
Ontropy: Virtual Rollup Protocol
Alexander Atamanov and José Betancourt

Ontropy Inc., USA

28.07.2023

The Ontropy Virtual Rollup protocol has been designed to increase the
amount of compute and data that can be trustlessy managed while dras-
tically minimizing user friction across a broad spectrum of Web3 ap-
plications. The Virtual Rollup Protocol solves many foundational UX
problems common for Web3 applications such as latency, gas fees, multi-
ple wallet transaction clicks, and more. For developers, Virtual Rollups
are easy to integrate as dataflows remain unchanged with only additional
cryptographic signatures added to outgoing data and reaggregation to
incoming data. Additionally, Virtual Rollups are chain agnostic. This
paper explores Ontropy’s solution and our multi-faceted approach to re-
thinking Web3 UX and throughput.

Alexander Atamanov: alexander@ontropy.io, https://ontropy.io
José Betancourt: jose@ontropy.io, https://ontropy.io

1

https://compositionality-journal.org/papers/
mailto:alexander@ontropy.io
https://ontropy.io
mailto:jose@ontropy.io
https://ontropy.io

1 Introduction
The concept of cryptocurrencies, first described by Satoshi Nakamoto, employed
a vision of purely peer-to-peer electronic cash. Elaborating on that idea, Vitalik
Buterin invented Ethereum after his character in "World of Warcraft" computer game
was cruelly nerfed by the developers. Ethereum gave the world the first practical
implementation of a smart contract concept. Yet, 14 years after the Bitcoin release
and seven years after the Ethereum release, both original promises are not fully
fulfilled. You can’t exchange cryptocurrency anonymously and peer-to-peer, and
the games are still centralized. There are some Web3 games, but the value added
by the presence of some of the game elements on the chain is doubted by many and
very few of them are truly permissionless or decentralized.

Why are games important? Because games often served as an early adoption
medium for many computer technologies. Why is Web3 adoption lagging? Because
you have to pay for the transactions - and often a significant amount - and the UX
is bad. Value added is doubted by many.

Many Web3 applications, such as gaming platforms, trading systems, swaps,
and DEXes, often involve complex multi-step operations that require significant
user interaction and result in high transaction costs. These interactions and costs
can hinder the usability and adoption of such applications, limiting their scalability
and effectiveness.

Layer 2 scaling solutions were proposed and built to solve the issue of scalability
and improve user experience in blockchain applications. They function by processing
the majority of transactions off the main Ethereum chain (Layer 1), thereby signif-
icantly reducing costs and increasing transaction speeds. Layer 2 solutions such as
Optimistic Rollups and ZK Rollups have shown promise in dealing with these issues.

These Layer 2 protocols work by bundling or ’rolling up’ multiple transactions
into a single one, which is then committed to the main chain. While this increases
efficiency, it is not without its problems. For instance, Optimistic Rollups require a
long challenge period, during which fraudulent transactions can be disputed, leading
to delays. ZK Rollups, on the other hand, require complex zero-knowledge proof
constructions that can be computationally intensive and challenging to implement.

And more to that, the fundamental UX problem - that the user is required
to interrupt the normal session flow and perform an on-chain transaction even for
actions that nobody disputes, remains intact even with the L2 Solutions. Optimistic
rollups do not get the job done as they still to require the transaction.

StarkNet and DyDx provide excellent examples of different players who have
begun to address those issues. StarkNet uses zk-STARKs to create a scalability
solution that can handle a higher number of transactions, while DyDx uses a hy-
brid solution that merges off-chain order matching with on-chain settlement. These
solutions successfully circumvent the congestion of the Ethereum mainnet and re-
duce gas fees, but they compromise on the essential tenets of decentralization and
peer-to-peer interactions.

Take StarkNet for instance, although it enhances scalability and reduces trans-
action fees, it also introduces a degree of centralization. StarkNet’s zk-STARK
proofs, although powerful, require a specialized, centralized prover environment for

2

their generation. This centralized aspect of StarkNet is in contrast to the ethos of
complete decentralization that Ethereum and its applications aim to uphold.

Similarly, DyDx, while successfully merging off-chain order matching with on-
chain settlement, isn’t a true peer-to-peer platform. Users are reliant on the plat-
form’s order book for trade matching instead of directly interacting with their peers.
This reliance means users are partially dependent on the platform for their interac-
tions, reducing the autonomy they might have on a fully decentralized, peer-to-peer
platform.

In stark contrast, Ontropy Virtual Rollup ensures that all computations are done
peer-to-peer between the end-users without introducing centralization. It main-
tains a strong commitment to decentralization and peer-to-peer interactions while
addressing the limitations of gas fees and latency. It is through this balanced ap-
proach that Ontropy Virtual Rollup aims to provide a pathway for more mainstream
adoption of Ethereum-based applications, including Web3 games.

As a side effect, Ontropy Virtual Rollup basically allows protocols to reduce
server costs by transferring a lot of computation to the often underutilized end-
points. That is achieved by the multi-party computation protocols baked deep into
the Ontropy SDK.

The current landscape of Web3 applications lacks an efficient and secure protocol
that minimizes user interaction and transaction costs across a broad spectrum of
multi-step operations. Existing solutions often suffer from scalability issues, privacy
concerns, and a lack of seamless integration with different applications.

Moreover, in the context of multi-player, multi-round games, where frequent
and numerous transactions are the norm, the absence of a streamlined protocol
exacerbates the challenges faced by both developers and users. The need for an
optimized solution that reduces transaction costs enhances privacy, and ensures
trust and integrity within sessions is evident.

Therefore, there is a clear demand for a cutting-edge protocol that addresses
these challenges and provides a seamless, cost-effective, and secure framework for
executing multi-step operations in Web3 applications. The protocol should not only
minimize user interaction but also incorporate privacy-preserving mechanisms and
have efficient and fast dispute resolution.

3

2 Ontropy Solution: a Helicopter View
The Ontropy Virtual Rollups protocol presents a solution to address the challenges
faced by Web3 applications involving multi-step operations. By minimizing user
interaction and transaction costs, the protocol offers a streamlined and efficient
framework for a broad range of applications, including gaming platforms, trading
systems, swaps, and DEXes. Blockchain achieves security through decentralized
consensus. However, in cases with a relatively small number of participants acting
in groups, consensus can be easily reached without executing the actual transaction
on-chain.

The Ontropy Virtual Rollups protocol enables direct peer-to-peer agreements to
minimize costs and optimize performance by providing an easy-to-use plug-and-play
cryptographic solution that includes low-latency advanced peer-to-peer networking
toolkit.

Virtual Rollups are presented in a form of an SDK that is available for multiple
platforms including Web, Unity, iOS, Android and Python.

It provides capabilities to reach an agreement on the outcome of any process with
the cryptographic algorithms that employ multi-party computation on the end-user’s
devices. If the agreement has been reached, then there is no need to employ full
blockchain security. It will be employed when the agreement could not be reached,
which in turn minimizes the chances of that actually happening (in full accordance
with the Game Theory).

State channels have been a cornerstone of computation scalability strategies in
blockchain environments. They offer a mechanism for participants to interact in
a private, truly peer-to-peer manner, with only the final state of their interaction
committed to the blockchain. This significantly reduces the computational burden
on the main net and alleviates concerns over transaction speed and cost.

In traditional state channels, two parties engage in a series of transactions, keep-
ing the majority of them peer-to-peer and only submitting the final state of their
transactions to the blockchain. This method, although beneficial, has limitations
in multi-party systems and lacks the flexibility for participants to join or leave the
channel dynamically.

Ontropy pushes the boundary of state channel technology by introducing multi-
party channels with dynamic participant management. It’s not just a two-party
game anymore; it can be an interactive session with multiple participants, where
parties can freely join and leave as per their needs.

Moreover, Ontropy’s approach employs advanced cryptographic primitives in-
cluding BLS (Boneh-Lynn-Shacham) and Schnorr signatures. BLS signatures are
a type of non-interactive aggregation signature that provide a short, constant size
signature regardless of the number of signers, making them particularly suitable for
multi-party state channels. Similarly, Schnorr signatures provide robust security
properties and the ability to aggregate signatures, thereby improving the efficiency
of multi-signature verifications in multi-party settings.

The application of these advanced cryptographic primitives, coupled with the
dynamic and inclusive nature of Ontropy’s Virtual Rollup, brings forth a solution
that not only resolves the scalability concerns but also promotes an enhanced level

4

of interaction and versatility in blockchain applications. This innovative design will
transform how we understand and use Web 3 Applications, extending their reach.

Could there be a disagreement in many edge cases, espicially in the high number
of uses setting? Great question! Yes, it can. And Ontropy got a way to set-
tle disputes and disagreements by employing complete security of the underlying
blockchain in a cost-effective manner by a Virtual Rollup smart contract deployed
on most EVM-compatible L1 and L2. This approach balances streamlined consensus
and maintains security in multistep operations.

At the core of the Ontropy solution is the concept of Virtual Rollups, which
encapsulates the entire multi-step operation within a session. Participants generate
new ephemeral key pair and commit to that keys on-chain. They then perform
fully verified by all the participants and if total agreement could be reached (which
is the case for most of the interactions) the process continues smoothly without
unnecessary on-chain transactions. This approach eliminates the need for individual
on-chain transactions for each step, significantly reducing the associated costs and
interactions thus significantly improving efficiency. The protocol initiates the rollup
process by locking the required funds in a smart contract. Upon successful initiation,
participants engage in a Distributed Key Generation (DKG) process, ensuring secure
and fair distribution of cryptographic keys. This step establishes trust and integrity
within the session, which is vital for maintaining a secure environment. Within the
session, participants can perform various operations, such as placing bets, making
game moves, or executing trades. The correctness of these operations is validated
using BLS Signarues, Schnorr Signatures or Zero-Knowledge Proofs (ZKPs), which
are exchanged peer-to-peer and offer privacy-preserving mechanisms while ensuring
the accuracy of computations. Additionally, player balances are updated based
on the outcomes of these operations, keeping track of the session progress, and
employing a vision of a dynamic state channel.

As such, each participant holds a complete and cryptographically verified state
of the session. To enhance trust and verification, each stage of the rollup is au-
thenticated using session multi-signatures. Participants sign the necessary requests,
adding an extra layer of security and consensus to the session. When a participant
decides to exit the rollup session, they submit a cash-out request, which requires
the signatures of all participants to indicate consensus on the outcome. Finally, the
protocol enables fund unlocking by submitting the signed cash-out request to the
smart contract, leading to the secure transfer of funds back to the user’s account.

The Ontropy Virtual Rollups protocol revolutionizes multi- step operations in
Web3 applications by providing a seamless, cost-effective, and secure solution with-
out compromising on security. It significantly reduces transaction costs and inter-
actions, making it particularly advantageous for applications involving frequent and
numerous transactions. By integrating features such as DKG, MPC, ZKPS, session
signatures, and consensus-driven cash-out requests, the Ontropy Virtual Rollup en-
sures efficient and secure execution, catering to the evolving needs of the Web3
ecosystem.

5

3 Generalised Virtual Rollup Protocol
As a general solution, we propose an algorithm where most of the interaction flow
is conducted peer-to-peer, and each step is verified by a Schnorr or BLS signature.
For a list of critical actions Merkle-tree proofs are stored, and those events are
propagated through all of the peer-to-peer network so that all the participants have
got the same view on the critical events. Those events include players switching
lobbies, dropouts, and others. The number of that events should be limited though.

Schnorr signatures and Merkle proofs have been selected as they could be verified
on-chain very effectively in terms of gas consumption. If the participant did drop
out, he has got a timeout period τ in which he can emit his actions on-chain via the
smart contract. All players are required to listen to the blockchain and include the
emitted event in any game step.

In case of collusion or disagreement, either the signature or the proof of the game
history would be needed, and the collision resolution will happen on-chain for that
session round by the smart contract. The party that has lost the dispute will be
penalized. The penalty could be set by configurable session rules.

The steps do include the previously described processes in Section 3.

3.1 General Protocol Description
This protocol provides a description of Ontropy Virtual Rollup using Schnorr signatures-
based system for playing a random game on a use case of a multi-table poker tour-
nament. The protocol aims to enhance the security, efficiency, and fairness of the
game by leveraging innovative cryptographic techniques. This document uses poker
and other random games as an example.

3.1.1 Random Game and Multi-Table Poker Tournament

The protocol supports a random game with a number of players playing in smaller
groups - like a thousand players playing in a poker tournament split by tables with
9 participants. These game types have been chosen due to their popularity and
the complexity they introduce, allowing us to demonstrate the effectiveness of the
protocol in various scenarios. It can easily be extended beyond gaming reality.

3.1.2 Key Management

Participants generate an ephemeral key pair upon joining the session (game). The
public key is committed to the smart contract, and the private key is used for
signing actions during the game. An argument for knowledge of the private key is
provided to mitigate rogue-key-like attacks. This approach offers increased security
and enables more actions to be completed off-chain. However, it may result in higher
initial transaction costs and complexity.

3.1.3 Random Game Mechanics

a. Game Initialization

6

When a session (game) is initialized, players deposit a predetermined amount
of funds into the smart contract as their buy-in. The smart contract generates
a unique game ID and assigns each player a unique player ID. Public keys of all
players are emitted from the smart contract upon game initialization and when the
player list changes, ensuring transparency and providing necessary information to
all participants.

b. Randomness Generation
Randomness in the game is achieved using modified Pedersen commitment scheme

(as stated in the next chapter). Pedersen commitments utilize a commitment hash
and pre-commitment to the Pedersen value to prevent the last actor from biasing
the RNG by withholding their commitment until they see the commitments of all
other participants. This ensures a fair and unbiased generation of random values
for the game.

c. Schnorr Signatures and Off-chain Computations
Players use Schnorr signatures to sign their actions in the game, such as betting,

folding, or raising. The recursive signature technique or Merkle Proofs are employed
to verify each game state, creating a chain of trust where each signature implicitly
verifies all the previous ones. This approach improves efficiency and allows for off-
chain computations, reducing the on-chain transaction costs. In case of a dispute
on signature validity, all players are required to provide the current game state to
the smart contract for verification. Any misbehaving player will be excluded from
the game, ensuring the integrity of the gameplay.

d. On-chain Verification
On-chain verification is crucial for maintaining the fairness and transparency of

the game’s outcome. Schnorr signature verification is performed on-chain using the
ECRECOVER precompile, which enables AA wallets or other smart contracts to
verify Schnorr signatures at a gas cost similar to regular ECDSA signatures (6000
gas). This affordable on-chain verification ensures the accessibility of the game to a
wide range of participants.

e. Handling Player Drop-outs
If a player drops out of the game, other players can attest to that fact. The

dropped player has N blocks (configurable) to claim their reconnection by calling a
smart contract function that emits their UUID. If the dropped player fails to claim
reconnection within the specified timeframe, players proceed with the game without
the dropped player. In such cases, the remaining stages are completed, and the final
game results are posted on-chain, ensuring the completion of the game.

3.1.4 Multi-Table Poker Tournament

a. Tournament Initialization
The multi-table poker tournament starts with a predetermined number of tables

and players. Each player deposits their buy-in into the smart contract, which assigns
them a unique player ID and randomly assigns them to a table.

b. Tournament Progression and Table Transitions
As the tournament progresses, players may be eliminated or required to move to

different tables based on their performance. The smart contract updates its table

7

assignment and shares the player’s current balance and past game history with the
new table.

c. Player Verification at the New Table
When a player joins a new table, other players at the table can verify the incoming

player’s balance and past game history using the information provided by the smart
contract. This ensures the accuracy of the new player’s balance and detects any
cheating or suspicious behavior in previous games.

d. Final Table and Prize Distribution
The tournament continues until a final table is reached, consisting of the top

players from the tournament. The final table determines the championship and the
distribution of the prize pool. On-chain verification using the ecrecover precompile
confirms the tournament’s outcome, ensuring fairness and transparency. The smart
contract then distributes the prize pool to the winners based on their final standings.

3.1.5 System Architecture Flow Diagram

Figure 1: System Architecture Diagram

3.1.6 Questions and Considerations

1. Should players wait for a certain number of confirmations to continue playing?
Players should wait for their buy-ins to be confirmed and for the smart contract

to generate and emit their public keys before they can start playing.
2. Is off-chain play possible after a player has reconnected?

8

Yes, off-chain play is possible after a player has reconnected. The dropped player
has N blocks to claim they are back online on-chain by calling a smart contract
function that emits their UUID. After reconnection, the player can continue partic-
ipating in the game using off-chain computations and signing actions with Schnorr
signatures.

3. A detailed algorithm for hand-to-hand play on the payout change is needed.
The following steps can be implemented:
a. Players sign their actions (betting, folding, raising) using Schnorr signatures.

b. Perform off-chain computations to calculate the pot size, determine the winner,
and distribute the winnings. c. Use Pedersen commitments for randomness gener-
ation in the game. d. In case of a dispute, provide the current game state to the
smart contract for on-chain verification. e. Update the player’s balance and game
history based on the outcome of each hand.

4. Consider implementing the correctness of computation proofs for game logic
validation.

To implement the correctness of computation proofs for game logic validation,
the protocol can use zero-knowledge proofs or zk-SNARKs. These cryptographic
techniques allow players to prove that they have performed the correct computations
without revealing any sensitive information about their actions or the game state.

5. How can the system handle network latency and potential synchronization
issues between players?

The system can handle network latency and potential synchronization issues by
using a combination of on-chain and off-chain interactions. Off-chain computations
and signing actions with Schnorr signatures can help reduce latency and synchro-
nization issues. In case of disputes or inconsistencies, players can provide the current
game state to the smart contract for on-chain verification.

6. What mechanisms can be put in place to prevent players from colluding or
cheating during the session?

To prevent participant from colluding or cheating during the game, the protocol
can implement the following mechanisms:

a. Use Pedersen commitments for randomness generation to prevent players from
biasing the RNG. b. Require players to provide an argument of knowledge of their
private keys to mitigate rogue-key-like attacks. c. Perform on-chain verification of
Schnorr signatures to ensure the fairness and transparency of the game’s outcome.
d. Verify incoming players’ balances and game history when they join a new table
in a multi-table poker tournament.

9

4 Ontropy Virtual Rollup Solution for Mental Poker
In this section, we describe the current state of Ontropy Virtual Rollup development
in regard to the Mental Poker problem. We also discuss practical aspects and
perspective solutions we are considering.

4.1 Mental Poker Solution
4.1.1 Distributed Key Generation

For the distributed key generation, we use a modified version the method shown by
Pedersen. It goes as follows:

1. Every player i generates a random polynomial fi(x) = bi,0 +bi,1x+ . . . + bi,kxk

where k = # number of players -1 and bi,0 = si.
2. Then, every player i computes Bi,j = gbi,j for j ∈ 0, . . . , k as well as fi(j)

modq for j ∈ {0, . . . , k}.
3. Bi,j and fi(j) are then sent to players j ∈ {0, . . . , k}.
4. Each player j verifies gfi(j) = ∏k

m=0 (Bi,m)jm

mod p. Failure to verify for
values sent by user i means they’re cheating, and a new instance of the protocol can
be established without them.

5. After verification, the public key y = ∏
gsi mod p for all players i.

6. The value si is player i ’s private key were the full private key is x = ∑
si

modq, although that is never assembled in the protocol.

4.1.2 Generating Randomness

To generate the distributed randomness necessary we first define ND which is the
set of values our randomness can be in (card games - D = 52, roulette D = 36, coin
toss −D = 2, etc.). We then proceed as follows:

1. Each player i chooses their random seed ci ∈ ND

2. They compute the ciphertext E (gci) and send a cryptographic commitment
C (E (gci)) to all other players.

3. After the commitments have been verified, the ciphertexts are revealed and
players compute ∏

E (gci) = E
(
gR

)
where R = ∑

ci mod D
Every player now has access to the encrypted version of the final randomness

value R.

4.1.3 Revealing Public Randomness

In the case where R is meant to be a publicly accessed value such as a faceup card
or a roulette spin result, the players all reveal their seeds ci and their randomness
coefficients ei used in computing E (gci). Players can then verify ci is in the correct
domain (although if it is not, it is trivial to show that cheating of this sort is relatively
harmless) and that the ciphertexts provided are in fact correct. If all the encryptions
are valid, the players can compute R = ∑

ci modD. If any of the verification steps
fail, the fair players run a new DKG and establish a new group. The punishment for
the cheating player depends on where this protocol is implemented and is outside of

10

the scope of this paper. For games that don’t require collision detection and private
randomness such as coin toss or roulette, the protocol as described up to this point
is sufficient. The following sections deal with matters regarding collision detection
and private random generation (e.g. face-down cards).

4.1.4 Generating Private Randomness

The protocol also allows us to create secret randomness values that only a limited
subset of players know. For the sake of simplicity, we will show the case of one player
j but it is trivial to adapt this part of the protocol for a proper subset of players
with a cardinality larger than one. Essentially, players follow the steps from the
previous section but instead of revealing their seeds ci to all, they only send them
to player j. He then computes R = ∑

ci mod D and needs to prove that result and
commit to it. To do this player j has to:

1. Prove E
(
gR

)
is an encryption of a value in the set

{
g0, . . . , gD

}
using the

encryption subset composition proof.

2. Prove that
E

(
g

∑
ci

)
E(gR) encrypts a value in

{
g0, gD, . . . , gD(k−1)

}
where k =

#number of players.
These steps are sufficient because if player j decides to alter the value of R,

E

(
g

∑
ϵi

)
E(gR) will not provably belong in

{
g0, gD, . . . , gD(k−1)

}
.

4.1.5 Encryption Subset Composition Proof

This section describes a proof of encryption subset membership based on a modified
version of the Disjunctive Schnorr Signature[5]. We apply the following algorithm
to generate the values Si :

Then, for each set Si = {g0, gγi} the prover performs the following recursive
procedure while Ωi > 0 :

1. Set Ω0 = R
2. If Ωi < γi, we take χi = (1, g0)
3. If Ωi ≥ γi, we take χi = (1, gγi)
4. Ωi+1 = Ωi − γi

At the end we should have R = ∑
γi. For each set Si, the prover takes its

corresponding ciphertext χi = (1, gσ) where σ is either 0 or γi and computes E (gσ) =
(α, β) = Θi. They then make the following fie

0 (Y1, G1) =
(
α, β

g0

)
- (Y2, G2) =

(
α, β

gγi

)
Let’s assume w.l.o.g. assume γ = g0 and (Y1, G1) is the valid transformed pair

of keys:
1. The player shares (Y1, G1) and (Y2, G2).
2. Everyone calculates wi = Gλi

1 where λi is randomly chosen ∈ Z∗
q.

3. The prover calculates w2 = Gd2
2 ·Y −c2

2 where d2 and c2 are random values ∈ Z∗
q

4. All players agree on c1 = hash (G1, Y1, G2, Y2) where hash() is an arbitrary
hash function.

11

5. Everyone computes di = λi + c1 ·si mod q where si is their piece of the private
key.

6. Everyone sends di and wi to the prover who can then calculates d1 = ∑
di

and w1 = ∏
wi 7. The prover reveals d1, w1, w2, c1, c2, d2 and the other players can

check if Gdi
i = wi · Y ci

i mod p for i ∈ {1, 2}
This procedure proves that each ciphertext Θi is a valid encryption of a value in

the set Si without revealing any information about the value itself. After all the Θi

’s are signed and verified, all players compute and decrypt ΠΘi

E(gH) = (α, β) and verify
that β∏

αsi
= 1 where αsi is a piece shared by each player. Thus, we can show that

E
(
gR

)
encrypts a value in the set

{
g0, . . . , gD

}
without revealing it.

4.2 Modified Encryption Subset Composition Proof
The procedure is identical to the one described in the previous section but we have

k sets of
{
g0, gD

}
. This is used to prove that

E

(
g

∑
ci

)
E(gR) is an encryption of a value

in the set
{
g0, gD, . . . , gD·(k−1)

}
.

4.3 Detecting Repetitive Random Values
In some cases where D is a small number, the same random value can be generated
multiple times which is undesirable for games such as poker, blackjack, some RPG
games, etc. This leads to complications and we need a mechanism for detecting
such collisions. To do so, all players will keep a record of all previous encryptions
E

(
gR′

)
in a set L. After a new random encryption E

(
gR

)
is generated, we can

compare it with all previous values in the set L without revealing any information
about R. Let’s take E

(
gR

)
which is the randomness to be checked and E

(
gR′

)
∈ L.

Players can use the multiplicative homomorphism of the EC ElGamal encryption
and Schnorr Signatures to detect repeating values in the following way:

1. If E
(
gR

)
= (a1, b1) and E

(
gR′

)
= (a2, b2), players compute E(gr)

E(gR′) =(
a1
a2

, b1
b2

)
= (A, B).

2. Participants do the following transformations for λi = hash(g, y, A, B, j)
where j ∈ {1, 2} and hash() is an arbitrary hash function:

G = gλ1 · Aλ2 mod p

Y = yλ1 ·Bλ2 mod p

3. Individual players choose a random ki ∈ Z∗
q and compute wi = Gki mod p and

li = gki mod p.
4. Players share wi and li and compute and agree on w = ∏

wi mod p.
5. Players then compute c = hash(w) and ti = ki − c · si mod q where si is

their piece of the private key. 6. All players share their ti and others verify that
gti = li(

g gi)c mod p for each player.

7. If all verification steps are correct, players compute and agree on the value of
t = ∑

ti mod q.

12

8. Players check if w = Y c · Gt mod p. If so, a collision has occurred and the
randomness should be recomputed. If the equation doesn’t hold, the value is unique
and is ready to be used and saved to the set L.

4.4 Process
1. Users engage peer-to-peer to obtain the data via Dynamic User Entropy or
through the needed distributed keys mentioned thereof. Each user stores the desired,
underlying data, ci, and the signed proof, C (E (ci) , from every other user within
the scheme. Consensus on the data, randomness, price feed, or otherwise has been
reached.

2. One or many users will now commit the collectively agreed data, ci, along
with a stake s to chain for use within these users, exclusively. ci will be trusted by
default and used for the transaction as all parties will have the chance to dispute
the committed data by attaching the collected proof, C (E (ci) , along with a stake
s.

3. The user who submitted ci will now submit their C (E (ci) or forfeit the dis-
pute. Because C (E (ci) represents an individual agreement from the adversarial
party using the distributed key to the validity of ci both proofs cannot be simulta-
neously true.

4. At this stage, the system and userbase are alerted to the presence of a dispute
and any willing users may cast votes in either direction by staking some set amount
s.

5. After a short set time, by simple majority of users, the true result is deter-
mined, becoming or remaining the value used. The losers’ staked capital is forfeited
and distributed to the winners.

6. Because a short voting time frame must be used for efficiency, it is possible
a group of malicious users could win a majority of the round if honest participants
have low turnout (although this is unlikely as a verifiably false result, especially one
with low honest stakers, would mean a high reward for the honest winners). To
deter this, any user in the system can now challenge the result again by staking a
higher amount 100 · s to the losing side.

13

5 Modern Cryptographic Primitives Made Accessible
Ontropy not only propose an advanced scaling solution, that is simultaneously ef-
fective and elegant, but also provides the toolkit to make it work.

The foundational blocks of Ontropy Virtual Rollups are networking and cryp-
tography. The networking component is based on libp2p. It’s the library used by
Ethereum, PolkaDot and many other great protocols. But in those protocols, it is
used to connect nodes. In Ontropy it’s used to connect clients themselves.

Libp2p is a modular network stack that allows you to build your own peer-to-
peer applications. It provides the essential building blocks for a network and enables
applications to be device, bandwidth, latency, and connectivity agnostic.

One of the key models libp2p uses is the publish-subscribe (pub-sub) model. This
is a message communication pattern where senders (publishers) categorize published
messages into topics, and other network peers (subscribers) consume only those
messages that are of interest to them. This model helps create a highly efficient
and flexible communication system where information is only transmitted when
necessary.

In the context of Ontropy, the pub-sub model enables efficient communication
within the state channels. Each state channel can be thought of as a topic in the
pub-sub model, and the participants in the state channel are the subscribers. The
participants publish their actions to the channel, and all other participants receive
these messages. This allows all participants in a state channel to stay in sync with
each other without having to interact with every other participant individually.

As for cryptography, Ontropy integrates advanced cryptographic primitives seam-
lessly with its networking layer. The integration of BLS and Schnorr signatures with
the libp2p networking layer means that messages in the state channel are not just
efficiently transmitted, but also securely verified. This integration makes Ontropy’s
solution robust against malicious actors and prevents unauthorized actions within
the state channels.

The inclusion of a versatile cryptographic arsenal allows the system to generate
proofs for all the actions within a state channel off-chain, ensuring that the state
transitions are valid and that this could be done for a wide number of use cases.
These proofs can then be submitted to the main chain when the state channel is
ready to be closed or in case of a dispute. This approach reduces the number of
transactions committed to the blockchain, resulting in lower gas fees and faster
processing times.

By combining libp2p and advanced cryptographic primitives, Ontropy has not
only proposed an effective scaling solution but also made it easily accessible and
implementable. Whether it’s the flexibility of state channels or the robustness of
cryptographic signatures, Ontropy provides a toolkit that effectively addresses the
challenges of building scalable, decentralized applications.

5.1 Schnorr Signatures
The Schnorr signature scheme, proposed by Claus-Peter Schnorr, forms a significant
part of the Ontropy protocol’s cryptographic toolbox. The use of Schnorr signatures

14

contributes to the Protocol’s mission of developing efficient and secure decentralized
systems by offering several unique features that boost its cryptographic robustness
and computational efficiency.

Schnorr signatures are renowned for their simplicity, security, and scalability,
mainly due to the linear structure of the signing and verification equations. The
mathematical properties of Schnorr signatures also allow for secure signature aggre-
gation, a feature that can greatly reduce transaction sizes and thus improve the over-
all throughput of a blockchain. In contrast to ECDSA, Schnorr signatures make the
Ontropy protocol capable of handling multi-signature transactions more efficiently.
However, the implementation of Schnorr signatures must address the "rogue-key"
attack vulnerability. This attack vector emerges in multi-signature scenarios, where
one dishonest participant can manipulate their key to gain control over the joint
key, and thus forge signatures on behalf of the whole group. To mitigate this risk,
the Ontropy protocol includes careful key setup procedures to prevent the creation
of rogue keys.

Ontropy’s implementation of Schnorr signatures is further enhanced with Ethereum’s
ECRECOVER opcode for signature verification. The ECRECOVER function uses
elliptic curve cryptography to recover the signer of a message, thus establishing a
direct link between an address and a signed message without revealing the private
key.

In a usual Ethereum context, ECRECOVER is primarily used to verify ECDSA
signatures, but the Ontropy protocol adapts it to verify Schnorr signatures. Specifi-
cally, we are using a special method that maps the Schnorr signature to an equivalent
ECDSA signature that the ECRECOVER opcode can verify. This approach enables
Schnorr signature verification with ECRECOVER, offering a massive reduction in
gas costs, to around 6k gas per verification, compared to native Schnorr signature
verification.

This ability to reduce transaction costs and improve efficiency is crucial to the
Ontropy protocol, as it enables higher transaction throughput and makes interac-
tions with the Ontropy network more economically viable for users. However, using
ECRECOVER for Schnorr signature verification requires careful handling. In par-
ticular, we must ensure that the signature mapping does not introduce any security
vulnerabilities or affect the signature’s original security properties.

To guarantee this level of security and performance, all Schnorr signature op-
erations, like ECDSA, are implemented in Rust within the Ontropy protocol. We
enforce a policy of conducting all operations in constant time to minimize timing
attack vectors and maintain predictable performance. Furthermore, the binaries are
subject to rigorous benchmarking to ensure their efficiency and security in real-world
use cases.

In conclusion, the inclusion of Schnorr signatures in the Ontropy protocol high-
lights our dedication to leveraging advanced cryptographic techniques for improved
performance and security. By mitigating the rogue key attack vector, adapting
ECRECOVER for efficient verification, and committing to stringent performance
and security standards, we ensure that Ontropy can offer a highly secure and effi-
cient blockchain protocol.

15

5.1.1 MuSig2

Schnorr signatures are undoubtedly effective and offer economically viable on-chain
verification, but they do come with certain inherent security challenges. For in-
stance, the aforementioned "rogue-key" attack is a notable concern. To overcome
such vulnerabilities and to further bolster the efficiency of the Ontropy protocol, we
leverage a powerful multi-signature scheme known as MuSig2. MuSig2, a successor
to the original MuSig scheme, is a novel protocol that offers secure, standardized,
and efficient Schnorr multi-signatures. It was initially conceived for implementa-
tion within the Bitcoin network and has since gained widespread recognition for its
security and efficiency enhancements.

By deploying Musig2 within the Ontropy protocol, we effectively address Schnorr’s
rogue-key attack vulnerability. In a multi-signature context, MuSig2 ensures that
even if a participant attempts to alter their key during the setup phase, it would
not affect the final aggregated key. Thus, it offers protection against this key ma-
nipulation and secures the signature process against forgery.

MuSig2’s robustness stems from its adherence to strict security assumptions.
It ensures non-interactivity by allowing participants to exchange only two rounds
of messages, which significantly mitigates interactive attack vectors. This non-
interactivity is based on the assumption of a secure communication channel between
the signers, which makes Musig2 secure against concurrent sessions.

Furthermore, it is worth noting that the MuSig2 protocol is built on the Dis-
crete Logarithm Assumption (DLA) and the Random Oracle Model (ROM). DLA
is a cryptographic assumption that states that it is computationally hard to com-
pute the discrete logarithm in a cyclic group, given the base and the result of the
exponentiation. The ROM, on the other hand, assumes the existence of a hypo-
thetical, perfectly random function, which is used for modeling hash functions in
cryptographic proofs. Both these assumptions are well-established and have been
extensively vetted in the field of cryptography.

Just like our Schnorr and ECDSA operations, the implementation of MuSig2 is
carried out in Rust, ensuring optimal performance and top-tier security. Again, we
enforce a constant time execution policy to avert timing attack vectors and regularly
benchmark the resulting binaries to ensure top-notch performance and reliability in
real-world deployment scenarios.

Musig2 forms an integral part of the Ontropy protocol’s cryptographic archi-
tecture. By effectively tackling Schnorr’s security vulnerabilities, enabling non-
interactive multi-signature transactions, and offering optimal performance and se-
curity, MuSig2 further reinforces Ontropy’s commitment to providing an advanced,
secure, and efficient decentralized platform.

5.1.2 FROST

While Musig2 addresses several challenges in multi-signature schemes and offers nu-
merous benefits, we recognize the value of diverse cryptographic solutions within the
Ontropy protocol. This brings us to Flexible Round-Optimized Schnorr Threshold
Signatures (FROST2), another high-performing multi-signature scheme that offers
its own unique advantages. FROST2 becomes especially relevant when considering

16

future requirements for threshold signatures, which are not supported by MuSig2.
Threshold signatures allow a subset of a group to sign on behalf of the whole group,
which can be crucial in certain transaction or governance scenarios. In the case
of Ontropy, incorporating threshold signatures would provide flexibility for future
development paths and use cases.

Furthermore, FROST2 facilitates the swapping of public keys or changes to the
multi-signature scheme without necessitating an on-chain transaction. This feature
enhances the dynamic nature of Ontropy, offering superior adaptability to our users.

While MuSig2 operates safely within non-concurrent settings, its security in con-
current settings may raise concerns, as the complexity of proving concurrent security
can be challenging. FROST2 comes to the fore here, as it has robust security mech-
anisms that are more suited to concurrent environments.

On the other hand, it’s important to acknowledge the situations where MuSig2
might be preferable over FROST2. For instance, if only n-of-n signatures are needed,
Musig2 can optimize this operation. Also, for those wishing to avoid an extra com-
munication round required by FROST2 for key generation and aggregation, MuSig2
could be the preferred option. Lastly, the simpler and more standard cryptographic
model employed by Musig2 might be more appealing for certain implementations.

It’s important to note that the choice between MuSig2 and FROST2 doesn’t have
to be exclusive. They can coexist within the same scheme, allowing for nested setups,
such as a MuSig2 setup within a FROST2 setup, or vice versa. This hybrid approach
not only provides robust security but also allows for a smooth transition between
the two schemes if needed. For instance, MuSig2 keys can be converted to FROST2
keys without changing the aggregate public key, ensuring seamless operation and
user experience.

Like our other cryptographic operations, FROST2 is implemented in Rust within
the Ontropy protocol, optimizing security and performance. Our commitment to
constant time execution and regular benchmarking of the resulting binaries also
applies to FROST2, ensuring a secure, efficient, and performant implementation.

FROST2 provides yet another layer of advanced cryptographic architecture within
the Ontropy protocol. With its unique strengths and flexibility to coexist with
MuSig2, FROST2 reinforces Ontropy’s commitment to robust, adaptable, and future-
proof cryptographic solutions.

While both MuSig2 and FROST2 represent innovative strides in multi-signature
cryptographic technologies, each of these protocols offer a unique set of advantages
that could be leveraged to meet varying needs within the Ontropy ecosystem. A hy-
brid approach of integrating MuSig2 and FROST2 is currently under investigation,
which could maximize the benefits of both. At a high level, this hybrid methodol-
ogy of combining MuSig2 and FROST2 opens up multiple opportunities: 1. The
aggregate public key remains consistent when converting MuSig2 keys to FROST2
keys. This provides a frictionless transition between the two protocols, a key factor
in maintaining a smooth user experience.

2. Implementing a "broadcast channel" is simplified by utilizing MuSig2 to sign a
hashed list of coefficient commitments. This results in a much less complex protocol
that’s easier to manage and maintain.

3. The hybrid approach leverages existing MuSig2 APIs. This aids in streamlin-

17

ing the code implementation process while ensuring regular upkeep.
Here is how the modified FROST protocol operates in this hybrid model:
The first step involves generating a MuSig2 key. Following this, participants

create random polynomial coefficients, with the first coefficient being the product of
their individual MuSig2 private key and the key aggregation coefficient. The result is
a unified aggregate public key for both FROST2 and MuSig2, as the FROST2 aggre-
gate public key is the sum of the commitments to each participant’s first polynomial
coefficient. The additional benefit is that the participants don’t need to distribute
a proof of knowledge of their first coefficient (as required in the original FROST
protocol), as the MuSig2 protocol and the key aggregation coefficients effectively
thwart the rogue key attack.

Participants then share their respective coefficient commitments and MuSig2
nonce commitment pairs. Once all the coefficient commitments are received, a hash
of the list is created and signed using MuSig2. The partial MuSig2 signatures are
aggregated, and a valid signature verifies that each participant has received the
same commitments, thus effectively simulating a broadcast channel. This process
completes the key generation phase.

At this stage, every participant possesses a FROST2 share usable for threshold
signing. However, for nonce generation, the protocol employs MuSig2 nonces, which
aligns with FROST2 nonce generation in the way they use pairs of nonces and nonce
commitments.

The combination of MuSig2 and FROST2 is not merely a theoretical proposition.
The practical implementation of this methodology can be found in the open-source
secp256k1-zkp library.

The hybridization of MuSig2 and FROST2 within the Ontropy protocol serves
as a demonstration of the commitment to adopting robust, flexible, and adaptable
cryptographic solutions. This approach does not only streamline the operations but
also ensures that Ontropy stays future-proof, ready to accommodate the needs of
evolving cryptographic requirements and scenarios.

At Ontropy, we are committed to delivering secure, efficient, and innovative
solutions backed by a carefully crafted development timeline. For the first phase of
Ontropy v. 1.0, we have chosen to implement MuSig2 within our Virtual Rollup
protocol. MuSig2 brings forth notable efficiency and simplicity, which makes it a
perfect fit for the initial launch. Its interoperability with Bitcoin’s ecosystem, as
well as its easy on-chain verification, are features that we are keen on leveraging to
provide our users with an optimal experience.

However, Ontropy’s roadmap does not stop at MuSig2. In recognition of the
distinct advantages that FROST2 provides, particularly its support for threshold
signatures and the flexibility it brings to the table in terms of public key swap-outs
and multi sig scheme changes, we intend to explore its integration into Ontropy in
later versions.

We aim to implement a hybrid MuSig2 and FROST2 system, which will not only
uphold our commitment to security and efficiency but also enable us to provide an
even wider range of services and capabilities to our users. This plan for the future
embodies our dedication to continuous innovation, development, and adaptation in
response to the ever-evolving landscape of blockchain technology.

18

Our chosen path-beginning with MuSig2 for Ontropy v. 1.0 and later transi-
tioning to a hybrid model-provides us with a roadmap that ensures both robust
functionality for today and flexibility for the future.

5.1.3 Schnorr Scheme Comparison and Development Schedule

While both MuSig2 and FROST2 represent innovative strides in multi-signature
cryptographic technologies, each of these protocols offer a unique set of advantages
that could be leveraged to meet varying needs within the Ontropy ecosystem. A hy-
brid approach of integrating MuSig2 and FROST2 is currently under investigation,
which could maximize the benefits of both. At a high level, this hybrid methodology
of combining MuSig2 and FROST2 opens up multiple opportunities:

1. The aggregate public key remains consistent when converting MuSig2 keys to
FROST2 keys. This provides a frictionless transition between the two protocols, a
key factor in maintaining a smooth user experience.

2. Implementing a "broadcast channel" is simplified by utilizing MuSig2 to sign a
hashed list of coefficient commitments. This results in a much less complex protocol
that’s easier to manage and maintain.

3. The hybrid approach leverages existing MuSig2 APIs. This aids in streamlin-
ing the code implementation process while ensuring regular upkeep.

Here is how the modified FROST protocol operates in this hybrid model:
The first step involves generating a MuSig2 key. Following this, participants

create random polynomial coefficients, with the first coefficient being the product of
their individual MuSig2 private key and the key aggregation coefficient. The result
is a unified aggregate public key for both FROST2 and MuSig2, as the FROST2
aggregate public key is the sum of the commitments to each participant’s first poly-
nomial coefficient. The additional benefit is that the participants don’t need to
distribute a proof of knowledge of their first coefficient (as required in the origi-
nal FROST protocol), as the MuSig2 protocol and the key aggregation coefficients
effectively thwart the rogue key attack. Participants then share their respective co-
efficient commitments and MuSig2 nonce commitment pairs. Once all the coefficient
commitments are received, a hash of the list is created and signed using MuSig2.

The partial MuSig2 signatures are aggregated, and a valid signature verifies that
each participant has received the same commitments, thus effectively simulating
a broadcast channel. This process completes the key generation phase. At this
stage, every participant possesses a FROST2 share usable for threshold signing.
However, for nonce generation, the protocol employs MuSig2 nonces, which aligns
with FROST2 nonce generation in the way they use pairs of nonces and nonce
commitments.

The combination of MuSig2 and FROST2 is not merely a theoretical proposition.
The practical implementation of this methodology can be found in the open-source
secp256k1-zkp library.

The hybridization of MuSig2 and FROST2 within the Ontropy protocol serves
as a demonstration of the commitment to adopting robust, flexible, and adaptable
cryptographic solutions. This approach does not only streamline the operations but
also ensures that Ontropy stays future-proof, ready to accommodate the needs of
evolving cryptographic requirements and scenarios.

19

At Ontropy, we are committed to delivering secure, efficient, and innovative
solutions backed by a carefully crafted development timeline. For the first phase of
Ontropy v. 1.0, we have chosen to implement MuSig2 within our Virtual Rollup
protocol. MuSig2 brings forth notable efficiency and simplicity, which makes it a
perfect fit for the initial launch. Its interoperability with Bitcoin’s ecosystem, as
well as its easy on-chain verification, are features that we are keen on leveraging to
provide our users with an optimal experience.

However, Ontropy’s roadmap does not stop at MuSig2. In recognition of the
distinct advantages that FROST2 provides, particularly its support for threshold
signatures and the flexibility it brings to the table in terms of public key swap-outs
and multi sig scheme changes, we intend to explore its integration into Ontropy in
later versions.

We aim to implement a hybrid MuSig2 and FROST2 system, which will not only
uphold our commitment to security and efficiency but also enable us to provide an
even wider range of services and capabilities to our users. This plan for the future
embodies our dedication to continuous innovation, development, and adaptation in
response to the ever-evolving landscape of blockchain technology.

Our chosen path-beginning with MuSig2 for Ontropy v. 1.0 and later transi-
tioning to a hybrid model provides us with a roadmap that ensures both robust
functionality for today and flexibility for the future.

5.2 BLS Signatures
With the foundations firmly established via the sophisticated use of MuSig2 and
FROST2, the Ontropy protocol is ready to ascend to the next level of advanced
cryptographic operations. We turn our focus to the integration of the Barreto-Lynn-
Scott (BLS) signature scheme, specifically BLS12-381, augmenting the dynamic and
adaptable nature of Ontropy. Adopting BLS12-381 is not a mere additive measure to
our cryptographic repertoire but a transformative step that supercharges Ontropy’s
ability to meet future cryptographic demands and challenges.

Central to BLS12-381’s promise is its facility for independent signatures. Un-
like MuSig2 and FROST2, the BLS signature scheme allows for individual signa-
tures to be independently validated, offering increased security and flexibility in
multi-signature operations. This feature significantly enhances Ontropy’s robust-
ness, catering to more complex transactional or governance scenarios. BLS12-381
also shines in its support for threshold signatures. This signature scheme permits a
subset of a group to authentically sign on behalf of the whole, an attribute essential
for accommodating varying use cases in a dynamic blockchain environment.

Moreover, BLS12-381 brings to the table an impressive pairing-friendly prop-
erty, laying the groundwork for more intricate Zero-Knowledge Proofs (ZKP). Cur-
rently, Ontropy leverages efficient and lightweight ZKP mechanisms, optimizing the
privacy-security balance without straining computational resources. As we envision
the evolution of Ontropy, however, the need for more sophisticated privacy measures
may arise, making BLS12-381’s support for such advanced ZKPS a vital asset.

Despite BLS12-381’s unique advantages, we recognize that there may be contexts
where MuSig2 or FROST2 would be a more suitable fit. Whether it’s the need for

20

n-of-n signatures, an inclination to evade the extra communication round for key
generation and aggregation, or a preference for a simpler cryptographic model, the
protocol allows users to choose.

Notably, the integration of BLS12-381 does not necessitate an exclusive crypto-
graphic commitment. Rather, BLS12-381 can coexist with MuSig2 and FROST2
within the same protocol, facilitating nested setups and thus maximizing the flexi-
bility and adaptability of Ontropy.

The addition of BLS12-381 into Ontropy’s cryptographic armory signals a marked
progression in the protocol’s architectural evolution. BLS12-381, with its unique
strengths and compatibility with MuSig2 and FROST2, reaffirms Ontropy’s unwa-
vering dedication to advanced, adaptable, and resilient cryptographic solutions.

The respective merits of MuSig2, FROST2, and BLS12-381 each contribute to
Ontropy’s advanced cryptographic system. The inclusion of BLS12-381, in particu-
lar, offers many novel opportunities, solidifying Ontropy’s commitment to a secure,
efficient, and forward-thinking cryptographic landscape. The strategic integration
of BLS12-381 ensures the system’s readiness for the cryptographic demands of the
future, facilitating a smooth and seamless transition among MuSig2, FROST2, and
BLS12-381. The result is an optimized user experience, unburdened by complex
technical transitions. Ontropy stands as a testament to the powerful combination
of robust, flexible, and adaptable cryptographic systems. Our strategic incorpora-
tion of BLS12-381 not only streamlines operations but also equips Ontropy with the
capabilities to meet future cryptographic necessities.

BLS12-381’s integration into the Ontropy protocol adheres to our commitment
to providing secure, high-performing, and efficient cryptographic solutions. Our
pursuit of constant-time execution and routine benchmarking extends to BLS12-
381, ensuring that our users benefit from a secure and performant implementation.

Ontropy’s development roadmap acknowledges the unique advantages of each
cryptographic protocol-MuSig2, FROST2, and BLS12-381. Our initial choice of
MuSig2, with its simplicity and efficiency, serves as an ideal starting point for the
first phase of Ontropy. However, our vision extends beyond this foundational stage.

Recognizing the need for a more dynamic and adaptable cryptographic archi-
tecture, we plan to progressively incorporate FROST2 and BLS12-381 into future
iterations of Ontropy. This roadmap ensures that Ontropy remains equipped for
today’s needs while staying ready for the challenges of tomorrow. As Ontropy con-
tinues to evolve and adapt, we remain committed to delivering secure, innovative,
and user-oriented solutions, offering not just robust functionality but also future-
proof flexibility. With the strategic integration of BLS12-381 into our cryptographic
framework, Ontropy continues to be at the forefront of cutting-edge blockchain tech-
nology, ready to meet the ever-evolving demands of the cryptographic landscape.

5.3 Pedersen Hash
While SHA-3 provides robust general-purpose hashing, Pedersen hash has been cho-
sen for its specific properties that align with the requirements of our protocol. Ped-
ersen hash, an essential component in many privacy-preserving cryptographic pro-
tocols, is primarily used for creating commitments. Unlike SHA-3, a Pedersen hash

21

operates within the confines of an elliptic curve, thereby enabling commitments that
are both hiding (it is computationally hard to reveal the committed value without
knowing the blinding factor) and binding (once a value has been committed, it
cannot be changed). In the context of Ontropy, Pedersen hash is employed in the
generation of Pedersen commitments, enabling a prover to commit to a chosen value
while keeping it hidden and preventing the alteration of the value post commit-
ment. This is particularly useful in zero-knowledge proof contexts such as during
random number generation and the obfuscation of transaction details. By leverag-
ing the properties of Pedersen hashes in conjunction with elliptic curves, Ontropy
is capable of realizing complex cryptographic operations in an efficient and secure
manner. The ability to construct commitments using Pedersen hashes on elliptic
curves significantly enhances the protocol’s privacy and security aspects.

5.4 Foque-Tibouchi
In the Ontropy protocol, the hashing functions of SHA-3 and Pedersen hold critical
importance, yet there is another component that plays a pivotal role in maintaining
the security and functionality of the system: the Fouque-Tibouchi (FT) method.
The method is named after Jean-Sébastien Coron, Pierrick Méaux, David Naccache,
and Mehdi Tibouchi who proposed it in their work. This mechanism is particularly
essential when it comes to the domain of hash-to-curve algorithms. The nuances of
the FT method and its divergence from SHA-3 and Pedersen hashes significantly
elevate the Ontropy protocol’s capabilities.

The FT method is a hash-to-curve a deterministic algorithm that allows arbitrary
input strings to be mapped to points on an elliptic curve. It is used in many
cryptographic processes such as the construction of digital signatures, key exchange
protocols, and encryption algorithms.

Unlike the SHA-3 and Pedersen hashes, which are primarily utilized for securing
data integrity and constructing commitments, respectively, the FT method focuses
on creating valid and uniformly random points on an elliptic curve from any given
input. It is deterministic, ensuring the same output for the same input, and it
ensures that outputs are evenly distributed across the elliptic curve. This property
is crucial in maintaining the security properties of many protocols that rely on the
uniform randomness of points on elliptic curves.

An important feature of the FT method that sets it apart is its handling of
exceptional cases. Unlike some other hash-to-curve algorithms, the FT method
does not use rejection sampling (a common practice of rejecting certain outputs
to achieve uniform distribution). Instead, it handles all input strings uniformly
and deterministically, making it more efficient and easier to analyze for security
properties. In the Ontropy protocol, the FT method enables a secure and efficient
mapping of hash outputs to points on elliptic curves, a process that is critical for
the protocol’s advanced cryptographic operations, particularly those involving zero-
knowledge proofs and secure multi-party computations.

In conclusion, the incorporation of the FT method alongside SHA-3 and Pedersen
hash in the Ontropy protocol ensures a comprehensive and robust cryptographic
scheme. While SHA-3 provides broad cryptographic security and interoperability,

22

and Pedersen hash offers privacy-preserving commitments, the FT method enhances
the protocol with secure and efficient hash-to-curve functionality. The harmonious
integration of these different cryptographic techniques is what equips the Ontropy
protocol with its advanced capabilities and robustness.

FT is currently a candidate method for Ontropy Virtual Rollup Protocol.

5.4.1 Elligator2

As we go deeper into the inner workings of the Ontropy protocol, it becomes neces-
sary to introduce another pivotal cryptographic algorithm: Elligator2. This partic-
ular mechanism, similar to Fouque-Tibouchi (FT) in functionality but distinct in its
nuances, is key in the robust cryptographic architecture of Ontropy. Elligator2 is an
ingenious method for the deterministic mapping of strings to points on an elliptic
curve, much like FT. Developed by Bernstein, Hamburg, Krasnova, and Lange, Elli-
gator2 plays an indispensable role in systems necessitating privacy since it facilitates
constructions that are indistinguishable from random strings in the codomain. What
sets Elligator2 apart is its unique ability to map any given string to a point on the
curve in a way that is not only deterministic but also bijective. This bijection ensures
that for each point on the curve, there’s exactly one corresponding input string, and
vice versa, a property not seen in FT. This injective and surjective mapping permits
back-and-forth conversion between curve points and strings without loss of data, a
trait that is desirable in certain cryptographic operations. Another distinguishing
factor of Elligator2 is that it is designed to work with elliptic curves represented in
Montgomery or Edwards form, which are often used in efficient implementations of
elliptic curve cryptography due to their faster arithmetic operations. While both
FT and Elligator2 aim to accomplish the same goal - to transform arbitrary strings
into curve points - the use case and application largely determine the choice between
the two. FT’s approach is highly beneficial when uniformity and simplicity of anal-
ysis are paramount, whereas Elligator2 shines when bijective mapping and working
with Edwards or Montgomery curves are critical requirements. In the context of
the Ontropy protocol, Elligator2 further bolsters the cryptographic operations in-
volving hash-to-curve transformations. It works hand in hand with the FT method,
SHA-3, and Pedersen hash to provide a comprehensive cryptographic backbone that
efficiently meets the protocol’s privacy, security, and interoperability objectives. By
employing Elligator2 alongside these other techniques, Ontropy capitalizes on the
unique strengths of each, thereby optimizing its cryptographic scheme. Elligator2 is
currently a candidate method for Ontropy Virtual Rollup Protocol.

5.4.2 Kate Commitments

KZK commitments are an important moving part in an Ontropy Virtual Rollup
solutions. It’s main benefits include efficiency in batch verifications and creating
short proof. Unlike Pedersen commitment scheme, you can prove the correctness of
a polynomial’s evaluations at many points with a proof size that does not increase
with the number of points. Let’s dive deeper in how do they work and how we use
them. Here’s how we represent a Kate commitment for a polynomial f: Cf = gf(s)

23

In this equation, g is a generator of a cyclic group of prime order, s is a selected
secret, and the caret symbol (̂) represents exponentiation within the group. To
expose the value of polynomial f at a particular position x, we provide f(x) and a
proof π = gf(s)−xs. Then, the verifier checks the following equation: [...]

gf(x) = Cf/πx

Now, let’s pivot to Merkle trees. Merkle trees are an efficient way to verify the
integrity of large data sets. For a list of data items d[1], ..., d[n], we start by hashing
each item to produce a list of leaf nodes: l[i] = H(d[i]) Next, for every pair of leaf
nodes l[2 ∗ i], l[2 ∗ i + 1], a parent node is created:

p[i] = H(l[2 ∗ i]||l[2 ∗ i + 1])
This procedure is repeated until we eventually obtain a single root node r. When

contrasting these two cryptographic schemes, it’s apparent that they are utilized for
different purposes. Merkle trees validate the inclusion of specific data within a
set without exposing the entire set. Conversely, Kate commitments allow us to
commit to a polynomial and later reveal its values at certain points. Moreover,
the size of proofs in Kate commitments remains constant, unlike the logarithmic
size increase in Merkle trees, thereby making Kate commitments more efficient for
certain applications. However, this efficiency comes with increased complexity in
setup assumptions.

5.4.3 Kate Vector Commitments

The Kate commitment scheme, initially conceived as a polynomial commitment,
actually presents an interesting utility as a vector commitment as well. Let’s take a
moment to recall that a vector commitment is a commitment to a vector a0, . . . , an−1,
allowing one to validate that commitment to ai for a given i. Remarkably, this can
be emulated using the Kate commitment scheme. We start by defining p(X) as a
polynomial that satisfies p(i) = ai for all i. It’s a known fact that such a poly-
nomial exists, and it can be conveniently computed using the method of Lagrange
interpolation, as shown:

p(X) = ∑n−1
i=0 ai

∏n−1
j=0
j ̸=i

X−j
i−j

With this polynomial in our arsenal, we can prove an arbitrary number of ele-
ments in the vector using merely a single group element! This feature is a significant
advantage in terms of proof size, and it showcases the efficiency of the Kate com-
mitment scheme.

When juxtaposed with Merkle trees, the efficiency becomes more apparent. A
Merkle proof, after all, would necessitate log n hashes even to substantiate a sin-
gle element. Therefore, the Kate commitment scheme offers a more compact and
efficient solution for such tasks.

5.5 Perspective Timelocked Encryption Solution
Another promising approach that we are developing is based on a novel time-locked
encryption scheme proposed in [8]. Time-lock encryption serves as a method for
encrypting a message so that its decryption is only possible after a specified deadline.
In the study, the authors introduce an innovative time-lock encryption scheme. Its

24

primary advantage over earlier models is that receivers, even those with relatively
low computational resources, can instantly decrypt the message once the deadline
has passed. This is achievable without interacting with the sender, other receivers,
or any trusted third party.

The proposed time-lock encryption solution is built upon the idea of computa-
tional reference clocks and an extractable witness encryption scheme. It is proposed
to construct the computation reference clocks from a public blockchain. In the ar-
ticle, only the Proof Of Work chains are studied. The most significant result of the
paper is that it demonstrates how to achieve a constant level of multilinearity for
witness encryption through the use of SNARKs.

The scheme is based on Subset-Sum problem and achieves extractable security
without depending on obfuscation. This particular model employs multilinear maps
of any given order and operates independently of the specific implementations of
multilinear maps. Ontropy Virtual Rollup solution employs the timelock encryp-
tion scheme over the public blockchain to timelock the ephemeral keys. The smart
contract events containing specific game scenarios are also used as a witness for
decrypting the keys of the dropped out player. Let’s describe how this time lock
encryption scheme could work in more detail.

5.5.1 Computational reference clocks

In a timelock encryption scheme the public blockchain is viewed as a computational
reference clock. The PoW blockchain performs an iterative, very large-scale, pub-
lic computation, where validators are contributing significant computational to the
gradual extension of the block chain. Essentially, this blockchain consists of a se-
quence of hash values B1, . . . , Bτ that satisfy certain conditions. 1 Bτ+1 is appended
to the chain. Thus, the blockchain can serve as a reference clock, where the current
length τ of the chain tells the current "time", and there are about 12 seconds between
each "clock tick" in the Ethereum network. Ontropy is currently exploring different
ways of generalizing the PoW solution proposed to a PoS blockchains.

5.5.2 Witness encryption

To construct the time-lock encryption from computational reference clocks witness
encryption is employed. Witness encryption for all NP-relations was introduced by
Garg et al. [9]. Existing witness encryption schemes are based on multilinear maps
or obfuscation. A witness encryption scheme is associated with an NP-relation R.
For (x, w) ∈ R we say that x is a "statement" and w is a "witness". A witness
encryption scheme for relation R allows to encrypt a message m with respect to
statement x as c

$← WE.Enc (x, m). Any witness w which satisfies (x, w) ∈ R can
be used to decrypt this ciphertext c as m = WE ·Dec(c, w). A statement x could
be viewed as a "public key", such that any witness w with (x, w) ∈ R can be used
as a corresponding "secret key".

A secure witness encryption scheme essentially guarantees that no adversary is
able to learn any non-trivial information about a message encrypted for statement
x, unless it already "knows" a witness w for (x, w) ∈ R. Witness encryption schemes
with this property are called extractable [12, 13, 14]. The idea of extractable security

25

was first proposed in [14], along with a candidate construction, but there are no
known constructions with mathematical proof of extractable security.

5.5.3 From witness encryption to time-lock encryption

The key idea behind the scheme proposed in [8] is to combine a computational
reference clock with witness encryption. For that NP-relation R is defined such that

(1) For x ∈ N, statements have the form 1x, that is, x in unary representation.
(2) Any valid block chain w = (B1, . . . , Bx) of length at least x is a witness for

statement 1x, that is (1x, w) ∈ R.
Let (WE.Enc, WE.Dec) be a witness encryption scheme for this particular re-

lation R. Suppose the current state of the Bitcoin blockchain is B1, . . . , Bτ . Then
the block chain contains a witness w for (1x, w) ∈ R for all x ≤ τ . The Bitcoin
blockchain is public. Therefore everybody is immediately able to decrypt any ci-
phertext c

$← WE.Enc (1x, m) with x ≤ τ , by using the witness from the public
block chain as the "decryption key".

The reference clock does not have to start with the genesis block of the blockchain.
Clock’s initial state w0 could be set to be the latest block. In addition, the witness
does not have to include all transaction data of the blockchain, as the hash chain of
the block headers is sufficient for decryption.

Security of this construction Let c = WE. Enc (1x, m) be a ciphertext with x > τ .
Under the assumption that the witness encryption scheme is secure, we will show
that an adversary has only two possibilities to learn any non-trivial information
about m. (1) The adversary waits until the public blockchain has reached length
x. Then the chain contains a witness w for (1x, w) ∈ R, which immediately allows
to decrypt. However, note that then not only the adversary, but also everybody
else is able to decrypt, by reading w from the public blockchain and computing
m = WE. Dec(c, w). Speaking figuratively, "the time-lock has opened".

(2) The adversary tries to "put forward" the computational reference clock pro-
vided by the blockchain, by computing the missing blocks Bτ+1, . . . , Bx of the chain
secretly on its own, faster than the public computation performed by the collection
of all miners in case of PoW. Note that this means that the adversary would have
to outperform the huge computational resources gathered in the PoW chain.

5.5.4 Using SNARKs to reduce multilinearity level for witness encryption

The size of the ciphertext and the running time for encryption and decryption is
linear in terms of the size of witness. Usually the linear complexity is very natural
and efficient. Unfortunately, this is not good enough for witness encryption because
all the instantiations of witness encryption are based on multilinear maps [15]. The
research on multilinear maps is still in its infancy and is not yet practical regardless
of recent lines of attacks. Most importantly, the existing implementations for mul-
tilinear maps are not compact, that is, the size of the group elements is polynomial
in the multilinearity level (i.e., the maximum number of pairings). The multilin-
earity level is polynomial in the length of the witness. To mitigate this issue, a
novel scheme is proposed. It’s idea is to implement time-lock encryption by using
SNARKs together with witness encryption.

26

Instead of directly encrypting with an instance x in witness encryption, the idea
is to encrypt with SNARKs verification procedure for the statement (x, w) ∈ R. It
is shown that using SNARKs can achieve constant multilinearity level regardless of
the instance and witness, rather than the previous linear complexity.

5.5.5 Extractable witness encryption

A new extractable witness encryption scheme based on a special SUBSET- SUM
(described below). To encrypt with any NP language, we present a reduction from
the NP-complete CNF-SAT to our special SUBSETSum problem. We prove the
extractable security of this construction in the Idealised Graded Encoding Model.
To the best of our knowledge, this is the first construction of witness encryption to
achieve extractable security, without the use of obfuscation.

We use a variant of multilinear maps [15] where the groups are indexed by
the integer vectors, which allows us to efficiently encode an instance of the special
SUBSETSUM problem. Suppose a u-linear map on groups {GW}w with w ≤ u
(component-wise comparison). The pairing operation ew,w′ maps Gw × Gw′ into
Gw+w′ with w + w′ ≤ u by computing ew,w′

(
ga

w, gb
w′

)
= gab

w+w′

The special SUBSET- SUM problem is: given a multi-set of positive integer
vectors ∆ = {(vi : ℓi)}i∈I where (vi : ℓi) means vi occurs ℓi times in the multiset
and a target sum-vector s such that (ℓi + 1) vi ̸≤ s and vi are pairwise-distinct, to
decide whether there exists a subset of ∆ that can sum up to s. The side condition
(ℓi + 1) vi ̸≤ s is to guarantee the encoding of each integer vector vi can only be
used for at most ℓi times, in order to keep consistency between the encoding of
the SUBSET-SUM and the original SUBSET-SUM problem. In multilinear maps,
the vectors in ∆ = {(vi : ℓi)}i∈I are encoded as

{
gαvi

vi

}
i∈I

and the target vector is
encoded as gαs

s . Suppose the subset-sum exists, that is ∑
i∈I bivi = s with bi positive

integers and bi ≤ ℓi. Then we compute the encoding of the target sum as below

In this way, each vector vi only needs to be encoded once and the multiplication
of the same encoding is in logarithm time which gains efficiency. To encrypt with
any NP language, we present a reduction from CNF-SAT to our special SUBSET-
SUM problem.

It is proven that encoding achieves extractability in the generic model of mul-
tilinear maps. The main technical detail is to construct an efficient extractor to
extract a witness from the adversary’s group operations. Constructing a witness ex-
tractor for the existing witness encryption schemes appears to be super-polynomial
because of the expansion of adversary’s query-polynomial. Soundness security is a
special case of the extractable security.

Extractable witness encryption with arbitrary auxiliary inputs might be unattain-
able. A simple counter example is the following: suppose the sampler has (x, w) ∈ R,

27

then the sampler obfuscates the decryption algorithm of witness encryption z =
O(WE Dec(w, ·)) and gives z to the adversary; the adversary can decrypt WE.Enc
(x, m) by using the backdoor z and does not have to know w.

To circumvent this issue, authors define extractable security in an oracle model.
The oracle is used to model the blockchain. The extractability is possible to achieve
for most of the non-artificial oracles. In particular, when the oracle is instantiated
with a decentralised cryptocurrency, this kind of backdoor is unlikely to exist since
it is believed that no one can have a witness w in advance for each instance x.

5.5.6 Efficiency comparison

Assume a CNF formula has n variables and k clauses, and m literals. The ciphertext
size of our witness encryption scheme is 2n + 2k + 1 group elements. The evaluation
time is n +O

(
k log m

2k

)
. The multilinearity level is n + m− k and can be optimised

to n +O
(
k log m

2k

)
.

The efficiency of encoding CNF-SAT depends on the reduction. The best reduc-
tions from CNF-SAT to EXACT- COVER is CNFSAT→ 3-CNF-SAT → EXACT-
COVER. However, the reduction from CNF-SAT to 3-CNF-SAT increases the num-
ber of variables and clauses by the size of the original CNF formula, that is n′ =
O(m) and k′ = O(m) while m is n · k in the worst case. The reduction from 3-
CNF-SAT to EXACTCOVER generates an instance of size 2n′ + 7k′ + 1. Hence the
encoding produces O(m) group elements asnd the evaluation time and multilinearity
level are also O(m) with m = n · k in the worst case. There are three instantiations
of witness encryption for CNF formulas. Two of them are specific to the compos-
ite order multilinear groups. The prime-order groups are usually more natural and
result in simpler security assumptions. The conversion from composite-order con-
struction to prime-order multilinear groups (or more generally, groups of arbitrary
order) is very expensive and results in a ciphertext of O (n5k2) group elements.s

28

References
[1] Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman, Mental Poker. Tech-

nical Report MIT-LCS-TM-125, Massachusetts Institute of Technology
[2] Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman, Mental Poker, pages

37–43, 1981. The Mathematical Gardner
[3] Castellá-Roca, J., Sebé, F., Domingo-Ferrer, J. (2005). Dropout-Tolerant TTP-

Free Mental Poker. In: Katsikas, S., López, J., Pernul, G. (eds) Trust, Privacy,
and Security in Digital Business. TrustBus 2005. Lecture Notes in Computer
Science, vol 3592. Springer, Berlin, Heidelberg.

[4] R. Lipton. How to cheat at mental poker. In Proc. AMS Short Course on Cryp-
tography, 1981.

[5] S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In In Proc. 14th ACM Symposium
on Theory of Computing (STOC), pages 365–377, San Francisco, 1982. ACM

[6] O. Goldreich, S. Micali, A. Wigderson. How to play ANY mental game, STOC
’87: Proceedings of the nineteenth annual ACM symposium on Theory of com-
puting, 1987

[7] Kaleidoscope An Efficient Poker Protocol with Payment Distribution and
Penalty Enforcement, Bernardo David, Rafael, Dowsley Mario Larangeira
https://eprint.iacr.org/2017/899.pdf, 2018

[8] Jia Liu, Tibor Jager, Saqib A. Kakvi. How to build time-lock encryption , Bogdan
Warinschi, 2017, https://eprint.iacr.org/2015/482.pdf 24, 26

[9] Garg S., Gentry C., Sahai A., Waters B.: Witness encryption and its applica-
tions. STOC ’13, pp. 467–476 (2013) 25

[10] Zhandry M.: How to avoid obfuscation using witness PRFs. 2016. In: Proceed-
ings of TCC

[11] Claude Crépeau, A Secure Poker Protocol that Minimizes the Effect of Player
Coalitions, 1998, Conference: Advances in Cryptology, McGill University

[12] Bellare M., Hoang V.T.: Adaptive witness encryption and asymmetric
password-based cryptography. Cryptology ePrint Archive, Report 2013/704,
http://eprint.iacr.org/ (2013). 25

[13] Boyle E., Chung K.-M., Pass R.: On extractability obfuscation. In: Lindell,
Yehuda (ed)., TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Berlin (2014).
25

[14] Goldwasser S., Kalai Y.T., Popa R.A., Vaikuntanathan V., Zeldovich N.: How
to run turing machines on encrypted data. In: CRYPTO, pp. 536–553 (2013).
25, 26

[15] Boneh D., Silverberg A.: Applications of multilinear forms to cryptography.
Contemp. Math. 324, 71–90 (2003). 26, 27

29

	Introduction
	Ontropy Solution: a Helicopter View
	Generalised Virtual Rollup Protocol
	General Protocol Description
	Random Game and Multi-Table Poker Tournament
	Key Management
	Random Game Mechanics
	Multi-Table Poker Tournament
	System Architecture Flow Diagram
	Questions and Considerations

	Ontropy Virtual Rollup Solution for Mental Poker
	Mental Poker Solution
	Distributed Key Generation
	Generating Randomness
	Revealing Public Randomness
	Generating Private Randomness
	Encryption Subset Composition Proof

	Modified Encryption Subset Composition Proof
	Detecting Repetitive Random Values
	Process

	Modern Cryptographic Primitives Made Accessible
	Schnorr Signatures
	MuSig2
	FROST
	Schnorr Scheme Comparison and Development Schedule

	BLS Signatures
	Pedersen Hash
	Foque-Tibouchi
	Elligator2
	Kate Commitments
	Kate Vector Commitments

	Perspective Timelocked Encryption Solution
	Computational reference clocks
	Witness encryption
	From witness encryption to time-lock encryption
	Using SNARKs to reduce multilinearity level for witness encryption
	Extractable witness encryption
	Efficiency comparison

