
Sales can be conducted across different chains, such as raising capital on chain A and
distributing tokens on chain B. In this scenario, users would be unable to claim their ask
tokens due to the following check:

13

https://github.com/Legion-Team/evm-contracts/commit/819765e40832f187413b97635a88e351cba820fb
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionSale.sol#L603

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

function _verifyCanClaimTokenAllocation(
address _investor,
uint256 _amount,
bytes32[] calldata _proof

)
internal
view
virtual

{
//-SNIP//-

// Safeguard to check if the investor has pledged capital
>> if (position.investedCapital /= 0)

revert Errors.NoCapitalInvested(_investor);
}

Since users may have invested on a different chain, their investedCapital value in this
contract would be 0, preventing them from claiming their tokens.

Recommendations:
Consider relaxing the eligibility criteria to allow users to claim tokens even if they do not
have capital recorded in the current sale contract.

Legion: Fixed in 1c46cc8293e

Zenith: Verified. Users can claim tokens without having capital invested in the current sale.

[M-5] Project owners are not required to provide ask tokens
before withdrawing capital

SEVERITY: Medium IMPACT: Medium

STATUS: Acknowledged LIKELIHOOD: Low

Target
• LegionPreLiquidSaleV1.sol#L335
• LegionPreLiquidSaleV2.sol#L187

14

https://github.com/Legion-Team/evm-contracts/commit/1c46cc8293e5e77c066260251748cb4b5f07d701
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L335
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV2.sol#L187

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Description:
Unlike the base sale contract, which requires project owners to supply ask tokens before
withdrawing capital:

function withdrawRaisedCapital()
external virtual onlyProject whenNotPaused {

//-SNIP//-

// Check if projects are withdrawing capital on the sale source chain
if (addressConfig.askToken /= address(0)) {

// Allow projects to withdraw capital only in case they've
supplied tokens

>> _verifyTokensSupplied();
}

V1 and V2 sales do not enforce this requirement. As a result, project owners can withdraw
bid tokens from the contract without ever supplying ask tokens. This creates a potential risk
where project owners could take users' funds without providing anything in return,
ultimately undermining trust in the protocol.

Recommendations:
Implement a check to ensure that ask tokens are supplied before allowing project owners
to withdraw capital.

Legion: Acknowledged. This is intentional by design for both versions of the pre-liquid
sales. As there could be a significant time gap between raising capital and the Token
Generation Event (TGE), projects are allowed to withdraw the raised funds before supplying
the tokens sold to the investors.

[M-6] An user who refunds and then buys again may not be
able to refund

SEVERITY: Medium IMPACT: Medium

STATUS: Resolved LIKELIHOOD: Medium

Target
• LegionPreLiquidSaleV1.sol

15

https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Description:
According to the code, an user can refund when the sale hasn't ended. This is because, if
the sale hasn't ended, it means that endSale has not been called. If it hasn't been called, it
means that refundEndTime is still 0.

Since refundEndTime is still 0, _verifyRefundPeriodIsNotOver will not revert, hence refund
can be called during the sale.

So consider this senario of Alice who has bought tokens from the sale.

1. Alice decides to refund previously bought tokens

2. Before the sale ends later, Alice decides to buy tokens again (possibly a different
amount this time which would explain the change of decision to buy tokens again)

3. endSale is called, and refundEndTime is set, officially beginning the refund period.

4. However, now Alice cannot refund during the refund period as refund calls
_verifyHasNotRefunded()

Recommendations:
invest should just set investorPositions[msg.sender].hasRefunded to false. That way
edge cases like this can be prevented.

Legion: Resolved with @abaabfa82a...

Zenith: Verified.

4.3 Low Risk

A total of 3 low risk findings were identified.

[L-1] Vesting parameters are not validated

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• LegionPreLiquidSaleV1.sol#L290

16

https://github.com/Legion-Team/evm-contracts/commit/abaabfa82aba225d64ec7a3d043bb6f67e7188d3
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L290

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Description:
The project admin can override vesting parameters that were initially set during the sale
initialization:

function updateVestingTerms(
uint256 _vestingDurationSeconds,
uint256 _vestingCliffDurationSeconds,
uint256 _tokenAllocationOnTGERate

)
external
onlyProject
whenNotPaused

{

This creates a potential risk where a malicious project owner could set an extremely long
vesting duration, effectively preventing users from claiming their tokens.

Recommendations:
Implement validation checks in updateVestingTerms to ensure that vesting parameters
remain reasonable.

Legion: Fixed in @7248e45d260....

Zenith: Verified. Vesting parameters are now checked during updates and initialization.

[L-2] Impossible to withdraw excess tokens after a user has
already withdrawn excess once

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• LegionSale.sol#L626

17

https://github.com/Legion-Team/evm-contracts/commit/7248e45d260374a540ec64738c9c8ce2ea6356e0
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionSale.sol#L626

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Description:
The Legion protocol allows setting the accepted capital Merkle root at any time during the
sale:

function setAcceptedCapital(bytes32 merkleRoot)
external virtual onlyLegion {
// Verify that the sale is not canceled
_verifySaleNotCanceled();

// Verify that the sale has not ended
_verifySaleHasNotEnded();

// Set the merkle root for accepted capital
saleStatus.acceptedCapitalMerkleRoot = merkleRoot;

// Emit successfully AcceptedCapitalSet
emit AcceptedCapitalSet(merkleRoot);

}

This creates a rare scenario where a user withdraws excess capital and then reinvests. If
they generate excess capital again, they will be unable to withdraw it because the contract
only allows excess capital withdrawals once:

function _verifyCanClaimExcessCapital(
address _investor,
uint256 _amount,
bytes32[] calldata _proof

)
internal
view
virtual

{
// Load the investor position
InvestorPosition memory position = investorPositions[_investor];

// Check if the investor has already settled their allocation
>> if (position.hasClaimedExcess)

revert Errors.AlreadyClaimedExcess(_investor);

Recommendations:
Restrict users from reinvesting after they have withdrawn excess capital to prevent this issue.

Legion: Fixed in @bea8583f3c....

18

https://github.com/Legion-Team/evm-contracts/commit/bea8583f3cc1d5be47a8b30d08917935bf083dbe

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Zenith: Verified. Users cannot reinvest if they already hold excess tokens.

[L-3] Some functions should have the whenNotPaused modifier

SEVERITY: Low IMPACT: Low

STATUS: Resolved LIKELIHOOD: Low

Target
• LegionPreLiquidSaleV1.sol
• LegionPreLiquidSaleV2.sol

Description:
• publishTgeDetails from LegionPreLiquidSaleV1.sol

• publishCapitalRaised from LegionPreLiquidSaleV2.sol

• publishSaleResults from LegionPreLiquidSaleV2.sol

The 3 functions above does not have the whenNotPaused modifier. Since these 3 functions
are not related at all to the emergency rescue function (which yep should not have the
modifier), they should include the whenNotPaused modifier just like the rest of the
non-emergency functions.

Recommendations:
Add whenNotPaused to those 3 non emergency functions which shouldn't be called during
an emergency paused market.

Legion: Resolved with @9b2247e0d3e...

Zenith: Verified.

4.4 Informational

A total of 3 informational findings were identified.

[I-1] Users can provide stale allocation rate data when
interacting with the sale contract

19

https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV2.sol
https://github.com/Legion-Team/evm-contracts/commit/9b2247e0d3e310664c24d218e7f5b1403525bb9e

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

SEVERITY: Informational IMPACT: Informational

STATUS: Acknowledged LIKELIHOOD: Low

Target
• LegionPreLiquidSaleV1.sol#L148
• LegionPreLiquidSaleV1.sol#L549
• LegionPreLiquidSaleV1.sol#L399

Description:
When a user performs any of the following actions:

• Investing bid tokens
• Withdrawing excess bid tokens
• Claiming ask tokens

they provide data that is calculated off-chain. One of these parameters is
tokenAllocationRate:

function invest(
uint256 amount,
uint256 investAmount,
uint256 tokenAllocationRate,
bytes32 saftHash,
bytes memory signature

)
external
whenNotPaused

{
//-SNIP//-
/// Cache the token allocation rate in 18 decimals precision

>> if (position.cachedTokenAllocationRate /= tokenAllocationRate) {
position.cachedTokenAllocationRate = tokenAllocationRate;

}

Currently, the sale contract does not include any checks to prevent users from specifying
stale rates. For example, if a user receives a signature and allocation rate from the UI but
waits a week before calling the invest function, the rates will likely have changed.
However, the outdated rate would still be stored in the contract upon execution.

20

https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L148
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L549
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L399

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Recommendations:
If the cached position values are used outside of the sale contract, it is recommended to
add an expiry parameter in the signature and user-provided data. This should be validated
alongside other parameters in _verifyValidPosition to ensure the provided allocation rate
is up to date.

Legion: Acknowledged. When a user receives a signature generated by Legion, the
tokenAllocationRate is fixed and calculated off-chain, relative to the investAmount and
FDV, meaning it doesn’t change during the sale.

[I-2] Users can supply malformed signatures to bypass
_verifySignatureNotUsed

SEVERITY: Informational IMPACT: Informational

STATUS: Resolved LIKELIHOOD: Low

Target
• LegionPreLiquidSaleV1.sol#L840
• LegionPreLiquidSaleV1.sol#L906

Description:
The LegionPreLiquidSaleV1 contract uses Solady's ECDSA library to recover and validate
the signer:

function _verifyValidPosition(bytes memory signature,
SaleAction actionType) internal view {

//-SNIP//-
/// Construct the signed data
bytes32 _data = keccak256(

abi.encodePacked(
msg.sender,
address(this),
block.chainid,
uint256(position.cachedInvestAmount),
uint256(position.cachedTokenAllocationRate),
bytes32(uint256(position.cachedSAFTHash)),
actionType

)

21

https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L840
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L906

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

).toEthSignedMessageHash();

/// Verify the signature
>> if (_data.recover(signature) /= saleConfig.legionSigner)

revert Errors.InvalidSignature();
}

However, as noted in the comments, Solady’s ECDSA library does not check whether the
signature is malformed.This allows an attacker to bypass uniqueness checks, such as the
one performed in _verifySignatureNotUsed, by submitting a malformed signature and
executing the same action again:

function _verifySignatureNotUsed(bytes memory signature) private view {
/// Check if the signature is used
if (usedSignatures[msg.sender][signature])
revert Errors.SignatureAlreadyUsed(signature);

}

Recommendations:
Although this issue does not pose an immediate threat due to other guard checks
preventing exploitation, it is recommended to use OpenZeppelin's ECDSA library. This
library includes built-in checks to prevent the use of malformed signatures, improving
security and reliability

Legion: Fixed in @73352065f3....

Zenith: Verified.

[I-3] publishTgeDetails should call
_verifyRefundPeriodIsOver

SEVERITY: Informational IMPACT: Informational

STATUS: Resolved LIKELIHOOD: Low

Target
• LegionPreLiquidSaleV1.sol

22

https://github.com/Vectorized/solady/blob/main/src/utils/ECDSA.sol#L20-L22
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol
https://github.com/Legion-Team/evm-contracts/commit/73352065f37ddcfff336087081926be18e745afd
https://github.com/Legion-Team/evm-contracts/blob/8c81309b71c64eb719f39fb25cf658015564223f/src/LegionPreLiquidSaleV1.sol#L209-L238

LEGION SMART CONTRACT SECURITY ASSESSMENT VERSION 1.1

Description:
In LegionPreLiquidSaleV1.sol, the only check that publishTgeDetails calls is
_verifySaleNotCanceled();

However, if users are still refunding and some of the bid tokens are leaving the contract,
then publishTgeDetails shouldn't be called yet since saleStatus.askTokenTotalSupply
should be adjusted according to the bidders and total bid token amounts from the users.

Recommendations:

function publishTgeDetails(
address _askToken,
uint256 _askTokenTotalSupply,
uint256 _vestingStartTime,
uint256 _totalTokensAllocated

)
external
onlyLegion

{
/// Verify that the sale has not been canceled
_verifySaleNotCanceled();

_verifyRefundPeriodIsOver();

....
}

Legion: Fixed with @67ae4c3966...

Zenith: Verified

23

https://github.com/Legion-Team/evm-contracts/commit/67ae4c3966e03f1ed94645cb105881b711c838f7

	Introduction
	About Zenith
	Disclaimer
	Risk Classification

	Executive Summary
	About Legion
	Scope
	Audit Timeline
	Issues Found

	Findings Summary
	Findings
	High Risk
	Medium Risk
	Low Risk
	Informational

