
Term Finance

Term Finance – Smart Contract Changes
Security Assessment Report

Version: 2.0

May, 2023

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 4
Detailed Findings 5

Summary of Findings 6Duplicate Bid and Offer IDs . 7
encumberedCollateralBalances Not Updated . 9Auctions Require Too Much Gas to Complete . 10Bid and Auction Limits Allow Participants to Lock Out All Competition 11Miscellaneous General Comments . 12

A Test Suite 14

B Vulnerability Severity Classification 15

1

Term Finance – Smart Contract Changes Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of a selected list of changesmade to the Term Finance smart contracts.
The review focused solely on the security aspects of the Solidity implementation of the contract, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review, regarding the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of the functionality of the Term Finance smart contracts contained withinthe scope of the security review. A summary followed by a detailed review of the discovered vulnerabilitiesis then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-plications (but are potentially of interest) are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Term Finance smart contracts.

Overview

Term Finance is a noncustodial fixed-rate liquidity protocol modeled on tri-party repo arrangements common intraditional finance.
Liquidity suppliers and takers arematched through a uniqueweekly auction processwhere liquidity takers submitbids and suppliers submit offers to the protocol, which then determines an interest rate that clears the market.
Bidders who bid more than the clearing rate receive liquidity and lenders asking less than the clearing rate,supply.

Page | 2

Term Finance – Smart Contract Changes Security Assessment Summary

Security Assessment Summary

This review was conducted on the files hosted on the term-finance repository, with majority of code changesassessed at commit ba9550e.
The scope of this assessment was strictly limited to the code changes related to the following PRs:

• PR 762

• PR 764

• PR 766

• PR 769

• PR 772

• PR 775

• PR 779

• PR 782

• PR 784

• PR 802

• PR 816

• PR 817, PR 818

• PR 820, PR 828, PR 830

• PR 822

• PR 825

• PR 834, PR 837

• PR 850 (relevant changes re-viewed at commit 5d2251f)
• PR 853 (relevant changes re-viewed at commit c112f92)
• PR 856 (relevant changes re-viewed at commit f11982e)
• PR 857 (relevant changes re-viewed at commit b6da64c)

Note: the OpenZeppelin libraries and dependencies were excluded from the scope of this assessment.

The manual code review section of the report is focused on identifying any and all issues/vulnerabilities as-sociated with the business logic implementation of the contract changes in scope. This includes their internalinteractions, intended functionality and correct implementation with respect to the underlying functionality ofthe Ethereum Virtual Machine (for example, verifying correct storage/memory layout). Additionally, the manualreview process focused on all known Solidity anti-patterns and attack vectors. These include, but are not limitedto, the following vectors: re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers.For a more thorough, but non-exhaustive list of examined vectors, see [1, 2].

Page | 3

https://github.com/term-finance/term-finance
https://github.com/term-finance/term-finance/commit/ba9550eec5a6aebb5c7fcf3733b5cc20ac9bc4da
https://github.com/term-finance/term-finance/commit/5d2251f5f4b37159ee22fd85b857a70fba48668a
https://github.com/term-finance/term-finance/commit/c112f927674aad989da55216d55b852ca70dfa0d
https://github.com/term-finance/term-finance/commit/f11982e48bf95767793d7f3d359b05b44f1b44fc
https://github.com/term-finance/term-finance/commit/b6da64ce35fba0093b294c8fcbc2e4529d1372f8

Term Finance – Smart Contract Changes Findings Summary

To support this review, the testing team used the following automated testing tools:
• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 5 issues during this assessment. Categorized by their severity:
• Critical: 1 issue.
• High: 2 issues.
• Medium: 1 issue.
• Informational: 1 issue.

Page | 4

https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

Term Finance – Smart Contract Changes Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the code changes made toTerm Finance’s smart contracts, as per the scope. Each vulnerability has a severity classification which is deter-mined from the likelihood and impact of each issue by the matrix given in the Appendix: Vulnerability SeverityClassification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status
TRM2-01 Duplicate Bid and Offer IDs Critical Resolved

TRM2-02 encumberedCollateralBalances Not Updated High Closed

TRM2-03 Auctions Require Too Much Gas to Complete High Open

TRM2-04 Bid and Auction Limits Allow Participants to Lock Out All Competition Medium Closed

TRM2-05 Miscellaneous General Comments Informational Closed

6

Term Finance – Smart Contract Changes Detailed Findings

TRM2-
01

Duplicate Bid and Offer IDs

Asset TermAuctionBidLocker.sol, TermAuctionOfferLocker.sol
Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

Users can overwrite their existing bids, stranding collateral and making auction resolution impossible.
When a new bid is submitted with a bid ID that does not already exist, a new bid ID is generated and used. However,this new bid ID is determined by the bid submission, and so the same submission always creates the same bid ID.This makes it possible to overwrite existing bids for the same user. When this happens, the tally of bids is incorrectlyincreased and this makes it impossible to either complete or cancel the auction. The user is also unable to unlock theircollateral from the first submission.
The logic for determining the bid ID of a bid submission is contained in _lock() :

447 bool bidExists = bids[bidSubmission.id].amount != 0;
bytes32 bidId;

449 if (bidExists) {
if (bids[bidSubmission.id].bidder != bidSubmission.bidder) {

451 revert BidNotOwned();
}

453 bidId = bidSubmission.id;
} else {

455 bidId = _generateBidId(bidSubmission.id, authedUser);
}

968 function _generateBidId(
bytes32 id,

970 address user
) internal view returns (bytes32) {

972 return keccak256(abi.encodePacked(id, user, address(this)));
}

As can be seen, if a submission is made with an existing bid ID, the variable bidExists is set to True and the codeproceeds to modify the existing bid. However, if the submission contains a bid ID which does not exist, it determinis-tically generates a new bid ID based on only the user’s address and the submitted bid ID. Critically, this generated bidID is not checked against existing bid IDs.
Because of this, it is possible to generate the same bid IDmultiple times. Each time, the variable bidExists will be set to
False , however, and so the bid submission will be treated as a new bid. It will overwrite the existing bid’s information,transfer new collateral without regard for existing collateral, and increment bidCount , the contract’s counter for thenumber of submitted bids.
This last point will make it impossible to either complete or cancel the auction as both of the relevant functions in
TermAuction , completeAuction() and cancelAuction() , call getAllBids() in TermAuctionBidLocker . This function
loops through the submitted bids, processes them, and, crucially, decrements bidCount . If bidCount is not zero afterthis loop, it reverts. This revert will always occur in the situation where the number of bids is less than bidCount , as isthe case here.

Page | 7

Term Finance – Smart Contract Changes Detailed Findings

In addition, as the functions that unlock bids and return collateral rely on the values stored in bids , and these havebeen overwritten, it will not be possible for the user to unlock the collateral from their overwritten bids.
This issue also applies to TermAuctionOfferLocker , which uses similar code.

Recommendations

Change the logic of _generateBidId() to check that the generated ID does not exist and only return once a uniquebid ID has been generated.

Resolution

This finding has been resolved in PR 868.

Page | 8

https://github.com/term-finance/term-finance/pull/868

Term Finance – Smart Contract Changes Detailed Findings

TRM2-
02

encumberedCollateralBalances Not Updated

Asset TermRepoCollateralManager.sol

Status Closed: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

auctionLockCollateral() and auctionUnlockCollateral() do not modify encumberedCollateralBalances array, re-sulting in collateral locked or unlocked by the auction process not being tracked.
This may result in an invalid accounting, causing unexpected issues further down in the execution flow.

Recommendations

Ensure the ledgers are correctly updated from within auctionLockCollateral() and auctionUnlockCollateral()functions, for example:
// for locking
lockedCollateralLedger[borrower][collateralToken] += amount;
encumberedCollateralBalances[collateralToken] += amount;

Alternatively, call _lockCollateral() and _unlockCollateral functions from within auctionLockCollateral() and
auctionUnlockCollateral() respectively (the same way as it is currently implemented for externalLockCollateral()
and externalUnlockCollateral()).

Resolution

This finding has been closed as false-positive. Upon consultation with the development team, this is an expectedbehaviour - collateral is only considered encumbered when a loan is secured, which is handled by fulfillBid() .

Page | 9

Term Finance – Smart Contract Changes Detailed Findings

TRM2-
03

Auctions Require Too Much Gas to Complete

Asset TermAuction.sol, TermAuctionBidLocker.sol, TermAuctionOfferLocker.sol
Status Open

Rating Severity: High Impact: High Likelihood: Medium

Description

The gas usage of the TermAuction function completeAuction() uses approximately 1.5m gas for every 10 bids andoffers in the auction. It is therefore estimated to reach the block gas limit at approximately 200 bids and offers.
Note that, at a gas price of 100 wei, the block gas limit of 30m gas would cost 3 ether.
The current settings of MAX_BID_COUNT and MAX_OFFER_COUNT in TermAuctionBidLocker and TermAuctionOfferLockerare both 1,000. The block gas limit would be reached significantly before this limit, and therefore they would not havetheir stated effect of preventing the block gas limit from preventing auction completion.

Recommendations

Consider changing the auction resolution logic to be significantly more gas efficient. Alternatively, set these limits to180.

Resolution

TBD.

Page | 10

Term Finance – Smart Contract Changes Detailed Findings

TRM2-
04

Bid and Auction Limits Allow Participants to Lock Out All Competition

Asset TermAuction.sol, TermAuctionBidLocker.sol, TermAuctionOfferLocker.sol
Status Closed: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

The current settings of MAX_BID_COUNT and MAX_OFFER_COUNT in TermAuctionBidLocker and TermAuctionOfferLockerprevent bids and offers past a certain count. In the current code, these values need to be relatively low: they are bothset to 1,000 (although may need to be lower: see TRM2-03). It would be possible for an auction participant to submitmany tiny bids in a single transaction and thus lock out all other participants.
One bidder could call TermAuctionBidLocker::lockBids() multiple times in a single transaction to create 999 tiny bidsand one large bid, all at the minimum level. At this point, only one bidder exists, but no others can enter the auction.
This issue is mitigated by the fact that the offerers could withdraw their offers or the auction could be cancelled.

Recommendations

Consider changing the auction resolution logic to be significantly more gas efficient so that these limits are not needed.

Resolution

This finding has been risk accepted with the following advice from the development team:
Unfortunately we do not have the bandwidth for gas optimizations (these would be major changes to our conctracts), this
is something we will look to address in the the next iteration. Currently we address this vulnerability by setting a minimum
tender amount (See line [485]) to prevent a user from flooding the auction with low value tenders to block out other users.

Page | 11

https://github.com/term-finance/term-finance/blob/main/contracts/TermAuctionBidLocker.sol#L485

Term Finance – Smart Contract Changes Detailed Findings

TRM2-
05

Miscellaneous General Comments

Asset contracts/*

Status Closed: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Underflow risk in TermRepoServicer .

The below codewill underflow if totalOutstandingRepurchaseExposure < repurchaseExposureLedger[borrower] .
655 if (rolloverSettlementAmount > repurchaseExposureLedger[borrower]) {

totalOutstandingRepurchaseExposure -= repurchaseExposureLedger[
657 borrower

];

Implement checks to ensure totalOutstandingRepurchaseExposure is always greater than or equal to
repurchaseExposureLedger[borrower] .
Note, this did not appear to be exploitable at the time of the review due to the relevant values being updatedtogether throughout the TermRepoServicer.sol contract.

2. TermAuctionOfferLocker::unlockOfferPartial() and TermAuctionBidLocker::auctionUnlockBid() do not
check if a bid or an offer exists.
Note, this did not appear to be exploitable at the time of the review due to the auction contract using
getAllBids() and getAllOffers() before calling unlockOfferPartial() or auctionUnlockBid() functions,which already check for the existence of bids and offers.

3. Return new IDs from TermAuctionOfferLocker::lockOffer() and TermAuctionBidLocker::lockBid() to in-
crease composability
These functions to lock bids and offers will often modify the submitted bid and offer IDs. However, the only wayto access this information is through the event emitted. It would make the protocol easier to interact with if therewere an accessible on chain method for finding out the generated bid or offer ID. Consider returning generatedIDs from these and similar functions.

4. Code quality and consistency improvements - TermAuctionOfferLocker

To check if an offer exists, there is currently onlyExistingOffer(id) modifier added to unlockOffer() function,
and a separate check implemented for unlockOffers() .
For consistency and readability, move the following check to _unlock() function (the same way as it is imple-
mented in TermAuctionBidLocker):
if (offers[offerSubmission.id].amount == 0) {

revert NonExistentOffer(offerSubmission.id);
}

5. Typo
"aalready" on line [324] of TermRepoCollateralManager

Page | 12

Term Finance – Smart Contract Changes Detailed Findings

6. Redundant code
On line [326] of TermRepoCollateralManager , decrementEncumberedCollateral is conditionally set to false .
However, this variable was declared on line [322] and would default to false . This first part of the test thereforeperforms no function. Consider replacing it with a comment to preserve clarity.

322 bool decrementEncumberedCollateral;

324 // collateral has aalready been unencumbered through liquidation
if (termRepoServicer.getBorrowerRepurchaseObligation(borrower) == 0) {

326 decrementEncumberedCollateral = false;
} else {

328 decrementEncumberedCollateral = true;
}

7. Inconsistent use of storage variable

On line [363] of TermRepoRolloverManager , a variable rolloverElection is set as the entry in the state variable
rolloverElections for the account being rolled over. This is set as a storage variable. However, the original
state variable, rolloverElections[borrowerToRollover] is still referenced in the code on line [371], line [376],line [379], line [427] and line [436]. Creating a storage variable for it therefore just results in the code being lessusable.
Additionally, there are no gas savings, as rolloverElection is a storage variable and so reading from it willrequire storage reads. Consider, therefore, declaring it as a memory variable.

8. Event names
In TermAuction::AuctionCompleted() , the variables and event entries totalAssignedBids and
totalAssignedOffers sound like the counts of bids and offers but are actually total amounts. Consider
renaming them to put the word "total" at the end to emphasise that they are totals: assignedBidsTotal and
assignedOffersTotal .

9. PR 850: revert before operations to save gas
On line [442] of TermRepoCollateralManager , the variable totalClosureRepoTokenAmounts is tested and there is
a revert if it equals zero. This could be done before _transferLiquidationCollateral() is called in the preceding
lines. That function does notmodify totalClosureRepoTokenAmounts and so it will save gas if a transaction revertsat this point.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The comments above have been acknowledged by the development team and selected findings were actioned in thefollowing PRs:
• PR 873
• PR 874
• PR 876

Page | 13

https://github.com/term-finance/term-finance/pull/873
https://github.com/term-finance/term-finance/pull/874
https://github.com/term-finance/term-finance/pull/876

Term Finance – Smart Contract Changes Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The brownie framework was used to perform these tests and the output is given below.

=== test session starts ===
platform linux -- Python 3.8.12, pytest-6.2.5, py-1.10.0, pluggy-1.0.0
plugins: eth-brownie-1.17.1, mock-3.7.0, web3-5.24.0, cov-3.0.0, hypothesis-6.24.0, xdist-1.34.0, forked-1.3.0
collected 99 items

Launching 'ganache-cli --port 8545 --gasLimit 12000000 --accounts 20 --hardfork istanbul --mnemonic brownie --defaultBalanceEther
1000000'...↪→

tests/test_Authenticator.py ...xx. [6%]
tests/test_TermAuction.py [11%]
tests/test_TermAuctionBidLocker.pys............ [31%]
tests/test_TermAuctionOfferLocker.py ...s.............. [49%]
tests/test_TermController.py ... [52%]
tests/test_TermEventEmitter.py . [53%]
tests/test_TermInitializer.py .. [55%]
tests/test_TermPriceConsumerV3.py . [56%]
tests/test_TermRepoCollateralManager.py .x....... [65%]
tests/test_TermRepoLocker.py ... [68%]
tests/test_TermRepoRolloverManager.py [79%]
tests/test_TermRepoServicer.py [86%]
tests/test_TermRepoToken.py [95%]
tests/test_poc_duplicate-bidid.py . [96%]
tests/test_poc_max_price.py . [97%]
tests/test_poc_multicollateral.py x [98%]
tests/test_poc_revert_auth.py x [100%]

============================== 92 passed, 2 skipped, 5 xfailed, 430 warnings in 498.14s (0:08:18) ==============================

Page | 14

Term Finance – Smart Contract Changes Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 15

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Duplicate Bid and Offer IDs
	encumberedCollateralBalances Not Updated
	Auctions Require Too Much Gas to Complete
	Bid and Auction Limits Allow Participants to Lock Out All Competition
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

