
/burl@stx null def /BU.S /burl@stx null def def /BU.SS currentpoint /burl@lly exch def /burl@llx exch def burl@stx null ne burl@endx burl@llx ne BU.FL BU.S if if burl@stx null eq burl@llx dup /burl@stx exch def /burl@endx exch def burl@lly dup /burl@boty exch def /burl@topy exch def if burl@lly burl@boty gt /burl@boty burl@lly def if def /BU.SE currentpoint /burl@ury exch def dup /burl@urx exch def /burl@endx exch def burl@ury burl@topy lt /burl@topy burl@ury def if def /BU.E BU.FL def /BU.FL burl@stx null ne BU.DF if def /BU.DF BU.BB [/H /I /Border [burl@border] /Color [burl@bordercolor] /Action « /Subtype /URI /URI BU.L » /Subtype /Link BU.B /ANN pdfmark /burl@stx null def def /BU.BB burl@stx HyperBorder sub /burl@stx exch def burl@endx HyperBorder add /burl@endx exch def burl@boty HyperBorder add /burl@boty exch def burl@topy HyperBorder sub /burl@topy exch def def /BU.B /Rect[burl@stx burl@boty burl@endx burl@topy] def /eop where begin /@ldeopburl /eop load def /eop SDict begin BU.FL end @ldeopburl def end /eop SDict begin BU.FL end def ifelse

Security Review For
Flat Money

Private Audit Contest Prepared For: Flat Money
Lead Security Expert: xiaoming90
Date Audited: January 6 - January 15, 2025
Final Commit: ac4b406

1

Introduction
The Flat Money v2 protocol update allows users to create a market with different
collateral and market assets, enabling the design of bespoke derivative products,
including perpetuals, options or any imaginable payoff structure. LPs are the
counterparty to the traders.

Scope
Repository: dhedge/flatcoin-v1

Audited Commit: 957489baee10d52d65c50ec88f73189b62c36853

Final Commit: ac4b4068a790099910f853d972ec12b641d6b2f8

Files:

• src/FlatcoinVault.sol

• src/LeverageModule.sol

• src/LiquidationModule.sol

• src/OptionsControllerModule.sol

• src/OracleModule.sol

• src/OrderAnnouncementModule.sol

• src/OrderExecutionModule.sol

• src/PerpControllerModule.sol

• src/PositionSplitterModule.sol

• src/StableModule.sol

• src/abstracts/ControllerBase.sol

• src/abstracts/ERC20LockableUpgradeable.sol

• src/abstracts/FeeManager.sol

• src/abstracts/InvariantChecks.sol

• src/abstracts/KeeperFeeBase.sol

• src/abstracts/ModuleUpgradeable.sol

• src/abstracts/OracleModifiers.sol

• src/abstracts/ViewerBase.sol

• src/misc/ArbKeeperFee.sol

• src/misc/ETHCrossAggregator.sol

• src/misc/FlatZapper/FlatZapper.sol

2

• src/misc/FlatZapper/FlatZapperStorage.sol

• src/misc/OPKeeperFee.sol

• src/misc/OptionViewer.sol

• src/misc/PerpViewer.sol

• src/misc/Swapper/RouterProcessor.sol

• src/misc/Swapper/RouterProcessorStorage.sol

• src/misc/Swapper/Swapper.sol

• src/misc/Swapper/TokenTransferMethods.sol

• src/misc/Swapper/TokenTransferMethodsStorage.sol

Final Commit Hash
ac4b4068a790099910f853d972ec12b641d6b2f8

Findings
Each issue has an assigned severity:

• Medium issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should be
addressed.

• High issues are directly exploitable security vulnerabilities that need to be fixed.

Issues Found

High Medium

3 18

Issues Not Fixed and Not Acknowledged

High Medium

0 0

Security experts who found valid issues

3

000000
0x37
0xc0ffEE
Afriaudit
Bigsam

Kirkeelee
KupiaSec
aslanbek
newspacexyz
santipu_

vinica_boy
xiaoming90
zarkk01

4

IssueH-1: IncorrectprofitLossTotal calculation inop-
tion market
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/60

Found by
0x37, KupiaSec, santipu_

Summary
In optionMarket, we use the globalPosition.averagePrice global average price to
calculate the profitLossTotal. This is incorrect. Because each position's PnL is
non-linear.

Root Cause
In OptionsController:53, we calculate the profitLossTotal() based on the current price.
We will use this to calculate current LP share's price.

The problem is that it's incorrect to calculate the total PnL using the average price.
Option market is a little different with perp market.

Take one example as below:

1. Alice opens one leverage position when the collateral price is 3000 at timestamp T1.
The position size is 10.

2. The collateral price increases to 4000 at timestamp T2.

3. Bob opens one leverage position at timestamp T2 with the same position size. Now
the global average price becomes 3500.

4. The collateral price drops to 3400 at the timestamp T3. Note: this is one option
market. Both positions will be healthy and should not be liquidated.

5. Cathy wants to deposit some collateral as LP. We will calculate current total PnL via
profitLossTotal in OptionControllerModule. Because the price is less than the
average price, the total PnL will be 0.

6. But actually, if we calculate Alice and Bob's position's PnL, we will find out that
Alice has some positive PnL and Bob's PnL is 0, and the total PnL should be positive.

function profitLossTotal(uint256 price_) public view override returns (int256 pnl_)
{↪→

FlatcoinVaultStructs.GlobalPositions memory globalPosition =
vault.getGlobalPositions();↪→

5

int256 priceShift = price_ > globalPosition.averagePrice
? int256(price_) - int256(globalPosition.averagePrice)
: int256(0);

return (int256(globalPosition.sizeOpenedTotal) * (priceShift)) / int256(price_);
}

function profitLoss(
LeverageModuleStructs.Position memory position_,
uint256 price_ // current price.

) public pure override returns (int256 pnl_) {
int256 priceShift = price_ > position_.averagePrice

? int256(price_) - int256(position_.averagePrice)
: int256(0);

// price * size = profit. Note: we return the collateral amt as the profit/Loss.
return (int256(position_.additionalSize) * (priceShift)) / int256(price_);

}

Internal pre-conditions
N/A

External pre-conditions
N/A

Attack Path
1. Alice opens one leverage position when the collateral price is 3000 at timestamp T1.
The position size is 10.

2. The collateral price increases to 4000 at timestamp T2.

3. Bob opens one leverage position at timestamp T2 with the same position size. Now
the global average price becomes 3500.

4. The collateral price drops to 3400 at the timestamp T3. Note: this is one option
market. Both positions will be healthy and should not be liquidated.

5. Cathy wants to deposit some collateral as LP. We will calculate current total PnL via
profitLossTotal in OptionControllerModule. Because the price is less than the
average price, the total PnL will be 0.

6. But actually, if we calculate Alice and Bob's position's PnL, we will find out that
Alice has some positive PnL and Bob's PnL is 0, and the total PnL should be positive.

6

Impact
profitLossTotal calculation is incorrect. This will cause the incorrect LP share's price. New
LPs will mint shares with one incorrect share prices.

PoC
N/A

Mitigation
No response

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/493

7

IssueH-2: AnnouncementFundsLostDue toaClose
Position
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/71

Found by
000000, 0x37, KupiaSec, newspacexyz, santipu_, zarkk01

Summary
When a user has a position closed or liquidated, LeverageModule::burn will delete any
pending order the user has without returning the funds.

Root Cause
In LeverageModule.sol::381, the pending announcement order of the user is deleted
without returning the funds.

function burn(uint256 tokenId_) public onlyAuthorizedModule {
IOrderAnnouncementModule orderAnnouncementModule = IOrderAnnouncementModule(

vault.moduleAddress(FlatcoinModuleKeys._ORDER_ANNOUNCEMENT_MODULE_KEY)
);

>> orderAnnouncementModule.deleteOrder(ownerOf(tokenId_));
orderAnnouncementModule.deleteLimitOrder(tokenId_);

burn(tokenId);
}

Internal pre-conditions
• A user has a position closed or liquidated while having a pending announced order

External pre-conditions
No response

Attack Path
1. A user opens a leverage position.

8

2. After some days, the price of rETH decreases.

3. The user notices that his position is going to be liquidated, but he doesn't want that
to happen. So, he announces an announcementAdjust order to add more margin and
avoid liquidation.

4. Before the announcementAdjust is executed, the position gets liquidated, and
therefore the position is closed.

5. When the tokenID linked to the liquidated position is burned, all the announcement
orders linked to the account of that tokenID are automatically deleted.

6. Since the announcementAdjust is deleted, it cannot be executed nor canceled. The
margin linked to the announcementAdjust is locked in the execution module, and
there is no way to recover it, effectively losing the margin funds.

A variant of this attack can be the following:

1. Bob announces an order to open a long position

2. Alice sees that and announces an order to open another long position on behalf of
Bob with the minimum funds possible, along with a limit order that will be executed
immediately.

3. Alice executes her order first so the minimal long position is created for Bob, along
with a limit order that will be executed.

4. Alice waits a few seconds more and executes the limit position linked to Bob's
minimal long position, causing the removal of Bob's original announced order,
causing a loss of funds for Bob.

• This attack relies that Alice's order can be executed before Bob's, which may
not always be the case but it's a possibility.

Another variant of the previous attack would be to use the reentrancy on safeMint to
transfer the recently created minimal position to Bob, and later execute the limit order
to delete any order that Bob has pending, causing a loss of funds for him.

Impact
The user loses all the funds related to the pending announced order.

Here are the detailed loss of funds for each announced order a user could have pending:

• Stable Deposit: The funds lost will be the deposit amount and the keeper fee.

• StableWithdraw: When announcing the order, the tokens to be withdrawn will be
locked and will be kept locked forever when the issue is triggered.

• Leverage Open: The funds lost will be the margin and the fees (trade fee and
keeper fee).

9

• Leverage Adjust: When the user wants to add funds to the margin, those funds for
the extra margin will be locked, along with the keeper fee.

PoC
You can paste the follwing PoC to test/unit/Liquidation-Module/Liquidate.t.sol:

function test_announceOrder_deleted_by_liquidation() public {
vm.startPrank(alice);
setCollateralPrice(1000e8);
announceAndExecuteDeposit({

traderAccount: alice,
keeperAccount: keeper,
depositAmount: 100e18,
oraclePrice: 1000e8,
keeperFeeAmount: 0

});

// Alice opens a position with 50 collateralAsset margin
uint256 tokenId = announceAndExecuteLeverageOpen({

traderAccount: alice,
keeperAccount: keeper,
margin: 50e18,
additionalSize: 100e18,
oraclePrice: 1000e8,
keeperFeeAmount: 0

});

skip(2 days);

// Prices decreases to liquidation
uint256 liqPrice = viewer.liquidationPrice(0);
uint256 newCollateralPrice = (liqPrice - 1e18) / 1e10;
setCollateralPrice(newCollateralPrice);
assertTrue(liquidationModProxy.canLiquidate(tokenId));

// Alice wants to adjust her position to not get liquidated
announceAdjustLeverage({

traderAccount: alice,
tokenId: tokenId,
marginAdjustment: 50e18,
additionalSizeAdjustment: 0,
keeperFeeAmount: 0

});

// Liquidate the position before the announcement order gets executed
vm.startPrank(liquidator);
bytes[] memory priceUpdateData = getPriceUpdateData(newCollateralPrice);
liquidationModProxy.liquidate{value: 2}(tokenId, priceUpdateData);

10

LeverageModuleStructs.Position memory position =
vaultProxy.getPosition(tokenId);↪→

// The position should be liquidated
assertEq(position.marginDeposited, 0);

// The execution should revert as the announcement doesn't exist
vm.expectRevert();
vm.startPrank(keeper);
orderExecutionModProxy.executeOrder{value: 1}(alice, priceUpdateData);

// Pass time till the order has expired to try to cancel it
skip(uint256(orderAnnouncementModProxy.minExecutabilityAge()));

// Extract keeper fee
uint256 keeperFee = mockKeeperFee.getKeeperFee();

uint256 aliceBalanceBefore = collateralAsset.balanceOf(alice);
// Canceling the announced order should do nothing because the order
announcement doesn't exist, should also not revert↪→

vm.startPrank(alice);
orderExecutionModProxy.cancelExistingOrder(alice);
uint256 aliceBalanceAfter = collateralAsset.balanceOf(alice);
assertEq(aliceBalanceBefore, aliceBalanceAfter);
// The 50e18 + keeper fee of Alice should be locked in the execution module
with no announcement order to execute↪→

assertEq(collateralAsset.balanceOf(address(orderExecutionModProxy)),
50e18+keeperFee);↪→

}

Mitigation
To mitigate this issue is recommended to not directly delete a pending order but to
cancel it, along with returning the funds of the pending announced order.

To achieve this, an extra function could be created to cancel an order without checking
for maximumExecutabilityTime, allowing it to be canceled even if it hasn't expired. This
new function should only be called by authorized modules

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/497

11

IssueH-3: TheStableModule.executeWithdraw() func-
tion will always revert due to an integer underflow
during the check for significant impact on the sta-
ble token price when the collateral has a low deci-
mal value and a high price, such asWBTC.
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/94

Found by
000000, KupiaSec, santipu_

Summary
The StableModule.executeWithdraw() function checks if there is no significant impact on
stable token price. However, when the collateral has a low decimal value and a high
price, such as WBTC, it will always revert due to an integer underflow during the check.

Root Cause
The StableModule.executeWithdraw() function checks that there is no change greater
than 1e6 on the stable token price. However, if the stableCollateralPerShareBefore is
less than 1e6, this check will always revert due to an integer underflow.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/StableModule.sol#L130-L133

if (
131: stableCollateralPerShareAfter < stableCollateralPerShareBefore -

1e6 ||↪→

stableCollateralPerShareAfter > stableCollateralPerShareBefore + 1e6
) revert PriceImpactDuringWithdraw();

For example, the current price of 1 WBTC is about 1e5USD, so the initial
stableCollateralPerShare of WBTC is about (1e18* 1e8)/(1e18*1e5)=1e3. (The decimal
of WBTC is 8, and the decimal of collateral price is 18 in the OracleModule.sol.)

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/OracleModule.sol#L189

@> price_ = uint256(price) * (10 ** 10); // convert Chainlink oracle decimals
8 -> 18↪→

12

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/StableModule.sol#L235

@> collateralPerShare_ = (1e18 * (10 ** collateral.decimals())) /
collateralPrice;↪→

While the collateralPerShare will change, the likelihood of it exceeding 1e6 is very low.
Therefore, the StableModule.executeWithdraw() function will always revert at L131. As a
result, collaterals with a low decimal value and a high price, such as WBTC, cannot be
withdrawn, resulting in the funds being stuck.

Internal pre-conditions
none

External pre-conditions
none

Attack Path
none

Impact
Users cannot withdraw their funds.

PoC
none

Mitigation
The check that there is no significant impact on stable token price should be improved.

if (
- stableCollateralPerShareAfter < stableCollateralPerShareBefore -

1e6 ||↪→

+ stableCollateralPerShareAfter + 1e6 <
stableCollateralPerShareBefore ||↪→

stableCollateralPerShareAfter > stableCollateralPerShareBefore + 1e6
) revert PriceImpactDuringWithdraw();

13

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/519

14

Issue M-1: Arguments order mismatch in Position-
SplitterModule.split() for leverage check
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/3

Found by
KupiaSec, newspacexyz

Summary
In the PositionSplitterModule.split() function, the arguments passed to
leverageModule.checkLeverageCriteria() are in the wrong order. This leads to incorrect
leverage calculations, which can result in invalid positions passing leverage checks or
valid positions failing them. The issue affects the core functionality of position splitting
and can lead to unexpected behavior, including protocol insolvency or bad debt
creation.

Root Cause
The function checkLeverageCriteria() in the LeverageModule expects the parameters in
the order: https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/ma
in/flatcoin-v1/src/LeverageModule.sol#L429 However, in PositionSplitterModule.split(),
the arguments are passed in reverse order: https://github.com/sherlock-audit/2024-12-f
lat-money-v1-1-update/blob/main/flatcoin-v1/src/PositionSplitterModule.sol#L114
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/PositionSplitterModule.sol#L137 This causes the leverage calculation to be based
on incorrect input values.

Internal pre-conditions
The LeverageModule requires margin_ as the first argument and size_ as the second
argument for checkLeverageCriteria().

External pre-conditions
The split() function in PositionSplitterModule is called with a valid position and a fraction
for splitting the position.

15

Attack Path
1. A user calls the split() function to split a position.

2. Due to the reversed arguments in checkLeverageCriteria(), the leverage calculation
is incorrect.

3. This can:

• Allow splitting into invalid positions that do not meet leverage criteria, or

• Incorrectly block splitting valid positions by failing leverage checks.

4. If invalid positions are created, they may immediately become liquidatable or lead
to incorrect margin and size balances, destabilizing the protocol.

Impact
Invalid positions passing leverage checks can destabilize the system by creating
positions that are improperly collateralized or liquidatable, leading to bad debt.
Improperly collateralized positions can lead to insolvency if they cannot be liquidated
effectively.

PoC
1. Set up a position with marginDeposited = 100 and additionalSize = 200.

2. Call the split() function with positionFraction_ = 0.5e18 (50%).

3. Observe that the leverage check fails or passes incorrectly due to the argument
order mismatch.

// Assume leverageMin = 1.5e18 and leverageMax = 5e18
leverageModule.checkLeverageCriteria(200, 100); // Incorrect order

This results in:

• Leverage = (200 + 100) * 1e18 / 200 = 1.5, which is invalid.

• Correct calculation should be: (100 + 200) * 1e18 / 100 = 3.0, which is valid.

Mitigation
Fix the Argument Order: Update the argument order in PositionSplitterModule.split() to:

leverageModule.checkLeverageCriteria(primaryMargin, primarySize);
leverageModule.checkLeverageCriteria(newPositionMargin, newPositionSize);

16

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/498

17

Issue M-2: No min/max price check is problematic
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/6

The protocol has acknowledged this issue.

Found by
000000, Kirkeelee, aslanbek, zarkk01

Summary
No min/max price check

Root Cause
When calling ETHCrossAggregator.latestRoundData(), we fetch the ETH/USD price.
However, we do not check against the min/max price of the feed. Despite it being
deprecated, some feeds still have min and max prices set, such is the ETH/USD feed (htt
ps://arbiscan.io/address/0x3607e46698d218B3a5Cae44bF381475C0a5e2ca7#readCon
tract). Not checking against it can be problematic and could result in wrong accounting.

Internal pre-conditions
No response

External pre-conditions
No response

Attack Path
No response

Incorrect price which causes wrong accounting

PoC
No response

18

Mitigation
Fetch and check the min and max price

19

IssueM-3: SomeUserswill notbeable toAdjust their
Positionbecauseof thewrongsettlementvaluation
when Announcing Positions adjustments
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/20

The protocol has acknowledged this issue.

Found by
Bigsam

Summary
Margin adjustment is a time-sensitive function and users who are unable to do this risk
being liquidated. A wrong assessment of the users Margin will cause the entire system to
revert when it should not, the PNL at the present price will be lower than the pnl at the
maxfill.

Root Cause
No response

Internal pre-conditions

if (additionalSizeAdjustment_ >= 0) {
// If additionalSizeAdjustment equals zero, trade fee is zero as

well↪→

// and no need to check for skew max.
if (additionalSizeAdjustment_ > 0) {

tradeFee =
FeeManager(address(vault)).getTradeFee(uint256(additionalSizeAdjustment_));↪→

vault.checkSkewMax({
sizeChange: uint256(additionalSizeAdjustment_),
stableCollateralChange: int256(tradeFee -

FeeManager(address(vault)).getProtocolFee(tradeFee))↪→

});
}

@audit>> if (fillPrice_ < currentPrice) revert
MaxFillPriceTooLow(fillPrice_, currentPrice);↪→

20

} else {
tradeFee =

FeeManager(address(vault)).getTradeFee(uint256(additionalSizeAdjustment_ * -1));↪→

@audit>> if (fillPrice_ > currentPrice) revert
MinFillPriceTooHigh(fillPrice_, currentPrice);↪→

}

{
// New additional size will be either bigger or smaller than current

additional size↪→

// depends on if additionalSizeAdjustment is positive or negative.
int256 newAdditionalSize =

int256(vault.getPosition(tokenId_).additionalSize) + additionalSizeAdjustment_;↪→

// If user withdraws margin or changes additional size with no changes
to margin, fees are charged from their existing margin.↪→

@audit>> summary >> int256 newMarginAfterSettlement =
leverageModule.getPositionSummary(tokenId_).marginAfterSettlement +↪→

((marginAdjustment_ > 0) ? marginAdjustment_ : marginAdjustment_ -
int256(totalFee));↪→

// New margin or size can't be negative, which means that they want to withdraw
more than they deposited or not enough to pay the fees↪→

@audit>> points of possible reversal >> if (newMarginAfterSettlement < 0 ||
newAdditionalSize < 0)↪→

revert
ICommonErrors.ValueNotPositive("newMarginAfterSettlement|newAdditionalSize");↪→

@audit>> points of possible reversal >> if (
ILiquidationModule(vault.moduleAddress(FlatcoinModuleKeys._LIQUIDAT ⌋

ION_MODULE_KEY))↪→

.getLiquidationMargin(uint256(newAdditionalSize), fillPrice_)
>= uint256(newMarginAfterSettlement)↪→

) revert ICommonErrors.PositionCreatesBadDebt();

// New values can't be less than min margin and min/max leverage requirements.

@audit>> points of possible reversal >>
leverageModule.checkLeverageCriteria(uint256(newMarginAfterSettlement),
uint256(newAdditionalSize));

↪→

↪→

}

21

The Current MarginSize return is against the current price instead of against the fill Price

@audit >>. function getPositionSummary(
uint256 tokenId_

) external view returns (LeverageModuleStructs.PositionSummary memory
positionSummary_) {↪→

@audit >>. (uint256 currentPrice,) = IOracleModule(vault.moduleAddress(Flat ⌋
coinModuleKeys._ORACLE_MODULE_KEY)).getPrice(↪→

address(vault.collateral())
);

@audit >>. current price is used not fill>> return
getPositionSummary(vault.getPosition(tokenId_), currentPrice);↪→

}

From the code it can be seen that the liquidation fee is calculated USING the fillprice for
accuracy but this use the wrong check thereby causing an unnecessary revert.

@audit >>. if (
ILiquidationModule(vault.moduleAddress(FlatcoinModuleKeys._LIQUIDAT ⌋

ION_MODULE_KEY))↪→

.getLiquidationMargin(uint256(newAdditionalSize), fillPrice_)
>= uint256(newMarginAfterSettlement)↪→

) revert ICommonErrors.PositionCreatesBadDebt();

External pre-conditions
No response

Attack Path
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/OrderAnnouncementModule.sol#L389-L391

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/OrderAnnouncementModule.sol#L397-L400

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/LeverageModule.sol#L391-L398

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/LiquidationModule.sol#L240

22

Impact
Legitimate calls from mostly postions lossing funds to increase margin or reduce
leverage will revert either at the liquidation check of
minleverage/maxleverage/minmargin check causing a DOS to a time sensitive function.

PoC

function test_adjust_position_margin_increase_will_revert_an_healthy_position()
public {↪→

uint256 aliceCollateralBalanceBefore = collateralAsset.balanceOf(alice);
uint256 stableDeposit = 100e18;
uint256 collateralPrice = 1000e8;
uint256 keeperFee = mockKeeperFee.getKeeperFee();

announceAndExecuteDeposit({
traderAccount: alice,
keeperAccount: keeper,
depositAmount: stableDeposit,
oraclePrice: collateralPrice,
keeperFeeAmount: keeperFee

});

// 10 ETH margin, 30 ETH size (4x)
uint256 tokenId = announceAndExecuteLeverageOpen({

traderAccount: alice,
keeperAccount: keeper,
margin: 10e18,
additionalSize: 30e18,
oraclePrice: collateralPrice,
keeperFeeAmount: keeperFee

});

uint256 liqPrice = viewer.liquidationPrice(0);

LeverageModuleStructs.Position memory position = vaultProxy.getPosition(tokenId);
LeverageModuleStructs.PositionSummary memory positionSummary

=leverageModProxy.getPositionSummary(position, (liqPrice));↪→

emit log_named_int("Profitloss", positionSummary.profitLoss);
emit log_named_int("accrue", positionSummary.accruedFunding);

23

emit log_named_int("Margin at liquidation", positionSummary.marginAfterSettlement);
emit log_named_uint("Liquidation price", liqPrice);

uint premargin = liquidationModProxy.getLiquidationMargin(31e18, liqPrice);
emit log_named_uint("liquidation margin at liquidation price", premargin);

LeverageModuleStructs.Position memory position2 = vaultProxy.getPosition(tokenId);
LeverageModuleStructs.PositionSummary memory positionSummary2

=leverageModProxy.getPositionSummary(position2, ((liqPrice + 1e18) - ((liqPrice
+ 1e18)/1000)));

↪→

↪→

emit log_named_int("Profitloss2", positionSummary2.profitLoss);
emit log_named_int("accrue2", positionSummary2.accruedFunding);
emit log_named_int("Current price Margin", positionSummary2.marginAfterSettlement);
emit log_named_uint("current Price Now", ((liqPrice + 1e18) - ((liqPrice +

1e18)/1000)));↪→

uint256 newCollateralPrice = ((liqPrice + 1e18) - ((liqPrice + 1e18)/1000));

setCollateralPrice(newCollateralPrice/1e10);

uint256 keeperFee2 = mockKeeperFee.getKeeperFee();

vm.startPrank(alice);

collateralAsset.approve(address(orderAnnouncementModProxy), 6e18);

emit log_named_uint("fill price", liqPrice+1e18);

24

uint premargin5 = liquidationModProxy.getLiquidationMargin(31e18,
(liqPrice+1e18));↪→

emit log_named_uint("Liquidation Margin calculated during annoucement using
fillprice", premargin5);↪→

LeverageModuleStructs.Position memory position5 =
vaultProxy.getPosition(tokenId);↪→

LeverageModuleStructs.PositionSummary memory positionSummary5
=leverageModProxy.getPositionSummary(position5,liqPrice+1e18);↪→

emit log_named_int("Profitloss5", positionSummary5.profitLoss);
emit log_named_int("accrue5", positionSummary5.accruedFunding);
emit log_named_int("Actual Margin at Fill Price",

positionSummary5.marginAfterSettlement);↪→

assert(premargin5 > uint(positionSummary2.marginAfterSettlement));

assert(premargin5 > uint(positionSummary2.marginAfterSettlement));
assert(uint(positionSummary5.marginAfterSettlement) > premargin5);

}

Logs:
Profitloss: -9750000000000000000
accrue: 0
Margin at liquidation: 250000000000000000
Liquidation price: 754716981132075471698
liquidation margin at liquidation price: 287500000000000000
Profitloss2: -9737138081831363233
accrue2: 0
Current price Margin: 262861918168636767
current Price Now: 754961264150943396227
fill price: 755716981132075471698
liquidation Margin calculated during annoucement using fillprice: 287324669812498439
Profitloss5: -9697400943749531870
accrue5: 0
Actual Margin at Fill Price: 302599056250468130

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 7.99ms (2.86ms CPU
time)↪→

25

Based on the last assertions in the test the Margin at fill is higher than the Liquidation
margin and trade should be announced but the use of the current price will revert the
transaction, look at assertion 2.

Mitigation
Use the Fillprice to calculate the Margin at the point of settlement

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/LeverageModule.sol#L405-L423

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/503

26

Issue M-4: Attacker will cause a permanent DoS to
all new leverage positions being created
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/24

Found by
santipu_

Summary
Anyone can cause a permanent DoS on all leverage orders by announcing a stable
deposit on behalf of address(0).

Root Cause
In LeverageModule.sol::462 when a leverage position NFT is being minted, it checks if the
address zero has any pending orders, reverting if that's the case.

function _update(address to_, uint256 tokenId_, address auth_) internal virtual
override returns (address from) {↪→

// ...

>> DelayedOrderStructs.Order memory normalOrder =
orderAnnouncementModule.getAnnouncedOrder(_ownerOf(tokenId_));↪→

DelayedOrderStructs.Order memory limitOrder =
orderAnnouncementModule.getLimitOrder(tokenId_);↪→

// If a normal order (leverage adjust/close) exists, disallow the transfer.
>> if (normalOrder.orderType != DelayedOrderStructs.OrderType.None) {

revert ICommonErrors.OrderExists(normalOrder.orderType);
}

// ...
}

When a tokenId is about to be minted, the function _ownerOf will return address(0),
therefore it will get any pending orders the address zero has, reverting the transaction if
there is a pending order on behalf of address(0).

Internal pre-conditions
No response

27

External pre-conditions
No response

Attack Path
1. Attacker announces a stable deposit on behalf of address zero.

2. When a normal user wants to execute an order to create a leverage position, it will
always revert in LeverageModule::_update due to checking if the address zero has
any pending orders.

Impact
Anyone can cause a permanent DoS on the creation of new leverage positions by just
announning a stable deposit on behalf of address zero. Given that no more leverage
positions can be created, the protocol cannot function correctly and it would have to be
redeployed again, migrating all of users' funds.

Overall, this issue breaks core contract functionality, rendering the contract useless,
hence the medium severity.

The DoS will be permanent because the order on behalf of address zero cannot be
canceled. That is because cancelExistingOrder would revert when trying to transfer the
tokens back to address(0), as most ERC20 implementations revert when trying to
transfer tokens to address(0)

PoC
The following PoC can be pasted and run in Stable-Module/Deposit.t.sol. The test
demonstrates the attack, and is expected to revert on the last call with the error
OrderExists(1), which shouldn't be the case as Alice does not have any pending orders.

function test_address_zero_blocks_orders() public {
// We open an order for address(0) to set the trap
announceStableDepositFor({

traderAccount: keeper,
receiver: address(0),
depositAmount: 1e18,
keeperFeeAmount: 0

});

// A normal user deposits
announceAndExecuteDeposit({

traderAccount: bob,
keeperAccount: keeper,
depositAmount: 100e18,
oraclePrice: 1000e8,

28

keeperFeeAmount: 0
});

// We now try to open other leverage positions
// It reverts here with `OrderExists(1)`
announceAndExecuteLeverageOpen({

traderAccount: alice,
keeperAccount: keeper,
margin: 60e18,
additionalSize: 100e18,
oraclePrice: 1000e8,
keeperFeeAmount: 0

});
}

Mitigation
To mitigate this issue, is recommended to avoid the checks in LeverageModule::_update
when the NFT is being minted:

function _update(address to_, uint256 tokenId_, address auth_) internal virtual
override returns (address from) {↪→

IOrderAnnouncementModule orderAnnouncementModule = IOrderAnnouncementModule(
vault.moduleAddress(FlatcoinModuleKeys._ORDER_ANNOUNCEMENT_MODULE_KEY)

);

+ if (_ownerOf(tokenId_) != address(0)) {

DelayedOrderStructs.Order memory normalOrder =
orderAnnouncementModule.getAnnouncedOrder(_ownerOf(tokenId_));↪→

DelayedOrderStructs.Order memory limitOrder =
orderAnnouncementModule.getLimitOrder(tokenId_);↪→

// If a normal order (leverage adjust/close) exists, disallow the transfer.
if (normalOrder.orderType != DelayedOrderStructs.OrderType.None) {

revert ICommonErrors.OrderExists(normalOrder.orderType);
}

// If a limit order exists, disallow the transfer.
if (limitOrder.orderType != DelayedOrderStructs.OrderType.None) {

revert ICommonErrors.OrderExists(limitOrder.orderType);
}

+ }

return super._update(to_, tokenId_, auth_);
}

29

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/500

30

Issue M-5: Attackers can steal residue/donated to-
kens in the Swapper contract
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/27

Found by
Bigsam

Summary
According to the approval action design in the Router Processor, it is believed that the
swapper should not hold any tokens after a swap but this assumption can fail in 2
conditions.
SwapData passed to the router are never verified and there are two different ways of
swapping, EXACT-IN and EXACT-OUT. Using exact Out will cause some percentage of
the amount in ARE NOT used from the contract during the swap, this funds are not sent
back to the msg.sender. Although there is a rescue function to this effect to rescue
DONATED / RESIDUAL TOKENS this doesn't take away a possible Race condition that
could see an attacker successfully pass in data in the swapper to use this tokens and
receive free tokens even open positions.

Root Cause
Residual/Donated tokens in the SWAPPER.sol contract

1. Aggregator.SwapDatas are not verified, Amount in encoded can be greater than
the amount in passed.

2. No check after each swap to ensure the token left if any are sent back to the
msg.sender.

3. No Pause/emergency mechanism in the Swapper contract.

4. Max approval is given to the router so nothing stops this attack.

Internal pre-conditions

function profitLossTotal(uint256 price_) public view override returns (int256 pnl_)
{↪→

FlatcoinVaultStructs.GlobalPositions memory globalPosition =
vault.getGlobalPositions();↪→

int256 priceShift = price_ > globalPosition.averagePrice

31

? int256(price_) - int256(globalPosition.averagePrice)
: int256(0);

return (int256(globalPosition.sizeOpenedTotal) * (priceShift)) / int256(price_);
}

function profitLoss(
LeverageModuleStructs.Position memory position_,
uint256 price_ // current price.

) public pure override returns (int256 pnl_) {
int256 priceShift = price_ > position_.averagePrice

? int256(price_) - int256(position_.averagePrice)
: int256(0);

// price * size = profit. Note: we return the collateral amt as the profit/Loss.
return (int256(position_.additionalSize) * (priceShift)) / int256(price_);

}

No check to ensure that indeed there are no tokens/ funds in the contract . No decoding
of swap data to verify amount-in

/// @notice Swap tokens using the given `swapStruct_`.
/// @dev Only supports SINGLE_IN_SINGLE_OUT and MULTI_IN_SINGLE_OUT swap types.
/// @param swapStruct_ The struct containing all the data required to process
the swap(s).↪→

function swap(SwapperStructs.InOutData calldata swapStruct_) external payable {
uint256 destAmountBefore =

swapStruct_.destData.destToken.balanceOf(address(this));↪→

// Transfer all the `srcTokens` to this contract.
transferFromCaller(msg.sender, swapStruct.srcData);

// Process swaps based on `srcData` array.
// The first loop iterates over the `srcData` array. The number of

iterations is equal to the number of transfer methods used in the swap.↪→

// For example if the swap uses `TokenTransferMethod.ALLOWANCE` for all
`srcTokens`, then the outer loop will iterate only once.↪→

// If the swap uses `TransferMethod.ALLOWANCE` for the first x `srcTokens`
and `TransferMethod.PERMIT` for the next y `srcTokens`,↪→

// then the outer loop will iterate twice.
for (uint256 i; i < swapStruct_.srcData.length; ++i) {

// The second loop iterates over the `srcTokens` array in which the
`srcTokens` are transferred and swapped using the same token transfer method.↪→

for (uint256 j; j < swapStruct_.srcData[i].srcTokenSwapDetails.length;
++j) {↪→

processSwap({srcTokenSwapDetails:
swapStruct_.srcData[i].srcTokenSwapDetails[j]});↪→

}
}

32

// Check that we got enough of each `destToken` after processing and
transfer them to the caller.↪→

// Note that we don't consider the current `destToken` balance of this
contract as the received amount↪→

// as the amount can be more than the actual received amount due to someone
else transferring tokens to this contract.↪→

// The following approach gives us the ability to rescue funds from this
contract.↪→

uint256 destAmountReceived =
swapStruct_.destData.destToken.balanceOf(address(this)) - destAmountBefore;↪→

if (destAmountReceived < swapStruct_.destData.minDestAmount)
revert InsufficientAmountReceived(

swapStruct_.destData.destToken,
destAmountReceived,
swapStruct_.destData.minDestAmount

);

swapStruct_.destData.destToken.safeTransfer(msg.sender, destAmountReceived);
}

External pre-conditions
Using 1inch as an example

From the 1inchrouter base mainnet ==> https://base.blockscout.com/address/0x111111125
421cA6dc452d289314280a0f8842A65?tab=contract

struct SwapDescription {
IERC20 srcToken;
IERC20 dstToken;
address payable srcReceiver;
address payable dstReceiver;
uint256 amount;
uint256 minReturnAmount;
uint256 flags;

}

/**
* @notice Performs a swap, delegating all calls encoded in `data` to
`executor`. See tests for usage examples.↪→

* @dev Router keeps 1 wei of every token on the contract balance for gas
optimisations reasons.↪→

* This affects first swap of every token by leaving 1 wei on the contract.
* @param executor Aggregation executor that executes calls described in `data`.
* @param desc Swap description.
* @param data Encoded calls that `caller` should execute in between of swaps.
* @return returnAmount Resulting token amount.

33

* @return spentAmount Source token amount.
*/
function swap(

IAggregationExecutor executor,
SwapDescription calldata desc,
bytes calldata data

)
external
payable
whenNotPaused()
returns (

uint256 returnAmount,
uint256 spentAmount

)
{

if (desc.minReturnAmount == 0) revert ZeroMinReturn();

IERC20 srcToken = desc.srcToken;
IERC20 dstToken = desc.dstToken;

bool srcETH = srcToken.isETH();
if (desc.flags & _REQUIRES_EXTRA_ETH != 0) {

if (msg.value <= (srcETH ? desc.amount : 0)) revert
RouterErrors.InvalidMsgValue();↪→

} else {
if (msg.value != (srcETH ? desc.amount : 0)) revert

RouterErrors.InvalidMsgValue();↪→

}

if (!srcETH) {
srcToken.safeTransferFromUniversal(msg.sender, desc.srcReceiver,

desc.amount, desc.flags & _USE_PERMIT2 != 0);↪→

}

returnAmount = _execute(executor, msg.sender, desc.amount, data);
spentAmount = desc.amount;

if (desc.flags & _PARTIAL_FILL != 0) {
uint256 unspentAmount = srcToken.uniBalanceOf(address(this));
if (unspentAmount > 1) {

// we leave 1 wei on the router for gas optimisations reasons
unchecked { unspentAmount--; }
spentAmount -= unspentAmount;
srcToken.uniTransfer(payable(msg.sender), unspentAmount);

}
if (returnAmount * desc.amount < desc.minReturnAmount * spentAmount)

revert RouterErrors.ReturnAmountIsNotEnough(returnAmount, desc.minReturnAmount
* spentAmount / desc.amount);

↪→

↪→

} else {

34

if (returnAmount < desc.minReturnAmount) revert
RouterErrors.ReturnAmountIsNotEnough(returnAmount, desc.minReturnAmount);↪→

}

address payable dstReceiver = (desc.dstReceiver == address(0)) ?
payable(msg.sender) : desc.dstReceiver;↪→

dstToken.uniTransfer(dstReceiver, returnAmount);
}

function _execute(
IAggregationExecutor executor,
address srcTokenOwner,
uint256 inputAmount,
bytes calldata data

) private returns(uint256 result) {
bytes4 executeSelector = executor.execute.selector;
assembly ("memory-safe") { // solhint-disable-line no-inline-assembly

let ptr := mload(0x40)

@audit>> selector>> mstore(ptr, executeSelector)
@audit>> mstore(add(ptr, 0x04), srcTokenOwner)
@audit>> calldatacopy(add(ptr, 0x24), data.offset, data.length)
@audit>> mstore(add(add(ptr, 0x24), data.length), inputAmount)

@audit>> if iszero(call(gas(), executor, callvalue(), ptr, add(0x44,
data.length), 0, 0x20)) {↪→

returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())

}

result := mload(0)
}

}
}

Router
-https://github.com/1inch/universal-router/blob/main/contracts/UniversalRouter.sol

/// @inheritdoc IUniversalRouter
function execute(bytes calldata commands, bytes[] calldata inputs) public payable

isNotLocked {↪→

bool success;
bytes memory output;
uint256 numCommands = commands.length;
if (inputs.length != numCommands) revert LengthMismatch();

// loop through all given commands, execute them and pass along outputs as
defined↪→

35

for (uint256 commandIndex = 0; commandIndex < numCommands;) {
bytes1 command = commands[commandIndex];

bytes memory input = inputs[commandIndex];

(success, output) = dispatch(command, input);

if (!success && successRequired(command)) {
revert ExecutionFailed({commandIndex: commandIndex, message: output});

}

unchecked {
commandIndex++;

}
}

List of commands - https://github.com/1inch/universal-router/blob/main/contracts/libr
aries/Commands.sol

// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;

/// @title Commands
/// @notice Command Flags used to decode commands
library Commands {

// Masks to extract certain bits of commands
bytes1 internal constant FLAG_ALLOW_REVERT = 0x80;
bytes1 internal constant COMMAND_TYPE_MASK = 0x3f;

// Command Types. Maximum supported command at this moment is 0x1F.

// Command Types where value<0x08, executed in the first nested-if block
uint256 constant V3_SWAP_EXACT_IN = 0x00;
uint256 constant V3_SWAP_EXACT_OUT = 0x01;
uint256 constant PERMIT2_TRANSFER_FROM = 0x02;
uint256 constant PERMIT2_PERMIT_BATCH = 0x03;
uint256 constant SWEEP = 0x04;
uint256 constant TRANSFER = 0x05;
uint256 constant PAY_PORTION = 0x06;
// COMMAND_PLACEHOLDER = 0x07;

// Command Types where 0x08<=value<=0x0f, executed in the second nested-if block
uint256 constant V2_SWAP_EXACT_IN = 0x08;
uint256 constant V2_SWAP_EXACT_OUT = 0x09;

36

Attack Path
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/misc/Swapper/RouterProcessor.sol#L60-L61

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/misc/Swapper/RouterProcessor.sol#L31-L67

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/misc/Swapper/Swapper.sol#L109-L115

Impact
Residual/Donated tokens can be left in the contract and this tokens can be stolen by an
attacker.

PoC
Due to a bug in the API data obtained

I reduced the source token amount and manipulated the swap data, since swap data is
not verified and passed directly to the router .

1. reduce Alice source amount in data

/// @dev Get the default amount in `token` denomination based on the token's
decimals and globally set `DEFAULT_AMOUNT`.↪→

function getDefaultAmountInToken(Token memory token) internal view returns
(uint256) {↪→

return
(((DEFAULT_AMOUNT * (10 ** (8 +

IERC20Metadata(address(token.token)).decimals()))) /↪→

_getChainlinkPrice(token.priceFeed)) - 100000);
}

2. Manipulate swap data and hardecode inflated sourceamount.

(swapStructArrays.routerKeys[i], minDestAmount, swapStructArrays.swapDatas[i]) =
_getDataFromAggregator(↪→

alice,
srcTokens[i].token,
destToken.token,
249994250,
aggregators[I]

);

37

3. silence the check for swapper balance equals zero in test because we donated to
show that residue tokens can be stolen. In testbuilder function

// assertTrue(
// swapStructArrays.srcTokens[i].token.balanceOf(address(swapperProxy)) ==
0,↪→

// "Swapper's src balance should be 0"
//);

}

4. Silence all other tests or create a new area for the above

5. Input RPC and Run - FOUNDRY_PROFILE=integration forge t --match-path
test/integration/Base/SwapperAndZapperAllTests.t.sol

function test_integration_zapper_rescue_funds() public {
// Ensure no active prank before starting a new one
vm.stopPrank();

// Initialize the source token array with USDC
Token[] memory srcTokens = TokenArrayBuilder.fill(1, USDC);
Token memory destToken = rETH;

// Start impersonating 'bob'
vm.startPrank(bob);

// Save Bob's USDC balance before the transfer
uint256 bobBalanceBefore = USDC.token.balanceOf(bob);

// Bob transfers USDC directly to the Swapper Proxy
uint256 transferAmount = 100e6; // Amount in USDC (assuming 6 decimals) //
donation to to if residue tokens can be stolen↪→

require(USDC.token.balanceOf(bob) >= transferAmount, "Bob has insufficient USDC
balance");↪→

USDC.token.transfer(address(swapperProxy), transferAmount);

// Validate that the transfer was successful
uint256 proxyBalance = USDC.token.balanceOf(address(swapperProxy));
require(proxyBalance >= transferAmount, "USDC transfer to Swapper Proxy
failed");↪→

// Stop impersonating 'bob'
vm.stopPrank();

// Run all aggregator tests with the specified parameters
runAllAggregatorTests({

srcTokens: srcTokens,
destToken: destToken,

38

transferMethod: SwapperStructs.TransferMethod.ALLOWANCE
});

emit log_named_uint("How much do we have left in the
contract",USDC.token.balanceOf(address(swapperProxy)));↪→

emit log_named_uint("Amount stolen by attacker for this swap",(proxyBalance -
USDC.token.balanceOf(address(swapperProxy))));↪→

}

Ran 1 test for test/integration/Base/SwapperAndZapperAllTests.t.sol:SwapperAndZappe ⌋
rAllTests8453↪→

[PASS] test_integration_zapper_rescue_funds() (gas: 2630445)
Logs:
How much do we have left in the contract: 99700000
Amount stolen by attacker for this swap: 300000

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 719.59ms (11.74ms CPU
time)↪→

Mitigation
Track the token-in balance before the swap and after the swap, return the excess
balance immediately to msg.sender. OR Decode the Aggregator swap data to ensure
that amount-in encoded is indeed the amount in transferred in.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/492

39

Issue M-6: Chainlink price decimals is wrongly is
scaled
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/39

Found by
000000, 0xc0ffEE, santipu_

Summary
The price fetched from Chainlink Oracle is always scaled by 1e10, which can cause
incorrect pricing for some assets

Root Cause
The function _getOnchainPrice() fetches price from Chainlink and then scale the price by
1e10 (implicitly assumed that price always has 8 decimals)

function _getOnchainPrice(address asset_) internal view returns (uint256
price_, uint256 timestamp_) {↪→

OracleModuleStructs.OracleData memory oracleData = _oracles[asset_];
IChainlinkAggregatorV3 oracle = oracleData.onchainOracle.oracleContract;
if (address(oracle) == address(0)) revert

ICommonErrors.ZeroAddress("oracle");↪→

(, int256 price, , uint256 updatedAt,) = oracle.latestRoundData();
timestamp_ = updatedAt;
// check Chainlink oracle price updated within `maxAge` time.
if (block.timestamp > timestamp_ + oracleData.onchainOracle.maxAge)

revert
ICommonErrors.PriceStale(OracleModuleStructs.PriceSource.OnChain);↪→

if (price > 0) {
@> price_ = uint256(price) * (10 ** 10); // convert Chainlink oracle

decimals 8 -> 18↪→

} else {
// Issue with onchain oracle indicates a serious problem
revert

ICommonErrors.PriceInvalid(OracleModuleStructs.PriceSource.OnChain);↪→

}
}

40

This can cause asset pricing incorrectly. For example, the PEPE feed on Arb, or MEW feed,
MOG feed on Base have 18 decimals

Internal pre-conditions
No response

External pre-conditions
No response

Attack Path
No response

Impact
• Incorrect pricing for some assets

PoC
No response

Mitigation
Scale according to the feed's decimals

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/505

41

Issue M-7: Last long position to close will be stuck
due to rounding up funding accrued by longs
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/59

Found by
KupiaSec, santipu_

Summary
The strict check on updateGlobalPositionData when closing the last long position on the
protocol will prevent that position from being closed, causing a loss of funds for the
owner of that long position.

Root Cause
In FlatcoinVault.sol::184, there is a check ensuring that when closing the last position on
the protocol, the remaining margin must be lower than 1e6.

// Close the last remaining position.
if (newMarginDepositedTotal > 1e6) revert MarginMismatchOnClose();

delete _globalPositions;

When the protocol has been running for some years, this check will fail because the
funding fees are always rounded up in _accruedFundingTotalByLongs.

// To avoid rounding errors when subtracting individual position funding fees from
the global `marginDepositedTotal` value,↪→

// we add 1 wei to the total accrued funding by longs each time funding fees are
settled provided that funding fees to be settled↪→

// isn't 0.
return (accruedFundingTotal != 0) ? accruedFundingTotal + 1 : accruedFundingTotal;

If the funding fees are rounded up more than 1e6 times, then when the last position is
closed, the remaining margin will be higher than 1e6, causing the check to fail.

Internal pre-conditions
1. The protocol must be running for some years so that the fees are rounded up more
than 1e6 times.

42

External pre-conditions
No response

Attack Path
1. Everytime an operation happens in the protocol, the funding fees are accrued
(settleFundingFees). The function _accruedFundingTotalByLongs will be called,
which will round up the fees earned by the longs, that will be added to the global
margin.

2. If we assume that the average block time in Base is 2 seconds, and
settleFundingFeesmay be called every 30 blocks (1 minute), then it will be called
1440 times a day. Before two years have passed, the funding fees would have been
accrued more than 1e6 times, which will cause this issue when the last position is
closed.

Impact
The last long position won't be able to be closed, causing a direct loss of funds for the
owner of that position.

PoC
No response

Mitigation
To mitigate this issue, I recommend removing the strict check from
updateGlobalPositionData:

function updateGlobalPositionData(
uint256 price_,
int256 marginDelta_,
int256 additionalSizeDelta_

) external onlyAuthorizedModule {
// ...

// Recompute the average entry price.
if ((sizeOpenedTotal + additionalSizeDelta_) != 0) {

// ...
} else {

// Close the last remaining position.
- if (newMarginDepositedTotal > 1e6) revert MarginMismatchOnClose();

delete _globalPositions;

43

}
}

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/507

44

IssueM-8: ArbKeeperFeewill return incorrect inflated
keeperFee for non-18 decimals tokens due to hard-
coded constant UNIT.
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/84

Found by
0x37, Kirkeelee, santipu_, xiaoming90, zarkk01

Summary
The ArbKeeperFee is supposed to calculate and return the keeperFee that users will pay to
keepers in the collateral token but it is doing it incorrectly for non-18 decimals tokens
such as WBTC(with 8 decimals) which protocols expects to work with.

Root Cause
Let's see the getKeeperFee of ArbKeeperFee :

function getKeeperFee(uint256 baseFee_) public view override returns (uint256
keeperFeeCollateral_) {↪→

uint256 ethPrice18;
uint256 collateralPrice;
{

uint256 timestamp;

(, int256 ethPrice, , uint256 ethPriceupdatedAt,) =
_ethOracle.latestRoundData();↪→

if (block.timestamp >= ethPriceupdatedAt + _stalenessPeriod) revert
ETHPriceStale();↪→

if (ethPrice <= 0) revert ETHPriceInvalid();

ethPrice18 = uint256(ethPrice) * 1e10; // from 8 decimals to 18
// NOTE: Currently the market asset and collateral asset are the same.
// If this changes in the future, then the following line should fetch

the collateral asset, not market asset.↪→

uint32 maxAge =
_oracleModule.getOracleData(_assetToPayWith).onchainOracle.maxAge;↪→

(collateralPrice, timestamp) = _oracleModule.getPrice(_assetToPayWith);

if (collateralPrice <= 0) revert
ICommonErrors.PriceInvalid(OracleModuleStructs.PriceSource.OnChain);↪→

45

if (block.timestamp >= timestamp + maxAge)
revert

ICommonErrors.PriceStale(OracleModuleStructs.PriceSource.OnChain);↪→

}

// fetch & define L1 gas base fee; incorporate overhead buffer
/// @dev if the estimate is too low or high at the time of the L1 batch

submission,↪→

/// the transaction will still be processed, but the arbitrum nitro
mechanism will↪→

/// amortize the deficit/surplus over subsequent users of the chain
/// (i.e. lowering/raising the L1 base fee for a period of time)
uint256 l1BaseFee = IArbGasInfo(_gasPriceOracle).getL1BaseFeeEstimate();

// (1) calculate total fee:
// -> total_fee = P * G
// where:
// (2) P is the L2 basefee
// -> P = L2 basefee
// (3) G is gas limit that also accounts for L1 dimension
// -> G = L2 gas used + (L1 calldata price * L1 calldata size) / (L2 gas

price)↪→

uint256 costOfExecutionGrossEth = baseFee_ * (_gasUnitsL2 + ((l1BaseFee *
gasUnitsL1) / baseFee));↪→

uint256 costOfExecutionGrossUSD =
costOfExecutionGrossEth.mulDiv(ethPrice18, _UNIT); // fee priced in USD↪→

@> keeperFeeCollateral_ = (_keeperFeeUpperBound.min(costOfExecutionGrossUSD. ⌋
max(_keeperFeeLowerBound))).mulDiv(↪→

_UNIT,
collateralPrice

); // fee priced in collateral
}

Link to code

As we can see in the final line, the conversion from USD to collateral token is happening
using UNIT constant which as we can see is equal to 1e18 :

abstract contract KeeperFeeBase is Ownable {
///
// Errors //
///

error ETHPriceStale();
error ETHPriceInvalid();

///
// State //

46

///

bytes32 public constant MODULE_KEY = FlatcoinModuleKeys._KEEPER_FEE_MODULE_KEY;

address internal _gasPriceOracle; // Gas price oracles as deployed on L2s.
IChainlinkAggregatorV3 internal _ethOracle; // ETH price for gas unit
conversions↪→

IOracleModule internal _oracleModule; // for collateral asset pricing (the
flatcoin market)↪→

@> uint256 internal constant _UNIT = 10 ** 18;
uint256 internal _stalenessPeriod;

// ...
}

Link to code

For this reason, the conversion is incorrect and it will not return the correct amount of
keeperFee in assetToPayWith token.

For example, for WBTC with 8 decimals the result which where supposed to be in 8
decimals, will eventually be the same just in 18 decimals. The difference is huge and the
result will be that EVERY order announcement will revert on Arbitrum network, unless the
users pay this huge fees.

Internal pre-conditions
No response

External pre-conditions
No response

Attack Path
No response

Impact
The impact of this vulnerability is that the hardcoded _UNIT = 1e18 will cause the
ArbKeeperFee contract to incorrectly calculate the keeperFee for tokens with decimals
other than 18, such as WBTC (which has 8 decimals). This miscalculation will significantly
inflates the fee amount, potentially making it 1e10 times larger than intended. As a result,
transactions involving non-18 decimal tokens will either fail due to excessive fees or users
will be forced to overpay. Protocol expectes to work withWBTC as collateral token as it

47

is public information on Discord channel. The result is that the protocol can not work on
Arbitrum network while it is intended.

PoC
No response

Mitigation
Fix it as it is happening in the OPKeeperFee with the decimals of the assetToPayWith token.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/496

48

Issue M-9: announcedOrders that will increase
marginDeposited are blocked, if funding fees have
turned the global marginDeposited negative.
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/90

The protocol has acknowledged this issue.

Found by
0x37, KupiaSec, santipu_, zarkk01

Summary
vault.checkGlobalMarginPositive() during the execution of the orders will block all
orders, even the ones that are supposed to increase the marginDeposited.

Root Cause
There is a crucial check that is operated on the protocol every time the funding fees are
settled through ControllerBase::settleFundingFees and this is
vault.checkGlobalMarginPositive(). Essentially, this is checking if the funding fees have
”drained” the whole global marginDepositedTotal and turned it negative. If this is the
case, all the orders will revert. Let's see the OrderExecutionModule::executeOrder :

function executeOrder(
address account_,
bytes[] calldata priceUpdateData_

)
external
payable
nonReentrant
whenNotPaused
updatePythPrice(vault, msg.sender, priceUpdateData_)
orderInvariantChecks(vault)

{
DelayedOrderStructs.Order memory order = _getAnnouncedOrder(account_);

if (order.orderType == DelayedOrderStructs.OrderType.None) revert
OrderInvalid(account_);↪→

prepareExecutionOrder(account, order.executableAtTime);

// Settle funding fees before executing any order.

49

// This is to avoid error related to max caps or max skew reached when the
market has been skewed to one side for a long time.↪→

IControllerModule(vault.moduleAddress(FlatcoinModuleKeys._CONTROLLER_MODULE_KEY ⌋
)).settleFundingFees();↪→

@> vault.checkGlobalMarginPositive();

// ...

emit OrderExecuted({account: account_, orderType: order.orderType, keeperFee:
order.keeperFee});↪→

}

Link to code

And here is the FilecoinVault::checkGlobalMarginPositive :

function checkGlobalMarginPositive() public view {
int256 globalMarginDepositedTotal = _globalPositions.marginDepositedTotal;

if (globalMarginDepositedTotal < 0) revert InsufficientGlobalMargin();
}

Link to code

However, this shouldn't be the case always. If the order is a
DelayedOrderStructs.OrderType.LeverageAdjust order and will increase the
corresponding margin and thus the global marginDeposited, this order must not revert
since it will bring the protocol and traders back to more healthy levels. By blocking any
order when the global marginDeposited turns negative due to the funding fees, the
protocol gets essentially bricked and no trader will be able to increase his marging

Internal pre-conditions
No response

External pre-conditions
No response

Attack Path
1. LP provide liquidity and trader opens leverage position.

2. Global marginDeposited gets negative from funding fees.

3. Every order is reverted, even though the LeverageAdjust ones that will increase the
marginDepositedmust be passing

50

Impact
The impact of this vulnerability is that when the global marginDeposited turns negative
due to funding fees, all orders are blocked, including those meant to increase the margin.
This prevents traders from adding more funds to their positions, which could help
stabilize the system. As a result, the protocol becomes stuck, and no actions can be
taken to recover. This can harm both traders and the platform’s overall health.

PoC
No response

Mitigation
Consider not blocking the announcedOrders that will increase the marginDeposited.

51

IssueM-10: There isa significant roundingerrorwhen
WBTC is used as collateral.
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/98

Found by
KupiaSec

Summary
The collateral price of WBTC is about 1e18*1e5=1e23, because the price decimal of
OracleModule is 18. So, the initial collateralPerShare will be about 1e18 *1e8/1e23 = 1e3.
Therefore, if the collateral is WBTC, the rounding error will be up to about 0.1%.

Root Cause
The collateral price of WBTC is approximately 1e18 * 1e5 = 1e23, since the price
decimal of the OracleModule is 18. Consequently, the initial collateralPerShare will be
about 1e18 * 1e8 / 1e23 = 1e3. This indicates that if the collateral is WBTC, the
rounding error could be as much as 1/1000, or 0.1%.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/StableModule.sol#L217-L237

function stableCollateralPerShare(
uint32 maxAge_,
bool priceDiffCheck_

) public view returns (uint256 collateralPerShare_) {
uint256 totalSupply = totalSupply();

if (totalSupply > 0) {
uint256 stableBalance = stableCollateralTotalAfterSettlement({

maxAge_: maxAge_,
priceDiffCheck_: priceDiffCheck_

});
collateralPerShare_ = (stableBalance * (10 ** decimals())) /

totalSupply;↪→

} else {
IERC20Metadata collateral = vault.collateral();
(uint256 collateralPrice,) =

IOracleModule(vault.moduleAddress(FlatcoinModuleKeys._ORACLE_MODULE_KEY))↪→

.getPrice({asset: address(collateral), maxAge: maxAge_,
priceDiffCheck: priceDiffCheck_});↪→

52

// no shares have been minted yet
235: collateralPerShare_ = (1e18 * (10 ** collateral.decimals())) /

collateralPrice;↪→

}
}

As a result, depositors may receive different amounts of shares (with discrepancies of up
to approximately 0.1%) in nearly identical situations due to rounding errors. Similarly,
withdrawers may also receive varying amounts of WBTC (up to about 0.1% discrepancy)
under nearly identical pool conditions.

Internal pre-conditions
none

External pre-conditions
none

Attack Path
none

Impact
Significant calculation error.

PoC
none

Mitigation
The larger decimal should be used for collateralPerShare.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/518

53

IssueM-11: Some invariantcheckswill notworkwhen
the collateral is WBTC.
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/99

Found by
KupiaSec

Summary
InvariantChecks.sol implements several invariant checks, but it applies a uniform
threshold of 1e6 for rounding errors, irrespective of the collateral type. This approach is
inadequate for certain collaterals, such as WBTC, where the checks may not function
effectively.

Root Cause
The contest README says that:

Q:Whatproperties/invariants do youwant to hold even if breaking themhasa low/un-
known impact?
Any set of transactions which can break the invariants/properties as mentioned
in the InvariantChecks.sol contract file without reverting.

At L126, there is a invariant check that collateral balance changes should match tracked
collateral changes.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/StableModule.sol#L122-L128

function _collateralNetBalanceRemainsUnchanged(int256 netBefore_, int256 netAfter_)
private pure {↪→

// Note: +1e6 to account for rounding errors.
// This means we are ok with a small margin of error such that netAfter - 1e6
<= netBefore <= netAfter.↪→

if (netBefore_ > netAfter_ || netAfter_ > netBefore_ + 1e6)
revert InvariantChecks.InvariantViolation("collateralNet2");

}

There is another check for change of stableCollateralPerShare involved in liquidation
invariant checks at L177.

54

However, in the above two invariant checks, 1e6 is used as a limit, even when the
collateral is WBTC.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/StableModule.sol#L142-L180

if (
131: stableCollateralPerShareAfter < stableCollateralPerShareBefore -

1e6 ||↪→

stableCollateralPerShareAfter > stableCollateralPerShareBefore + 1e6
) revert PriceImpactDuringWithdraw();

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/StableModule.sol#L70-L102

leverageModule.checkLeverageCriteria(primaryMargin, primarySize);
leverageModule.checkLeverageCriteria(newPositionMargin, newPositionSize);

The current price of 1 WBTC is about 1e5USD, so the initial stableCollateralPerShare of
WBTC is about (1e18* 1e8)/(1e18*1e5)=1e3 So, the check at L177 will always pass when
the collateral is WBTC. This vulnerability shows the invalid invariant check when WBTC is
collateral. And, at L126, the limit 1e6means 0.01 WBTC, which is about 1000 USD. As a
result, the above two checks will not work well, when the collateral is WBTC.

Similar vulnerability also occurs in FlatcoinVault.sol, so the check also does not work
when the collateral is WBTC.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/FlatcoinVault.sol#L183-L186

// Close the last remaining position.
@> if (newMarginDepositedTotal > 1e6) revert MarginMismatchOnClose();

delete _globalPositions;

Internal pre-conditions
The collateral is WBTC.

External pre-conditions
none

Attack Path
none

55

Impact
Some invariant check does not work.

PoC
none

Mitigation
Different thresholds should be used for different collaterals.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/519

56

Issue M-12: Order announcements can be DoSed.
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/100

Found by
000000, 0x37, KupiaSec, santipu_

Summary
An honest user wouldn't be able to manage his position properly because an attacker
announces an order with the receiver as the user.

Root Cause
In the new version, OrderAnnouncementModule::announceStableDepositFor() and
OrderAnnouncementModule::announceLeverageOpenFor() were added and these functions
are used when users announce orders through the FlatZapper contract for StableDeposit
and LeverageOpen.

File: OrderAnnouncementModule.sol
146: function announceStableDepositFor(
147: uint256 depositAmount_,
148: uint256 minAmountOut_,
149: uint256 keeperFee_,
150: address receiver_
151:) public whenNotPaused {}

263: function announceLeverageOpenFor(
264: uint256 margin_,
265: uint256 additionalSize_,
266: uint256 maxFillPrice_,
267: uint256 stopLossPrice_,
268: uint256 profitTakePrice_,
269: uint256 keeperFee_,
270: address receiver_
271:) public whenNotPaused {}

But an attacker can call these functions directly and block other user's operations for
DoS or his profit.

Scenario 1

1. A user should approve their balance to OrderAnnouncementModule for order
announcement, then the approve event will be emitted.

57

2. An attacker can catch the event and call announceStableDepositFor() with
minDepositAmountUSD + keeperFee.

3. Then, the legitimate announcement will revert, because an announced call cannot
be canceled for minExecutabilityAge + maxExecutabilityAge seconds.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/OrderExecutableModule.sol#L165-L224

function test_adjust_position_margin_increase_will_revert_an_healthy_position()
public {↪→

uint256 aliceCollateralBalanceBefore = collateralAsset.balanceOf(alice);
uint256 stableDeposit = 100e18;
uint256 collateralPrice = 1000e8;
uint256 keeperFee = mockKeeperFee.getKeeperFee();

announceAndExecuteDeposit({
traderAccount: alice,
keeperAccount: keeper,
depositAmount: stableDeposit,
oraclePrice: collateralPrice,
keeperFeeAmount: keeperFee

});

// 10 ETH margin, 30 ETH size (4x)
uint256 tokenId = announceAndExecuteLeverageOpen({

traderAccount: alice,
keeperAccount: keeper,
margin: 10e18,
additionalSize: 30e18,
oraclePrice: collateralPrice,
keeperFeeAmount: keeperFee

});

uint256 liqPrice = viewer.liquidationPrice(0);

LeverageModuleStructs.Position memory position = vaultProxy.getPosition(tokenId);
LeverageModuleStructs.PositionSummary memory positionSummary

=leverageModProxy.getPositionSummary(position, (liqPrice));↪→

emit log_named_int("Profitloss", positionSummary.profitLoss);
emit log_named_int("accrue", positionSummary.accruedFunding);
emit log_named_int("Margin at liquidation", positionSummary.marginAfterSettlement);

58

emit log_named_uint("Liquidation price", liqPrice);

uint premargin = liquidationModProxy.getLiquidationMargin(31e18, liqPrice);
emit log_named_uint("liquidation margin at liquidation price", premargin);

LeverageModuleStructs.Position memory position2 = vaultProxy.getPosition(tokenId);
LeverageModuleStructs.PositionSummary memory positionSummary2

=leverageModProxy.getPositionSummary(position2, ((liqPrice + 1e18) - ((liqPrice
+ 1e18)/1000)));

↪→

↪→

emit log_named_int("Profitloss2", positionSummary2.profitLoss);
emit log_named_int("accrue2", positionSummary2.accruedFunding);
emit log_named_int("Current price Margin", positionSummary2.marginAfterSettlement);
emit log_named_uint("current Price Now", ((liqPrice + 1e18) - ((liqPrice +

1e18)/1000)));↪→

uint256 newCollateralPrice = ((liqPrice + 1e18) - ((liqPrice + 1e18)/1000));

setCollateralPrice(newCollateralPrice/1e10);

uint256 keeperFee2 = mockKeeperFee.getKeeperFee();

vm.startPrank(alice);

collateralAsset.approve(address(orderAnnouncementModProxy), 6e18);

emit log_named_uint("fill price", liqPrice+1e18);

59

uint premargin5 = liquidationModProxy.getLiquidationMargin(31e18,
(liqPrice+1e18));↪→

emit log_named_uint("Liquidation Margin calculated during annoucement using
fillprice", premargin5);↪→

LeverageModuleStructs.Position memory position5 =
vaultProxy.getPosition(tokenId);↪→

LeverageModuleStructs.PositionSummary memory positionSummary5
=leverageModProxy.getPositionSummary(position5,liqPrice+1e18);↪→

emit log_named_int("Profitloss5", positionSummary5.profitLoss);
emit log_named_int("accrue5", positionSummary5.accruedFunding);
emit log_named_int("Actual Margin at Fill Price",

positionSummary5.marginAfterSettlement);↪→

assert(premargin5 > uint(positionSummary2.marginAfterSettlement));

assert(premargin5 > uint(positionSummary2.marginAfterSettlement));
assert(uint(positionSummary5.marginAfterSettlement) > premargin5);

}

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/OrderAnnouncementModule.sol#L589

function test_address_zero_blocks_orders() public {
// We open an order for address(0) to set the trap
announceStableDepositFor({

traderAccount: keeper,
receiver: address(0),
depositAmount: 1e18,
keeperFeeAmount: 0

});

// A normal user deposits
announceAndExecuteDeposit({

traderAccount: bob,
keeperAccount: keeper,
depositAmount: 100e18,
oraclePrice: 1000e8,
keeperFeeAmount: 0

});

// We now try to open other leverage positions

60

// It reverts here with `OrderExists(1)`
announceAndExecuteLeverageOpen({

traderAccount: alice,
keeperAccount: keeper,
margin: 60e18,
additionalSize: 100e18,
oraclePrice: 1000e8,
keeperFeeAmount: 0

});
}

4. Creating an order is time-sensitive, so DoS of order announcement can lead to
potential loss of fund to users.

Scenario 2

1. A user has a large position which is liquidatable if the collateral price drops a little
more.

2. So the user is going to close or adjust this position.

3. An attacker who wants to charge a liquidation fee decides to block the user's
operation.

4. So the attacker continues to call announceStableDepositFor() or
announceLeverageOpenFor() for the user with a minimum fund whenever it's possible.

5. For the same reason as scenario 1, it will block the user's operation for
minExecutabilityAge + maxExecutabilityAge seconds if it's not executed by
keepers, or minExecutabilityAge seconds at least if executed.

6. Finally, the risky position is liquidated by the attacker and he will charge the
liquidation fee.

Internal pre-conditions
none

External pre-conditions
none

Attack Path
none

61

Impact
DoS of legitimate order announcement.

PoC
none

Mitigation
announceStableDepositFor() and announceLeverageOpenFor() should be called from the
FlatZapper contract only.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/504

62

Issue M-13: In the executeWithdraw() function, the
protocol fee is not considered when it checks the
system's skew
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/102

Found by
000000, 0xc0ffEE, Afriaudit, Bigsam, KupiaSec, newspacexyz, santipu_, zarkk01

Summary
When depositors withdraw collateral, the system checks if the skew exceeds the
skewFractionMax after the withdrawal. However, in the executeWithdraw() function, the
protocol fee is not considered during this skew check. As a result, the protocol may
incorrectly permit a stable withdrawal, even when the execution is fundamentally unsafe.
This violates the skew mechanism of the protocol, compromising the overall system's
safety.

Root Cause
At StableModule.sol#139, it checks if the system's skew exceeds the skewFractionMax.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/StableModule.sol#L139

/// @notice Swap tokens using the given `swapStruct_`.
/// @dev Only supports SINGLE_IN_SINGLE_OUT and MULTI_IN_SINGLE_OUT swap types.
/// @param swapStruct_ The struct containing all the data required to process
the swap(s).↪→

function swap(SwapperStructs.InOutData calldata swapStruct_) external payable {
uint256 destAmountBefore =

swapStruct_.destData.destToken.balanceOf(address(this));↪→

// Transfer all the `srcTokens` to this contract.
transferFromCaller(msg.sender, swapStruct.srcData);

// Process swaps based on `srcData` array.
// The first loop iterates over the `srcData` array. The number of

iterations is equal to the number of transfer methods used in the swap.↪→

// For example if the swap uses `TokenTransferMethod.ALLOWANCE` for all
`srcTokens`, then the outer loop will iterate only once.↪→

// If the swap uses `TransferMethod.ALLOWANCE` for the first x `srcTokens`
and `TransferMethod.PERMIT` for the next y `srcTokens`,↪→

63

// then the outer loop will iterate twice.
for (uint256 i; i < swapStruct_.srcData.length; ++i) {

// The second loop iterates over the `srcTokens` array in which the
`srcTokens` are transferred and swapped using the same token transfer method.↪→

for (uint256 j; j < swapStruct_.srcData[i].srcTokenSwapDetails.length;
++j) {↪→

processSwap({srcTokenSwapDetails:
swapStruct_.srcData[i].srcTokenSwapDetails[j]});↪→

}
}

// Check that we got enough of each `destToken` after processing and
transfer them to the caller.↪→

// Note that we don't consider the current `destToken` balance of this
contract as the received amount↪→

// as the amount can be more than the actual received amount due to someone
else transferring tokens to this contract.↪→

// The following approach gives us the ability to rescue funds from this
contract.↪→

uint256 destAmountReceived =
swapStruct_.destData.destToken.balanceOf(address(this)) - destAmountBefore;↪→

if (destAmountReceived < swapStruct_.destData.minDestAmount)
revert InsufficientAmountReceived(

swapStruct_.destData.destToken,
destAmountReceived,
swapStruct_.destData.minDestAmount

);

swapStruct_.destData.destToken.safeTransfer(msg.sender, destAmountReceived);
}

As indicated in the contest README, the protocol fee should be deducted from the
withdrawal fee.

Added protocol fees component to take a portion of fees earned (from trading and
LP withdrawals).

So, at L139 the stableCollateralChange variable should be withdrawFee -
FeeManager(address(vault)).getProtocolFee(withdrawFee).

Internal pre-conditions
protocolFeePercentage should be greater than 0.

External pre-conditions
N/A

64

Impact
The protocol may incorrectly permit a stable withdrawal, even when the execution is
fundamentally unsafe. This also violates the skew mechanism of the protocol,
compromising the overall system's safety.

PoC
When depositors withdraw the collateral, the total stable collateral of the vault is
updated.

123: vault.updateStableCollateralTotal(-int256(amountOut_));

The withdrawFee_ is calculated and the checkSkewMax() function is called to ensure that
the system will not be too skewed towards longs.

/// @inheritdoc IUniversalRouter
function execute(bytes calldata commands, bytes[] calldata inputs) public
payable isNotLocked {↪→

bool success;
bytes memory output;
uint256 numCommands = commands.length;
if (inputs.length != numCommands) revert LengthMismatch();

// loop through all given commands, execute them and pass along outputs as
defined↪→

for (uint256 commandIndex = 0; commandIndex < numCommands;) {
bytes1 command = commands[commandIndex];

bytes memory input = inputs[commandIndex];

(success, output) = dispatch(command, input);

if (!success && successRequired(command)) {
revert ExecutionFailed({commandIndex: commandIndex, message:

output});↪→

}

unchecked {
commandIndex++;

}
}

At the end of the execution, the total stable collateral of the vault is updated again with
withdrawFee - protocolFee, the protocol fee is transferred to the protocol fee receipient.

282: vault.updateStableCollateralTotal(int256(withdrawFee - protocolFee));
// pay the withdrawal fee to stable LPs↪→

65

283: vault.sendCollateral({to:
FeeManager(address(vault)).protocolFeeRecipient(), amount: protocolFee}); //
pay the protocol fee

↪→

↪→

This means that the protocol fee is not included in the vault; however, it is added when
checking the skew maximum. As a result, this could incorrectly permit withdrawals that
should not occur.

Consider the following scenario:

1. skewFractionMax is 120% and stableWithdrawFee is 1%, protocolFee is 10%.

2. Alice deposits 10000 collateral and Bob opens a leverage position with size 10000.

3. At the moment, there is 10000 collaterals in the vault, skew fraction is 100%.

4. Alice tries to withdraw 1683 collaterals, withdrawFee is 16.83, protocolfee is 1.683.
After withdrawal, it is expected that there is 10000 - 1683 + 16.83 - 1.683 =
8332.147 stable collaterals in the Vault, so skewFraction should be 100 * 10000 /
8332.147 = 120.017%, which is greater than skewFractionMax.

5. However, the withdrawal will actually succed because when protocol checks skew
max, protocolfee is ignored and the skewFraction turns out to be 100 * 10000 /
(10000 - 1683 + 16.83) = 100 * 10000 / 8333.83 = 119.993%, which is lower than
skewFractionMax.

Mitigation
It is recommended to change the code as follows.

function test_integration_zapper_rescue_funds() public {
// Ensure no active prank before starting a new one
vm.stopPrank();

// Initialize the source token array with USDC
Token[] memory srcTokens = TokenArrayBuilder.fill(1, USDC);
Token memory destToken = rETH;

// Start impersonating 'bob'
vm.startPrank(bob);

// Save Bob's USDC balance before the transfer
uint256 bobBalanceBefore = USDC.token.balanceOf(bob);

// Bob transfers USDC directly to the Swapper Proxy
uint256 transferAmount = 100e6; // Amount in USDC (assuming 6 decimals) //
donation to to if residue tokens can be stolen↪→

require(USDC.token.balanceOf(bob) >= transferAmount, "Bob has insufficient USDC
balance");↪→

USDC.token.transfer(address(swapperProxy), transferAmount);

66

// Validate that the transfer was successful
uint256 proxyBalance = USDC.token.balanceOf(address(swapperProxy));
require(proxyBalance >= transferAmount, "USDC transfer to Swapper Proxy
failed");↪→

// Stop impersonating 'bob'
vm.stopPrank();

// Run all aggregator tests with the specified parameters
runAllAggregatorTests({

srcTokens: srcTokens,
destToken: destToken,
transferMethod: SwapperStructs.TransferMethod.ALLOWANCE

});

emit log_named_uint("How much do we have left in the
contract",USDC.token.balanceOf(address(swapperProxy)));↪→

emit log_named_uint("Amount stolen by attacker for this swap",(proxyBalance -
USDC.token.balanceOf(address(swapperProxy))));↪→

}

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/499

67

IssueM-14: marginDepositedTotalcouldbe less than
the sum of marginDeposited(Invariant breaking)
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/105

Found by
KupiaSec

Summary
There is +1 in ControllerBase.sol#L347 to ensure that GlobalMargin remains greater than
sum of margins. However, this is insufficiant, because there are several calculations for
traders round down.

Root Cause

Ran 1 test for test/integration/Base/SwapperAndZapperAllTests.t.sol:SwapperAndZappe ⌋
rAllTests8453↪→

[PASS] test_integration_zapper_rescue_funds() (gas: 2630445)
Logs:
How much do we have left in the contract: 99700000
Amount stolen by attacker for this swap: 300000

Suite result: ok. 1 passed; 0 failed; 0 skipped; finished in 719.59ms (11.74ms CPU
time)↪→

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/tree/main/flatcoin
-v1/src/libraries/DecimalMath.sol#L35 In a single block, the marginDepositedTotal is
increassed by 1 only once, while several calculations(for increasing position) for traders
round down when stableCollateralTotal > sizeOpenedTotal. As a result, the
marginDepositedTotal_aftersettlement could be less than sum of margins.

Internal pre-conditions
N/A

External pre-conditions
N/A

68

Attack Path
N/A

Impact
Invariant breaking and the last trader can't close his/her position.

PoC

// To avoid rounding errors when subtracting individual position funding fees
from the global `marginDepositedTotal` value,↪→

// we add 1 wei to the total accrued funding by longs each time funding fees
are settled provided that funding fees to be settled↪→

// isn't 0.
return (accruedFundingTotal != 0) ? accruedFundingTotal + 1 :
accruedFundingTotal;↪→

When x * y < 0, x * y / UNIT is rounded up.

ControllerBase.sol
217:function accruedFunding(

LeverageModuleStructs.Position memory position_
) public view virtual returns (int256 accruedFunding_) {

int256 net = _netFundingPerUnit(position_.entryCumulativeFunding);

return int256(position_.additionalSize)._multiplyDecimal(net);
}

When stableCollateralTotal < _globalPositions.sizeOpenedTotal, net becomes
negative. At this time, if position_.additionalSize > 0, accruedFunding_(return value) is
rounded up.

LeverageModule.sol
405:function getPositionSummary(

LeverageModuleStructs.Position memory position_,
uint256 price_

) public view returns (LeverageModuleStructs.PositionSummary memory
positionSummary_) {↪→

...
int256 accruedFundingOfPosition = perpController.accruedFunding(position_);

return
LeverageModuleStructs.PositionSummary({

profitLoss: profitLossOfPosition,
419: accruedFunding: accruedFundingOfPosition,

marginAfterSettlement: int256(position_.marginDeposited) +

69

profitLossOfPosition +
accruedFundingOfPosition

});
}

299:function executeClose(
DelayedOrderStructs.Order calldata order_

) external onlyAuthorizedModule returns (uint256 marginAfterPositionClose_) {
...
uint256 totalFee;
int256 settledMargin;
LeverageModuleStructs.PositionSummary memory positionSummary;
{

positionSummary = getPositionSummary(position, exitPrice);
...
vault.updateGlobalPositionData({

price: position.averagePrice,
339: marginDelta: -(int256(position.marginDeposited) +

positionSummary.accruedFunding),↪→

additionalSizeDelta: -int256(position.additionalSize)
});
...

}
...

}

The marginDelta(L339) is rounded-down value.(Because of the - sign)

function executeOrder(
address account_,
bytes[] calldata priceUpdateData_

)
external
payable
nonReentrant
whenNotPaused
updatePythPrice(vault, msg.sender, priceUpdateData_)
orderInvariantChecks(vault)

{
DelayedOrderStructs.Order memory order = _getAnnouncedOrder(account_);

if (order.orderType == DelayedOrderStructs.OrderType.None) revert
OrderInvalid(account_);↪→

prepareExecutionOrder(account, order.executableAtTime);

// Settle funding fees before executing any order.
// This is to avoid error related to max caps or max skew reached when the
market has been skewed to one side for a long time.↪→

IControllerModule(vault.moduleAddress(FlatcoinModuleKeys._CONTROLLER_MODULE_KEY ⌋
)).settleFundingFees();↪→

70

@> vault.checkGlobalMarginPositive();

// ...

emit OrderExecuted({account: account_, orderType: order.orderType, keeperFee:
order.keeperFee});↪→

}

The marginDepositedTotal(L178) is rounded-down value. As a result, when subtracting
individual position's funding fees from the global marginDepositedTotal value, the
global value is decreased little by little.

function _collateralNetBalanceRemainsUnchanged(int256 netBefore_, int256
netAfter_) private pure {↪→

// Note: +1e6 to account for rounding errors.
// This means we are ok with a small margin of error such that netAfter -

1e6 <= netBefore <= netAfter.↪→

if (netBefore_ > netAfter_ || netAfter_ > netBefore_ + 1e6)
revert InvariantChecks.InvariantViolation("collateralNet2");

}

When all traders close their position, MarginDepositedTotal is deleted instead of going
below zero.

File: OrderAnnouncementModule.sol
146: function announceStableDepositFor(
147: uint256 depositAmount_,
148: uint256 minAmountOut_,
149: uint256 keeperFee_,
150: address receiver_
151:) public whenNotPaused {}

263: function announceLeverageOpenFor(
264: uint256 margin_,
265: uint256 additionalSize_,
266: uint256 maxFillPrice_,
267: uint256 stopLossPrice_,
268: uint256 profitTakePrice_,
269: uint256 keeperFee_,
270: address receiver_
271:) public whenNotPaused {}

At this point, the invariant is broken. Because the collateralNet is decreased. For
example: stableCollateralTotal = 1e18, marginDepositedTotal = 0.1e18 - 3, last
trader's margin = 0.1e18. collateralBalance = 1.1e18, trackedCollateral = 1.1e18
-3, netCollateral = 3. After close last trader's position, collateralBalance = 1e18,
trackedCollateral = 1e18, netcollateral = 0. Because the NetBalanceRemain
check(InvariantChecks.sol::L59), this last trader's closing is revered. Or For example:

71

stableCollateralTotal = 1e18, marginDepositedTotal = 0.1e18 - 3, last traders
margin = 0.1e18. collateralBalance = 1.1e18-3, trackedCollateral = 1.1e18 -3,
netCollateral = 0. After close last trader's position, collateralBalance = 1e18-3,
trackedCollateral = 1e18, netcollateral = -3. Because the check in L112, this last
trader's closing is reverted.

As a result, the last trader can't close his/her position.

Mitigation
It is more important that individual values are rounded down (when subtracting individual
position funding fees from the global marginDepositedTotal value) than that the global
value be increased by 1. If the code is to be written as commented, it should be as follows:

DecimalMath.sol
* @dev A unit factor is divided out after the product of x and y is evaluated,
* so that product must be less than 2**256. As this is an integer division,
* the internal division always rounds down. This helps save on gas. Rounding
* is more expensive on gas.
*/
function _multiplyDecimal(int256 x, int256 y) internal pure returns (int256) {

/* Divide by UNIT to remove the extra factor introduced by the product. */
- return (x * y) / UNIT;
+ return (x * y) / UNIT - ((x * y % UNIT != 0 && x * y < 0) ? int256(1) :

int256(0));↪→

}

Or

 function _prepareAnnouncementOrder(
 uint256 keeperFee_,
 address receiver_
) internal returns (uint64 executableAtTime_) {
 _preAnnouncementChores();

 if (keeperFee_ < IKeeperFee(vault.moduleAddress(FlatcoinModuleKeys._KEEPER_ ⌋
FEE_MODULE_KEY)).getKeeperFee())↪→

 revert ICommonErrors.InvalidFee(keeperFee_);

 // If the user has an existing pending order that expired, then cancel it.
@> IOrderExecutionModule(vault.moduleAddress(FlatcoinModuleKeys._ORDER_EXECUTI ⌋

ON_MODULE_KEY)).cancelExistingOrder(↪→

receiver_
);

@> executableAtTime_ = uint64(block.timestamp + minExecutabilityAge);
}

72

Test Code
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/tree/main/flatcoin
-v1/test/unit/Delayed-Order/DelayedOrder.t.sol#L500 Changed this function to above
code.

139: vault.checkSkewMax({sizeChange: 0, stableCollateralChange:
int256(withdrawFee_)});↪→

forge test DelayedOrder.t.sol

[FAIL: InvariantViolation(”collateralNet1”)]
test_revert_announce_orders_when_global_margin_negative() (gas: 8672861) Logs:
Trader: 4 Trader's MarginAfterSettlement is: 1699999999108434608
MarginDepositedTotal_Before is : 55200000002107445969 MarginDepositedTotal_After
is : 53499999971941912642 SizeOpenedTotal is : 53500000000000000000 Trader: 3
Trader's MarginAfterSettlement is: 1699999999108434608 MarginDepositedTotal_Before
is : 53499999971941912642 MarginDepositedTotal_After is : 51799999972833478034
SizeOpenedTotal is : 51800000000000000000 Trader: 2 Trader's MarginAfterSettlement
is: 1699999999108434608 MarginDepositedTotal_Before is : 51799999972833478034
MarginDepositedTotal_After is : 50099999973725043426 SizeOpenedTotal is :
50100000000000000000 Trader: 1 Trader's MarginAfterSettlement is:
50099999973725043427 MarginDepositedTotal_Before is : 50099999973725043426

You can check that there are no FAIL by using the above mitigated functions.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/506

73

Issue M-15: collateralNet could be decreased
(Invariant breaking)
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/106

Found by
KupiaSec, vinica_boy

Summary
The collateralNet in the FlatcoinVault is intended to be non-decreasing; however,
computational errors can lead to violations of this invariant.

Root Cause
The issue arises from the FlatcoinVault.sol::updateGlobalPositionData()#L186, where
_globalPositions is deleted. This can lead to discrepancies in the collateralNet,
especially.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/tree/main/flatcoin
-v1/src/FlatcoinVault.sol#L186

FlatcoinVault.sol
function updateGlobalPositionData(

uint256 price_,
int256 marginDelta_,
int256 additionalSizeDelta_

) external onlyAuthorizedModule {
// Note that technically, even the funding fees should be accounted for

when computing the margin deposited total.↪→

// However, since the funding fees are settled at the same time as the
global position data is updated,↪→

// we can ignore the funding fees here.
int256 newMarginDepositedTotal = _globalPositions.marginDepositedTotal +

marginDelta_;↪→

int256 averageEntryPrice = int256(_globalPositions.averagePrice);
int256 sizeOpenedTotal = int256(_globalPositions.sizeOpenedTotal);

// Recompute the average entry price.
if ((sizeOpenedTotal + additionalSizeDelta_) != 0) {

int256 newAverageEntryPrice = ((averageEntryPrice * sizeOpenedTotal) +
(int256(price_) * additionalSizeDelta_)) / (sizeOpenedTotal +

additionalSizeDelta_);↪→

74

_globalPositions = FlatcoinVaultStructs.GlobalPositions({
marginDepositedTotal: newMarginDepositedTotal,
sizeOpenedTotal: (int256(_globalPositions.sizeOpenedTotal) +

additionalSizeDelta_).toUint256(),↪→

averagePrice: uint256(newAverageEntryPrice)
});

} else {
// Close the last remaining position.
if (newMarginDepositedTotal > 1e6) revert MarginMismatchOnClose();

186: delete _globalPositions;
}

}
InvariantChecks.sol
107:function _getCollateralNet(IFlatcoinVault vault_) private view returns (int256

netCollateral_) {↪→

int256 collateralBalance =
int256(vault_.collateral().balanceOf(address(vault_)));↪→

int256 trackedCollateral = int256(vault_.stableCollateralTotal()) +
vault_.getGlobalPositions().marginDepositedTotal;

if (collateralBalance < trackedCollateral) revert
InvariantChecks.InvariantViolation("collateralNet1");↪→

return collateralBalance - trackedCollateral;
}

123:function _collateralNetBalanceRemainsUnchanged(int256 netBefore_, int256
netAfter_) private pure {↪→

// Note: +1e6 to account for rounding errors.
// This means we are ok with a small margin of error such that netAfter -

1e6 <= netBefore <= netAfter.↪→

if (netBefore_ > netAfter_ || netAfter_ > netBefore_ + 1e6)
revert InvariantChecks.InvariantViolation("collateralNet2");

}

Internal pre-conditions
N/A

External pre-conditions
N/A

Attack Path
N/A

75

PoC
The formula for netcollateral is: netCollateral = trackedCollateral -
collateralBalance, where trackedCollateral = stableCollateralTotal +
marginDepositedTotal. If marginDepositedTotal decreases, netCollateral also decreases.
The _globalPositions are deleted in the
FlatcoinVault.sol::updateGlobalPositionData() function. It is difficult for
marginDepositedTotal to maintain the correct value due to rounding errors. As a result,
marginDepositedTotalmay be slightly greater or slightly less than expected. When the
last user closes their long position, if marginDepositedTotal is greater than 0,
netCollateral decreases, and the user's transaction is reverted.

Impact
This can lead an invariant violation, resulting a situations where the last trader is unable
to close their position.

Mitigation

ControllerBase.sol
217:function accruedFunding(

LeverageModuleStructs.Position memory position_
) public view virtual returns (int256 accruedFunding_) {

int256 net = _netFundingPerUnit(position_.entryCumulativeFunding);

return int256(position_.additionalSize)._multiplyDecimal(net);
}

Test Code
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/tree/main/flatcoin
-v1/test/unit/Delayed-Order/DelayedOrder.t.sol#L500 Changed this function to above
code.

LeverageModule.sol
405:function getPositionSummary(

LeverageModuleStructs.Position memory position_,
uint256 price_

) public view returns (LeverageModuleStructs.PositionSummary memory
positionSummary_) {↪→

...
int256 accruedFundingOfPosition = perpController.accruedFunding(position_);

return
LeverageModuleStructs.PositionSummary({

76

profitLoss: profitLossOfPosition,
419: accruedFunding: accruedFundingOfPosition,

marginAfterSettlement: int256(position_.marginDeposited) +
profitLossOfPosition +
accruedFundingOfPosition

});
}

299:function executeClose(
DelayedOrderStructs.Order calldata order_

) external onlyAuthorizedModule returns (uint256 marginAfterPositionClose_) {
...
uint256 totalFee;
int256 settledMargin;
LeverageModuleStructs.PositionSummary memory positionSummary;
{

positionSummary = getPositionSummary(position, exitPrice);
...
vault.updateGlobalPositionData({

price: position.averagePrice,
339: marginDelta: -(int256(position.marginDeposited) +

positionSummary.accruedFunding),↪→

additionalSizeDelta: -int256(position.additionalSize)
});
...

}
...

}

forge test DelayedOrder.t.sol

Result: [FAIL: InvariantViolation(”collateralNet1”)]
test_revert_announce_orders_when_global_margin_negative() (gas: 12617398)

You can check that there are no FAIL by using the above mitigated
updateGlobalPositionData() function.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/501

77

Issue M-16: Share Decreasing(Invariant breaking)
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/107

Found by
KupiaSec

Summary
Rounding up after rounding down is not equivalent to rounding up. Beause if the fraction
is 0.09, this value is rounded down. This will ensure the traders get extra margin after
settlement of the position and break the share's invarinat.

Root Cause
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/tree/main/flatcoin
-v1/src/LeverageModule.sol#L229

InvariantChecks.sol
modifier orderInvariantChecks(IFlatcoinVault vault_) {

IStableModule stableModule =
IStableModule(vault_.moduleAddress(FlatcoinModuleKeys._STABLE_MODULE_KEY));↪→

InvariantOrder memory invariantBefore = InvariantOrder({
collateralNet: _getCollateralNet(vault_),
stableCollateralPerShare: stableModule.stableCollateralPerShare()

});

_;

InvariantOrder memory invariantAfter = InvariantOrder({
collateralNet: _getCollateralNet(vault_),
stableCollateralPerShare: stableModule.stableCollateralPerShare()

});

59: _collateralNetBalanceRemainsUnchanged(invariantBefore.collateralNet,
invariantAfter.collateralNet);↪→

_stableCollateralPerShareIncreasesOrRemainsUnchanged(
stableModule.totalSupply(),
invariantBefore.stableCollateralPerShare,
invariantAfter.stableCollateralPerShare

);
globalAveragePriceIsNotNegative(vault);

}

78

function _collateralNetBalanceRemainsUnchanged(int256 netBefore_, int256
netAfter_) private pure {↪→

// Note: +1e6 to account for rounding errors.
// This means we are ok with a small margin of error such that netAfter -

1e6 <= netBefore <= netAfter.↪→

126: if (netBefore_ > netAfter_ || netAfter_ > netBefore_ + 1e6)
revert InvariantChecks.InvariantViolation("collateralNet2");

}
function _getCollateralNet(IFlatcoinVault vault_) private view returns (int256
netCollateral_) {↪→

int256 collateralBalance =
int256(vault_.collateral().balanceOf(address(vault_)));↪→

int256 trackedCollateral = int256(vault_.stableCollateralTotal()) +
vault_.getGlobalPositions().marginDepositedTotal;

112: if (collateralBalance < trackedCollateral) revert
InvariantChecks.InvariantViolation("collateralNet1");↪→

return collateralBalance - trackedCollateral;
}

Internal pre-conditions
N/A

External pre-conditions
N/A

Attack Path
N/A

Impact
Traders could increase her position size as much as she wants without increasing the
averageprice. This will ensure the traders get extra margin after settlement of the
position and break the invarinat.

In Readme:

Q:Whatproperties/invariants do youwant to hold even if breaking themhasa low/un-
known impact? Any set of transactions which can break the invariants/properties as
mentioned in the InvariantChecks.sol contract file without reverting.

79

PoC
Due to this issue, trader's EntryPrice could be decreased little by little several times. Then,
Global_pnl could be less than sum of pnls. If all traders close their position, Global_pnl
could be underwater and deleted with Global_averagePrice. Therefore,
stableCollateralPerShare could be decreased. As a result last trader could not close
his/her position.

Let's consider this senario: Alice's long position: size = x (>=1e19 = 10 ETH), averagePrice =
1000e18 = $1000. current ETH price = 1000e18 + 1e10. Alice increase her position size by 1e8.
newEntryPriceTimesTen = ((averagePrice * size) + (adjustPrice * sizeAdjustment)) * 10 / (size
+ sizeAdjustment) = = (1000e18 * x + (1000e18 + 1e10) * 1e8) * 10 / (x + 1e8) = = (1000e18 * (x + 1e8)
+ 1e18) * 10 / (x + 1e8) = 10000e18 + 1e19/(x + 1e8) < 10000e18 + 1 Thus, newEntryPriceTimesTen
= 10000e18 and newEntryPrice = 1000e18 = averagePrice. As a result, Alice can increase
her position size as much as she wants without increasing the averageprice.

Assuming: stableCollateralTotal = 20 ETH, averagePrice_Global = 1000e18 + 1e10. Alice
long position : 10 ETH, 1000$, Bob's long position : 10 ETH, 1000e18 + 2e10 ETH Price :
1000e18 + 1e10

Alice continues to increase her position by 1e8 x times at a time. Alice's long position :
size = 10e18 + xe8, averagePrice = 1000e18, Bob's long position: size = 10e18,
averagePrice = 1000e18+2e10. Global: size = 20e18 + xe8, averagePrice = 1000e18 +
1e10. At this point: Global_pnl and sum of individual_pnl are moving futher and further
apart. When last provider close his/her position, individual_pnl is liquidited and
Global_pnl is reseted. At this time, the share could be decreased more than 2.

Mitigation

LeverageModule.sol
function executeAdjust(DelayedOrderStructs.Order calldata order_) external
onlyAuthorizedModule {↪→

...
uint256 newEntryPriceTimesTen = ((position.averagePrice *

position.additionalSize +
adjustPrice *
uint256(announcedAdjust.additionalSizeAdjustment)) * 10) /

newAdditionalSize;↪→

// In case there is a rounding error, we round up the entry price as
this will ensure the traders don't get extra↪→

// margin after settlement of the position.
-229 newEntryPrice = (newEntryPriceTimesTen % 10 != 0)
- ? newEntryPriceTimesTen / 10 + 1
- : newEntryPriceTimesTen / 10;
+ uint256 newEntryAmount = position.averagePrice * position.additionalSize
+ + adjustPrice * uint256(announcedAdjust.additionalSizeAdjustment);
+ newEntryPrice = (newEntryAmount % newAdditionalSize != 0)

80

+ ? newEntryAmount / newAdditionalSize + 1
+ : newEntryAmount / newAdditionalSize;

Test Code
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/tree/main/flatcoin
-v1/test/unit/Delayed-Order/DelayedOrder.t.sol#L500 Changed this function to above
file.

function test_revert_announce_orders_when_global_margin_negative() public {
uint256 collateralPrice = 1000e8;
uint256 stableDeposit = 10e18;

setCollateralPrice(collateralPrice);
vm.startPrank(admin);

controllerModProxy.setMaxFundingVelocity(0.03e18 - 1);

announceAndExecuteDeposit({
traderAccount: alice,
keeperAccount: keeper,
depositAmount: stableDeposit,
oraclePrice: collateralPrice,
keeperFeeAmount: 0

});

address[10] memory adrs;
uint256 n = 4;
uint256 size = 1e18 + 1;

adrs[1] = makeAddr("trader1");
adrs[2] = makeAddr("trader2");
adrs[3] = makeAddr("trader3");
adrs[4] = makeAddr("trader4");

for (uint256 i = 1; i <= n; i++) {
vm.startPrank(admin);
collateralAsset.transfer(adrs[i], 100e18);

}
for (uint256 i = 1; i <= n; i++) {

announceOpenLeverage(adrs[i], size, size, 0);
}
skip(10); // must reach minimum executability time

uint256[9] memory tokenIds;
for (uint256 i = 1; i <= n; i++) {

tokenIds[i] = executeOpenLeverage(keeper, adrs[i], collateralPrice);

81

}

collateralPrice += 1e8 + 1;
setCollateralPrice(collateralPrice);

for (uint256 i = 1; i <= n; i++) {
LeverageModuleStructs.Position memory position =

vaultProxy.getPosition(tokenIds[i]);↪→

uint256 marginAdjustment = position.marginDeposited / 9;
uint256 additionalSizeAdjustment = position.additionalSize / 9;
announceAdjustLeverage(adrs[i], tokenIds[i], int256(marginAdjustment),

int(additionalSizeAdjustment), 0);↪→

}

skip(10); // must reach minimum executability time

for (uint256 i = 1; i <= n; i++) {
executeAdjustLeverage(keeper, adrs[i], collateralPrice);

}

for (uint256 i = n; i >= 1 ; i--) {
announceCloseLeverage(adrs[i], tokenIds[i], 0);

}
skip(10); // must reach minimum executability time

for (uint256 i = n; i >= 1; i--) {
executeCloseLeverage(keeper, adrs[i], collateralPrice);

}
}

And change the following two functions in InvariantChecks.sol. Because the invariant
of collateralNetBalance check is first met.

LeverageModule.sol
function executeAdjust(DelayedOrderStructs.Order calldata order_) external
onlyAuthorizedModule {↪→

...
uint256 newEntryPriceTimesTen = ((position.averagePrice *

position.additionalSize +
adjustPrice *
uint256(announcedAdjust.additionalSizeAdjustment)) * 10) /

newAdditionalSize;↪→

// In case there is a rounding error, we round up the entry price as
this will ensure the traders don't get extra↪→

// margin after settlement of the position.
-229 newEntryPrice = (newEntryPriceTimesTen % 10 != 0)
- ? newEntryPriceTimesTen / 10 + 1
- : newEntryPriceTimesTen / 10;
+ uint256 newEntryAmount = position.averagePrice * position.additionalSize

82

+ + adjustPrice * uint256(announcedAdjust.additionalSizeAdjustment);
+ newEntryPrice = (newEntryAmount % newAdditionalSize != 0)
+ ? newEntryAmount / newAdditionalSize + 1
+ : newEntryAmount / newAdditionalSize;

forge test DelayedOrder.t.sol

Result: [FAIL: InvariantViolation(”stableCollateralPerShare”)]
test_revert_announce_orders_when_global_margin_negative() (gas: 45807281) Logs:
averagepriceBob : 1000000020000000000 averagepriceGlobal:
1000000020000000004

You can check that there are no FAIL by using the above mitigated
LeverageModule.sol::executeAdjust() function.

Discussion
sherlock-admin2

The protocol team fixed this issue in the following PRs/commits:
https://github.com/dhedge/flatcoin-v1/pull/502

83

Issue M-17: Bypass The SkewMax.
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/110

The protocol has acknowledged this issue.

Found by
KupiaSec

Summary
The current implementation allows traders to close their positions without checking the
skew, which can lead to a scenario where the skew exceeds the defined limit. As a result,
all the functions which include the skew check could not run. This causes all functions
that rely on skew checking to revert.

Root Cause
The issue arises in the executeClose() function, where there is no validation of the skew
before closing a position. This can result in the skew exceeding the maximum allowed
value.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/blob/main/flatcoin
-v1/src/LeverageModule.sol#L335

InvariantChecks.sol
function _collateralNetBalanceRemainsUnchanged(int256 netBefore_, int256
netAfter_) private pure {↪→

// Note: +1e6 to account for rounding errors.
// This means we are ok with a small margin of error such that netAfter -

1e6 <= netBefore <= netAfter.↪→

//if (netBefore_ > netAfter_ || netAfter_ > netBefore_ + 1e6)
// revert InvariantChecks.InvariantViolation("collateralNet2");

}
function _getCollateralNet(IFlatcoinVault vault_) private view returns (int256
netCollateral_) {↪→

int256 collateralBalance =
int256(vault_.collateral().balanceOf(address(vault_)));↪→

int256 trackedCollateral = int256(vault_.stableCollateralTotal()) +
vault_.getGlobalPositions().marginDepositedTotal;

//if (collateralBalance < trackedCollateral) revert
InvariantChecks.InvariantViolation("collateralNet1");↪→

84

return collateralBalance - trackedCollateral;
}

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/tree/main/flatcoin
-v1/src/abstracts/ControllerBase.sol#L144

LeverageModule.sol
299:function executeClose(

DelayedOrderStructs.Order calldata order_
) external onlyAuthorizedModule returns (uint256 marginAfterPositionClose_) {

IOracleModule oracleModule =
IOracleModule(vault.moduleAddress(FlatcoinModuleKeys._ORACLE_MODULE_KEY));↪→

DelayedOrderStructs.AnnouncedLeverageClose memory announcedClose =
abi.decode(↪→

order_.orderData,
(DelayedOrderStructs.AnnouncedLeverageClose)

);

LeverageModuleStructs.Position memory position =
vault.getPosition(announcedClose.tokenId);↪→

// Make sure the oracle price is after the order executability time
uint32 maxAge = _getMaxAge(order_.executableAtTime);

// check that sell price doesn't exceed requested price
(uint256 exitPrice,) = oracleModule.getPrice({

asset: address(vault.collateral()),
maxAge: maxAge,
priceDiffCheck: true

});
if (exitPrice < announcedClose.minFillPrice)

revert ICommonErrors.HighSlippage(exitPrice,
announcedClose.minFillPrice);↪→

uint256 totalFee;
int256 settledMargin;
LeverageModuleStructs.PositionSummary memory positionSummary;
{

positionSummary = getPositionSummary(position, exitPrice);

settledMargin = positionSummary.marginAfterSettlement;
totalFee = announcedClose.tradeFee + order_.keeperFee;

if (settledMargin <= 0) revert
ICommonErrors.ValueNotPositive("settledMargin");↪→

// Make sure there is enough margin in the position to pay the keeper
fee↪→

if (settledMargin < int256(totalFee)) revert
ICommonErrors.NotEnoughMarginForFees(settledMargin, totalFee);↪→

85

335: vault.updateStableCollateralTotal(-positionSummary.profitLoss); // pay
the trade fee to stable LPs↪→

vault.updateGlobalPositionData({
price: position.averagePrice,
marginDelta: -(int256(position.marginDeposited) +

positionSummary.accruedFunding),↪→

additionalSizeDelta: -int256(position.additionalSize)
});

// Delete position storage
vault.deletePosition(announcedClose.tokenId);

}

// Cancel any existing limit order on the position
IOrderAnnouncementModule(vault.moduleAddress(FlatcoinModuleKeys._ORDER_ANNO ⌋

UNCEMENT_MODULE_KEY))↪→

.cancelExistingLimitOrder(announcedClose.tokenId);

burn(announcedClose.tokenId);

emit LeverageClose(
announcedClose.tokenId,
exitPrice,
positionSummary,
uint256(settledMargin),
position.additionalSize

);

return uint256(settledMargin);
}

OrderExecutionModule.sol
function _executeLeverageClose(address account_, DelayedOrderStructs.Order
memory order_) internal {↪→

DelayedOrderStructs.AnnouncedLeverageClose memory leverageClose =
abi.decode(↪→

order_.orderData,
(DelayedOrderStructs.AnnouncedLeverageClose)

);

ILeverageModule leverageModule =
ILeverageModule(vault.moduleAddress(FlatcoinModuleKeys._LEVERAGE_MODULE_KEY));↪→

uint256 protocolFeePortion =
FeeManager(address(vault)).getProtocolFee(leverageClose.tradeFee);↪→

uint256 adjustedTradeFee = leverageClose.tradeFee - protocolFeePortion;

// Check that position exists (ownerOf reverts if owner is null address)

86

// There is a possibility that position was deleted by liquidation or limit
order module↪→

leverageModule.ownerOf(leverageClose.tokenId);
uint256 marginAfterPositionClose = leverageModule.executeClose(order_);

// Collateral and fees settlement.
{

// Note: Update the stable collateral total only after trade execution
by the leverage module↪→

// to avoid any accounting issues.
vault.updateStableCollateralTotal(int256(adjustedTradeFee));

// Fees are paid from the remaining position margin.
vault.sendCollateral({to:

FeeManager(address(vault)).protocolFeeRecipient(), amount: protocolFeePortion});↪→

vault.sendCollateral({to: msg.sender, amount: order_.keeperFee});

// Transfer the settled margin minus fee from the vault to the trader.
vault.sendCollateral({

to: account_,
amount: marginAfterPositionClose - leverageClose.tradeFee -

order_.keeperFee↪→

});
}

}
ConrollerBase.sol

function getProportionalSkew() public view virtual returns (int256 pSkew_) {
uint256 sizeOpenedTotal = vault.getGlobalPositions().sizeOpenedTotal;
uint256 stableCollateralTotal = vault.stableCollateralTotal();

if (stableCollateralTotal > 0) {
144: pSkew_ = int256(sizeOpenedTotal._divideDecimal(stableCollateralTotal))

- int256(targetSizeCollateralRatio);↪→

if (pSkew_ < -1e18 || pSkew_ > 1e18) {
pSkew_ = DecimalMath.UNIT.min(pSkew_.max(-DecimalMath.UNIT));

}
} else {

assert(sizeOpenedTotal == 0);
pSkew_ = 0;

}
}

Internal pre-conditions
N/A

87

External pre-conditions
N/A

Attack Path
N/A

Impact
Procotol cannot function as intended. The market may close if the price of ETH exceeds
six times its opening price.

PoC
Let's consider this senario. Assuming: maxskewFraction = 120%, stableCollateralTotal
:= 100ETH, _globalPositions.sizeOpenedTotal := 120ETH, currentPrice := 4400$. Alice's
old long position: size = 110 ETH, averagePrice = $600, Bob's long position: size = 10
ETH, averagePrice = $4000 Then, Alice's pnl = 110 * (4400 - 600) / 4400 = 95 ETH.
After Alice closes her position: stableCollateralTotal = 5 ETH, sizeOpenedTotal = 10
ETH. At this time, skew = 10 / 5 = 2 > maxskewFraction.

Another senario. Assuming: stableCollateralTotal := 100ETH,
_globalPositions.sizeOpenedTotal := 120ETH, currentPrice := 4400$, Alice's old long
position: size = 110 ETH, averagePrice = $400. Bob's long position: size = 10 ETH,
averagePrice = $4000 Then, Alice's pnl = 110 * (4400 - 400) / 4400 = 100 ETH. After
Alice closes her position: stableCollateralTotal = 0, sizeOpenedTotal = 10 ETH. After
this time, skew calcuation is reverted due to the getProportionalSkew() function. And this
function is used for Borrow Rate Fee calculation in the settleFundingFees() function.
This means that protol is broken.

Duplication Clarification
In sherlock docs:
https://docs.sherlock.xyz/audits/judging/guidelines#ix.-duplication-guidelines

https://github.com/sherlock-audit/2024-03-flat-money-fix-review-contest-judging/iss
ues/12

• Root Cause Identification My Report: Identifies that the skew is increased due to
the executeLeverageClose() function, which allows positions to close without skew
checks. Linked Report: Focuses on incorrect skew calculations by design, which is a
separate issue.

• Non-Duplication Justification Since My report addresses the lack of preventive
measures in closing positions while the linked report discusses calculation

88

inaccuracies, they tackle different aspects of the skew issue and should not be
considered duplicates.

Mitigation
1. Consider the using of actual liquidit for Skew calculations instead of

stableCollateralTotal,

2. or add more skew checks in multiple places.

https://github.com/sherlock-audit/2023-12-flatmoney-judging/issues/186
https://github.com/sherlock-audit/2023-12-flatmoney-judging/issues/161 The root
cause of these issues lies in misapplication, rather than the application itself.

89

Issue M-18: Borrow Rate Fee Is Incorrect.
Source:
https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update-judging/issues/113

The protocol has acknowledged this issue.

Found by
KupiaSec

Summary
The current implementation incorrectly affects new users due to the accumulated pnl of
previous users.

For new users, the accumulated pnl is not relevant. However, in the current
implementation, it does affect it. Because the stableCollateralTotal is
totalAfterSettlement plus total_pnl. As a result, Borrow Rate Fee incorrectly applied.

Root Cause
The issue stems from how the stableCollateralTotal is calculated and used. The
accumulated pnl should not influence new users, but it currently does.

https://github.com/sherlock-audit/2024-12-flat-money-v1-1-update/tree/main/flatcoin
-v1/src/abstracts/ControllerBase.sol#L144

ControllerBase.sol
207:function profitLossTotal(uint256 price_) public view virtual returns (int256

pnl_) {↪→

FlatcoinVaultStructs.GlobalPositions memory globalPosition =
vault.getGlobalPositions();↪→

int256 priceShift = int256(price_) - int256(globalPosition.averagePrice);

return (int256(globalPosition.sizeOpenedTotal) * (priceShift)) /
int256(price_);↪→

}
function getProportionalSkew() public view virtual returns (int256 pSkew_) {

uint256 sizeOpenedTotal = vault.getGlobalPositions().sizeOpenedTotal;
uint256 stableCollateralTotal = vault.stableCollateralTotal();

if (stableCollateralTotal > 0) {
144: pSkew_ = int256(sizeOpenedTotal._divideDecimal(stableCollateralTotal))

- int256(targetSizeCollateralRatio);↪→

if (pSkew_ < -1e18 || pSkew_ > 1e18) {

90

pSkew_ = DecimalMath.UNIT.min(pSkew_.max(-DecimalMath.UNIT));
}

} else {
assert(sizeOpenedTotal == 0);
pSkew_ = 0;

}
}

StableModule.sol
181:function stableCollateralTotalAfterSettlement(

uint32 maxAge_,
bool priceDiffCheck_

) public view returns (uint256 stableCollateralBalance_) {
// Assumption => pnlTotal = pnlLong + fundingAccruedLong
// The assumption is based on the fact that stable LPs are the counterparty

to leverage traders.↪→

// If the `pnlLong` is +ve that means the traders won and the LPs lost
between the last funding rate update and now.↪→

// Similary if the `fundingAccruedLong` is +ve that means the market was
skewed short-side.↪→

// When we combine these two terms, we get the total profit/loss of the
leverage traders.↪→

// NOTE: This function if called after settlement returns only the PnL as
funding has already been adjusted↪→

// due to calling `_settleFundingFees()`. Although this still means
`netTotal` includes the funding↪→

// adjusted long PnL, it might not be clear to the reader of the code.
int256 netTotal = IControllerModule(vault.moduleAddress(FlatcoinModuleKeys. ⌋

_CONTROLLER_MODULE_KEY))↪→

.fundingAdjustedLongPnLTotal({maxAge: maxAge_, priceDiffCheck:
priceDiffCheck_});↪→

// The flatcoin LPs are the counterparty to the leverage traders.
// So when the traders win, the flatcoin LPs lose and vice versa.
// Therefore we subtract the leverage trader profits and add the losses
int256 totalAfterSettlement = int256(vault.stableCollateralTotal()) -

netTotal;↪→

if (totalAfterSettlement < 0) {
stableCollateralBalance_ = 0;

} else {
stableCollateralBalance_ = uint256(totalAfterSettlement);

}
}

Internal pre-conditions
N/A

91

External pre-conditions
N/A

Attack Path
N/A

Impact
Incorrect using of Borrow Rate Fee always cause loss for one side, either traders or
liquidity providers

PoC
Scenario1: Assuming: stableCollateralTotal = 105 ETH,
_globalPositions.sizeOpenedTotal = 100 ETH, _globalPositions.averagePrice = $4500,
currentPrice = $5000, targetSizeCollateralRatio = 1e18, total shares = 4.5e5
(UNIT), Alice's shares = 4.5e5. total pnl = 100 * (5000 - 4500) / 5000 = 10 ETH,
totalAfterSettlement = 105 - 10 = 95 ETH.

Bob deposits 95 ETH: Bob's shares = 95 / (95 / 4.5e5) = 4.5e5.
stableCollateralTotal = 200 ETH, total pnl = 10 ETH, totalAfterSettlement = 190
ETH, skew = 100/200 - 1 < 0. The stableCollateralTotal includes Alice's 105 ETH, and
Bob's 95 ETH(however, the ETH prices are different). But Alice and Bob are paying same
'Borrow Rate Fee'(Because their shares are same). This is a loss for Bob.

Alice withdraw her 4.5e5(UNIT) shares. stableCollateralTotal = 105 ETH, total pnl =
10 ETH, totalAfterSettlement = 95 ETH, skew = 100/105 - 1 < 0. Bob deposited only 95
ETH(less than sizeOpenTotal), but now he is paying the Borrow Rate Fee instead of
receiving it. This is another loss for Bob.

Scenario2: Assuming: stableCollateralTotal = 110 ETH,
_globalPositions.sizeOpenedTotal = 100 ETH, _globalPositions.averagePrice = $4600,
currentPrice = $4000, targetSizeCollateralRatio = 1e18, total shares = 4.6e5
(UNIT), Alice's shares = 4.6e5. total pnl = 100 * (4000 - 4600) / 4000 = -15 ETH,
totalAfterSettlement = 110 - (-15) = 125 ETH.

Bob deposits 110 ETH: Bob's shares = 110 / (125 / 4.6e5) = 4.048e5.
stableCollateralTotal = 220 ETH, total pnl = -15 ETH, totalAfterSettlement = 235
ETH, skew = 100/235 - 1 < 0. The stableCollateralTotal includes Alice's 110 ETH, and
Bob's 110 ETH(however, the ETH prices are different). But Alice is paying more 'Borrow
Rate Fee' than Bob(because, Alice's shares > Bob's shares). This is a loss for Alice.

Alice withdraw her 4.6e5(UNIT) shares. stableCollateralTotal = 95 ETH, total pnl =
-15 ETH, totalAfterSettlement = 110 ETH, skew = 100/95 - 1 > 0. Bob deposited 110
ETH(more than sizeOpenTotal), but now he is receiving the Borrow Rate Fee instead of
paying. This is a loss for traders.

92

This problem exists even when viewed from the trader's perspective.

This means that the relationships between old providers and old traders are influencing
new users. For new users, a new market or an old market should be the same, but that is
not the case. This is because of Alice, and this situation should reset when Alice leaves,
but the current implementation does not allow for that.

Scenario3: Assuming: stableCollateralTotal := 85 ETH, currentPrice := $4000,
maxskewFraction = 120%. Trader Alice's old long position: size := 100 ETH, averagePrice
:= $600 Trader Bob's old long position: size := 2 ETH, averagePrice := $2000 Alice's
pnl = 100 * (4000 - 600) / 4000 = 85 ETH. Bob's pnl = 2 * (4000 - 2000) / 4000 = 1
ETH. If Alice closes his position, then: stableCollateralTotal = 0, totalAfterSettlement
= -1(ETH) -> 0. At this time Borrow Rate Fee can't calculate. Bob can't close his position
and because stableCollateralPerShare = 0 anyone can't mint shares. As a result, the
protocol is broken.

Duplication Clarification
https://github.com/sherlock-audit/2024-03-flat-money-fix-review-contest-judging/iss
ues/11 My Report: Focuses on how accumulated pnl impacts new users in the market.
Linked Report: Identifies parties responsible for causing the pnl. These reports address
different aspects; hence, they should not be considered duplicates.

Mitigation
1. Consider settling the total_pnl periodically,

2. or using providers' real funds instead of stableCollateralTotal.

https://github.com/sherlock-audit/2023-12-flatmoney-judging/issues/186
https://github.com/sherlock-audit/2023-12-flatmoney-judging/issues/161 The root
cause of these issues lies in misapplication, rather than the application itself.

Let's consider settling the total_pnl exactly periodically. 1.

struct GlobalPositions {
int256 marginDepositedTotal;

+ uint touchedPnl;
uint256 averagePrice;
uint256 sizeOpenedTotal;

}

2. stableCollateralTotal = stableCollateralTotal + touchedPnl - total_pnl.

3. marginDepositedTotal = marginDepositedTotal - touchedpnl + total_pnl.

4. touchedPnl = total_pnl.

This will be mitigated many issues.

93

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the users’
responsibility.

94

